JP2006237311A - Nonvolatile semiconductor memory and manufacturing method thereof - Google Patents

Nonvolatile semiconductor memory and manufacturing method thereof Download PDF

Info

Publication number
JP2006237311A
JP2006237311A JP2005050401A JP2005050401A JP2006237311A JP 2006237311 A JP2006237311 A JP 2006237311A JP 2005050401 A JP2005050401 A JP 2005050401A JP 2005050401 A JP2005050401 A JP 2005050401A JP 2006237311 A JP2006237311 A JP 2006237311A
Authority
JP
Japan
Prior art keywords
insulating film
film
oxide film
semiconductor memory
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005050401A
Other languages
Japanese (ja)
Inventor
Masatoshi Arai
雅利 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005050401A priority Critical patent/JP2006237311A/en
Publication of JP2006237311A publication Critical patent/JP2006237311A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the charging up in the process of a nonvolatile semiconductor memory for discretely storing charges in a laminated insulating film (non-conductive charge trap layer) to reduce the variation of the threshold voltage thereof. <P>SOLUTION: This nonvolatile semiconductor memory for discretely storing the charges in the laminated insulating film 2 is formed on an island-shaped active region surrounded by an embedded insulating film 1a embedded as a middle layer in the substrate and a device isolating and insulating film 3 formed in a predetermined region within the substrate. Further, it comprises a gate insulating film consisting of the laminated insulating film 2 formed on the silicon substrate 1 for discretely storing the charges, a gate electrode 4, and a pair of diffusion regions 5 for functioning as a source or a drain formed in the surface layer of the substrate 1 such that they seem to hold the gate electrode 4 between them. Here, the laminated insulating film 2 consists of a lower oxide film 2a, a silicon nitride film 2b, an upper thermal oxide film 2c, and a CVD oxide film 2d. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、積層絶縁膜(非導電性電荷トラップ層)内に離散的に電荷を蓄積する不揮発性半導体記憶装置に関する。   The present invention relates to a nonvolatile semiconductor memory device that accumulates charges discretely in a laminated insulating film (non-conductive charge trap layer).

近年、積層絶縁膜内に離散的に電荷を蓄積する不揮発性半導体記憶装置は、高集積及び高信頼性を実現する技術として注目されている。   In recent years, a nonvolatile semiconductor memory device that accumulates charges discretely in a laminated insulating film has attracted attention as a technique for realizing high integration and high reliability.

従来、積層絶縁膜内に離散的に電荷を蓄積する不揮発性半導体記憶装置では、積層絶縁膜は通常シリコン酸化膜、シリコン窒化膜、シリコン酸化膜の積層からなり、特にシリコン窒化膜上のシリコン酸化膜はシリコン窒化膜の酸化のみで形成されるのが一般的である。
しかしながら、上記の構成の積層絶縁膜においては、シリコン窒化膜を酸化して上部のシリコン酸化膜を形成する際に、シリコン窒化膜を酸化種が突き抜け、シリコン基板を酸化してしまうという課題が存在する。
Conventionally, in a nonvolatile semiconductor memory device in which electric charges are stored discretely in a laminated insulating film, the laminated insulating film is usually composed of a stack of a silicon oxide film, a silicon nitride film, and a silicon oxide film. The film is generally formed only by oxidation of a silicon nitride film.
However, in the laminated insulating film having the above structure, there is a problem that when the silicon nitride film is oxidized to form the upper silicon oxide film, the oxidized species penetrates the silicon nitride film and the silicon substrate is oxidized. To do.

そこで、シリコン窒化膜上に、このシリコン窒化膜上のシリコン酸化膜を薄膜化し、膜厚不足分をこのシリコン酸化膜上にCVD酸化膜(堆積シリコン酸化膜)を形成することで補う技術が第1の従来例に開示されている(例えば、特許文献1)。   Therefore, the first technology is to make up the silicon oxide film on the silicon nitride film by thinning it and forming a CVD oxide film (deposited silicon oxide film) on the silicon oxide film. 1 (for example, Patent Document 1).

図2に、上記したような、シリコン窒化膜上のシリコン酸化膜を薄膜化し、膜厚不足分をこのシリコン酸化膜上にCVD酸化膜を形成した不揮発性半導体記憶装置の構造を示す断面図を示している。   FIG. 2 is a cross-sectional view showing the structure of a nonvolatile semiconductor memory device in which the silicon oxide film on the silicon nitride film is thinned as described above and the CVD oxide film is formed on the silicon oxide film for the insufficient film thickness. Show.

図2に示すように、シリコン基板1上には、下部酸化膜2a、シリコン窒化膜2b、上部酸化膜2c、及びCVD酸化膜2dが順に積層されてなる積層絶縁膜2がゲート絶縁膜として形成されている。積層絶縁膜2は電荷を蓄積するために用いられる。シリコン窒化膜2b上に上部酸化膜2cとCVD酸化膜2dを形成する技術は、特に微細化が進行してONO膜が薄膜化した場合に重要となる技術である。
特開2001−77220号公報
As shown in FIG. 2, a laminated insulating film 2 is formed as a gate insulating film on a silicon substrate 1 by sequentially laminating a lower oxide film 2a, a silicon nitride film 2b, an upper oxide film 2c, and a CVD oxide film 2d. Has been. The laminated insulating film 2 is used for accumulating electric charges. The technique for forming the upper oxide film 2c and the CVD oxide film 2d on the silicon nitride film 2b is an important technique particularly when the ONO film is thinned as the miniaturization proceeds.
JP 2001-77220 A

さて、積層絶縁膜内に離散的に電荷を蓄積する不揮発性半導体記憶装置においては、もともと工程中のチャージングによってしきい値電圧がばらつきやすいという問題が存在する。   Now, in the nonvolatile semiconductor memory device that accumulates charges discretely in the laminated insulating film, there is a problem that the threshold voltage tends to fluctuate due to charging during the process.

例えば、ゲート電極を形成した後の種々のプラズマを使用した工程(例えば、ドライエッチング工程、CVD工程等)においては、電荷がゲート絶縁膜を通過する場合がある(これをいわゆるプラズマダメージと呼ぶ)。このとき、通常のトランジスタでは電荷はゲート絶縁膜を通過するだけであるが、積層絶縁膜内に電荷を蓄積する不揮発性半導体記憶装置の場合は、電荷を蓄積させる積層絶縁膜がゲート絶縁膜になっているため、通過した電荷の一部は積層絶縁膜内に捕獲されて、しきい値電圧ばらつきを引き起こしやすい。   For example, in a process using various plasmas after forming the gate electrode (for example, a dry etching process, a CVD process, etc.), charges may pass through the gate insulating film (this is called plasma damage). . At this time, in a normal transistor, the charge only passes through the gate insulating film. However, in the case of a nonvolatile semiconductor memory device that accumulates charge in the laminated insulating film, the laminated insulating film that accumulates the charge becomes the gate insulating film. Therefore, a part of the passed charge is trapped in the laminated insulating film, and threshold voltage variation is likely to occur.

ところが、従来の技術のようにシリコン窒化膜上の膜を熱酸化とCVDの2層構造で形成した場合、しきい値電圧のばらつきが増加するという知見を最近になって我々は見出した。   However, recently, we have found that when the film on the silicon nitride film is formed with a two-layer structure of thermal oxidation and CVD as in the prior art, the variation in threshold voltage increases.

図3は、シリコン窒化膜上の酸化膜をシリコン窒化膜の酸化のみで形成した場合と、シリコン窒化膜の熱酸化とCVDによる堆積の積層で形成した場合のメモリセルしきい値電圧ばらつきの比較である。なお、シリコン窒化膜の熱酸化とCVDによる堆積の積層で形成した場合は、窒化膜の酸化量を少なくすることにより合計の膜厚は酸化のみで形成したサンプルと同じにしてある。   FIG. 3 shows a comparison of memory cell threshold voltage variations when the oxide film on the silicon nitride film is formed only by oxidation of the silicon nitride film and when the silicon nitride film is formed by stacking thermal oxidation and deposition by CVD. It is. When the silicon nitride film is formed by thermal oxidation and deposition by CVD, the total film thickness is made the same as that of the sample formed only by oxidation by reducing the amount of oxidation of the nitride film.

図3に示されるように、CVD法を用いた場合は明らかにばらつきが大きくなっている。この原因は、CVD膜自体に電荷の捕獲サイトが多く存在するか、酸化量を少なくしたために、捕獲サイトが増加したかのいずれかであるが、現在のところはっきりしていない。
いずれにしても、微細化が進行しシリコン窒化膜上の酸化膜を熱酸化とCVD膜との積層にした場合には、工程中のチャージングが大きな課題になることは明白である。
As shown in FIG. 3, when the CVD method is used, the variation is clearly large. The cause of this is either a large number of charge trapping sites in the CVD film itself or an increase in the number of trapping sites due to a reduction in the amount of oxidation, but this is not clear at present.
In any case, when miniaturization progresses and the oxide film on the silicon nitride film is laminated with thermal oxidation and a CVD film, it is obvious that charging during the process becomes a big problem.

したがって、本発明の目的は、前記課題に鑑み、積層絶縁膜内に離散的に電荷を蓄積し、特にシリコン窒化膜上の酸化膜が熱酸化膜とCVD膜の積層で構成される不揮発性半導体記憶装置において、工程中のチャージアップを抑制し、しきい値電圧ばらつきを低減した不揮発性半導体記憶装置を提供することである。   Therefore, in view of the above problems, an object of the present invention is to store charges in a discrete manner in a laminated insulating film, and in particular, a nonvolatile semiconductor in which an oxide film on a silicon nitride film is composed of a laminated layer of a thermal oxide film and a CVD film It is an object of the present invention to provide a nonvolatile semiconductor memory device that suppresses charge-up during the process and reduces threshold voltage variations in the memory device.

上記課題を解決するために、本発明の請求項1記載の不揮発性半導体記憶装置は、基板中の所定領域に形成された素子分離絶縁膜間に活性領域が形成され、前記活性領域上に形成された非導電性電荷トラップ層に離散的に電荷を蓄積する不揮発性半導体記憶装置であって、前記非導電性電荷トラップ層は、少なくとも堆積シリコン酸化膜を含む積層膜からなり、前記基板の中層に埋め込み絶縁膜を埋め込むことで、前記活性領域が前記埋め込み絶縁膜と前記素子分離絶縁膜とによって囲まれている。   In order to solve the above-described problem, in the nonvolatile semiconductor memory device according to claim 1 of the present invention, an active region is formed between element isolation insulating films formed in a predetermined region in the substrate, and is formed on the active region. A non-volatile semiconductor storage device for storing charges discretely in a non-conductive charge trap layer formed on the substrate, wherein the non-conductive charge trap layer comprises a laminated film including at least a deposited silicon oxide film, By embedding a buried insulating film, the active region is surrounded by the buried insulating film and the element isolation insulating film.

請求項2記載の不揮発性半導体記憶装置は、請求項1記載の不揮発性半導体記憶装置において、前記非導電荷トラップ層は、下層のシリコン酸化膜、中層のシリコン窒化膜および上層のシリコン酸化膜から構成され、前記上層のシリコン酸化膜は、熱シリコン酸化膜と前記堆積シリコン酸化膜を含む。   The non-volatile semiconductor memory device according to claim 2 is the non-volatile semiconductor memory device according to claim 1, wherein the non-conductive load trapping layer includes a lower silicon oxide film, an intermediate silicon nitride film, and an upper silicon oxide film. The upper silicon oxide film includes a thermal silicon oxide film and the deposited silicon oxide film.

請求項3記載の不揮発性半導体記憶装置は、請求項1または2記載の不揮発性半導体記憶装置において、前記活性領域には、一つのメモリセルが形成されている。   The nonvolatile semiconductor memory device according to claim 3 is the nonvolatile semiconductor memory device according to claim 1 or 2, wherein one memory cell is formed in the active region.

請求項4記載の不揮発性半導体記憶装置は、請求項1または2記載の不揮発性半導体記憶装置において、前記活性領域には、複数のメモリセルが形成されている。   A nonvolatile semiconductor memory device according to a fourth aspect is the nonvolatile semiconductor memory device according to the first or second aspect, wherein a plurality of memory cells are formed in the active region.

請求項5記載の不揮発性半導体記憶装置は、請求項1,2,3または4記載の不揮発性半導体記憶装置において、前記活性領域内に形成されたウエル領域は、電位が制御可能である。   A nonvolatile semiconductor memory device according to a fifth aspect is the nonvolatile semiconductor memory device according to the first, second, third or fourth aspect, wherein the potential of the well region formed in the active region can be controlled.

請求項6記載の不揮発性半導体記憶装置の製造方法は、基板上に形成された非導電性電荷トラップ層に離散的に電荷を蓄積する不揮発性半導体記憶装置の製造方法であって、前記基板の中層に埋め込み絶縁膜を形成するSOI形成工程と、前記基板中の所定領域に埋め込み型の素子分離絶縁膜を、前記素子分離絶縁膜の底部が前記埋め込み絶縁膜に接続するように形成し、前記埋め込み絶縁膜と前記素子分離絶縁膜とによって囲まれるように活性領域を形成する工程と、前記活性領域上に、下層のシリコン酸化膜、中層のシリコン窒化膜および、前記シリコン窒化膜を熱酸化して形成された熱シリコン酸化膜とCVD法を用いて形成された堆積シリコン酸化膜とを含む上層のシリコン酸化膜から構成された非導電性電荷トラップ層からなるゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上にゲート電極を形成する工程と、前記ゲート電極を挟む前記活性領域中に拡散層を形成する工程とを含む。   7. The method of manufacturing a nonvolatile semiconductor memory device according to claim 6, wherein the nonvolatile semiconductor memory device is configured to discretely store charges in a non-conductive charge trap layer formed on the substrate, An SOI forming step of forming a buried insulating film in an intermediate layer; and a buried type element isolation insulating film in a predetermined region in the substrate so that a bottom portion of the element isolation insulating film is connected to the buried insulating film, Forming an active region surrounded by the buried insulating film and the element isolation insulating film; and thermally oxidizing the lower silicon oxide film, the middle silicon nitride film, and the silicon nitride film on the active region; A non-conductive charge trapping layer composed of an upper silicon oxide film including a thermal silicon oxide film formed by CVD and a deposited silicon oxide film formed by CVD. And forming a gate insulating film, forming a gate electrode on the gate insulating layer, and forming a diffusion layer in said active region which sandwich the gate electrode.

本発明の請求項1記載の不揮発性半導体記憶装置によれば、基板の中層に埋め込み絶縁膜を埋め込むことで、活性領域が埋め込み絶縁膜と素子分離絶縁膜とによって囲まれているので、活性領域が絶縁膜で完全に囲まれた構成となる。このため、ウエハにプラズマが照射されてもゲートから基板に抜ける経路が遮断されているために電流が通過しない。従って、工程中においてトラップ層に電荷が蓄積されることを抑制できるため、しきい値電圧のばらつきを低減できる。また、非導電性電荷トラップ層は、少なくとも堆積シリコン酸化膜を含む積層膜からなることで、従来技術と同様に非導電性電荷トラップ層を形成する際に、酸化種が突き抜け、基板を酸化してしまうことがない。   According to the nonvolatile semiconductor memory device of the first aspect of the present invention, the active region is surrounded by the buried insulating film and the element isolation insulating film by embedding the buried insulating film in the middle layer of the substrate. Is completely surrounded by an insulating film. For this reason, even if the wafer is irradiated with plasma, the path from the gate to the substrate is blocked, so that no current passes. Accordingly, accumulation of electric charges in the trap layer during the process can be suppressed, and variations in threshold voltage can be reduced. In addition, the non-conductive charge trapping layer is formed of a laminated film including at least a deposited silicon oxide film, so that when the non-conductive charge trapping layer is formed as in the prior art, the oxidizing species penetrates and oxidizes the substrate. There is no end.

請求項2では、請求項1記載の不揮発性半導体記憶装置において、非導電荷トラップ層は、下層のシリコン酸化膜、中層のシリコン窒化膜および上層のシリコン酸化膜から構成され、上層のシリコン酸化膜は、熱シリコン酸化膜と堆積シリコン酸化膜を含むことが好ましい。このような構成とすることにより、シリコン窒化膜は特に電荷トラップしやすい膜であるため、特に効果が大きい。   3. The nonvolatile semiconductor memory device according to claim 1, wherein the non-conductive charge trap layer includes a lower silicon oxide film, a middle silicon nitride film, and an upper silicon oxide film, and the upper silicon oxide film. Preferably includes a thermal silicon oxide film and a deposited silicon oxide film. By adopting such a configuration, the silicon nitride film is particularly effective because it is a film that easily traps charges.

請求項3では、請求項1または2記載の不揮発性半導体記憶装置において、活性領域には、一つのメモリセルが形成されていることが好ましい。このような構成とすることにより、一つ一つの活性領域面積が小さくなるため、最小の過渡電流となる。   According to a third aspect of the present invention, in the nonvolatile semiconductor memory device according to the first or second aspect, it is preferable that one memory cell is formed in the active region. With such a configuration, the area of each active region is reduced, so that the minimum transient current is obtained.

請求項4では、請求項1または2記載の不揮発性半導体記憶装置において、活性領域には、複数のメモリセルが形成されていることが好ましい。このような構成とすることにより、チップ面積を小さくすることができる。   According to a fourth aspect of the present invention, in the nonvolatile semiconductor memory device according to the first or second aspect, a plurality of memory cells are preferably formed in the active region. With such a configuration, the chip area can be reduced.

請求項5では、請求項1,2,3または4記載の不揮発性半導体記憶装置において、活性領域内に形成されたウエル領域は、電位が制御可能であることが好ましい。このような構成とすることにより、安定して書き込み消去動作ができる。   According to a fifth aspect of the present invention, in the nonvolatile semiconductor memory device according to the first, second, third, or fourth aspect, it is preferable that the potential of the well region formed in the active region can be controlled. With such a configuration, a write / erase operation can be performed stably.

本発明の請求項6記載の不揮発性半導体記憶装置によれば、基板の中層に埋め込み絶縁膜を形成するSOI形成工程と、基板中の所定領域に埋め込み型の素子分離絶縁膜を、素子分離絶縁膜の底部が埋め込み絶縁膜に接続するように形成し、埋め込み絶縁膜と素子分離絶縁膜とによって囲まれるように活性領域を形成する工程とを行うので、活性領域が絶縁膜で完全に囲まれた構成となる。このため、ウエハにプラズマが照射されてもゲートから基板に抜ける経路が遮断されているために電流が通過しない。よって工程中においてトラップ層に電荷が蓄積されることが無くなるため、しきい値電圧のばらつきが抑制できる。   According to the nonvolatile semiconductor memory device of the present invention, the SOI forming step of forming the buried insulating film in the middle layer of the substrate and the element isolation insulating film of the buried type in the predetermined region in the substrate are separated. Forming the active region so that the bottom of the film is connected to the buried insulating film and surrounded by the buried insulating film and the element isolation insulating film, so that the active region is completely surrounded by the insulating film It becomes the composition. For this reason, even if the wafer is irradiated with plasma, the path from the gate to the substrate is blocked, so that no current passes. Therefore, no charge is accumulated in the trap layer during the process, so that variations in threshold voltage can be suppressed.

以下に、本発明の実施形態に係る不揮発性半導体記憶装置およびその製造方法について、図1に基づいて説明する。   Hereinafter, a nonvolatile semiconductor memory device and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to FIG.

図1(a)〜(f)は、本発明の実施形態に係る不揮発性半導体記憶装置の製造方法を示す工程断面図である。   1A to 1F are process cross-sectional views illustrating a method for manufacturing a nonvolatile semiconductor memory device according to an embodiment of the present invention.

この不揮発性半導体記憶装置は、基板1上に形成された非導電性電荷トラップ層2に離散的に電荷を蓄積するもので、基板1の中層に埋め込まれた埋め込み絶縁膜1aと基板1中の所定領域に形成された素子分離絶縁膜3とによって囲まれて島状に形成された活性領域上に形成されている。また、非導電性電荷トラップ層2は、少なくとも堆積シリコン酸化膜2dを含む積層膜からなる。以下、不揮発性半導体記憶装置の製造方法について説明する。   This non-volatile semiconductor memory device stores charges discretely in a non-conductive charge trap layer 2 formed on a substrate 1, and a buried insulating film 1 a embedded in the middle layer of the substrate 1 and the substrate 1 It is formed on an active region formed in an island shape surrounded by the element isolation insulating film 3 formed in a predetermined region. The non-conductive charge trap layer 2 is composed of a laminated film including at least a deposited silicon oxide film 2d. Hereinafter, a method for manufacturing a nonvolatile semiconductor memory device will be described.

まず、図1(a)に示すように、半導体基板の中層に絶縁層(埋め込み酸化膜1aを形成したSOI(シリコン・オン・インシュレータ)基板を用意する。次に、埋め込み酸化膜1aの深さまで到達するようにSOI基板1に溝を形成し、この中を絶縁膜で埋め込むことにより、分離絶縁膜3を形成する。   1A, an insulating layer (SOI (silicon on insulator) substrate in which a buried oxide film 1a is formed) is prepared as a middle layer of a semiconductor substrate, and then to the depth of the buried oxide film 1a. A trench is formed in the SOI substrate 1 so as to reach, and the trench is filled with an insulating film, thereby forming an isolation insulating film 3.

次に、図1(b)に示すように、酸化雰囲気下で900℃の熱処理により、SOI基板1上の全体に亘って、膜厚が7nmである下部酸化膜2aを形成する。次に、700℃のLPCVDにより、下部酸化膜2aの上に、膜厚が15nmであるシリコン窒化膜2bを形成する。次に、酸化雰囲気下で1000℃の熱処理により、シリコン窒化膜2bの上に、膜厚が2nmである上部酸化膜2cを形成する。次に、800℃のLPCVDにより、上部酸化膜2cの上に、膜厚が7nmであるCVD酸化膜(堆積シリコン酸化膜)2dを形成する。このようにして、積層絶縁膜2は、下部酸化膜2a、シリコン窒化膜2b、上部酸化膜2c、及びCVD酸化膜2dより構成される積層絶縁膜2(ONO膜)を形成する。この積層絶縁膜2が非導電性電荷トラップ層を形成する。   Next, as shown in FIG. 1B, a lower oxide film 2a having a thickness of 7 nm is formed over the entire SOI substrate 1 by heat treatment at 900 ° C. in an oxidizing atmosphere. Next, a silicon nitride film 2b having a thickness of 15 nm is formed on the lower oxide film 2a by LPCVD at 700 ° C. Next, an upper oxide film 2c having a thickness of 2 nm is formed on the silicon nitride film 2b by heat treatment at 1000 ° C. in an oxidizing atmosphere. Next, a CVD oxide film (deposited silicon oxide film) 2d having a thickness of 7 nm is formed on the upper oxide film 2c by LPCVD at 800 ° C. Thus, the laminated insulating film 2 forms a laminated insulating film 2 (ONO film) composed of the lower oxide film 2a, the silicon nitride film 2b, the upper oxide film 2c, and the CVD oxide film 2d. The laminated insulating film 2 forms a nonconductive charge trap layer.

次に、図1(c)に示すように、600℃のLPCVDにより、積層絶縁膜2の上に、膜厚が200nmである多結晶シリコン膜を形成し、この多結晶シリコン膜を選択的にエッチングすることにより、ゲート電極4を形成する。   Next, as shown in FIG. 1C, a polycrystalline silicon film having a thickness of 200 nm is formed on the laminated insulating film 2 by LPCVD at 600 ° C., and this polycrystalline silicon film is selectively formed. The gate electrode 4 is formed by etching.

このとき、図1(c)に示すように、ゲート電極4を形成する工程と同一の工程で、引き続き積層絶縁膜2をエッチングしてしてもよい。   At this time, as shown in FIG. 1C, the laminated insulating film 2 may be continuously etched in the same step as the step of forming the gate electrode 4.

次に、図1(d)に示すように、ゲート電極4をマスクとして、例えば、シリコン基板1の主面の法線方向に沿って(法線方向に対して傾き0度で)、30KeVの注入エネルギーにて且つ3×1015atoms/cm−2の注入ドーズ量にて、砒素イオンをシリコン基板1に注入することにより、シリコン基板1の表面層にソース又はドレインとして機能するソースドレイン拡散領域5を形成し、メモリトランジスタ、すなわち不揮発性半導体記憶装置が完成する。 Next, as shown in FIG. 1D, using the gate electrode 4 as a mask, for example, along the normal direction of the main surface of the silicon substrate 1 (at a tilt of 0 degree with respect to the normal direction), 30 KeV A source / drain diffusion region that functions as a source or drain in the surface layer of the silicon substrate 1 by implanting arsenic ions into the silicon substrate 1 at an implantation energy and an implantation dose of 3 × 10 15 atoms / cm −2. 5 is completed, and a memory transistor, that is, a nonvolatile semiconductor memory device is completed.

このような構成により、不揮発性半導体記憶装置を形成した活性領域が島状に形成されるため、ドライエッチなどの工程においてウエハがプラズマに暴露されても基板まで電流が流れる経路が存在せず、電流が流れることがない。従って、工程中の積層絶縁膜内へのチャージングが抑制されるため、しきい値電圧ばらつきを抑制することができる。   With such a configuration, since the active region in which the nonvolatile semiconductor memory device is formed is formed in an island shape, there is no path for current to flow to the substrate even if the wafer is exposed to plasma in a process such as dry etching, No current flows. Accordingly, since charging into the laminated insulating film during the process is suppressed, variation in threshold voltage can be suppressed.

なお、活性領域には、一つのメモリセルが形成されていても、複数のメモリセルが形成されていてもよい。活性領域内に形成されたウエル領域は、電位が制御可能であってもよい。   Note that one memory cell or a plurality of memory cells may be formed in the active region. The potential of the well region formed in the active region may be controllable.

本発明に係る不揮発性半導体記憶装置は、工程中のチャージングを効果的に抑制することができるものであり、特に上部酸化膜が熱酸化膜とCVD膜の積層で構成された積層絶縁膜内に離散的に電荷を蓄積する不揮発性半導体記憶装置において有用である。   The nonvolatile semiconductor memory device according to the present invention is capable of effectively suppressing charging during the process, and particularly in the stacked insulating film in which the upper oxide film is formed by stacking the thermal oxide film and the CVD film. It is useful in a nonvolatile semiconductor memory device that accumulates charges in a discrete manner.

(a)〜(d)は、本発明の実施形態に係る不揮発性半導体記憶装置の製造方法を示す工程断面図である。(A)-(d) is process sectional drawing which shows the manufacturing method of the non-volatile semiconductor memory device which concerns on embodiment of this invention. 第1の従来例に係る不揮発性半導体記憶装置構造を示す断面図である。It is sectional drawing which shows the non-volatile semiconductor memory device structure concerning a 1st prior art example. メモリセルしきい値電圧ばらつきの積層絶縁膜構成依存性を示すグラフである。It is a graph which shows the dependence of memory cell threshold voltage variation on a laminated insulating film configuration.

符号の説明Explanation of symbols

1a 埋め込み絶縁膜
1 シリコン基板
2a 下部酸化膜
2b シリコン窒化膜
2c 上部酸化膜
2d CVD酸化膜
2 積層絶縁膜
3 分離絶縁膜
4 ゲート電極
5 ソースドレイン拡散層
1a buried insulating film 1 silicon substrate 2a lower oxide film 2b silicon nitride film 2c upper oxide film 2d CVD oxide film 2 laminated insulating film 3 isolation insulating film 4 gate electrode 5 source drain diffusion layer

Claims (6)

基板中の所定領域に形成された素子分離絶縁膜間に活性領域が形成され、前記活性領域上に形成された非導電性電荷トラップ層に離散的に電荷を蓄積する不揮発性半導体記憶装置であって、
前記非導電性電荷トラップ層は、少なくとも堆積シリコン酸化膜を含む積層膜からなり、前記基板の中層に埋め込み絶縁膜を埋め込むことで、前記活性領域が前記埋め込み絶縁膜と前記素子分離絶縁膜とによって囲まれていることを特徴とする不揮発性半導体記憶装置。
A non-volatile semiconductor memory device in which an active region is formed between element isolation insulating films formed in a predetermined region in a substrate, and charges are discretely stored in a non-conductive charge trap layer formed on the active region. And
The non-conductive charge trap layer is formed of a laminated film including at least a deposited silicon oxide film, and an embedded insulating film is embedded in the middle layer of the substrate so that the active region is formed by the embedded insulating film and the element isolation insulating film. A non-volatile semiconductor memory device characterized by being surrounded.
前記非導電荷トラップ層は、下層のシリコン酸化膜、中層のシリコン窒化膜および上層のシリコン酸化膜から構成され、前記上層のシリコン酸化膜は、熱シリコン酸化膜と前記堆積シリコン酸化膜を含む請求項1記載の不揮発性半導体記憶装置。   The non-conductive charge trap layer includes a lower silicon oxide film, a middle silicon nitride film, and an upper silicon oxide film, and the upper silicon oxide film includes a thermal silicon oxide film and the deposited silicon oxide film. Item 12. A nonvolatile semiconductor memory device according to Item 1. 前記活性領域には、一つのメモリセルが形成されている請求項1または2記載の不揮発性半導体記憶装置。   The nonvolatile semiconductor memory device according to claim 1, wherein one memory cell is formed in the active region. 前記活性領域には、複数のメモリセルが形成されている請求項1または2記載の不揮発性半導体記憶装置。   The nonvolatile semiconductor memory device according to claim 1, wherein a plurality of memory cells are formed in the active region. 前記活性領域内に形成されたウエル領域は、電位が制御可能である請求項1,2,3または4記載の不揮発性半導体記憶装置。   5. The nonvolatile semiconductor memory device according to claim 1, wherein the potential of the well region formed in the active region can be controlled. 基板上に形成された非導電性電荷トラップ層に離散的に電荷を蓄積する不揮発性半導体記憶装置の製造方法であって、
前記基板の中層に埋め込み絶縁膜を形成するSOI形成工程と、
前記基板中の所定領域に埋め込み型の素子分離絶縁膜を、前記素子分離絶縁膜の底部が前記埋め込み絶縁膜に接続するように形成し、前記埋め込み絶縁膜と前記素子分離絶縁膜とによって囲まれるように活性領域を形成する工程と、
前記活性領域上に、下層のシリコン酸化膜、中層のシリコン窒化膜および、前記シリコン窒化膜を熱酸化して形成された熱シリコン酸化膜とCVD法を用いて形成された堆積シリコン酸化膜とを含む上層のシリコン酸化膜から構成された非導電性電荷トラップ層からなるゲート絶縁膜を形成する工程と、
前記ゲート絶縁膜上にゲート電極を形成する工程と、
前記ゲート電極を挟む前記活性領域中に拡散層を形成する工程とを含む不揮発性半導体記憶装置の製造方法。
A method for manufacturing a non-volatile semiconductor memory device, wherein charges are discretely stored in a non-conductive charge trap layer formed on a substrate,
An SOI formation step of forming a buried insulating film in the middle layer of the substrate;
A buried element isolation insulating film is formed in a predetermined region of the substrate so that a bottom portion of the element isolation insulating film is connected to the buried insulating film, and is surrounded by the buried insulating film and the element isolation insulating film. Forming an active region as follows:
On the active region, a lower silicon oxide film, a middle silicon nitride film, a thermal silicon oxide film formed by thermally oxidizing the silicon nitride film, and a deposited silicon oxide film formed using a CVD method Forming a gate insulating film made of a non-conductive charge trapping layer composed of an upper silicon oxide film containing,
Forming a gate electrode on the gate insulating film;
And a step of forming a diffusion layer in the active region sandwiching the gate electrode.
JP2005050401A 2005-02-25 2005-02-25 Nonvolatile semiconductor memory and manufacturing method thereof Pending JP2006237311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005050401A JP2006237311A (en) 2005-02-25 2005-02-25 Nonvolatile semiconductor memory and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005050401A JP2006237311A (en) 2005-02-25 2005-02-25 Nonvolatile semiconductor memory and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006237311A true JP2006237311A (en) 2006-09-07

Family

ID=37044633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005050401A Pending JP2006237311A (en) 2005-02-25 2005-02-25 Nonvolatile semiconductor memory and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006237311A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100955934B1 (en) 2007-12-20 2010-05-04 주식회사 하이닉스반도체 Method of manufacturing semiconductor device
US7816205B2 (en) 2008-10-21 2010-10-19 Applied Materials, Inc. Method of forming non-volatile memory having charge trap layer with compositional gradient
US7820514B2 (en) 2006-09-27 2010-10-26 Samsung Electronics Co., Ltd. Methods of forming flash memory devices including blocking oxide films

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820514B2 (en) 2006-09-27 2010-10-26 Samsung Electronics Co., Ltd. Methods of forming flash memory devices including blocking oxide films
KR101025762B1 (en) 2006-09-27 2011-04-04 삼성전자주식회사 Method of manufacturing flash memory device having blocking oxide film
KR100955934B1 (en) 2007-12-20 2010-05-04 주식회사 하이닉스반도체 Method of manufacturing semiconductor device
US7816205B2 (en) 2008-10-21 2010-10-19 Applied Materials, Inc. Method of forming non-volatile memory having charge trap layer with compositional gradient
US8252653B2 (en) 2008-10-21 2012-08-28 Applied Materials, Inc. Method of forming a non-volatile memory having a silicon nitride charge trap layer
US8501568B2 (en) 2008-10-21 2013-08-06 Applied Materials, Inc. Method of forming flash memory with ultraviolet treatment

Similar Documents

Publication Publication Date Title
JP4901729B2 (en) Method for forming nanocluster charge storage device
JP5376122B2 (en) Semiconductor device
US7265409B2 (en) Non-volatile semiconductor memory
WO2007086304A1 (en) Semiconductor device and method for fabricating same
US8058162B2 (en) Nonvolatile semiconductor memory and method of manufacturing the same
US20110133264A1 (en) System and method for eeprom architecture
US8865536B2 (en) Semiconductor device and manufacturing method thereof
JP2009231373A (en) Nonvolatile semiconductor memory device
JP2009231300A (en) Semiconductor memory and fabrication method therefor
JP2008166442A (en) Semiconductor device and manufacturing method thereof
US7772654B2 (en) Methods of fabricating nonvolatile memory devices
JP2006041510A (en) Dram of semiconductor device and method of manufacturing the same
US8445351B2 (en) Floating-gate nonvolatile semiconductor memory device and method of making
US20150249090A1 (en) Semiconductor memory device and method for manufacturing same
TW516110B (en) Semiconductor device and method for fabricating the same
JP2006237311A (en) Nonvolatile semiconductor memory and manufacturing method thereof
JP2009253259A (en) Nonvolatile semiconductor memory device, and method of manufacturing the same
JP2008053553A (en) Semiconductor device and manufacturing method thereof
US7670904B2 (en) Nonvolatile memory device and method for fabricating the same
JPWO2007000808A1 (en) Semiconductor device and manufacturing method thereof
US20080054337A1 (en) Flash Memory Device and Method for Manufacturing the Flash Memory Device
US20030181007A1 (en) Method for reducing random bit failures of flash memories
JP2009059987A (en) Semiconductor device and method of manufacturing the same
JP2009170732A (en) Semiconductor memory device
CN109524407B (en) Memory and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060927