JP2005029406A - Method of producing gaseous hydrogen - Google Patents

Method of producing gaseous hydrogen Download PDF

Info

Publication number
JP2005029406A
JP2005029406A JP2003194456A JP2003194456A JP2005029406A JP 2005029406 A JP2005029406 A JP 2005029406A JP 2003194456 A JP2003194456 A JP 2003194456A JP 2003194456 A JP2003194456 A JP 2003194456A JP 2005029406 A JP2005029406 A JP 2005029406A
Authority
JP
Japan
Prior art keywords
water
hydrogen gas
substance
chemical reaction
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003194456A
Other languages
Japanese (ja)
Inventor
Takanori Suzuki
貴紀 鈴木
Izuru Kanoya
出 鹿屋
Mitsuya Hosoe
光矢 細江
Noriko Ishii
紀子 石井
Masaki Kamiyama
雅樹 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003194456A priority Critical patent/JP2005029406A/en
Publication of JP2005029406A publication Critical patent/JP2005029406A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing gaseous hydrogen at a low cost with high efficiency. <P>SOLUTION: In the production of gaseous hydrogen, a material producing gaseous hydrogen while generating heat by the contact with water, water and an organic material are charged in a reaction vessel 3 in a quantity that a total quantity of the water and water contained in the organic material is set to exceed the quantity necessary for the chemical reaction with the material. Next, the reaction vessel 3 is hermetically sealed, and in the reaction vessel 3, one of supercritical water and subcritical water is produced by the chemical reaction of the material with water and is chemically reacted with the organic material to produce gaseous hydrogen. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は水素ガスの製造方法に関する。
【0002】
【従来の技術】
従来,水素ガスの製造方法としては,超臨界水と有機物とを化学反応させて水素ガスを製造する方法が知られている(例えば,特許文献1参照)。
【0003】
【特許文献1】
特開2000−143202号公報
【0004】
【発明が解決しようとする課題】
しかしながら従来法においては,超臨界水の製造に当り,反応容器を外部加熱しなければならないので,その外部加熱に伴うコストが嵩み,経済的ではない,という問題がある。
【0005】
【課題を解決するための手段】
本発明は,低コストで効率良く水素ガスを得ることが可能な前記製造方法を提供することを目的とする。
【0006】
前記目的を達成するため本発明によれば,水と接触して水素ガスを生成しつつ熱を発生する化学反応を行う物質と,水と,有機物とを,前記水および前記有機物に含まれる水の合計量が前記物質との前記化学反応に必要な量を上回るように設定して反応容器内に投入し,次いで,前記反応容器を密閉して,その反応容器内において,前記物質と水との化学反応により超臨界水および亜臨界水の一方を生成させて,その一方と前記有機物との化学反応により水素ガスを生成させる,水素ガスの製造方法が提供される。
【0007】
また本発明によれば,水と接触して水素ガスを生成しつつ熱を発生する化学反応を行う物質と,前記物質との前記化学反応に必要な量を上回る量の水を含む有機物とを反応容器内に投入し,次いで,前記反応容器を密閉して,その反応容器内において,前記物質と水との化学反応により超臨界水および亜臨界水の一方を生成させて,その一方と前記有機物との化学反応により水素ガスを生成させる,水素ガスの製造方法が提供される。
【0008】
さらに本発明によれば,水と接触して水素ガスを生成しつつ熱を発生する化学反応を行う物質と水と乾燥状態の有機物とよりなる原料および前記物質と含水状態の有機物とよりなる原料の一方を反応容器内に投入し,次いで,前記反応容器を密閉して,その反応容器内において,前記物質と水との化学反応により超臨界水および亜臨界水の一方を生成させて,その一方と前記有機物との化学反応により水素ガスを生成させる,水素ガスの製造方法が提供される。
【0009】
前記方法によれば,前記物質,水および有機物または前記物質および有機物の反応容器内への投入ならびにその反応容器の密閉を行うだけで水素ガスを得ることが可能であるから,水素ガスの製造コストを低減することができる。また製造される水素ガス量は,有機物に因る水素ガスに,超臨界水の生成に用いられた水素ガスが加えられることから水素ガスの生産を効率良く行うことができる。
【0010】
【発明の実施の形態】
超臨界水および亜臨界水の一方を生成されるための原料において,水と接触して水素ガスを生成しつつ熱を発生する化学反応を行う物質としては,Mg,Al,MgH,Mg(BH,Mg(AlH,NaAlH,NaBH,LiH,LiAlH,LiBH,NaH,Ca(BHおよびCa(AlHから選択される少なくとも一種の粉末が用いられ,この実施例では粒径10〜500μmのMgH粉末を用意した。また水としては,この実施例ではイオン交換水を用意した。これはMgH+2HO→Mg(OH)+2H+278kJ/mol−H(発熱),といった化学反応を狙ったもので,この化学反応式を成立させるための水の量は約18cc/mol−H(理論値)である。
【0011】
有機物には,石炭,石油,プラスチック,バイオマス等の粉砕物が該当し,この実施例ではバイオマスであるキャベツを粉砕したものを用意した。
【0012】
前記水の量には,有機物に含まれる水も算入され,水素ガスの製造に当っては,イオン交換水等の水および有機物に含まれる水の合計量が前記化学反応に必要な水の量を上回ることが必要である。したがって,有機物が乾燥状態にあるときには水が加えられ,一方,有機物が,前記化学反応に必要な量を上回る量の水を含んでいる場合,つまり含水状態にあるときには,イオン交換水等の水は加えられない。
【0013】
水素ガスの製造に当っては,図1に示す水素製造装置において,0.66gのMgH粉末と,1.8ccの分散媒としてのヘキサンとが第1混合器1に投入されてMgHスラリが調製され,そのMgHスラリは第1予熱器2を経た後,内容積60cmの反応容器3に投入された。一方,含水率10%のキャベツ3.7gを粉砕したものと5.9ccのイオン交換水とが第2混合器1に投入されてキャベツスラリが調製され,そのキャベツスラリは第2予熱器2を経た後反応容器3に投入され,次いで反応容器3は密閉された。
【0014】
反応容器3内においては,MgHと水とが前記化学反応式に則り反応して水素ガスが発生し,それと同時に熱も発生する。その熱により水および反応容器3内の温度が上昇し,また水素ガスが発生しているため反応容器3内の圧力も上昇する。その結果,水および反応容器3内の温度は100℃を超え,また反応容器3内の圧力は容易に数MPaに達する。MgHは100℃以上の熱水と急激に反応するので大量の熱と水素ガスが発生し始める。これにより反応容器1内には温度が350℃で,圧力が16.5MPaの雰囲気が現出して水は亜臨界水となり,瞬間的にMgHと水との反応が終了する。そして,亜臨界水とキャベツを粉砕したものとが化学反応して反応容器3内には水素ガス,気体炭化水素および液体炭化水素が生成される。このときの反応率は50%である。
【0015】
反応容器3を密閉してから10分間が経過した後反応容器3が開放されて,内容物は,冷却器4を経た後気体分離器5に投入され,その気体分離器5にて気体と,固体および液体よりなる固液混合物とに分離された。気体は水素精製器6に投入されて,水素ガスと気体炭化水素(主として,メタンガス)とに分離され,それらは別々に貯蔵された。
【0016】
一方,固液混合物は圧搾機7に投入されて固体残渣と液体とに分離され,その固体残渣は廃棄され,一方,液体は液体分離器8に投入された。液体分離器8では,未反応水および水に可溶の炭化水素と,水に不溶の炭化水素とに分離された。未反応水および水に可溶の炭化水素はイオン交換水の代用として再利用され,一方,水に不溶の炭化水素は主として貯蔵され,一部は装置運転中においては,除湿器9にて除湿された後,ヘキサンに代え,MgHスラリ調製用分散媒として利用される。
【0017】
また冷却器4→第2予熱器2→第1予熱器2→冷却器4の経路で水が循環するようになっており,第2予熱器2には冷却器4からの昇温水が優先的に導入され,また冷却器4には第1予熱器2から降温水が導入される。
【0018】
【発明の効果】
本発明によれば,前記のような手段を採用することによって,低コストで効率良く水素ガスを得ることが可能な製造方法を提供することができる。
【図面の簡単な説明】
【図1】水素製造装置のブロック図である。
【符号の説明】
3………反応容器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing hydrogen gas.
[0002]
[Prior art]
Conventionally, as a method for producing hydrogen gas, a method for producing hydrogen gas by chemically reacting supercritical water with an organic substance is known (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-143202
[Problems to be solved by the invention]
However, in the conventional method, since the reaction vessel has to be externally heated in the production of supercritical water, there is a problem that the cost associated with the external heating increases and is not economical.
[0005]
[Means for Solving the Problems]
An object of the present invention is to provide the production method capable of obtaining hydrogen gas efficiently at low cost.
[0006]
In order to achieve the above-described object, according to the present invention, a substance that performs a chemical reaction that generates heat while generating hydrogen gas in contact with water, water, and an organic substance are mixed with the water and the water contained in the organic substance. Is set so that the total amount exceeds the amount necessary for the chemical reaction with the substance, put into the reaction vessel, and then the reaction vessel is sealed, and the substance, water, and water are sealed in the reaction vessel. There is provided a method for producing hydrogen gas, in which one of supercritical water and subcritical water is generated by the chemical reaction, and hydrogen gas is generated by a chemical reaction between the one and the organic substance.
[0007]
According to the present invention, there is provided a substance that performs a chemical reaction that generates heat while generating hydrogen gas in contact with water, and an organic substance that contains water in an amount exceeding the amount necessary for the chemical reaction with the substance. Then, the reaction vessel is sealed, and in the reaction vessel, one of supercritical water and subcritical water is generated by a chemical reaction between the substance and water. Provided is a method for producing hydrogen gas, in which hydrogen gas is generated by a chemical reaction with an organic substance.
[0008]
Furthermore, according to the present invention, a raw material comprising a substance that performs a chemical reaction that generates heat while generating hydrogen gas in contact with water, water and a dry organic substance, and a raw material comprising the substance and a water-containing organic substance Then, the reaction vessel is sealed, and in the reaction vessel, one of supercritical water and subcritical water is generated by a chemical reaction between the substance and water. Provided is a method for producing hydrogen gas, in which hydrogen gas is generated by a chemical reaction between one of the organic substances.
[0009]
According to the method, it is possible to obtain hydrogen gas simply by putting the substance, water and organic substance or the substance and organic substance into a reaction vessel and sealing the reaction vessel. Can be reduced. In addition, the amount of hydrogen gas produced can be efficiently produced because the hydrogen gas used for the production of supercritical water is added to the hydrogen gas derived from organic matter.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the raw material for producing one of supercritical water and subcritical water, substances that undergo chemical reactions that generate heat while generating hydrogen gas in contact with water include Mg, Al, MgH 2 , Mg ( At least one powder selected from BH 4 ) 2 , Mg (AlH 4 ) 2 , NaAlH 4 , NaBH 4 , LiH, LiAlH 4 , LiBH 4 , NaH, Ca (BH 4 ) 2 and Ca (AlH 4 ) 2 In this example, MgH 2 powder having a particle size of 10 to 500 μm was prepared. As water, ion-exchanged water was prepared in this example. This is aimed at a chemical reaction such as MgH 2 + 2H 2 O → Mg (OH) 2 + 2H 2 +278 kJ / mol-H 2 (exotherm), and the amount of water to establish this chemical reaction formula is about 18 cc / a mol-H 2 (theoretical value).
[0011]
The organic matter includes pulverized products such as coal, petroleum, plastic, and biomass. In this embodiment, pulverized cabbage as biomass was prepared.
[0012]
The amount of water includes water contained in organic matter. In the production of hydrogen gas, the total amount of water such as ion exchange water and water contained in organic matter is the amount of water required for the chemical reaction. It is necessary to exceed this. Therefore, water is added when the organic matter is in a dry state, while water such as ion-exchanged water is contained when the organic matter contains an amount of water that exceeds the amount necessary for the chemical reaction, that is, when it is in a wet state. Is not added.
[0013]
It is hitting the production of hydrogen gas, the hydrogen production apparatus shown in FIG. 1, and MgH 2 powder 0.66 g, and the hexane as a dispersing medium of 1.8cc is introduced into the first mixer 1 1 MgH 2 slurry is prepared, the MgH 2 slurry after a 2 1 first preheater, was charged to the reaction vessel 3 having an inner volume of 60cm 3. On the other hand, cabbage slurry is prepared and the ion-exchanged water and what the 5.9cc which was triturated with water content of 10% cabbage 3.7g been introduced into the second mixer 1 2, the cabbage slurry second preheater 2 After passing through 2 , the reaction vessel 3 was charged, and then the reaction vessel 3 was sealed.
[0014]
In the reaction vessel 3, MgH 2 and water react according to the chemical reaction formula to generate hydrogen gas, and at the same time, heat is also generated. The heat causes the temperature of water and the reaction vessel 3 to rise, and since hydrogen gas is generated, the pressure in the reaction vessel 3 also rises. As a result, water and the temperature in the reaction vessel 3 exceed 100 ° C., and the pressure in the reaction vessel 3 easily reaches several MPa. Since MgH 2 reacts rapidly with hot water of 100 ° C. or higher, a large amount of heat and hydrogen gas begin to be generated. As a result, an atmosphere having a temperature of 350 ° C. and a pressure of 16.5 MPa appears in the reaction vessel 1, and the water becomes subcritical water, and the reaction between MgH 2 and water is instantaneously completed. Then, the subcritical water and the cabbage pulverized chemically react to generate hydrogen gas, gaseous hydrocarbons, and liquid hydrocarbons in the reaction vessel 3. The reaction rate at this time is 50%.
[0015]
After 10 minutes have passed since the reaction vessel 3 was sealed, the reaction vessel 3 was opened, and the contents were passed through the cooler 4 and then introduced into the gas separator 5 where the gas was separated into the gas, Separated into a solid-liquid mixture consisting of solid and liquid. The gas was put into the hydrogen purifier 6 and separated into hydrogen gas and gaseous hydrocarbon (mainly methane gas), which were stored separately.
[0016]
On the other hand, the solid-liquid mixture was put into the press 7 and separated into a solid residue and a liquid, and the solid residue was discarded, while the liquid was put into the liquid separator 8. The liquid separator 8 was separated into unreacted water and water-soluble hydrocarbons and water-insoluble hydrocarbons. Unreacted water and water-soluble hydrocarbons are reused as a substitute for ion-exchanged water, while water-insoluble hydrocarbons are mainly stored, and some of them are dehumidified by the dehumidifier 9 during operation. Then, it is used as a dispersion medium for preparing MgH 2 slurry instead of hexane.
[0017]
The water path of the cooler 4 → second preheater 2 2 → first preheater 2 1 → cooler 4 is controlled so as to circulate, the second preheater 2 2 temperature hot water from the cooler 4 There are introduced preferentially, also in the cooler 4 is cooled water is introduced from the first preheater 2 1.
[0018]
【The invention's effect】
According to the present invention, it is possible to provide a production method capable of obtaining hydrogen gas efficiently at low cost by employing the above-described means.
[Brief description of the drawings]
FIG. 1 is a block diagram of a hydrogen production apparatus.
[Explanation of symbols]
3 ... Reaction vessel

Claims (5)

水と接触して水素ガスを生成しつつ熱を発生する化学反応を行う物質と,水と,有機物とを,前記水および前記有機物に含まれる水の合計量が前記物質との前記化学反応に必要な量を上回るように設定して反応容器(3)内に投入し,次いで,前記反応容器(3)を密閉して,その反応容器(3)内において,前記物質と水との化学反応により超臨界水および亜臨界水の一方を生成させて,その一方と前記有機物との化学反応により水素ガスを生成させることを特徴とする水素ガスの製造方法。A substance that performs a chemical reaction that generates heat while generating hydrogen gas in contact with water, water and an organic substance, and the total amount of water contained in the water and the organic substance is included in the chemical reaction with the substance. The reaction container (3) is set so as to exceed the required amount, and then the reaction container (3) is sealed. In the reaction container (3), the chemical reaction between the substance and water is performed. A method for producing hydrogen gas, characterized in that one of supercritical water and subcritical water is produced by the chemical reaction, and hydrogen gas is produced by a chemical reaction between the one and the organic substance. 水と接触して水素ガスを生成しつつ熱を発生する化学反応を行う物質と,前記物質との前記化学反応に必要な量を上回る量の水を含む有機物とを反応容器(3)内に投入し,次いで,前記反応容器(3)を密閉して,その反応容器(3)内において,前記物質と水との化学反応により超臨界水および亜臨界水の一方を生成させて,その一方と前記有機物との化学反応により水素ガスを生成させることを特徴とする水素ガスの製造方法。A substance that performs a chemical reaction that generates heat while generating hydrogen gas in contact with water, and an organic substance that contains an amount of water that exceeds the amount necessary for the chemical reaction with the substance are contained in the reaction vessel (3). Then, the reaction vessel (3) is sealed, and in the reaction vessel (3), one of supercritical water and subcritical water is generated by a chemical reaction between the substance and water. A method for producing hydrogen gas, wherein hydrogen gas is generated by a chemical reaction between the organic substance and the organic substance. 水と接触して水素ガスを生成しつつ熱を発生する化学反応を行う物質と水と乾燥状態の有機物とよりなる原料および前記物質と含水状態の有機物とよりなる原料の一方を反応容器(3)内に投入し,次いで,前記反応容器(3)を密閉して,その反応容器(3)内において,前記物質と水との化学反応により超臨界水および亜臨界水の一方を生成させて,その一方と前記有機物との化学反応により水素ガスを生成させることを特徴とする水素ガスの製造方法。One of a material that performs a chemical reaction that generates heat while generating hydrogen gas in contact with water, a raw material composed of water and a dry organic material, and a raw material composed of the material and a water-containing organic material is added to a reaction vessel (3 Then, the reaction vessel (3) is sealed, and one of supercritical water and subcritical water is generated in the reaction vessel (3) by a chemical reaction between the substance and water. A method for producing hydrogen gas, characterized in that hydrogen gas is produced by a chemical reaction between one of the organic substances and the organic substance. 前記有機物はバイオマスである,請求項1,2または3記載の水素ガスの製造方法。The method for producing hydrogen gas according to claim 1, wherein the organic substance is biomass. 前記物質は,Mg,Al,MgH,Mg(BH,Mg(AlH,NaAlH,NaBH,LiH,LiAlH,LiBH,NaH,Ca(BHおよびCa(AlHから選択される少なくとも一種である,請求項1,2,3または4記載の水素ガスの製造方法。The substance, Mg, Al, MgH 2, Mg (BH 4) 2, Mg (AlH 4) 2, NaAlH 4, NaBH 4, LiH, LiAlH 4, LiBH 4, NaH, Ca (BH 4) 2 and Ca ( AlH 4) is at least one selected from 2, the process of claim 1, 2, 3 or 4, wherein the hydrogen gas.
JP2003194456A 2003-07-09 2003-07-09 Method of producing gaseous hydrogen Withdrawn JP2005029406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003194456A JP2005029406A (en) 2003-07-09 2003-07-09 Method of producing gaseous hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003194456A JP2005029406A (en) 2003-07-09 2003-07-09 Method of producing gaseous hydrogen

Publications (1)

Publication Number Publication Date
JP2005029406A true JP2005029406A (en) 2005-02-03

Family

ID=34205617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003194456A Withdrawn JP2005029406A (en) 2003-07-09 2003-07-09 Method of producing gaseous hydrogen

Country Status (1)

Country Link
JP (1) JP2005029406A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313019A (en) * 2004-04-27 2005-11-10 Sasakura Engineering Co Ltd Method and apparatus for producing supercritical water or subcritical water
JP2007099535A (en) * 2005-09-30 2007-04-19 Itec Co Ltd Hydrogen production apparatus
JP2010195658A (en) * 2009-02-27 2010-09-09 Mitsubishi Heavy Ind Ltd Hydrogen gas generator
WO2012111834A1 (en) * 2011-02-17 2012-08-23 バイオコーク技研株式会社 Hydrogen-emitting composition
CN105565266A (en) * 2015-12-15 2016-05-11 湖北航天化学技术研究所 Endothermic hydrogen-loaded fuel for hypersonic aircraft
WO2017094603A1 (en) * 2015-12-04 2017-06-08 章 米谷 Method for producing high-pressure hydrogen
CN114477091A (en) * 2022-03-08 2022-05-13 广东省科学院资源利用与稀土开发研究所 In-situ generated magnesium borohydride-magnesium hydride hydrolysis hydrogen production material and preparation method and application thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313019A (en) * 2004-04-27 2005-11-10 Sasakura Engineering Co Ltd Method and apparatus for producing supercritical water or subcritical water
JP4659387B2 (en) * 2004-04-27 2011-03-30 株式会社ササクラ Supercritical water or subcritical water production method and apparatus
JP2007099535A (en) * 2005-09-30 2007-04-19 Itec Co Ltd Hydrogen production apparatus
JP2010195658A (en) * 2009-02-27 2010-09-09 Mitsubishi Heavy Ind Ltd Hydrogen gas generator
WO2012111834A1 (en) * 2011-02-17 2012-08-23 バイオコーク技研株式会社 Hydrogen-emitting composition
JPWO2012111834A1 (en) * 2011-02-17 2014-07-07 バイオコーク技研株式会社 Composition for generating hydrogen
JP6076092B2 (en) * 2011-02-17 2017-02-08 バイオコーク技研株式会社 Skin external composition
WO2017094603A1 (en) * 2015-12-04 2017-06-08 章 米谷 Method for producing high-pressure hydrogen
CN105565266A (en) * 2015-12-15 2016-05-11 湖北航天化学技术研究所 Endothermic hydrogen-loaded fuel for hypersonic aircraft
CN105565266B (en) * 2015-12-15 2018-01-30 湖北航天化学技术研究所 A kind of hypersonic aircraft carries hydrogen fuel with heat absorbing type
CN114477091A (en) * 2022-03-08 2022-05-13 广东省科学院资源利用与稀土开发研究所 In-situ generated magnesium borohydride-magnesium hydride hydrolysis hydrogen production material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
AU2015272643B2 (en) Method and apparatus for producing sodium borohydride
JP4805907B2 (en) Hydrogen storage system material and method comprising hydride and hydroxide
US7029649B2 (en) Combinations of hydrogen storage materials including amide/imide
US8609054B2 (en) Hydrogen production from borohydrides and glycerol
Friedrichs et al. Breaking the passivation—the road to a solvent free borohydride synthesis
JP2001519312A5 (en)
US8778293B2 (en) Production of ammonia from air and water
CA2909776A1 (en) Systems and methods of making ammonia using hydrogen and nitrogen gases
US7608233B1 (en) Direct synthesis of calcium borohydride
JP2005029406A (en) Method of producing gaseous hydrogen
JP2007145680A (en) Hydrogen generating material and hydrogen generating method
JP2016155756A (en) Hydrogen storage materials, metal hydrides and complex hydrides prepared using low-boiling-point solvents
JP5865553B1 (en) Gasifier using supercritical fluid
JP2006008440A (en) Metal amide compound and manufacturing method therefor
JP2004224684A (en) Manufacturing method of tetrahydroborate
US20040249215A1 (en) Method for producing tetrahydroborates
JP6789565B2 (en) Hydrogen gas production method and hydrogen gas production equipment
Yao et al. Synthesis of α-AlH3 by organic liquid reduction method and its hydrogen desorption performance
JP6670082B2 (en) Hydrogen storage material and method for producing the same
JP2009018955A (en) Manufacturing process of hydrogen gas
Goto et al. Synthesis of new hydrides with cubic structures in Mg-Ca-Ni systems by using high pressure
US3140150A (en) Process for the production of boranates
JP5839337B1 (en) Method and apparatus for producing sodium borohydride
US20120248376A1 (en) Synthesis, Recharging and Processing of Hydrogen Storage Materials Using Supercritical Fluids
US802980A (en) Process of making oxalic acid, &amp;c.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070807