JP2007248153A - Eddy current flaw detecting method and its device - Google Patents

Eddy current flaw detecting method and its device Download PDF

Info

Publication number
JP2007248153A
JP2007248153A JP2006069752A JP2006069752A JP2007248153A JP 2007248153 A JP2007248153 A JP 2007248153A JP 2006069752 A JP2006069752 A JP 2006069752A JP 2006069752 A JP2006069752 A JP 2006069752A JP 2007248153 A JP2007248153 A JP 2007248153A
Authority
JP
Japan
Prior art keywords
eddy current
current flaw
differential signal
signal
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006069752A
Other languages
Japanese (ja)
Other versions
JP4835212B2 (en
Inventor
Kaoru Tanaka
薫 田中
Yasuhiro Matsufuji
泰大 松藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006069752A priority Critical patent/JP4835212B2/en
Publication of JP2007248153A publication Critical patent/JP2007248153A/en
Application granted granted Critical
Publication of JP4835212B2 publication Critical patent/JP4835212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an eddy current flaw detecting method and its device capable of stably detecting solely harmful defects by establishing an optimal frequency range and filtering defective signals caused by a harmful defect and noise signals caused by a defective shape which does not pose a problem for processing as for a differential signal output from an eddy current flaw detection sensor. <P>SOLUTION: This eddy current flaw detecting device 1 comprises the eddy current flaw detection sensor 2 using as a primary coil 8 a central magnetic pole of an E-type core made of a ferromagnetic material and using as a secondary coil 9 each magnetic pole of both sides, a computing unit 5 which computes the differential signal of the signals detected from both the secondary coils 9, and a determination device 5 which determines a defect in an inspection object S when the wavelength of the differential signal is two times or larger of the length between both the secondary coils 9 and the output of the differential signal is above a predetermined threshold value. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、渦電流を利用して導電体の表層に存在する欠陥を検出する渦流探傷法方及び渦流探傷装置に関する。   The present invention relates to an eddy current flaw detection method and an eddy current flaw detection apparatus that detect defects existing on a surface layer of a conductor using eddy current.

従来の渦流探傷装置として、例えば図4及び図5に示す渦流探傷装置が知られている(特許文献1参照)。
図4及び図5に示す渦流探傷装置30は、強磁性体であるE型コアの中央磁極を一次コイル31とし、両側の各磁極を二次コイル32とした渦流探傷センサ33a〜33cを、各磁極の並びと直角方向に複数配列した渦流探傷センサ群34と、各渦流探傷センサ33a〜33cに交流電流を供給する電源装置(図示せず)と、各々の渦流探傷センサ33a〜33c毎の二つの二次コイル32の出力の差分を演算して増幅する第一の差動増幅器36と、異なる渦流探傷センサ33a〜33cの二次コイル32同士の出力の差分を演算して増幅する第二の差動増幅器37と、これらの差動増幅器36,37の信号を位相検波する位相検波回路38と、位相検波された信号をフィルタリングするフィルタ回路39を有してなる。そして、渦流探傷装置30は、各渦流探傷センサ33a〜33c毎の二つの二次コイル32の出力の差分信号と、異なる渦流探傷センサ33a〜33cの二次コイル32の出力の差分信号とに基づき、各差分信号の出力が所定の閾値を超えている場合に、被検査体35の表面に欠陥があったものと判定する。このような渦流探傷装置30によれば、被検査体35表面における二次コイル32の配列方向と同一方向に伸びる欠陥を検出することが可能となる。
特開平9−89843号公報
As a conventional eddy current flaw detector, for example, an eddy current flaw detector shown in FIGS. 4 and 5 is known (see Patent Document 1).
The eddy current flaw detection apparatus 30 shown in FIGS. 4 and 5 includes eddy current flaw sensors 33a to 33c in which the central magnetic pole of the E-type core, which is a ferromagnetic material, is the primary coil 31, and the magnetic poles on both sides are the secondary coils 32. A plurality of eddy current flaw detection sensor groups 34 arranged in a direction perpendicular to the arrangement of magnetic poles, a power supply device (not shown) for supplying an alternating current to each of the eddy current flaw detection sensors 33a to 33c, and two eddy current flaw detection sensors 33a to 33c. A first differential amplifier 36 that calculates and amplifies the difference between the outputs of the two secondary coils 32, and a second differential amplifier 36 that calculates and amplifies the difference between the outputs of the secondary coils 32 of the different eddy current flaw detection sensors 33a to 33c. It comprises a differential amplifier 37, a phase detection circuit 38 for phase detection of the signals of these differential amplifiers 36 and 37, and a filter circuit 39 for filtering the phase detected signal. The eddy current flaw detector 30 is based on the difference signal of the outputs of the two secondary coils 32 for each of the eddy current flaw sensors 33a to 33c and the difference signal of the outputs of the secondary coils 32 of the different eddy current flaw sensors 33a to 33c. When the output of each difference signal exceeds a predetermined threshold value, it is determined that the surface of the inspected object 35 has a defect. According to such an eddy current flaw detector 30, it is possible to detect a defect extending in the same direction as the arrangement direction of the secondary coils 32 on the surface of the inspection object 35.
JP-A-9-89843

しかしながら、渦流探傷装置30においては、各出力信号を所定の閾値と比較することで欠陥の有無を判定しているため、被検査体35が波状の形状をしている場合等、処理上問題とならない被検査体35の形状不良についても欠陥と判定してしまう。そして、渦流探傷装置30により欠陥が検出された場合、次工程において目視確認作業が必要となるが、上記処理上問題とならない形状不良を欠陥と判定してしまうことで不要な目視確認作業が発生し、処理能率を阻害するというという問題がある。   However, since the eddy current flaw detector 30 determines the presence / absence of a defect by comparing each output signal with a predetermined threshold, there is a problem in processing such as when the inspected object 35 has a wave shape. A defective shape of the inspected object 35 that is not to be determined is also determined as a defect. When a defect is detected by the eddy current flaw detector 30, a visual confirmation operation is required in the next process. However, an unnecessary visual confirmation operation is generated by determining a shape defect that does not cause a problem in the processing as a defect. However, there is a problem that the processing efficiency is hindered.

本発明は上記した従来技術の問題点を解決するためになされたものであり、その目的は、渦流探傷センサから出力される差動信号について、有害な欠陥の存在に起因する欠陥信号と、処理上問題とならない形状不良に起因するノイズ信号とを最適な周波数帯域を設けてフィルタリングすることで、有害な欠陥のみを安定して検出することが可能な渦流探傷方法及び渦流探傷装置を提供することにある。   The present invention has been made in order to solve the above-described problems of the prior art, and the purpose of the differential signal output from the eddy current flaw detection sensor is to process a defect signal caused by the presence of a harmful defect, and processing. To provide an eddy current flaw detection method and an eddy current flaw detection apparatus capable of stably detecting only harmful defects by filtering an noise signal caused by a shape defect that does not cause an upper problem by providing an optimum frequency band. It is in.

本発明のうち請求項1に係る渦流探傷方法は、強磁性体であるE型コアの中央磁極を一次コイルとし、両側の各磁極を二次コイルとした渦流探傷センサの前記一次コイルに交流電圧を印加して被検査体に渦電流を発生させ、当該渦電流により前記各二次コイルに生じる誘起電圧を検出信号とし、
前記両二次コイルから検出される前記検出信号の差動信号を演算し、
前記差動信号の波長が前記両二次コイル間の長さの約2倍以下であって、且つ前記差動信号の出力が所定の閾値を超えている場合に前記被検査体に欠陥が存在するものと判定することを特徴とする。
また、本発明のうち請求項2に係る渦流探傷装置は、強磁性体であるE型コアの中央磁極を一次コイルとし両側の各磁極を二次コイルとし、前記一次コイルに交流電圧を印加して被検査体に渦電流を発生させ、当該渦電流により前記各二次コイルに生じる誘起電圧を検出信号とする渦流探傷センサと、
前記両二次コイルから検出される前記検出信号の差動信号を演算する演算器と、
前記差動信号を入力し、前記差動信号の波長と前記両二次コイル間の長さとを比較した結果と前記差動信号の出力値に基づき前記被検査体における欠陥の存在を判定する判定装置とを備えてなることを特徴とする。
In the eddy current flaw detection method according to claim 1 of the present invention, an AC voltage is applied to the primary coil of the eddy current flaw detection sensor in which the central magnetic pole of the E-type core, which is a ferromagnetic material, is a primary coil and each magnetic pole on both sides is a secondary coil. To generate an eddy current in the object to be inspected, and an induced voltage generated in each secondary coil by the eddy current as a detection signal,
Calculating a differential signal of the detection signals detected from the secondary coils,
If the wavelength of the differential signal is not more than about twice the length between the secondary coils and the output of the differential signal exceeds a predetermined threshold, there is a defect in the object to be inspected. It is characterized by determining what to do.
In the eddy current flaw detector according to claim 2 of the present invention, the central magnetic pole of the E-type core, which is a ferromagnetic material, is used as a primary coil, each magnetic pole on both sides is used as a secondary coil, and an AC voltage is applied to the primary coil. An eddy current flaw sensor that generates an eddy current in the object to be inspected and uses an induced voltage generated in each secondary coil by the eddy current as a detection signal;
An arithmetic unit for calculating a differential signal of the detection signal detected from the secondary coils;
Determination of determining the presence of a defect in the object to be inspected based on a result obtained by inputting the differential signal and comparing a wavelength of the differential signal and a length between the secondary coils and an output value of the differential signal And a device.

本願請求項1又は2に係る渦流探傷方法又は渦流探傷装置によれば、両二次コイルから検出される前記検出信号の差動信号を演算し、前記差動信号の波長が前記両二次コイル間の長さの約2倍以下であって、且つ前記差動信号の出力が所定の閾値を超えている場合に前記被検査体に欠陥が存在することを判定する構成により、有害な欠陥のみを安定して検出することができ、次工程での目視確認作業を必要最小限に止めることで、処理能率を向上させることが可能となる。   According to the eddy current flaw detection method or the eddy current flaw detection apparatus according to claim 1 or 2, the differential signal of the detection signal detected from both the secondary coils is calculated, and the wavelength of the differential signal is set to the both secondary coils. Only a harmful defect can be obtained by determining that a defect exists in the object to be inspected when the output of the differential signal exceeds a predetermined threshold when it is less than about twice the length between Can be detected stably, and the processing efficiency can be improved by minimizing the visual confirmation in the next step.

以下、本発明の実施形態に係る渦流探傷装置を図面を参照して説明する。
なお、本実施形態においては、被検査体を鋼板Sとし、鋼板Sの表面に存在する欠陥Fを検出する場合を例にして説明する。
図1は本発明の実施形態に係る渦流探傷装置の概略構成図である。図2は渦流探傷センサの原理を示す図である。図3は差動信号の検出結果を示す図である。
Hereinafter, an eddy current flaw detector according to an embodiment of the present invention will be described with reference to the drawings.
In this embodiment, the case where the inspection object is a steel plate S and the defect F existing on the surface of the steel plate S is detected will be described as an example.
FIG. 1 is a schematic configuration diagram of an eddy current flaw detector according to an embodiment of the present invention. FIG. 2 is a diagram showing the principle of the eddy current flaw detection sensor. FIG. 3 is a diagram showing the detection result of the differential signal.

渦流探傷装置1は、図1に示すように、長手方向(図1及び図2における左右方向)に連続して搬送されてくる鋼板Sの上方に配置される複数の渦流探傷センサ2と、渦流探傷センサ2の励磁及び検出を行うアンプ盤(演算器)3と、アンプ盤3からの出力をアナログ・ディジタル変換するA/D変換装置4と、A/D変換装置4からの信号を一定ピッチで入力するデータ処理装置(判定装置)5とを備えてなる。   As shown in FIG. 1, the eddy current flaw detection apparatus 1 includes a plurality of eddy current flaw detection sensors 2 disposed above a steel sheet S that is continuously conveyed in the longitudinal direction (left and right direction in FIG. 1 and FIG. 2), An amplifier board (arithmetic unit) 3 for exciting and detecting the flaw detection sensor 2, an A / D converter 4 for analog / digital conversion of the output from the amplifier board 3, and a signal from the A / D converter 4 at a constant pitch And a data processing device (determination device) 5 for inputting.

各渦流探傷センサ2は、強磁性体により形成されたE型コアの中央磁極を一次コイル8とし両側の各磁極を二次コイル9として構成される。そして、渦流探傷センサ2は、鋼板Sの上方において、鋼板Sの長手方向と各磁極8,9の並び方向とを同一にし、鋼板Sの幅方向に複数(本実施形態においては4つ)設置される。
アンプ盤3は、電源装置(図示せず)と、差動増幅器12と、位相検波回路13とを備えている。
Each eddy current flaw detection sensor 2 includes a central magnetic pole of an E-shaped core formed of a ferromagnetic material as a primary coil 8 and each magnetic pole on both sides as a secondary coil 9. The eddy current flaw detection sensor 2 is installed above the steel plate S so that the longitudinal direction of the steel plate S and the alignment direction of the magnetic poles 8 and 9 are the same, and a plurality (four in this embodiment) are installed in the width direction of the steel plate S. Is done.
The amplifier board 3 includes a power supply device (not shown), a differential amplifier 12, and a phase detection circuit 13.

電源装置は、各渦流探傷センサ2の一次コイル8に交流電流を印加する。
差動増幅器12は、各二次コイル9の誘起電圧が入力され、各渦流探傷センサ2における両二次コイル9の誘起電圧の差分を演算し、これを必要に応じて増幅した差動信号を作りだす。
位相検波回路13には、電源装置が供給する交流電流と同位相の基準電圧が供給されており、位相検波回路13は、差動増幅器12から入力された差動信号から、基準電圧を基準にして設定された位相差を持った信号を作りだし、この信号を基準にして同期検波を行うことにより欠陥部の差動信号成分のみを抽出する。
The power supply device applies an alternating current to the primary coil 8 of each eddy current flaw detection sensor 2.
The differential amplifier 12 receives the induced voltage of each secondary coil 9, calculates the difference between the induced voltages of the secondary coils 9 in each eddy current flaw detection sensor 2, and amplifies the differential signal as necessary. Create it.
The phase detection circuit 13 is supplied with a reference voltage having the same phase as the AC current supplied by the power supply device. The phase detection circuit 13 uses the differential signal input from the differential amplifier 12 as a reference. A signal having the set phase difference is created, and synchronous detection is performed on the basis of this signal to extract only the differential signal component of the defective portion.

A/D変換装置4は、位相検波回路13から入力された欠陥部の差動信号成分をディジタル信号に変換し、サンプリング信号として出力する。
データ処理装置5では、差動信号の波長と両二次コイル9間の長さとを比較する。具体的には、A/D変換装置4から入力されるサンプリング信号についてフィルタリングを行ない、サンプリング信号のうち、両二次コイル9間の長さの約2倍の値α以下の波長を有する信号のみを検出するものであり、第一の演算器15と、フィルタ回路16と、第二の演算器17と、D/A変換装置(図示せず)と、コンパレータ18とを備えている。
The A / D conversion device 4 converts the differential signal component of the defective portion input from the phase detection circuit 13 into a digital signal and outputs it as a sampling signal.
The data processing device 5 compares the wavelength of the differential signal with the length between the secondary coils 9. Specifically, the sampling signal input from the A / D conversion device 4 is filtered, and only the signal having a wavelength less than the value α that is about twice the length between the secondary coils 9 among the sampling signals. And includes a first arithmetic unit 15, a filter circuit 16, a second arithmetic unit 17, a D / A converter (not shown), and a comparator 18.

第一の演算器15は、A/D変換装置4から入力されるサンプリング信号についてフーリエ変換を実行し、サンプリング信号を周波数スペクトルに変換する。
フィルタ回路16は、一般的なハイパスフィルタが用いられ、両二次コイル9間の長さの約2倍の値αの逆数の値βを基準として、第一の演算器15が変換した周波数スペクトルについて周波数がβ未満の周波数成分をカットする。
The first computing unit 15 performs a Fourier transform on the sampling signal input from the A / D conversion device 4 and converts the sampling signal into a frequency spectrum.
The filter circuit 16 uses a general high-pass filter, and the frequency spectrum converted by the first computing unit 15 on the basis of the value β of the reciprocal of the value α that is about twice the length between the secondary coils 9. The frequency component whose frequency is less than β is cut.

ここで、本実施形態においてはサンプリング信号のフィルタリングを行う基準値であるαとして、両二次コイル9間の長さの約2倍の値が用いられているが、実際のフィルタリングにおいては、多少の余裕をもたせるために、αを両二次コイル9間の長さの約2倍の値に所定値を加えた値に設定し、かかるαに基づいてβを算出することが好ましい。
第二の演算器17は、フィルタ回路16によるフィルタリング後の周波数スペクトルについてフーリエ逆変換を実行し、時系列関数信号を再合成する。
D/A変換装置は、第二の演算器17により再合成された時系列関数信号をアナログ信号に変換し、コンパレータ18へと出力する。
コンパレータ18は、D/A変換装置から入力される信号の出力と予め設定されている所定の閾値とを比較し、所定の閾値を超える信号があった場合に欠陥Fが存在するものと判定する。
Here, in the present embodiment, a value that is approximately twice the length between the secondary coils 9 is used as α, which is a reference value for filtering the sampling signal. However, in actual filtering, Is set to a value obtained by adding a predetermined value to approximately twice the length between the secondary coils 9, and β is preferably calculated based on the α.
The second arithmetic unit 17 performs inverse Fourier transform on the frequency spectrum after filtering by the filter circuit 16 and re-synthesizes the time series function signal.
The D / A converter converts the time series function signal recombined by the second computing unit 17 into an analog signal and outputs the analog signal to the comparator 18.
The comparator 18 compares the output of the signal input from the D / A converter with a predetermined threshold value, and determines that a defect F exists when there is a signal exceeding the predetermined threshold value. .

次に、本実施形態に係る渦流探傷装置1により鋼板Sの欠陥Fの検出を行う場合の作用について説明する。
長手方向に連続して搬送される鋼板Sの上方に設置された渦流探傷センサ2の一次コイル8に交流電流を印加することで、図2に示すように、鋼板Sに矢印で示されるような渦電流が発生する。そして、鋼板Sに渦電流が発生すると、かかる渦電流により各二次コイル9において誘起電圧が発生する。
Next, the operation when the defect F of the steel sheet S is detected by the eddy current flaw detector 1 according to the present embodiment will be described.
By applying an alternating current to the primary coil 8 of the eddy current flaw detection sensor 2 installed above the steel sheet S continuously conveyed in the longitudinal direction, as shown in FIG. Eddy current is generated. When an eddy current is generated in the steel sheet S, an induced voltage is generated in each secondary coil 9 due to the eddy current.

この場合において、連続して搬送される鋼板Sに欠陥Fがない場合には、各二次コイル9に発生する誘起電圧は同じとなり、両二次コイル9の誘起電圧の差分をとればゼロになる。一方、鋼板Sに欠陥Fが存在する場合には、渦電流の流れに変化が生じ、欠陥Fが存在する側の二次コイル9の誘起電圧が低くなり、各二次コイル9に発生する誘起電圧に差が生じることとなる。この場合、鋼板Sが搬送されることにより欠陥Fが各二次コイル9の下方もしくはその周辺を通過し、各二次コイル9における誘起電圧が変動することとなる。   In this case, when there is no defect F in the continuously conveyed steel sheet S, the induced voltage generated in each secondary coil 9 is the same, and is zero if the difference between the induced voltages of both the secondary coils 9 is taken. Become. On the other hand, when the defect F exists in the steel sheet S, a change occurs in the flow of eddy current, the induced voltage of the secondary coil 9 on the side where the defect F exists becomes low, and the induction generated in each secondary coil 9 occurs. There will be a difference in voltage. In this case, when the steel sheet S is conveyed, the defect F passes below or around each secondary coil 9 and the induced voltage in each secondary coil 9 fluctuates.

そして、各二次コイル9に発生する誘起電圧は差動増幅器12に入力され、差動増幅器12は、演算した誘起電圧の差分を増幅した差動信号を作りだす。
ここで、鋼板Sに欠陥Fがある場合、渦流探傷センサ2の直下を欠陥Fが通過すると、図3に示すように、両二次コイル9間の長さに応じた差動信号aが出力される。かかる差動信号aは、sinカーブのような波形を描き、図3の横軸を長さで表した場合、その波長は両二次コイル9間の長さの約2倍の値となる。
Then, the induced voltage generated in each secondary coil 9 is input to the differential amplifier 12, and the differential amplifier 12 creates a differential signal obtained by amplifying the difference between the calculated induced voltages.
Here, when the steel sheet S has a defect F, when the defect F passes directly under the eddy current flaw detection sensor 2, a differential signal a corresponding to the length between the secondary coils 9 is output as shown in FIG. Is done. The differential signal a draws a waveform like a sin curve, and when the horizontal axis of FIG. 3 is represented by a length, the wavelength thereof is about twice the length between the secondary coils 9.

一方、鋼板Sに波型の形状不良部がある場合、鋼板Sの形状不良部が渦流探傷センサ2の直下を通過すると、図3に示すように、差動信号bが出力される。かかる差動信号bは、差動信号aと比較して波長が長いsinカーブのような波形を描き、図3の横軸を長さで表した場合、その波長は形状不良部の長さとほぼ同一となる。
したがって、渦流探傷センサ2の両二次コイル9の差動信号において、両二次コイル9間の長さの約2倍の値α以下の波長を有する信号のみを判定対象とし、αの値より長く緩やかに変化する波長を有する信号については判定対象外とすることで、鋼板Sに存在する有害な欠陥Fを検出する一方において、処理上問題とならない鋼板Sの形状不良を欠陥Fとして過検出することを防止することが可能となる。
On the other hand, when the steel plate S has a corrugated defective portion, when the defective portion of the steel plate S passes immediately below the eddy current flaw detection sensor 2, a differential signal b is output as shown in FIG. The differential signal b draws a waveform like a sine curve having a wavelength longer than that of the differential signal a, and when the horizontal axis of FIG. 3 is represented by the length, the wavelength is substantially equal to the length of the defective shape portion. It will be the same.
Therefore, in the differential signal of both the secondary coils 9 of the eddy current flaw detection sensor 2, only a signal having a wavelength equal to or less than a value α that is about twice the length between the two secondary coils 9 is determined as a determination target. A signal having a long and slowly changing wavelength is excluded from the determination target, and a harmful defect F existing in the steel sheet S is detected. On the other hand, a defective shape of the steel sheet S that does not cause a problem in processing is overdetected as a defect F. It is possible to prevent this.

そこで、渦流探傷装置1においては、差動信号を位相検波回路13及びA/D変換装置4を介してデータ処理装置5へと入力し、かかるデータ処理装置5において最適な周波数帯域を設けてサンプリング信号のフィルタリングを行っている。
すなわち、データ処理装置5においては、サンプリング信号が周波数スペクトルに変換され、かかる周波数スペクトルについて、両二次コイル9間の長さの約2倍の値αの逆数の値β未満の周波数成分がカットされた後、かかる周波数スペクトルを時系列関数信号に再合成される。そして、かかる時系列関数信号はアナログ信号に変換され、かかるアナログ信号の出力と予め設定されている所定の閾値とを比較し、所定の閾値を超えた信号があった場合に欠陥Fが存在するものと判定する。
Therefore, in the eddy current flaw detector 1, the differential signal is input to the data processor 5 via the phase detector circuit 13 and the A / D converter 4, and the data processor 5 provides an optimum frequency band for sampling. Signal filtering is performed.
That is, in the data processing device 5, the sampling signal is converted into a frequency spectrum, and the frequency component less than the value β of the reciprocal of the value α that is about twice the length between the secondary coils 9 is cut. Then, the frequency spectrum is re-synthesized into a time series function signal. Then, the time series function signal is converted into an analog signal, the output of the analog signal is compared with a predetermined threshold value, and a defect F exists when there is a signal exceeding the predetermined threshold value. Judge that it is.

例えば、渦流探傷センサ2の両二次コイル9間の長さを20mm、サンプリングピッチを両二次コイル9間の長さの10分の1である2mmに設定した場合、データ処理装置5においてはサンプリングデータ256点(512mmに相当)を1つの基本区間として処理される。そして、かかる場合、βの値は約7Hzとなり、周波数スペクトルのうち7Hz未満の周波数成分がカットされる。
そして、渦流探傷装置1により欠陥Fが存在するものと判定された場合、目視確認作業を経て、鋼板Sの検出された欠陥Fが存在する部分が削除される。
このような渦流探傷装置1によれば、有害な欠陥Fのみを安定して検出することができ、次工程での目視確認作業を必要最小限に止めることで、処理能率を向上させることが可能となる。
For example, when the length between the secondary coils 9 of the eddy current flaw detection sensor 2 is set to 20 mm and the sampling pitch is set to 2 mm, which is 1/10 of the length between the secondary coils 9, the data processing device 5 Sampling data 256 points (corresponding to 512 mm) are processed as one basic section. In such a case, the value of β is about 7 Hz, and the frequency component of less than 7 Hz in the frequency spectrum is cut.
And when it determines with the defect F existing by the eddy current flaw detector 1, the part in which the detected defect F of the steel plate S exists is deleted through visual confirmation operation | work.
According to such an eddy current flaw detection apparatus 1, it is possible to stably detect only the harmful defect F, and it is possible to improve the processing efficiency by minimizing the visual confirmation work in the next process. It becomes.

以上、本発明の実施形態について説明したが、本発明の実施形態においては、種々の変更を行うことが可能である。
例えば、本実施形態においては、渦流探傷センサ2は、鋼板Sの上方において、鋼板Sの長手方向と各磁極8,9の並び方向とを同一にし、鋼板Sの幅方向に4つ設置されているが、渦流探傷センサ2の配置及び設置数は適宜変更可能である。
Although the embodiments of the present invention have been described above, various modifications can be made in the embodiments of the present invention.
For example, in the present embodiment, four eddy current flaw detection sensors 2 are installed in the width direction of the steel sheet S with the longitudinal direction of the steel sheet S and the alignment direction of the magnetic poles 8 and 9 being the same above the steel sheet S. However, the arrangement and the number of installed eddy current flaw sensors 2 can be changed as appropriate.

本発明の実施形態に係る渦流探傷装置の概略構成図である。1 is a schematic configuration diagram of an eddy current flaw detector according to an embodiment of the present invention. 渦流探傷センサの原理を示す図である。It is a figure which shows the principle of an eddy current flaw detection sensor. 差動信号の検出結果を示す図である。It is a figure which shows the detection result of a differential signal. 特許文献1に係る渦流探傷装置に備えられる渦流探傷センサの概略構成図である。It is a schematic block diagram of the eddy current flaw detection sensor with which the eddy current flaw detection apparatus which concerns on patent document 1 is equipped. 特許文献1に係る渦流探傷装置の概略構成図である。It is a schematic block diagram of the eddy current flaw detector according to Patent Document 1.

符号の説明Explanation of symbols

1 渦流探傷装置
S 鋼板
2 渦流探傷センサ
3 アンプ盤
4 A/D変換装置
5 データ処理装置
8 一次コイル
9 二次コイル
12 差動増幅器
13 位相検波回路
15 第一の演算器
16 フィルタ回路
17 第二の演算器
18 コンパレータ
30 渦流探傷装置
31 一次コイル
32 二次コイル
33 渦流探傷センサ
34 渦流探傷センサ群
35 被検査体
36 第一の差動増幅器
37 第二の差動増幅器
38 位相検波回路
39 フィルタ回路
DESCRIPTION OF SYMBOLS 1 Eddy current flaw detector S Steel plate 2 Eddy current flaw sensor 3 Amplifier board 4 A / D converter 5 Data processor 8 Primary coil 9 Secondary coil 12 Differential amplifier 13 Phase detector circuit 15 First calculator 16 Filter circuit 17 Second 18 Comparator 30 Eddy current flaw detector 31 Primary coil 32 Secondary coil 33 Eddy current flaw sensor 34 Eddy current flaw sensor group 35 Inspected object 36 First differential amplifier 37 Second differential amplifier 38 Phase detection circuit 39 Filter circuit

Claims (2)

強磁性体であるE型コアの中央磁極を一次コイルとし、両側の各磁極を二次コイルとした渦流探傷センサの前記一次コイルに交流電圧を印加して被検査体に渦電流を発生させ、当該渦電流により前記各二次コイルに生じる誘起電圧を検出信号とし、
前記両二次コイルから検出される前記検出信号の差動信号を演算し、
前記差動信号の波長が前記両二次コイル間の長さの約2倍以下であって、且つ前記差動信号の出力が所定の閾値を超えている場合に前記被検査体に欠陥が存在するものと判定することを特徴とする渦流探傷方法。
An eddy current is generated in the object to be inspected by applying an AC voltage to the primary coil of the eddy current flaw detection sensor in which the central magnetic pole of the E-type core, which is a ferromagnetic material, is a primary coil and each magnetic pole on both sides is a secondary coil. An induced voltage generated in each secondary coil by the eddy current is used as a detection signal,
Calculating a differential signal of the detection signals detected from the secondary coils,
If the wavelength of the differential signal is not more than about twice the length between the secondary coils and the output of the differential signal exceeds a predetermined threshold, there is a defect in the object to be inspected. An eddy current flaw detection method characterized by determining that it is to be performed.
強磁性体であるE型コアの中央磁極を一次コイルとし両側の各磁極を二次コイルとし、前記一次コイルに交流電圧を印加して被検査体に渦電流を発生させ、当該渦電流により前記各二次コイルに生じる誘起電圧を検出信号とする渦流探傷センサと、
前記両二次コイルから検出される前記検出信号の差動信号を演算する演算器と、
前記差動信号を入力し、前記差動信号の波長と前記両二次コイル間の長さとを比較した結果と前記差動信号の出力値に基づき前記被検査体における欠陥の存在を判定する判定装置とを備えてなることを特徴とする渦流探傷装置。
The central magnetic pole of the E-type core, which is a ferromagnetic material, is the primary coil and each magnetic pole on both sides is the secondary coil. An AC voltage is applied to the primary coil to generate an eddy current in the object to be inspected. An eddy current flaw detection sensor using an induced voltage generated in each secondary coil as a detection signal;
An arithmetic unit for calculating a differential signal of the detection signal detected from the secondary coils;
Determination of determining the presence of a defect in the object to be inspected based on a result obtained by inputting the differential signal and comparing a wavelength of the differential signal and a length between the secondary coils and an output value of the differential signal An eddy current flaw detector comprising the device.
JP2006069752A 2006-03-14 2006-03-14 Eddy current flaw detection method and eddy current flaw detection apparatus Active JP4835212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006069752A JP4835212B2 (en) 2006-03-14 2006-03-14 Eddy current flaw detection method and eddy current flaw detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006069752A JP4835212B2 (en) 2006-03-14 2006-03-14 Eddy current flaw detection method and eddy current flaw detection apparatus

Publications (2)

Publication Number Publication Date
JP2007248153A true JP2007248153A (en) 2007-09-27
JP4835212B2 JP4835212B2 (en) 2011-12-14

Family

ID=38592637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006069752A Active JP4835212B2 (en) 2006-03-14 2006-03-14 Eddy current flaw detection method and eddy current flaw detection apparatus

Country Status (1)

Country Link
JP (1) JP4835212B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264984A (en) * 2008-04-25 2009-11-12 Marktec Corp Eddy current flaw detection probe
JP2011145176A (en) * 2010-01-14 2011-07-28 Toyota Motor Corp Eddy current measuring sensor, and inspection method using the same
JP2013047630A (en) * 2011-08-29 2013-03-07 Jfe Steel Corp Magnetic characteristic measuring method and magnetic characteristic measuring device
JP2013104807A (en) * 2011-11-15 2013-05-30 Jfe Steel Corp Apparatus for detecting defect on roll surface
JP2013113619A (en) * 2011-11-25 2013-06-10 Jfe Steel Corp Eddy current flaw detection method of metal band

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215454A (en) * 1985-07-12 1987-01-23 Sumitomo Metal Ind Ltd Processing method for eddy current flaw detecting signal
JPH02306162A (en) * 1989-05-19 1990-12-19 Showa Electric Wire & Cable Co Ltd Apparatus for flaw detection of electric wire
JPH0989843A (en) * 1995-09-25 1997-04-04 Nkk Corp Method and apparatus for eddy current flaw detection
JP2003240761A (en) * 2002-02-15 2003-08-27 Jfe Steel Kk Method and apparatus for detecting surface layer defect or surface defect in magnetic metal specimen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215454A (en) * 1985-07-12 1987-01-23 Sumitomo Metal Ind Ltd Processing method for eddy current flaw detecting signal
JPH02306162A (en) * 1989-05-19 1990-12-19 Showa Electric Wire & Cable Co Ltd Apparatus for flaw detection of electric wire
JPH0989843A (en) * 1995-09-25 1997-04-04 Nkk Corp Method and apparatus for eddy current flaw detection
JP2003240761A (en) * 2002-02-15 2003-08-27 Jfe Steel Kk Method and apparatus for detecting surface layer defect or surface defect in magnetic metal specimen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264984A (en) * 2008-04-25 2009-11-12 Marktec Corp Eddy current flaw detection probe
JP2011145176A (en) * 2010-01-14 2011-07-28 Toyota Motor Corp Eddy current measuring sensor, and inspection method using the same
JP2013047630A (en) * 2011-08-29 2013-03-07 Jfe Steel Corp Magnetic characteristic measuring method and magnetic characteristic measuring device
JP2013104807A (en) * 2011-11-15 2013-05-30 Jfe Steel Corp Apparatus for detecting defect on roll surface
JP2013113619A (en) * 2011-11-25 2013-06-10 Jfe Steel Corp Eddy current flaw detection method of metal band

Also Published As

Publication number Publication date
JP4835212B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4998820B2 (en) Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method
JP4998821B2 (en) Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method
JP4835212B2 (en) Eddy current flaw detection method and eddy current flaw detection apparatus
JP4756409B1 (en) Nondestructive inspection apparatus and nondestructive inspection method using alternating magnetic field
JP5544962B2 (en) Magnetic flux leakage flaw detection method and magnetic flux leakage inspection device
JP2010048552A (en) Nondestructive inspecting device and method
JP4622742B2 (en) Method and apparatus for detecting eddy current in metal strip
JP2013160739A (en) Method and apparatus for detecting flaws in magnetic materials
JP6562055B2 (en) Processing state evaluation method, processing state evaluation device, and manufacturing method of grain-oriented electrical steel sheet
JP2006234750A (en) Method and device for sensitivity calibration of eddy current tester
JP2013148449A (en) Magnetic flaw detection device and magnetic flaw detection method
JP2016057225A (en) Eddy current flaw detection sensor device
JP5983556B2 (en) Leakage magnetic flux type inspection apparatus and inspection method
JP2004037216A (en) Leakage flux flaw detecting method
JPH0989843A (en) Method and apparatus for eddy current flaw detection
JP6079504B2 (en) Leakage magnetic flux type inspection apparatus and inspection method
JP2000227422A (en) Eddy current examination
JP2014106136A (en) Magnetic leakage flux testing system and method
JP2000227421A (en) Eddy current examination
JP2001059836A (en) Method and apparatus for eddy-current flaw detection
JP2005106602A (en) Magnetic flaw detection sensor
JP5874348B2 (en) Eddy current flaw detection method for metal strip
JP6624099B2 (en) Magnetic measuring method and magnetic measuring device
JP2014044151A (en) Defect detection device
JP5365938B2 (en) Metal material dissimilarity judgment method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4835212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250