JP2006234750A - Method and device for sensitivity calibration of eddy current tester - Google Patents

Method and device for sensitivity calibration of eddy current tester Download PDF

Info

Publication number
JP2006234750A
JP2006234750A JP2005053279A JP2005053279A JP2006234750A JP 2006234750 A JP2006234750 A JP 2006234750A JP 2005053279 A JP2005053279 A JP 2005053279A JP 2005053279 A JP2005053279 A JP 2005053279A JP 2006234750 A JP2006234750 A JP 2006234750A
Authority
JP
Japan
Prior art keywords
eddy current
row
sensor
leg
shaped core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005053279A
Other languages
Japanese (ja)
Other versions
JP4586574B2 (en
Inventor
Yasuhiro Matsufuji
泰大 松藤
Kaoru Tanaka
薫 田中
Yoshiki Fukutaka
善己 福高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005053279A priority Critical patent/JP4586574B2/en
Publication of JP2006234750A publication Critical patent/JP2006234750A/en
Application granted granted Critical
Publication of JP4586574B2 publication Critical patent/JP4586574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device capable of comparably easily and precisely performing sensitivity calibration of an eddy current tester in a short time. <P>SOLUTION: A plurality (N pieces) of the eddy current sensors for detecting the flaw in a running metal band are arranged by winding primary coils on the center legs of E cores, and on both the legs, the secondary coils are differentially connected, and disposed in width direction of a metal band, wherein a tape conductor longer than the whole length of the plurality of eddy current sensors arranged in width direction is disposed under the spaces between the central legs and either of outer legs. At this point, the output V<SB>1k</SB>(k=1 to N, V<SB>1k</SB>>0) are read, and the tape conductor is displaced under the space between the central legs and another outer legs, the output of each eddy current sensor - V<SB>2k</SB>(k=1 to N, V<SB>2k</SB>>0) are read, thereby the sensitivity calibration is performed by making the difference of both the outputs V<SB>1k</SB>-(-V<SB>2k</SB>) a specific value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導体である金属帯表層に存在する欠陥を検出する渦流探傷装置の感度校正方法および装置に関するものである。   The present invention relates to a sensitivity calibration method and apparatus for an eddy current flaw detector that detects a defect present in a surface layer of a metal band that is a conductor.

導体である金属体の表層に存在する欠陥を検出する方法として、渦流探傷法が広く使用されている。渦流探傷法は、励磁(1次)コイルにより導電体の表層に渦電流を発生させ、その渦電流によって検出(2次)コイルに発生する誘導電圧を検出することにより欠陥を検出するものである。金属帯の表面に欠陥があった場合には、渦電流の流れに変化が起き、それに伴って誘導電圧が変化するので、欠陥の検出が可能となる。   As a method for detecting defects present on the surface layer of a metal body that is a conductor, an eddy current flaw detection method is widely used. In the eddy current flaw detection method, an eddy current is generated on the surface layer of a conductor by an excitation (primary) coil, and a defect is detected by detecting an induced voltage generated in the detection (secondary) coil by the eddy current. . When there is a defect on the surface of the metal strip, a change occurs in the flow of eddy current, and the induced voltage changes accordingly, so that the defect can be detected.

渦流探傷法に使用されるセンサとして、例えば、特許文献1に示すような、E型形状をしたセンサが開示されている。E型センサを使用した渦流探傷の原理を、図2に示す。図2において、1はセンサ、1aは1次コイル、1b、1cは2次コイル、4は金属帯、5は欠陥を示す。ここで1次コイル1aの両端1a1、1a2には交流電源が接続され、これによって金属帯4には、矢印で示されるような渦電流が発生する。また、2次コイル1b、1cは直列に差動接続されており、これら検出コイルに同じ向きでかつ大きさの等しい交流磁界が差交する場合には、お互いに打ち消し合うことで、検出コイル両端1b1、1c1間に誘起される起電力は0となる。   As a sensor used in the eddy current flaw detection method, for example, a sensor having an E shape as disclosed in Patent Document 1 is disclosed. The principle of eddy current flaw detection using an E-type sensor is shown in FIG. In FIG. 2, 1 is a sensor, 1a is a primary coil, 1b and 1c are secondary coils, 4 is a metal strip, and 5 is a defect. Here, an AC power source is connected to both ends 1a1 and 1a2 of the primary coil 1a, whereby an eddy current as shown by an arrow is generated in the metal strip 4. Further, the secondary coils 1b and 1c are differentially connected in series. When AC magnetic fields having the same direction and the same magnitude cross in these detection coils, both ends of the detection coils are canceled by canceling each other. The electromotive force induced between 1b1 and 1c1 is zero.

金属帯に欠陥がないときは、2次コイル1b、1cに発生する誘導電圧は同じであるため、差動接続された二つの2次コイルの誘導電圧の出力は、ほぼゼロになる。図2に示されるように、2次コイル1cの近傍にのみ欠陥5が存在する場合には、渦電流変化により二つの2次コイルに発生する誘導電圧に差が発生するので、両コイルの誘導電圧の差分がゼロでなくなり、差動接続された2つの2次コイルの両端には出力を生じる。結果として、図2の下図に示すように、上方に固定されたセンサの下方を欠陥5を有する金属帯4が矢印の方向へ移動したとき、位相検波後の出力は、センサ1の中心軸を中心としたサインカーブ状の波形を描くことで、欠陥の検出が可能となる。なお、ここでは1aを1次コイル、1b及び1cを2次コイルとしたが、逆にしても上記差分効果が得られるので、1b及び1cを1次コイル、1aを2次コイルとしても良い。   When there is no defect in the metal band, the induced voltages generated in the secondary coils 1b and 1c are the same, so the output of the induced voltages of the two differentially connected secondary coils is almost zero. As shown in FIG. 2, when the defect 5 exists only in the vicinity of the secondary coil 1c, a difference occurs in the induced voltage generated in the two secondary coils due to the eddy current change. The voltage difference is not zero, and an output is generated at both ends of the two differentially connected secondary coils. As a result, as shown in the lower diagram of FIG. 2, when the metal strip 4 having the defect 5 moves in the direction of the arrow below the sensor fixed above, the output after phase detection is centered on the sensor 1. A defect can be detected by drawing a waveform having a sine curve shape at the center. Here, 1a is a primary coil, and 1b and 1c are secondary coils. However, since the above difference effect can be obtained even if reversed, 1b and 1c may be primary coils and 1a may be secondary coils.

図3は、金属帯の渦流探傷方法を示した図である。前記E型渦流センサ1(k=1〜N)を、図3に示すように走行する金属帯4の幅方向に渡って複数個配列すれば、金属帯の全幅全長における欠陥の検出が可能となる。長期にわたって精度良く安定して欠陥検出を行うためには、センサ及び回路の温度変化に伴う感度変化や経時変化のため、定期的な感度校正が是非必要である。 FIG. 3 is a diagram showing a eddy current flaw detection method for a metal strip. If a plurality of E-type eddy current sensors 1 k (k = 1 to N) are arranged in the width direction of the traveling metal strip 4 as shown in FIG. 3, it is possible to detect defects in the entire width of the metal strip. It becomes. In order to detect defects with high accuracy and stability over a long period of time, periodic sensitivity calibration is absolutely necessary due to changes in sensitivity and changes over time due to temperature changes in sensors and circuits.

渦流センサにおける感度校正装置として、例えば特許文献2に、感度校正用往復運動装置が開示されている。図5は、特許文献2に開示された装置の概略構成を示した図である。図5において、6は図示せぬ探傷装置のセンサ1を保持する保持部材であり、L字状の腕7の先端部分に取り付けられている。この場合、センサ2は、その検出面が下方に向くように保持部材6にて保持されている。8は断面コ字状に形成されたテストピース保持部材であり、テストピース9が上記センサ1の直下にくるように保持する。テストピース9には標準貫通部が形成されている。10は往復運動機構であり、誘導電動機12を動作させて軸11を一定方向に回転させることによって同軸11に対して左右に移動する。この場合、往復運動機構10は図示せぬ案内棒に案内されて軸11上を移動する。   As a sensitivity calibration device in the eddy current sensor, for example, Patent Document 2 discloses a reciprocation device for sensitivity calibration. FIG. 5 is a diagram showing a schematic configuration of the apparatus disclosed in Patent Document 2. As shown in FIG. In FIG. 5, reference numeral 6 denotes a holding member that holds the sensor 1 of the flaw detection apparatus (not shown), and is attached to the distal end portion of the L-shaped arm 7. In this case, the sensor 2 is held by the holding member 6 so that its detection surface faces downward. Reference numeral 8 denotes a test piece holding member formed in a U-shaped cross section, and holds the test piece 9 so as to be directly below the sensor 1. A standard penetrating portion is formed in the test piece 9. Reference numeral 10 denotes a reciprocating mechanism that moves to the left and right with respect to the coaxial 11 by operating the induction motor 12 and rotating the shaft 11 in a certain direction. In this case, the reciprocating mechanism 10 moves on the shaft 11 while being guided by a guide rod (not shown).

図5において、13a,13bは各々反転ストッパであり、上述した往復運動機構10の方向切換用レバーに当たる位置に棒部材14a,14bにより設置されている。この場合、反転ストッパ13a,13bは棒部材14a,14bに対して任意の位置に設定でき、往復運動機構10の移動範囲を任意に設定することができる。   In FIG. 5, reference numerals 13a and 13b denote reversal stoppers, which are installed by rod members 14a and 14b at positions corresponding to the direction switching levers of the reciprocating mechanism 10 described above. In this case, the reverse stoppers 13a and 13b can be set at arbitrary positions with respect to the rod members 14a and 14b, and the moving range of the reciprocating mechanism 10 can be set arbitrarily.

このようにして、誘導電動機12を回転させると、センサ下方を標準貫通部が往復するので、感度校正が可能であるとしている。
特開平7−116732号公報 特開平3−264862号公報
In this way, when the induction motor 12 is rotated, the standard penetrating portion reciprocates below the sensor, so that sensitivity calibration is possible.
JP-A-7-116732 JP-A-3-264862

しかしながら、特許文献2に開示された感度校正用往復運動装置は、比較的センサ数の少ない渦流探傷装置においてはさほど大掛かりとはならないが、例えば鉄鋼製造プロセスにおける鋼帯のオンライン渦流探傷装置への適用を考えた場合には、板幅に応じて多数のセンサについての校正が必要となるため、多大な費用及びスペースを要するという問題がある。   However, the reciprocating device for sensitivity calibration disclosed in Patent Document 2 is not so large in an eddy current flaw detector with a relatively small number of sensors. When a large number of sensors are taken into consideration, calibration of a large number of sensors is required according to the plate width, which causes a problem that a large amount of cost and space are required.

本発明は上記事情に鑑みてなされたもので、比較的容易で且つ短時間で高精度な感度校正ができる渦流探傷装置の感度校正方法および装置を提供することにある。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a sensitivity calibration method and apparatus for an eddy current flaw detection apparatus that can perform sensitivity calibration with relatively high accuracy in a short time.

本発明の請求項1に係る発明は、E型形状コアの中央の脚に1次コイル、外側の脚の両方に2次コイルを巻回された渦流センサを、前記E型形状コアの脚の列方向に対して略直交方向に前記渦流センサを一列に複数個(N個)配置したセンサ列を用いた渦流探傷装置の感度校正方法であって、前記センサ列の配列方向における長さより長いテープ状導体を、前記センサ列のE型形状コアの中央の脚の列と外側の一方の脚の列との間隙の下方にのみ配置したときに得られる各渦流センサの出力V1k(k=1〜N,V1k>0)と、前記テープ状導体を前記センサ列のE型形状コアの中央の脚の列と外側の他方の脚との間隙の下方にのみ配置したときに得られる各渦流センサの出力−V2k(k=1〜N,V2k>0)とから、両者の出力の差分V1k−(−V2k)を算出し、当該差分の値が所定の値となるように渦流探傷装置を感度校正することを特徴とする、渦流探傷装置の感度校正方法である。 In the invention according to claim 1 of the present invention, there is provided an eddy current sensor in which a primary coil is wound around the center leg of the E-shaped core and a secondary coil is wound around both of the outer legs. A sensitivity calibration method for an eddy current flaw detector using a sensor array in which a plurality (N) of eddy current sensors are arranged in a line in a direction substantially orthogonal to the array direction, wherein the tape is longer than the length of the sensor array in the array direction. Output V 1k (k = 1) of each eddy current sensor obtained when the conductor is disposed only under the gap between the central leg row and the outer leg row of the E-shaped core of the sensor row ˜N, V 1k > 0) and each vortex obtained when the tape-like conductor is disposed only below the gap between the center leg row of the E-shaped core of the sensor row and the other outer leg. From the sensor output −V 2k (k = 1 to N, V 2k > 0) A sensitivity calibrating method for an eddy current flaw detector characterized by calculating a difference V 1k − (− V 2k ) and calibrating the sensitivity of the eddy current flaw detector so that the value of the difference becomes a predetermined value.

また本発明の請求項2に係る発明は、E型形状コアの中央の脚に1次コイル、外側の脚の両方に2次コイルを巻回された渦流センサを、前記E型形状コアの脚の列方向に対して略直交方向に前記渦流センサを一列に複数個(N個)配置したセンサ列を用いた渦流探傷装置の感度校正装置であって、前記センサ列の配列方向における長さより長いテープ状導体と、前記各渦流センサの出力の増幅するN個の渦流信号処理アンプと、該渦流信号処理アンプの出力をA/D変換するN個のA/D変換器と、該A/D変換器の出力に基づき演算処理する演算処理部とを備え、前記テープ状導体を前記センサ列のE型形状コアの中央の脚の列と外側の一方の脚の列との間隙の下方にのみ配置したときに得られる各渦流センサの出力V1k(k=1〜N,V1k>0)と、前記テープ状導体を前記センサ列のE型形状コアの中央の脚の列と外側の他方の脚との間隙の下方にのみ配置したときに得られる各渦流センサの出力−V2k(k=1〜N,V2k>0)とから、両者の出力の差分V1k−(−V2k)を算出し、当該差分の値が所定の値となるように、前記渦流信号処理アンプおよび/または前記演算処理部にて渦流探傷装置を感度校正することを特徴とする、渦流探傷装置の感度校正装置である。 In the invention according to claim 2 of the present invention, there is provided an eddy current sensor in which a primary coil is wound around the center leg of the E-shaped core and a secondary coil is wound around both of the outer legs. A sensitivity calibration device for an eddy current flaw detector using a sensor array in which a plurality (N) of eddy current sensors are arranged in a line in a direction substantially perpendicular to the array direction of the sensor array, and longer than the length of the sensor array in the array direction A tape-shaped conductor, N eddy current signal processing amplifiers for amplifying the outputs of the eddy current sensors, N A / D converters for A / D converting the outputs of the eddy current signal processing amplifiers, and the A / D An arithmetic processing unit that performs arithmetic processing based on the output of the converter, and the tape-like conductor is only below the gap between the central leg row and the outer one leg row of the E-shaped core of the sensor row. output V 1k (k = 1~N of each eddy current sensor obtained when placed, 1k> 0), the output of the eddy current sensor obtained when said tape-like conductor is arranged only below the gap between the center column of the legs and the outer other leg of E-shaped cores of said sensor arrays - From V 2k (k = 1 to N, V 2k > 0), a difference V 1k − (− V 2k ) between both outputs is calculated, and the eddy current signal is set so that the difference value becomes a predetermined value. A sensitivity calibration device for an eddy current flaw detector, wherein the sensitivity of the eddy current flaw detector is calibrated by a processing amplifier and / or the arithmetic processing unit.

さらに本発明の請求項3に係る発明は、E型形状コアの中央の脚に1次コイル、外側の脚の両方に2次コイルを巻回された渦流センサを、前記E型形状コアの脚の列方向に対して略直交方向に前記渦流センサを一列に複数個(N個)配置したセンサ列を用いた渦流探傷装置の感度校正おこなうための治具であって、前記センサ列の配列方向にはセンサ列長さより長く、かつ、前記配列方向と直交する方向には前記E型形状コアの脚部間隔以下の幅を有するテープ状導体が、所定の厚みを有する非金属板表面に貼付されて、その非金属板が前記センサ列の脚部下方に取り付けられることを特徴とする、渦流探傷装置の感度校正用治具である。   Furthermore, the invention according to claim 3 of the present invention provides an eddy current sensor in which a primary coil is wound around the center leg of the E-shaped core and a secondary coil is wound around both the outer legs, and the leg of the E-shaped core. A jig for calibrating the sensitivity of an eddy current flaw detector using a sensor array in which a plurality (N) of the eddy current sensors are arranged in a line in a direction substantially orthogonal to the array direction of the sensor array, In this case, a tape-shaped conductor having a width longer than the sensor array length and not exceeding the leg interval of the E-shaped core in a direction orthogonal to the arrangement direction is attached to the surface of the non-metallic plate having a predetermined thickness. Thus, the sensitivity calibration jig of the eddy current flaw detector is characterized in that the non-metal plate is attached below the legs of the sensor row.

本発明によれば、幅方向に配置されたN個のE型形状渦流センサよりも長いテープ状の導体を、渦流センサの中央の脚と、外側の一方の脚との間隙の下方に配置し、このときの各渦流センサの出力V1k(k=1〜N,V1k>0)を読み取り、次に前記テープ状導体を前記中央の脚と、外側の他方の脚との間隙の下方に配置し、このときの渦流センサの出力−V2k(k=1〜N,V2k>0)を読み取り、両者の出力の差分V1k−(−V2k)が所定の値となるように感度調整するようにしたので、比較的容易で且つ短時間での校正が可能となる。また、走行する金属帯の渦流探傷は一般的に、低周波ノイズを除去するために、微分、すなわちセンサ出力を鋼板進行方向に差分することでS/N改善が図られる。さらに、渦流センサの製作上の問題から左右の検出コイル感度に差を生じ、欠陥の存在しない状態で個々の渦流センサ出力のゼロ点がずれている場合であっても、高精度な校正が可能である。 According to the present invention, a tape-like conductor that is longer than the N E-shaped eddy current sensors arranged in the width direction is disposed below the gap between the central leg and one outer leg of the eddy current sensor. Then, the output V 1k (k = 1 to N, V 1k > 0) of each eddy current sensor at this time is read, and then the tape-like conductor is placed below the gap between the central leg and the other outer leg. It arranges and reads the output -V 2k (k = 1 to N, V 2k > 0) of the eddy current sensor at this time, and the sensitivity is such that the difference V 1k − (− V 2k ) between the outputs becomes a predetermined value. Since the adjustment is made, calibration can be performed relatively easily and in a short time. Further, in order to remove low-frequency noise, eddy current flaw detection of a traveling metal strip is generally improved in S / N by differentiating, that is, subtracting the sensor output in the steel plate traveling direction. In addition, there is a difference in the sensitivity of the left and right detection coils due to problems in the manufacture of eddy current sensors, and even when the zero point of each eddy current sensor output is shifted in the absence of defects, highly accurate calibration is possible. It is.

本発明を実施するための最良の形態を、図面を参照しながら以下説明する。図1は、本発明に係る感度校正方法を説明する図である。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is a diagram for explaining a sensitivity calibration method according to the present invention.

図1(a)、(b)に示すように、本発明の校正方法を適用する被検査材の欠陥を検出するための渦流探傷装置の検出部は、3つの脚部を有するE型形状コアからなる渦流センサを、その3つの脚が並ぶ向きに対してほぼ直交する方向に一列に、複数個の渦流センサを配置したセンサ列という構成をとる。また、個々の渦流センサにおいて、E型形状コアの3つの脚のうち、中央の脚には1次コイル(励磁用コイル)、外側の脚の両方ともに2次コイル(検出用コイル)が巻回されている。また、外側2つの2次コイルは、差動接続されている。   As shown in FIGS. 1 (a) and 1 (b), the detection unit of the eddy current flaw detection apparatus for detecting a defect in the inspection object to which the calibration method of the present invention is applied has an E-shaped core having three legs. The eddy current sensor is configured as a sensor array in which a plurality of eddy current sensors are arranged in a line substantially perpendicular to the direction in which the three legs are arranged. In each eddy current sensor, among the three legs of the E-shaped core, the central leg is wound with a primary coil (excitation coil) and the outer leg is wound with a secondary coil (detection coil). Has been. The two outer secondary coils are differentially connected.

本発明の校正用治具は、所定の厚みを有する非金属板2(例えば、アクリル板やベーク板など)の表面に、長さWがセンサ列の長さWsより長く、かつ、センサ列方向と直交する幅方向サイズがE型形状コアの脚部間隔(中央脚部と外側脚部との間隔)以下のサイズで、材質が銅、鉄、アルミなどのテープ状の導体3を貼付した校正用治具を、センサ列の脚部下方に設置する。このとき、導体3は、前記非金属板2をはさんで、渦流センサの脚部とは反対の面にする。また前記テープ状の導体3がセンサ列のE型渦流センサ1(k=1〜N)の中央の脚と外側の一方の脚との間隙部に対して平行に位置するように取り付ける(図1(a))。図1(b)は、図1(a)の矢印Aより見た図であり、非金属板2の幅Wにわたって、テープ状の導体3が貼付されている状態を表している。図1(a)の状態で、板幅方向に配列された各渦流センサ出力電圧V1k(k=1〜N,V1k>0)を読み取る、または信号処理装置で各渦流センサ出力信号を入力する。 The calibration jig of the present invention has a length W longer than the sensor row length Ws on the surface of a non-metal plate 2 (for example, an acrylic plate or a bake plate) having a predetermined thickness, and the sensor row direction. Calibration with the tape-shaped conductor 3 made of copper, iron, aluminum, etc. attached to the E-shaped core with the width direction orthogonal to the E-shaped core being less than the leg interval (interval between the center leg and the outer leg) The jig is installed below the legs of the sensor row. At this time, the conductor 3 is placed on the surface opposite to the leg portion of the eddy current sensor with the non-metal plate 2 interposed therebetween. The tape-like conductor 3 is attached so as to be positioned parallel to the gap between the central leg and the outer one leg of the E-type eddy current sensor 1 k (k = 1 to N) in the sensor array (see FIG. 1 (a)). FIG. 1B is a view as seen from the arrow A in FIG. 1A, and shows a state where the tape-like conductor 3 is pasted over the width W of the non-metal plate 2. In the state of FIG. 1A, each eddy current sensor output voltage V 1k (k = 1 to N, V 1k > 0) arranged in the plate width direction is read, or each eddy current sensor output signal is input by a signal processing device. To do.

続いて、同様に今度は前記テープ状導体3が、幅方向に配置されたN個のE型形状コアからなる渦流センサ1(k=1〜N)の中央の脚と外側の他方の脚との間隙部に対して平行に位置するように取り付ける(図1(c))。そして、このときの各渦流センサの出力電圧−V2k(k=1〜N,V2k>0)を読み取る、または信号処理装置で各渦流センサ出力信号を入力する。なお、図1(a)から図1(c)へのテープ状導体3の位置移動には、テープ状導体を貼りかえる、テープ状導体を貼付した状態で非金属板2ごと平行移動する、およびテープ状導体を貼付した状態で非金属板2ごと180度回転するなど種々の方法が考えられる。 Subsequently, similarly, the tape-like conductor 3 is now connected to the central leg and the other outer leg of the eddy current sensor 1 k (k = 1 to N) composed of N E-shaped cores arranged in the width direction. (FIG. 1 (c)). And the output voltage -V2k (k = 1-N, V2k > 0) of each eddy current sensor at this time is read, or each eddy current sensor output signal is input with a signal processor. In addition, in the position movement of the tape-shaped conductor 3 from FIG. 1A to FIG. 1C, the tape-shaped conductor is replaced, the tape-shaped conductor is pasted, and the non-metal plate 2 is moved in parallel. Various methods such as rotating the non-metallic plate 2 by 180 degrees with the tape-like conductor attached thereto are conceivable.

次に、各E型形状コアからなる渦流センサ出力より、出力V1k−(−V2k) (k=1〜N)を演算し、これが所定の値になるように感度校正を実施する。感度校正は、センサ出力をアナログ的に調整しても良いし、デジタル値へ変換後、パソコンなどに取り込み、ソフト的に処理しても良い。なお、前記非金属板2は、あらかじめ検出対象とする欠陥について渦流センサの出力を調査し、これとほぼ同等の出力が得られるような厚みのものを選択すれば良い。なお、このセンサ出力は、電圧信号として説明したが、電流値や、AD変換後のソフト処理された値など、センサ出力を示す値であれば、形態は問わない。 Next, the output V 1k − (− V 2k ) (k = 1 to N) is calculated from the eddy current sensor output composed of each E-shaped core, and sensitivity calibration is performed so that this becomes a predetermined value. In the sensitivity calibration, the sensor output may be adjusted in an analog manner, or converted into a digital value and then taken into a personal computer or the like and processed in a software manner. The non-metallic plate 2 may be selected in advance so that the output of the eddy current sensor is investigated in advance for the defect to be detected and an output substantially equivalent to this is obtained. Although the sensor output has been described as a voltage signal, any form may be used as long as it is a value indicating the sensor output, such as a current value or a value subjected to software processing after AD conversion.

図4は、本発明の一実施例を示す構成図である。前述したように、テープ状導体3が、N個のE型センサ1(k=1〜N)の中央の脚と外側の一方の脚との間隙部に位置する状態で、全チャンネルの位相検波後出力が、所定の出力値(V’)となるように、各渦流信号処理アンプ21(k=1〜N)について、感度ボリューム調整を行う。 FIG. 4 is a block diagram showing an embodiment of the present invention. As described above, the tape-like conductor 3 is positioned in the gap between the central leg and the outer one leg of the N E-type sensors 1 k (k = 1 to N). The sensitivity volume is adjusted for each eddy current signal processing amplifier 21 k (k = 1 to N) so that the output after detection becomes a predetermined output value (V ′).

感度ボリューム調整後、A/D変換器31(k=1〜N)にてデジタル値へ変換された値を、演算処理部41(例えばパソコン)にて、読み込む(このときの読み込み値は、V1=V’(k=1〜N))。 After adjusting the sensitivity volume, the value converted into a digital value by the A / D converter 31 k (k = 1 to N) is read by the arithmetic processing unit 41 (for example, a personal computer) (the read value at this time is V1 k = V ′ (k = 1 to N)).

次に、前記テープ状導体3が、幅方向に配置されたN個のE型渦流センサ1(k=1〜N)の中央の脚と外側の他方の脚との間隙部に位置するように取り付けた状態で、上記と同様にA/D変換器31(k=1〜N)の出力を、演算処理部41にて読み込む(入力する)。このときの、各センサ出力は最初に読み取った値V’と符号が逆で、絶対値がほぼ同じものとなるが、製作上の問題から個々のセンサ感度にはばらつきが存在するため、正確には等しい値とはならない。そこで、各センサ出力について、V1k−(−V2k) (k=1〜N)を演算し、これが所定の値(=2V’)となるように、ソフトにて各センサ毎に補正係数を求め、オンライン探傷時におけるセンサからの入力信号に、演算処理部41にて前記補正係数を乗じることでセンサの補正を実施する。 Next, the tape-shaped conductor 3 is positioned in the gap between the central leg and the other outer leg of the N E-type eddy current sensors 1 k (k = 1 to N) arranged in the width direction. In the same manner as above, the output of the A / D converter 31 k (k = 1 to N) is read (input) by the arithmetic processing unit 41. At this time, each sensor output is opposite in sign to the first read value V ′, and the absolute value is almost the same. However, due to manufacturing problems, there is variation in individual sensor sensitivity. Are not equal. Therefore, V 1k − (− V 2k ) (k = 1 to N) is calculated for each sensor output, and the correction coefficient is set for each sensor by software so that this becomes a predetermined value (= 2V ′). The correction of the sensor is performed by multiplying the input signal from the sensor at the time of online flaw detection by the correction coefficient by the arithmetic processing unit 41.

なお、一般にオンラインでの搬送されて走行する金属帯における自動渦流探傷においては、直流バイアス成分及び変化の緩やかなノイズ成分を除去するため、ライン速度と同期して差分することで欠陥信号変化分を取り出す方法が一般的である。上記手法は、欠陥信号変化分による感度補正であるので、精度の良い校正が実現できる。   In general, in automatic eddy current flaw detection in a metal band that is transported and traveled on-line, in order to remove DC bias components and slowly changing noise components, the difference in the defect signal can be calculated by making a difference in synchronization with the line speed. The method of taking out is common. Since the above method is sensitivity correction based on the defect signal change, accurate calibration can be realized.

本発明に係る感度校正方法を説明する図である。It is a figure explaining the sensitivity calibration method which concerns on this invention. E型渦流センサの動作原理を示した図である。It is the figure which showed the operating principle of the E type eddy current sensor. 金属帯の渦流探傷方法を示した図である。It is the figure which showed the eddy current flaw detection method of a metal strip. 発明の実施例を示した図である。It is the figure which showed the Example of invention. 従来の技術を説明した図である。It is a figure explaining the prior art.

符号の説明Explanation of symbols


1 センサ
1a 1次コイル
1b、1c 2次コイル
2 非金属板
3 テープ状導体
4 金属帯
5 欠陥
6 保持部材
7 L字状の腕
8 テストピース保持部材
9 テストピース
10 往復運動機構
11 軸
12 誘導電動機
13a、13b 反転ストッパ
14a、14b 棒部材
21 渦流信号処理アンプ
31 A/D変換器
41 演算処理部

DESCRIPTION OF SYMBOLS 1 Sensor 1a Primary coil 1b, 1c Secondary coil 2 Non-metallic plate 3 Tape-shaped conductor 4 Metal strip 5 Defect 6 Holding member 7 L-shaped arm 8 Test piece holding member 9 Test piece 10 Reciprocating mechanism 11 Axis 12 Induction Electric motors 13a and 13b Reversing stoppers 14a and 14b Bar member 21 Eddy current signal processing amplifier 31 A / D converter 41 Arithmetic processing unit

Claims (3)

E型形状コアの中央の脚に1次コイル、外側の脚の両方に2次コイルを巻回された渦流センサを、前記E型形状コアの脚の列方向に対して略直交方向に前記渦流センサを一列に複数個(N個)配置したセンサ列を用いた渦流探傷装置の感度校正方法であって、
前記センサ列の配列方向における長さより長いテープ状導体を、前記センサ列のE型形状コアの中央の脚の列と外側の一方の脚の列との間隙の下方にのみ配置したときに得られる各渦流センサの出力V1k(k=1〜N,V1k>0)と、前記テープ状導体を前記センサ列のE型形状コアの中央の脚の列と外側の他方の脚との間隙の下方にのみ配置したときに得られる各渦流センサの出力−V2k(k=1〜N,V2k>0)とから、両者の出力の差分V1k−(−V2k)を算出し、当該差分の値が所定の値となるように渦流探傷装置を感度校正することを特徴とする、渦流探傷装置の感度校正方法。
An eddy current sensor in which a primary coil is wound around the center leg of the E-shaped core and a secondary coil is wound around both of the outer legs, and the eddy current is substantially perpendicular to the row direction of the legs of the E-shaped core. A method for calibrating the sensitivity of an eddy current flaw detector using a plurality of (N) sensors arranged in a row,
Obtained when a tape-like conductor that is longer than the length in the arrangement direction of the sensor row is disposed only below the gap between the center leg row and the outer one leg row of the E-shaped core of the sensor row. The output V 1k (k = 1 to N, V 1k > 0) of each eddy current sensor and the tape-shaped conductor of the gap between the middle leg row of the E-shaped core of the sensor row and the other outer leg From the output −V 2k (k = 1 to N, V 2k > 0) of each eddy current sensor obtained only when arranged below, the difference between the outputs V 1k − (− V 2k ) is calculated. A sensitivity calibration method for an eddy current flaw detector characterized by calibrating the sensitivity of the eddy current flaw detector so that a difference value becomes a predetermined value.
E型形状コアの中央の脚に1次コイル、外側の脚の両方に2次コイルを巻回された渦流センサを、前記E型形状コアの脚の列方向に対して略直交方向に前記渦流センサを一列に複数個(N個)配置したセンサ列を用いた渦流探傷装置の感度校正装置であって、
前記センサ列の配列方向における長さより長いテープ状導体と、
前記各渦流センサの出力の増幅するN個の渦流信号処理アンプと、
該渦流信号処理アンプの出力をA/D変換するN個のA/D変換器と、
該A/D変換器の出力に基づき演算処理する演算処理部とを備え、
前記テープ状導体を前記センサ列のE型形状コアの中央の脚の列と外側の一方の脚の列との間隙の下方にのみ配置したときに得られる各渦流センサの出力V1k(k=1〜N,V1k>0)と、前記テープ状導体を前記センサ列のE型形状コアの中央の脚の列と外側の他方の脚との間隙の下方にのみ配置したときに得られる各渦流センサの出力−V2k(k=1〜N,V2k>0)とから、両者の出力の差分V1k−(−V2k)を算出し、当該差分の値が所定の値となるように、前記渦流信号処理アンプおよび/または前記演算処理部にて渦流探傷装置を感度校正することを特徴とする、渦流探傷装置の感度校正装置。
An eddy current sensor in which a primary coil is wound around the center leg of the E-shaped core and a secondary coil is wound around both of the outer legs, and the eddy current is substantially perpendicular to the row direction of the legs of the E-shaped core. A sensitivity calibration device for an eddy current flaw detector using a sensor array in which a plurality of sensors are arranged in a row (N),
A tape-shaped conductor longer than the length in the arrangement direction of the sensor row;
N eddy current signal processing amplifiers for amplifying the output of each eddy current sensor;
N A / D converters for A / D converting the output of the eddy current signal processing amplifier;
An arithmetic processing unit that performs arithmetic processing based on the output of the A / D converter,
Output V 1k (k = k =) of each eddy current sensor obtained when the tape-like conductor is disposed only below the gap between the central leg row and the outer leg row of the E-shaped core of the sensor row. 1 to N, V 1k > 0), and each of the tape-shaped conductors obtained when the tape-shaped conductor is disposed only under the gap between the center leg row of the E-shaped core of the sensor row and the other outer leg. From the output of the eddy current sensor −V 2k (k = 1 to N, V 2k > 0), a difference V 1k − (− V 2k ) between the outputs is calculated so that the difference value becomes a predetermined value. A sensitivity calibration device for an eddy current flaw detector, wherein the eddy current flaw detector is calibrated with the eddy current signal processing amplifier and / or the arithmetic processing unit.
E型形状コアの中央の脚に1次コイル、外側の脚の両方に2次コイルを巻回された渦流センサを、前記E型形状コアの脚の列方向に対して略直交方向に前記渦流センサを一列に複数個(N個)配置したセンサ列を用いた渦流探傷装置の感度校正おこなうための治具であって、前記センサ列の配列方向にはセンサ列長さより長く、かつ、前記配列方向と直交する方向には前記E型形状コアの脚部間隔以下の幅を有するテープ状導体が、所定の厚みを有する非金属板表面に貼付されて、その非金属板が前記センサ列の脚部下方に取り付けられることを特徴とする、渦流探傷装置の感度校正用治具。 An eddy current sensor in which a primary coil is wound around the center leg of the E-shaped core and a secondary coil is wound around both of the outer legs, and the eddy current is substantially perpendicular to the row direction of the legs of the E-shaped core. A jig for calibrating the sensitivity of an eddy current flaw detector using a plurality of (N) sensors arranged in a row, the sensor row being longer than the sensor row length in the arrangement direction of the sensor row In a direction orthogonal to the direction, a tape-shaped conductor having a width equal to or smaller than the leg interval of the E-shaped core is attached to the surface of a non-metallic plate having a predetermined thickness, and the non-metallic plate is a leg of the sensor row. A jig for calibrating the sensitivity of an eddy current flaw detector characterized by being attached to the lower part of the device.
JP2005053279A 2005-02-28 2005-02-28 Sensitivity calibration method and apparatus for eddy current flaw detector Active JP4586574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005053279A JP4586574B2 (en) 2005-02-28 2005-02-28 Sensitivity calibration method and apparatus for eddy current flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005053279A JP4586574B2 (en) 2005-02-28 2005-02-28 Sensitivity calibration method and apparatus for eddy current flaw detector

Publications (2)

Publication Number Publication Date
JP2006234750A true JP2006234750A (en) 2006-09-07
JP4586574B2 JP4586574B2 (en) 2010-11-24

Family

ID=37042545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005053279A Active JP4586574B2 (en) 2005-02-28 2005-02-28 Sensitivity calibration method and apparatus for eddy current flaw detector

Country Status (1)

Country Link
JP (1) JP4586574B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284191A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Surface defect detecting method by eddy current type sensor
JP2009222695A (en) * 2008-03-17 2009-10-01 Kenichi Tajima Eddy current flaw detector and its measuring method
JP2010271318A (en) * 2009-05-20 2010-12-02 Prueftechnik Dieter Busch Ag Instrument and method for measuring induction
JP2011191326A (en) * 2011-07-08 2011-09-29 Jfe Steel Corp Method for detecting surface defect on plate using vortex sensor
JP2014130127A (en) * 2012-11-28 2014-07-10 Jfe Steel Corp Magnetic flux leakage inspection device and inspection method
JP2016065813A (en) * 2014-09-25 2016-04-28 Jfeスチール株式会社 Magnetic sensor array calibration method and magnetic sensor array calibration device
JP2016180684A (en) * 2015-03-24 2016-10-13 Jfeスチール株式会社 Method and device for correcting sensibility of eddy current flaw detector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827717U (en) * 1981-08-18 1983-02-22 新日本製鐵株式会社 Sensitivity calibration device for eddy current flaw detection equipment
JPS6042956U (en) * 1983-08-31 1985-03-26 新日本製鐵株式会社 Automatic calibration device for eddy current flaw detector
JPH07229873A (en) * 1994-02-16 1995-08-29 Nippon Steel Corp Eddy current flaw detection device for welded pipe
JPH08327603A (en) * 1995-06-02 1996-12-13 Nippon Steel Corp Defect detector for steel slab
JPH0989843A (en) * 1995-09-25 1997-04-04 Nkk Corp Method and apparatus for eddy current flaw detection
JPH11183632A (en) * 1997-12-22 1999-07-09 Sony Precision Technology Inc Magnetic metallic sensor
JP2003236613A (en) * 2002-02-15 2003-08-26 Jfe Steel Kk Method for manufacturing band steel for manufacturing cold-rolled or plated band steel and method for manufacturing plated band steel
JP2005031014A (en) * 2003-07-10 2005-02-03 Jfe Steel Kk Magnetic sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827717U (en) * 1981-08-18 1983-02-22 新日本製鐵株式会社 Sensitivity calibration device for eddy current flaw detection equipment
JPS6042956U (en) * 1983-08-31 1985-03-26 新日本製鐵株式会社 Automatic calibration device for eddy current flaw detector
JPH07229873A (en) * 1994-02-16 1995-08-29 Nippon Steel Corp Eddy current flaw detection device for welded pipe
JPH08327603A (en) * 1995-06-02 1996-12-13 Nippon Steel Corp Defect detector for steel slab
JPH0989843A (en) * 1995-09-25 1997-04-04 Nkk Corp Method and apparatus for eddy current flaw detection
JPH11183632A (en) * 1997-12-22 1999-07-09 Sony Precision Technology Inc Magnetic metallic sensor
JP2003236613A (en) * 2002-02-15 2003-08-26 Jfe Steel Kk Method for manufacturing band steel for manufacturing cold-rolled or plated band steel and method for manufacturing plated band steel
JP2005031014A (en) * 2003-07-10 2005-02-03 Jfe Steel Kk Magnetic sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284191A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Surface defect detecting method by eddy current type sensor
JP2009222695A (en) * 2008-03-17 2009-10-01 Kenichi Tajima Eddy current flaw detector and its measuring method
JP2010271318A (en) * 2009-05-20 2010-12-02 Prueftechnik Dieter Busch Ag Instrument and method for measuring induction
JP2011191326A (en) * 2011-07-08 2011-09-29 Jfe Steel Corp Method for detecting surface defect on plate using vortex sensor
JP2014130127A (en) * 2012-11-28 2014-07-10 Jfe Steel Corp Magnetic flux leakage inspection device and inspection method
JP2016065813A (en) * 2014-09-25 2016-04-28 Jfeスチール株式会社 Magnetic sensor array calibration method and magnetic sensor array calibration device
JP2016180684A (en) * 2015-03-24 2016-10-13 Jfeスチール株式会社 Method and device for correcting sensibility of eddy current flaw detector

Also Published As

Publication number Publication date
JP4586574B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
JP4586574B2 (en) Sensitivity calibration method and apparatus for eddy current flaw detector
JP4809039B2 (en) Electromagnetic induction type inspection apparatus and electromagnetic induction type inspection method
JP3572460B2 (en) Eddy current probe
JPH06331602A (en) Method and equipment for checking structural defect of long magnetic material nondestructively
JP4003975B2 (en) Metal inspection method and metal inspection apparatus
GB2297168A (en) Improvements in linear resolution of electromagnetic wire rope testing instruments
JP2010164306A (en) Method and device for hardened depth
JP2006177952A (en) Eddy current probe, inspecting system and inspecting method
EP3376216B1 (en) Method for eddy-current testing of electrically conductive objects and device for realizing said method
KR20150048141A (en) Eddy current flaw detection probe and eddy current flaw inspection apparatus
JP2010529425A (en) Device for measuring the current through a conductor
JP2009036682A (en) Eddy current sensor, and device and method for inspecting depth of hardened layer
JP2015087168A (en) Nondestructive inspection system and nondestructive inspection method
JP2009186433A (en) Eddy-current type sample measuring method, eddy-current sensor and eddy-current type sample measurement system
JP6378554B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP4192708B2 (en) Magnetic sensor
JP2007248153A (en) Eddy current flaw detecting method and its device
JP7237737B2 (en) Eddy current flaw detector and method
RU2586261C2 (en) Device for magnetic flaw detector and method of reducing error in determining size of defects of pipeline magnetic flaw detectors
JP4484723B2 (en) Eddy current testing probe
Wang et al. Displacement measurement for ferromagnetic materials based on the double-layer parallel-cable-based probe
JP2016065813A (en) Magnetic sensor array calibration method and magnetic sensor array calibration device
JP6597081B2 (en) Flaw detection probe and flaw detection method
CN111417851A (en) Defect measuring device, defect measuring method, and inspection probe
JP2002055083A (en) Eddy current flaw detection probe

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Ref document number: 4586574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250