JP2015087168A - Nondestructive inspection system and nondestructive inspection method - Google Patents

Nondestructive inspection system and nondestructive inspection method Download PDF

Info

Publication number
JP2015087168A
JP2015087168A JP2013224373A JP2013224373A JP2015087168A JP 2015087168 A JP2015087168 A JP 2015087168A JP 2013224373 A JP2013224373 A JP 2013224373A JP 2013224373 A JP2013224373 A JP 2013224373A JP 2015087168 A JP2015087168 A JP 2015087168A
Authority
JP
Japan
Prior art keywords
coil
subject
voltage
nondestructive inspection
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013224373A
Other languages
Japanese (ja)
Other versions
JP6242155B2 (en
Inventor
一真 高倉
Kazuma Takakura
一真 高倉
義純 出井
Yoshizumi Idei
義純 出井
眞生 貝塚
Masao Kaizuka
眞生 貝塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichi Machine and Engineering Co Ltd
Original Assignee
Dainichi Machine and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichi Machine and Engineering Co Ltd filed Critical Dainichi Machine and Engineering Co Ltd
Priority to JP2013224373A priority Critical patent/JP6242155B2/en
Publication of JP2015087168A publication Critical patent/JP2015087168A/en
Application granted granted Critical
Publication of JP6242155B2 publication Critical patent/JP6242155B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To accurately perform flaw inspection of an analyte even when the distance between a sensor and the analyte is long.SOLUTION: The nondestructive inspection system includes: an exciting coil 101 facing an analyte 2; a reference coil 105 electromagnetically bonded to the exciting coil 101; a detection coil 104 facing the analyte 2; and a measurement processing unit 4 that excites the exciting coil 101 by alternation voltage, and detects the amplitude and phase of a signal to be measured as the difference between the voltage occurring in the reference coil 105 and the voltage occurring in the detection coil 104, using the voltage of the exciting coil 101 or reference coil 105 as a reference signal.

Description

本発明は、電磁誘導を利用して被検体の非破壊検査を行う非破壊検査装置および非破壊検査方法に関する。   The present invention relates to a nondestructive inspection apparatus and a nondestructive inspection method for performing nondestructive inspection of a subject using electromagnetic induction.

特許文献1〜5に示すように、電磁誘導を利用した過流探傷装置において、正弦波発生器、励磁コイルを駆動する駆動回路、励磁コイルおよび検出コイルからなるセンサ、検出コイルの出力を増幅する増幅回路および同期検波回路を含む解析回路等で構成された装置が提案され、使用されている。   As shown in Patent Documents 1 to 5, in an overcurrent flaw detector using electromagnetic induction, a sine wave generator, a drive circuit for driving an excitation coil, a sensor composed of an excitation coil and a detection coil, and the output of the detection coil are amplified. An apparatus composed of an analysis circuit including an amplifier circuit and a synchronous detection circuit has been proposed and used.

図23は、従来技術によるセンサの一例である。
この図23に示すように、センサは、被検体に強力な磁場を印加することを目的として、珪素鋼板、フェライト等の磁性体からなる励磁コア102に励磁コイル101を巻回してなる励磁器を被検体2に対向させ、その励磁コイル101を一定電圧の正弦波で励磁する。励磁コイル101の内側には、検出コイル104を配置している。
FIG. 23 is an example of a conventional sensor.
As shown in FIG. 23, the sensor has an exciter formed by winding an exciting coil 101 around an exciting core 102 made of a magnetic material such as a silicon steel plate or ferrite for the purpose of applying a strong magnetic field to a subject. The exciting coil 101 is excited with a constant voltage sine wave so as to face the subject 2. A detection coil 104 is arranged inside the excitation coil 101.

例えば特許文献6には、上記したようなセンサにおいて、検出コイル104の出力に基づき、同期検波等の手段により被検体深部に生ずる渦電流の変化を検出し、減肉、傷等の検出を管の外部から行う構成が開示されている。   For example, in Patent Document 6, in the sensor as described above, based on the output of the detection coil 104, a change in eddy current generated in the deep part of the subject is detected by means such as synchronous detection, and the detection of thinning, flaws, etc. is detected. The structure performed from the outside is disclosed.

特許第3753499号公報Japanese Patent No. 3753499 特許第3266128号公報Japanese Patent No. 3266128 特開2010−48552号公報JP 2010-48552 A 特許第3896489号公報Japanese Patent No. 3896489 特開3010−54352号公報JP 3010-54352 A 特許第4756409号公報Japanese Patent No. 4756409

しかし、実際の被検体としての管は磁性と導電性をともに有する炭素鋼管である。しかも、管は、グラスウール等の保温材で覆われ、更にその外側はアルミ、トタン等の防露材で覆われている場合が多い。磁性と導電性をともに有する炭素鋼管等にあっては渦電流効果のため励磁交番磁界が被検体内部に浸透しにくい。さらに、被検体となる管が保温材で覆われているために、被検体とセンサ間の距離、即ちリフトオフが大きくならざるを得ない。その結果、検出信号が極端に小さくなるので、被検体の管の内壁部の減肉、傷等の検出が著しく困難となる。
しかも、検出信号が小さくなると、センサの温度特性の影響をより強く受けるようになり、測定値が温度変化により漂動するという欠点があった。即ち、センサの巻線に使用されるホルマル線等銅線の電気抵抗の温度係数の影響を相対的に大きく受けるようになり、測定装置として温度的に不安定になるという欠点があった。
そこでなされた本発明の目的は、センサの被検体に対向する端面と被検体との距離、即ちリフトオフが大きい状態であっても被検体の探傷を精度よく行うことのできる非破壊検査装置および非破壊検査方法を提供することである。
However, a tube as an actual subject is a carbon steel tube having both magnetism and conductivity. Moreover, the tube is often covered with a heat insulating material such as glass wool, and the outside thereof is often covered with a dew-proof material such as aluminum or tin. In a carbon steel pipe or the like having both magnetism and conductivity, an excitation alternating magnetic field hardly penetrates into the subject due to the eddy current effect. Furthermore, since the tube as the subject is covered with the heat insulating material, the distance between the subject and the sensor, that is, the lift-off must be increased. As a result, since the detection signal becomes extremely small, it becomes extremely difficult to detect the thinning of the inner wall portion of the tube of the subject, the scratch, and the like.
In addition, when the detection signal is small, the sensor is more strongly influenced by the temperature characteristics, and there is a drawback that the measured value drifts due to a temperature change. That is, there is a drawback that the temperature coefficient of the electrical resistance of a copper wire such as a formal wire used for the winding of the sensor is relatively large and the measurement device becomes unstable in temperature.
Accordingly, an object of the present invention is to provide a nondestructive inspection apparatus and a non-destructive inspection apparatus that can accurately detect a test object even when the distance between the end surface of the sensor facing the test object and the test object, that is, the lift-off state is large. To provide a destructive inspection method.

本発明は、上記課題を解決するため、以下の手段を採用する。
すなわち、本発明の非破壊検査装置は、被検体に対向した第1のコイルと、前記第1のコイルに電磁的に結合した第2のコイルと、前記被検体に対向した第3のコイルと、前記第1のコイルを交番電圧で励振し、前記第2のコイルに発生する電圧と前記第3のコイルに発生する電圧との差である被測定信号の振幅および位相を、前記第1または前記第2のコイルの電圧を基準信号として検出する測定処理部と、を備えることを特徴とする。
The present invention employs the following means in order to solve the above problems.
That is, the nondestructive inspection apparatus of the present invention includes a first coil facing the subject, a second coil electromagnetically coupled to the first coil, and a third coil facing the subject. The first coil is excited with an alternating voltage, and the amplitude and phase of the signal under measurement, which is the difference between the voltage generated in the second coil and the voltage generated in the third coil, And a measurement processing unit that detects a voltage of the second coil as a reference signal.

このような構成によれば、第1のコイルを交番電圧で励振することによって、第1のコイルに電磁的に結合した第2のコイルに発生する電圧と、第3のコイルに発生する電圧との間に差が生じる。この第2のコイルの発生電圧と第3のコイルの発生電圧との差である被測定信号の振幅および位相を、第1または第2のコイルの電圧を基準信号として検出することによって、センサと被検体との距離であるリフトオフや、温度変化の影響を抑えることができる。   According to such a configuration, by exciting the first coil with an alternating voltage, a voltage generated in the second coil electromagnetically coupled to the first coil, and a voltage generated in the third coil There is a difference between By detecting the amplitude and phase of the signal under measurement, which is the difference between the voltage generated by the second coil and the voltage generated by the third coil, using the voltage of the first or second coil as a reference signal, The effect of lift-off, which is the distance from the subject, and temperature change can be suppressed.

前記測定処理部は、前記基準信号と前記被測定信号とが入力されるステップと、入力された前記被測定信号と前記基準信号との振幅比および位相差を、高速フーリエ変換により求めるステップと、前記振幅比および前記位相差を変数とする連立方程式を立て、前記被検体の複数点の既知の厚さとその各点での振幅比および位相差の測定値により前記連立方程式の各係数を求めるステップと、求まった各前記係数と未知の点での振幅比および位相差の測定値とから、該未知の点の被検体の厚さを推定するステップと、を実行するようにしてもよい。   The measurement processing unit, the step of inputting the reference signal and the signal under measurement, the step of obtaining the amplitude ratio and phase difference between the input signal under measurement and the reference signal by fast Fourier transform; Establishing simultaneous equations using the amplitude ratio and the phase difference as variables, and obtaining each coefficient of the simultaneous equations from the known thicknesses of the plurality of points of the subject and the measured values of the amplitude ratio and phase difference at each point And estimating the thickness of the object at the unknown point from each of the obtained coefficients and the measured values of the amplitude ratio and the phase difference at the unknown point.

このようにして、被検体の複数点の既知の厚さに基づいて係数を設定した連立方程式を用いることによって、温度変化等に関わらず、バラツキの少ない測定結果を得ることができる。   In this way, by using simultaneous equations in which coefficients are set based on the known thicknesses of a plurality of points of the subject, measurement results with little variation can be obtained regardless of temperature changes.

前記連立方程式の各係数を求めるステップでは、前記被検体の特定較正点で前記被検体と前記第3のコイルとの間の距離であるリフトオフを変化させるようにしてもよい。   In the step of obtaining each coefficient of the simultaneous equations, a lift-off that is a distance between the subject and the third coil may be changed at a specific calibration point of the subject.

これにより、実際の被検体により近似した連立方程式とすることができる。これにより、未知の点の被検体の厚さを、より高精度に推定し、検査精度をさらに高めることができる。   Thereby, it can be set as the simultaneous equation approximated by the actual subject. Thereby, the thickness of the subject at an unknown point can be estimated with higher accuracy, and the inspection accuracy can be further increased.

前記測定処理部は、前記被測定信号と前記基準信号との振幅比の測定と、前記被測定信号と前記基準信号との位相差の測定とを、互いに異なった周波数で前記第1のコイルを励磁して行うようにしてもよい。   The measurement processing unit performs the measurement of the amplitude ratio between the signal under measurement and the reference signal and the measurement of the phase difference between the signal under measurement and the reference signal with the first coil at different frequencies. You may make it carry out by exciting.

これにより、振幅、位相ともに大きな出力を得ることができるので、被検体の厚さの変化による検出信号の変化をより高感度に検出できる。   Thereby, since an output with a large amplitude and phase can be obtained, a change in the detection signal due to a change in the thickness of the subject can be detected with higher sensitivity.

本発明は、上記したような非破壊検査装置における非破壊検査方法であって、前記第1および前記第3のコイルを前記被検体に対向させた状態で、前記第1のコイルを交番電圧で励振し、前記第1のコイルを励振する交番電圧または前記第2のコイルに発生する電圧と、前記第3のコイルに発生する電圧と前記第2のコイルに発生する電圧の差の電圧を前記測定処理部に入力し、前記測定処理部で、入力された前記交番電圧と前記差の電圧とについて、高速フーリエ変換によりそれぞれ振幅および位相を求め、前記交番電圧を基準信号とした前記差の電圧との振幅比および位相差を検出することを特徴とする。   The present invention is a nondestructive inspection method in a nondestructive inspection apparatus as described above, wherein the first coil is applied with an alternating voltage in a state where the first and third coils are opposed to the subject. The alternating voltage for exciting and exciting the first coil or the voltage generated in the second coil and the voltage difference between the voltage generated in the third coil and the voltage generated in the second coil are Input to the measurement processing unit, the amplitude and phase of the alternating voltage and the difference voltage input by the measurement processing unit are obtained by fast Fourier transform, and the difference voltage using the alternating voltage as a reference signal. And an amplitude ratio and a phase difference are detected.

これにより、第2コイルの発生電圧と第3のコイルの発生電圧との差である被測定信号の振幅および位相を、第1のコイルの交番電圧または第2のコイルの発生電圧を基準信号として検出することによって、センサと被検体との距離であるリフトオフや、温度変化の影響を抑えることができる。   As a result, the amplitude and phase of the signal under measurement, which is the difference between the generated voltage of the second coil and the generated voltage of the third coil, can be obtained using the alternating voltage of the first coil or the generated voltage of the second coil as a reference signal. By detecting it, it is possible to suppress the effects of lift-off, which is the distance between the sensor and the subject, and temperature changes.

本発明によれば、センサと被検体との距離が大きい状態であっても被検体の探傷を精度よく行うことができる。   According to the present invention, even when the distance between the sensor and the subject is large, the subject can be detected with high accuracy.

本発明に係る非破壊検査装置の第1の実施形態を示す図である。It is a figure showing a 1st embodiment of a nondestructive inspection device concerning the present invention. 図1の非破壊検査装置を構成するセンサを示す図である。It is a figure which shows the sensor which comprises the nondestructive inspection apparatus of FIG. 第2の実施形態に係る非破壊検査装置を示す図である。It is a figure which shows the nondestructive inspection apparatus which concerns on 2nd Embodiment. 図3の非破壊検査装置を構成するセンサを示す図である。It is a figure which shows the sensor which comprises the nondestructive inspection apparatus of FIG. 第3の実施形態に係る非破壊検査装置を示す図である。It is a figure which shows the nondestructive inspection apparatus which concerns on 3rd Embodiment. 図5の非破壊検査装置を構成するセンサを示す図である。It is a figure which shows the sensor which comprises the nondestructive inspection apparatus of FIG. 第4の実施形態に係る非破壊検査装置を示す図である。It is a figure which shows the nondestructive inspection apparatus which concerns on 4th Embodiment. 本発明の他の実施形態を示す図である。It is a figure which shows other embodiment of this invention. 本発明のさらに他の実施形態を示す図である。It is a figure which shows other embodiment of this invention. 本発明のさらに他の実施形態を示す図である。It is a figure which shows other embodiment of this invention. 本発明の実施例において、検出コイルと参照コイルとの電圧の差の振幅比を、高速フーリエ変換により測定した結果を示す図である。In the Example of this invention, it is a figure which shows the result of having measured the amplitude ratio of the difference of the voltage of a detection coil and a reference coil by the fast Fourier transform. 本発明の実施例において、検出コイルと参照コイルとの電圧の差の位相差を、高速フーリエ変換により測定した結果を示す図である。In the Example of this invention, it is a figure which shows the result of having measured the phase difference of the difference of the voltage of a detection coil and a reference coil by the fast Fourier transform. 比較例として、検出コイルの電圧の振幅比を測定した結果を示す図である。It is a figure which shows the result of having measured the amplitude ratio of the voltage of a detection coil as a comparative example. 比較例として、検出コイルの電圧の位相差を測定した結果を示す図である。It is a figure which shows the result of having measured the phase difference of the voltage of a detection coil as a comparative example. 振幅の測定と位相の測定とで周波数を異ならせて測定を行った結果を示す図であり、振幅比の測定結果を示す図である。It is a figure which shows the result of having performed the measurement by varying a frequency by the measurement of an amplitude, and a phase, and is a figure which shows the measurement result of an amplitude ratio. 振幅の測定と位相の測定とで周波数を異ならせて測定を行った結果を示す図であり、位相差の測定結果を示す図である。It is a figure which shows the result of having measured by varying a frequency by the measurement of an amplitude, and the measurement of a phase, and is a figure which shows the measurement result of a phase difference. 図16の縦軸を拡大して一部を示した図である。It is the figure which expanded the vertical axis | shaft of FIG. 16, and showed a part. 連立方程式により被検体の管壁厚を推定した結果を示す図であり、管壁厚4.2mmの場合の管壁厚推定結果である。It is a figure which shows the result of having estimated the tube wall thickness of the subject by simultaneous equations, and is a tube wall thickness estimation result in the case of tube wall thickness 4.2mm. 連立方程式により被検体の管壁厚を推定した結果を示す図であり、管壁厚2.4mmの場合の管壁厚推定結果である。It is a figure which shows the result of having estimated the tube wall thickness of a test object by simultaneous equations, and is a tube wall thickness estimation result in case the tube wall thickness is 2.4 mm. 被検体2の特定較正点で被検体2と検出コイル104との間の距離であるリフトオフを変化させた、較正点と測定値を示すベクトル図である。FIG. 6 is a vector diagram showing calibration points and measured values obtained by changing lift-off, which is a distance between the subject 2 and the detection coil 104, at a specific calibration point of the subject 2. 図20におけるB較正点付近の拡大図である。FIG. 21 is an enlarged view near the B calibration point in FIG. 20. 図20におけるC較正点付近の拡大図である。FIG. 21 is an enlarged view near the C calibration point in FIG. 20. 従来の非破壊検査装置のセンサの構成を示す図である。It is a figure which shows the structure of the sensor of the conventional nondestructive inspection apparatus.

以下、添付図面を参照して、本発明による非破壊検査装置および非破壊検査方法を実施するための形態について、図面に基づいて説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out a nondestructive inspection apparatus and a nondestructive inspection method according to the present invention will be described with reference to the accompanying drawings.

(第1の実施形態)
図1は、本発明に係る非破壊検査装置の第1の実施形態を示す図である。図2は、非破壊検査装置を構成するセンサを示す図である。
図1、図2に示すように、非破壊検査装置は、センサ1と、測定装置(測定処理部)4と、を備えている。
(First embodiment)
FIG. 1 is a diagram showing a first embodiment of a nondestructive inspection apparatus according to the present invention. FIG. 2 is a diagram showing a sensor constituting the nondestructive inspection apparatus.
As shown in FIGS. 1 and 2, the nondestructive inspection apparatus includes a sensor 1 and a measurement device (measurement processing unit) 4.

センサ1は、被検体2に対向した開口部を有する磁性体からなる励磁コア(コア)102と、それに電磁的に結合した励磁コイル(第1のコイル)101と、前記励磁コア102に同じく電磁的に結合した参照コイル(第2のコイル)105と、励磁コア102の開口部の内方に配置された検出コア103と、検出コア103に電磁的に結合し、被検体2に対向した検出コイル(第3のコイル)104を備えている。   The sensor 1 includes an excitation core (core) 102 made of a magnetic material having an opening facing the subject 2, an excitation coil (first coil) 101 electromagnetically coupled to the excitation core 102, and the excitation core 102 similarly electromagnetically. Coupled to a reference coil (second coil) 105, a detection core 103 disposed inside the opening of the excitation core 102, and a detection that is electromagnetically coupled to the detection core 103 and faces the subject 2 A coil (third coil) 104 is provided.

このセンサ1は、励磁コイル101を交番信号で励振し、参照コイル105に発生する電圧と第3のコイルに発生する電圧との差を被測定信号として出力できるよう端子107b,108bに電気的に接続されている。   This sensor 1 excites the exciting coil 101 with an alternating signal, and electrically outputs the difference between the voltage generated in the reference coil 105 and the voltage generated in the third coil to the terminals 107b and 108b so as to output as a signal under measurement. It is connected.

なお、図2においては、参照コイル105は励磁コイル101の外側に巻回されているが、励磁コイル101の内側または第1のコイルが多層巻きの場合は層間にサンドイッチ状に巻き、結合を密にする等としてもよい。   In FIG. 2, the reference coil 105 is wound around the outside of the exciting coil 101. However, when the inside of the exciting coil 101 or the first coil is a multi-layer winding, the reference coil 105 is wound in a sandwich manner between layers, and the coupling is tightly coupled. It is good also as making it.

測定装置4は、コンピュータ405、表示記録器406、デジタル・アナログ変換器(DAC)401、電力増幅器402、マルチプレクサー403、アナログ・デジタル変換器(ADC)404から構成されている。なお、マルチプレクサー403とアナログ・デジタル変換器(ADC)404と説明したが、アナログ・デジタル変換器(ADC)2個で構成してもよい。   The measuring device 4 includes a computer 405, a display recorder 406, a digital / analog converter (DAC) 401, a power amplifier 402, a multiplexer 403, and an analog / digital converter (ADC) 404. Although the multiplexer 403 and the analog / digital converter (ADC) 404 have been described, the multiplexer 403 and the analog / digital converter (ADC) may be used.

測定装置4は、コンピュータ405で発生させた複数周波数の正弦波を合成したデジタル信号または単一周波数の正弦波デジタル信号を、デジタル・アナログ変換器401でアナログ信号に変換する。変換されたアナログ信号は、電力増幅器402で増幅され、センサ1の端子106a、106bを介して励磁コイル101を励振する。   The measuring device 4 converts a digital signal obtained by synthesizing a plurality of sine waves generated by the computer 405 or a single frequency sine wave digital signal into an analog signal by a digital / analog converter 401. The converted analog signal is amplified by the power amplifier 402 and excites the exciting coil 101 via the terminals 106 a and 106 b of the sensor 1.

この測定装置4は、励磁コイル101を交番電圧で励振し、参照コイル105に発生する電圧と検出コイル104に発生する電圧との差である被測定信号を受け取る。そして、測定装置4は、被測定信号の振幅および位相を、励磁コイル101の電圧を基準信号として処理し、被検体2の厚さを推定する。   The measuring device 4 excites the exciting coil 101 with an alternating voltage and receives a signal under measurement which is a difference between a voltage generated in the reference coil 105 and a voltage generated in the detection coil 104. Then, the measuring device 4 processes the amplitude and phase of the signal under measurement using the voltage of the excitation coil 101 as a reference signal, and estimates the thickness of the subject 2.

以下、測定装置4において、被検体2の厚さを推定する処理の流れについて説明する。
まず、センサ1の検出コイル104と参照コイル105の発生電圧の差を被測定信号として出力する出力端子107b、108bの電圧が、マルチプレクサー403に入力される。
一方、励磁コイル101の端子106a,106b間の電圧も基準信号としてマルチプレクサー403に入力される。
Hereinafter, the flow of processing for estimating the thickness of the subject 2 in the measurement apparatus 4 will be described.
First, the voltage of the output terminals 107 b and 108 b that outputs the difference between the voltages generated by the detection coil 104 of the sensor 1 and the reference coil 105 as a signal under measurement is input to the multiplexer 403.
On the other hand, the voltage between the terminals 106a and 106b of the exciting coil 101 is also input to the multiplexer 403 as a reference signal.

マルチプレクサー403においては、これら2系統の入力アナログ信号(被測定信号、基準信号)は、互いに独立にアナログ・デジタル変換器(ADC)404によりデジタル信号に変換され、コンピュータ405に入力される。
コンピュータ405は、入力された被測定信号および基準信号を、高速フーリエ変換(FFT)により信号処理し、処理結果を表示記録器406に出力する。
In the multiplexer 403, these two systems of input analog signals (signal under measurement, reference signal) are converted into digital signals by an analog / digital converter (ADC) 404 independently of each other and input to a computer 405.
The computer 405 performs signal processing on the input signal under measurement and the reference signal by fast Fourier transform (FFT), and outputs the processing result to the display recorder 406.

ここで、測定装置4における処理について、更に詳しく説明する。
測定装置4における高速フーリエ変換(FFT)による演算処理の結果、個々の正弦波の振幅と位相とが同一測定点位置で同時に得られる。
これらは、互いに無関係に変化するわけではなく、互いに相関性をもって変化している。従って各々単独で測定評価するよりも、振幅および位相を変数とし、被検体2の厚さDを推定する近似式を用いて測定評価するのが有効である。
被検体2の厚さDの近似式は線形近似とし、数式(21)を用いて説明する。振幅比をx,位相差をy、被検体の厚さをDとすれば、x,yは本来Dの関数であるが、Dをx,yの逆関数として数式(21)に示す線形式として定義する。
Here, the process in the measuring device 4 will be described in more detail.
As a result of the arithmetic processing by Fast Fourier Transform (FFT) in the measuring device 4, the amplitude and phase of each sine wave can be obtained simultaneously at the same measurement point position.
These do not change independently of each other, but change in correlation with each other. Therefore, it is more effective to measure and evaluate using an approximate expression that estimates the thickness D of the subject 2 using the amplitude and phase as variables, rather than measuring and evaluating each independently.
The approximate expression of the thickness D of the subject 2 is assumed to be linear approximation and will be described using Expression (21). Assuming that the amplitude ratio is x, the phase difference is y, and the thickness of the object is D, x and y are originally functions of D, but D is an inverse function of x and y, and the linear form shown in Equation (21) Define as

Figure 2015087168
Figure 2015087168

数式(21)において
係数a,bおよび定数項cは、厚さの異なる3点の較正点を測定し、その測定値に基づき、数式(22)の如き連立方程式を解くことにより求める。
In Equation (21), the coefficients a and b and the constant term c are obtained by measuring three calibration points having different thicknesses and solving simultaneous equations such as Equation (22) based on the measured values.

Figure 2015087168
Figure 2015087168

なお、厚さの異なる3点として説明したが、3点のうち、被検体の厚さの異なる2点をとり、そのどちらか一方の厚さの点で、測定値に与える変動要素の大きい要素を含ませるようにするのが好ましい。
その変動要素の大きな要素としては、リフトオフを用いるのが有効である。これには、被検体の厚さの異なる2点、B、C点をとり、その部分の厚さを物理的に測定し、D2、D3とする。
厚さD2のB点でリフトオフを微小変化させた点をA点とすれば、D1=D2であるので、数式(23)の如き連立方程式が成立する。
In addition, although explained as three points having different thicknesses, two points having different thicknesses of the subject are taken out of the three points, and an element having a large variation factor to be given to the measured value at one of the two points. Is preferably included.
It is effective to use lift-off as a large factor of the variation factor. For this purpose, two points B, C having different thicknesses of the subject are taken, and the thicknesses of these portions are physically measured to be D2, D3.
If the point where the lift-off is slightly changed at point B of thickness D2 is point A, then D1 = D2, and therefore, simultaneous equations such as equation (23) are established.

Figure 2015087168
Figure 2015087168

そこで、A,B,C3組の測定値(x1,y1),(x2,y2),(x3,y3)から連立方程式(23)を解くことにより、係数a,bおよび定数項cが求まる。連立方程式の解を数式(25)、(26)、(27)に示す。数式表現を簡潔にするため、分母に相当する式をtとすれば、数式(24)のように表される。   Accordingly, the coefficients a and b and the constant term c are obtained by solving the simultaneous equations (23) from the measurement values (x1, y1), (x2, y2), (x3, y3) of the A, B, and C3 sets. The solutions of the simultaneous equations are shown in equations (25), (26), and (27). In order to simplify the mathematical expression, if the expression corresponding to the denominator is t, it is expressed as the mathematical expression (24).

Figure 2015087168
Figure 2015087168

Figure 2015087168
Figure 2015087168

このようにして係数a,bおよび定数項cが定まることによって、任意の点のx,y測定値から、その点の被検体の厚さDを、数式(21)により求めることが可能となる。
このようにして、リフトオフ変化の影響を抑えて、被検体2の厚さを検出することが可能となる。
By determining the coefficients a and b and the constant term c in this manner, the thickness D of the subject at that point can be obtained from the x and y measurement values at an arbitrary point using Equation (21). .
In this way, the thickness of the subject 2 can be detected while suppressing the influence of the lift-off change.

さらに、上記したような手法により被検体2の厚さを高精度に推定することができる。以下、その理由について説明する。
角度の相違した一般的な二つの三角関数の和は公式(1)、(2)、(3)で表される。
Furthermore, the thickness of the subject 2 can be estimated with high accuracy by the method described above. The reason will be described below.
The sum of two general trigonometric functions with different angles is expressed by the formulas (1), (2), and (3).

Figure 2015087168
Figure 2015087168

ここで式(1)のcとβは、式(2)、(3)で表わされる。この場合、検出コイル104の出力がbで、参照コイル105の出力がaと想定している。   Here, c and β in the formula (1) are expressed by the formulas (2) and (3). In this case, it is assumed that the output of the detection coil 104 is b and the output of the reference coil 105 is a.

Figure 2015087168
Figure 2015087168

一方sinx,arctanxのティラー展開は(4)、(5)式で表される。   On the other hand, the tiller expansion of sinx and arctanx is expressed by equations (4) and (5).

Figure 2015087168
Figure 2015087168

微小角度差を取り扱うのであるから(6)式の条件が成立し、(4)、(5)式の第1項のみをとれば(7)、(8)式が成立する。   Since a minute angle difference is handled, the condition of equation (6) is satisfied, and if only the first term of equations (4) and (5) is taken, equations (7) and (8) are satisfied.

Figure 2015087168
Figure 2015087168

Figure 2015087168
Figure 2015087168

本件の場合二つの一般的三角関数の差であるので、改めてγを用いてaの絶対値としてbより僅かに小さく符号が逆のものとして(9)式のとおりとしておけば、(10)式を得る。   In this case, since it is a difference between two general trigonometric functions, if γ is used again and the absolute value of a is slightly smaller than b and the sign is reversed, the equation (9) is established. Get.

Figure 2015087168
Figure 2015087168

ここでγ=0.1即ち|a|を、例えばbの90%にとればβ=10αとなり、角度差が10倍に拡大される。しかしながらγを著しく小さくすると無限大に発散してしまうので注意を要する。   Here, if γ = 0.1, that is, | a | is 90% of b, for example, β = 10α, and the angle difference is enlarged 10 times. However, it should be noted that if γ is remarkably reduced, it will diverge to infinity.

一方、cosαは、ほぼ1であるので、振幅は(11)〜(12)式の通りとなる。   On the other hand, since cos α is approximately 1, the amplitude is as shown in equations (11) to (12).

Figure 2015087168
Figure 2015087168

微小変化分は(12)式のとおり相加となる。本実施例の場合、参照コイル105と検出コイル104は逆極性に接続されている。したがって、Δaはマイナスなので、変化分は相殺されて小さくなる。
従って、励磁コイル101の巻線の抵抗の温度による変化は、参照コイル105、検出コイル104にはほぼ同等に作用するので、これらは相殺されることになり、より安定な測定が可能となる。
The minute change is additive as shown in equation (12). In the case of the present embodiment, the reference coil 105 and the detection coil 104 are connected in reverse polarity. Therefore, since Δa is negative, the change is canceled out and becomes smaller.
Therefore, the change in the resistance of the winding of the exciting coil 101 due to the temperature acts almost equally on the reference coil 105 and the detection coil 104, so that they are canceled out and a more stable measurement is possible.

一方、被検体2の厚さ変化に対する変化分は、後に示す図15,図17に示すとおり、互いに反対方向なので、これら変化分は相加されることになり、感度が増加する。   On the other hand, since the changes with respect to the thickness change of the subject 2 are in opposite directions as shown in FIGS. 15 and 17 to be described later, these changes are added, and the sensitivity is increased.

また、振幅比と位相差の測定に際して、振幅比の測定と、位相差の測定とを、互いに異なった周波数で、励磁コイル101を励磁して行うようにしてもよい。互いに異なる周波数を用いて励磁コイル101を励磁することにより、被検体2の管壁厚の変化による検出信号をより大きく出来るので、連立方程式による管壁厚推定の精度を高められる。   Further, when measuring the amplitude ratio and the phase difference, the measurement of the amplitude ratio and the measurement of the phase difference may be performed by exciting the exciting coil 101 at mutually different frequencies. By exciting the exciting coil 101 using different frequencies, the detection signal due to the change in the tube wall thickness of the subject 2 can be made larger, so that the accuracy of the tube wall thickness estimation using simultaneous equations can be improved.

上述した非破壊検査装置によれば、励磁コイル101を交番電圧で励振することによって励磁コイル101に電磁的に結合した参照コイル105に発生する電圧と、検出コイル104に発生する電圧との間に差が生じる。この参照コイル105の発生電圧と検出コイル104の発生電圧との差である被測定信号の振幅および位相を、励磁コイル101の電圧を基準信号として検出することによって、センサ1と被検体2との距離であるリフトオフや、温度変化の影響を抑えることができる。
このようにして、リフトオフが大きい状態であっても、被検体2の肉厚変化、内面傷等による信号の変化分を精度よく検出することが可能となり、検査精度を高めることができる。
According to the above-described nondestructive inspection apparatus, the excitation coil 101 is excited with an alternating voltage to generate a voltage between the reference coil 105 electromagnetically coupled to the excitation coil 101 and the voltage generated at the detection coil 104. There is a difference. By detecting the amplitude and phase of the signal under measurement, which is the difference between the voltage generated by the reference coil 105 and the voltage generated by the detection coil 104, using the voltage of the excitation coil 101 as a reference signal, the sensor 1 and the subject 2 It is possible to suppress the effect of lift-off, which is distance, and temperature change.
In this way, even in a state where the lift-off is large, it is possible to accurately detect a change in signal due to a change in the thickness of the subject 2, an internal flaw, and the like, and the inspection accuracy can be improved.

また、被検体2の特定較正点で被検体2と検出コイル104との間の距離であるリフトオフを変化させることで、実際の被検体2により近似した連立方程式とすることができる。これにより、未知の点の被検体の厚さDを、より高精度に推定し、検査精度をさらに高めることができる。   Further, by changing the lift-off, which is the distance between the subject 2 and the detection coil 104, at the specific calibration point of the subject 2, simultaneous equations that are more approximate to the actual subject 2 can be obtained. Thereby, the thickness D of the subject at an unknown point can be estimated with higher accuracy, and the examination accuracy can be further increased.

なお、上記実施形態では、基準信号と被測定信号とを、マルチプレクサー403と1個のアナログ・デジタル変換器404で処理する構成を示したが、マルチプレクサー403を用いず、2個のアナログ・デジタル変換器で基準信号と被測定信号とをそれぞれ処理する構成としてもよい。   In the above embodiment, the configuration in which the reference signal and the signal under measurement are processed by the multiplexer 403 and one analog-to-digital converter 404 is shown. The digital converter may be configured to process the reference signal and the signal under measurement.

(第2の実施形態)
次に、本発明にかかる非破壊検査装置および非破壊検査方法の第2の実施形態について説明する。なお、以下に説明する第2の実施形態においては、上記第1の実施形態と共通する構成については図中に同符号を付してその説明を省略する。
図3は、第2の実施形態に係る非破壊検査装置を示す図である。図4は、非破壊検査装置を構成するセンサを示す図である。
図3、図4に示すように、本実施形態における非破壊検査装置は、上記第1の実施形態で示した構成に対し、検出コイル104と参照コイル105の極性により逆接続してその差をとる検出出力端子107b,108b以外に、参照コイル105の出力そのものを取り出す端子108aが設けられている。そして、端子108a,108bは、端子108a,108b間の電圧を基準信号としてマルチプレクサー403に入力するように電気的に接続されている。
(Second Embodiment)
Next, a second embodiment of the nondestructive inspection apparatus and the nondestructive inspection method according to the present invention will be described. Note that in the second embodiment described below, the same reference numerals are given to the same components as in the first embodiment, and description thereof will be omitted.
FIG. 3 is a view showing a nondestructive inspection apparatus according to the second embodiment. FIG. 4 is a diagram showing a sensor constituting the nondestructive inspection apparatus.
As shown in FIGS. 3 and 4, the nondestructive inspection apparatus in this embodiment is reversely connected to the configuration shown in the first embodiment according to the polarities of the detection coil 104 and the reference coil 105, and the difference is obtained. In addition to the detected output terminals 107b and 108b, a terminal 108a for taking out the output of the reference coil 105 is provided. The terminals 108a and 108b are electrically connected so that the voltage between the terminals 108a and 108b is input to the multiplexer 403 as a reference signal.

このようにすることで、上記第1の実施形態と同様、センサ1と被検体2との距離であるリフトオフや、温度変化の影響を抑え、被検体2の肉厚変化、内面傷等による信号の変化分を精度よく検出することが可能となる。
しかも、上記第1の実施形態とは異なり、第2のコイルである参照コイル105の出力電圧を基準としているので、そこに至るまでの変化、即ち巻線抵抗の温度による変化を無視することが可能となる。さらに、被検体2の厚さの違いによる変化分は、参照コイル105の変化分を相加的に取り込むことになるので、温度変化の少ない大きな検査出力を得ることが可能となる。
By doing so, as in the first embodiment, the signal from the lift-off, which is the distance between the sensor 1 and the subject 2, and the influence of the temperature change, the change in the thickness of the subject 2, an internal flaw, etc. Can be accurately detected.
In addition, unlike the first embodiment, since the output voltage of the reference coil 105, which is the second coil, is used as a reference, it is possible to ignore changes up to that point, that is, changes due to the temperature of the winding resistance. It becomes possible. Furthermore, since the change due to the difference in the thickness of the subject 2 is added in addition to the change in the reference coil 105, a large test output with little temperature change can be obtained.

なお、上記第2の実施形態において、端子108aとして、参照コイル105と検出コイル104の逆接続点から取られているがこれに限らない。例えば、参照コイル105にタップを設け、逆接続点、端子108aの取り出し点を互いに独立に任意のタップから取り出しするようにしても良い。また、基準信号取得のために、励磁コイル101に結合した別のコイルを設けても良い。   In the second embodiment, the terminal 108a is taken from the reverse connection point of the reference coil 105 and the detection coil 104, but is not limited thereto. For example, a tap may be provided in the reference coil 105, and the reverse connection point and the extraction point of the terminal 108a may be extracted from arbitrary taps independently of each other. Further, another coil coupled to the exciting coil 101 may be provided for obtaining a reference signal.

(第3の実施形態)
次に、本発明にかかる非破壊検査装置および非破壊検査方法の第3の実施形態について説明する。なお、以下に説明する第3の実施形態においては、上記第1の実施形態と共通する構成については図中に同符号を付してその説明を省略する。
図5は、第3の実施形態に係る非破壊検査装置を示す図である。図6は、非破壊検査装置を構成するセンサを示す図である。
(Third embodiment)
Next, a third embodiment of the nondestructive inspection apparatus and the nondestructive inspection method according to the present invention will be described. Note that in the third embodiment described below, components that are the same as those in the first embodiment are denoted by the same reference numerals in the drawings, and description thereof is omitted.
FIG. 5 is a view showing a nondestructive inspection apparatus according to the third embodiment. FIG. 6 is a diagram showing a sensor constituting the nondestructive inspection apparatus.

図5、図6に示すように、本実施形態における非破壊検査装置は、上記第1の実施形態で示した構成に対し、センサ1は、検出コイル104と参照コイル105とに、それぞれ独立に端子107a,107b、108a,108bを設け、これら端子107a,107b、108a,108bを介して測定装置4に出力するようにした。
また、測定装置4は、参照コイル105の電圧を基準信号としてマルチプレクサー403に入力するようにした。さらに、測定装置4には、演算増幅器407と、抵抗R1,R2,R3からなる加算回路とが設けられている。この加算回路は、検出コイル104と参照コイル105の出力の差をとるように電気的に接続されている。なお、抵抗R1,R2,R3からなる回路そのものは加算回路であるが、参照コイル105の出力は逆極性で抵抗R2に入力されているので、実質的に検出コイル104の出力から参照コイル105の出力を減算する減算回路として機能する。また、抵抗R2は半固定とされ、引算する度合いを調節できるようにしている。
As shown in FIGS. 5 and 6, the nondestructive inspection apparatus according to this embodiment differs from the configuration shown in the first embodiment in that the sensor 1 is independent of the detection coil 104 and the reference coil 105. Terminals 107a, 107b, 108a, and 108b are provided, and output is made to the measuring device 4 through these terminals 107a, 107b, 108a, and 108b.
Further, the measuring device 4 is configured to input the voltage of the reference coil 105 to the multiplexer 403 as a reference signal. Further, the measuring device 4 is provided with an operational amplifier 407 and an adding circuit composed of resistors R1, R2, and R3. This adding circuit is electrically connected so as to take the difference between the outputs of the detection coil 104 and the reference coil 105. Although the circuit itself composed of the resistors R1, R2, and R3 is an adder circuit, since the output of the reference coil 105 is input to the resistor R2 with a reverse polarity, the output of the detection coil 104 is substantially changed from the output of the reference coil 105. It functions as a subtraction circuit that subtracts the output. The resistor R2 is semi-fixed so that the degree of subtraction can be adjusted.

このようにすることで、上記第1の実施形態と同様、センサ1と被検体2との距離であるリフトオフや、温度変化の影響を抑え、被検体2の肉厚変化、内面傷等による信号の変化分を精度よく検出することが可能となる。
さらに、リフトオフが大きい場合であっても、温度ドリフトが少なく、被検体2の管壁厚変化に対応した大きな振幅、位相変化出力を取り出すことが可能となった。
By doing so, as in the first embodiment, the signal from the lift-off, which is the distance between the sensor 1 and the subject 2, and the influence of the temperature change, the change in the thickness of the subject 2, an internal flaw, etc. Can be accurately detected.
Furthermore, even when the lift-off is large, the temperature drift is small, and it is possible to extract a large amplitude and phase change output corresponding to the change in the tube wall thickness of the subject 2.

なお、上記実施形態において、抵抗R1,R2,R3からなる加算回路における減算機能は、例えば、アナログ・デジタル変換器404におけるアナログ・デジタル変換後にコンピュータ405で処理することで実施してもよい。ただし、上記実施形態で示したように、より信号源である端子107a,107b、108a,108bに、より近い前段側に加算回路を設けて演算処理を行うほうが、高い信号対ノイズ比(S/N比)を確保できる利点がある。   In the above-described embodiment, the subtraction function in the adder circuit composed of the resistors R1, R2, and R3 may be implemented by, for example, processing by the computer 405 after analog / digital conversion in the analog / digital converter 404. However, as shown in the above-described embodiment, the higher signal-to-noise ratio (S / S) is obtained when the arithmetic processing is performed by providing an adder circuit closer to the preceding stage on the terminals 107a, 107b, 108a, and 108b, which are signal sources. N ratio) can be secured.

(第4の実施形態)
次に、本発明にかかる非破壊検査装置および非破壊検査方法の第4の実施形態について説明する。なお、以下に説明する第4の実施形態においては、上記第3の実施形態と共通する構成については図中に同符号を付してその説明を省略する。
(Fourth embodiment)
Next, a fourth embodiment of the nondestructive inspection apparatus and nondestructive inspection method according to the present invention will be described. Note that in the fourth embodiment described below, components that are the same as in the third embodiment are denoted by the same reference numerals in the drawing, and description thereof is omitted.

参照コイル105の出力信号と検出コイル104の出力信号の間に固定的な位相差Pがあり、その状態で被検体2の厚さの変動による位相の微小変化ΔPがあるような場合、参照コイル105と検出コイル104の出力の差の信号をとるように接続しても、前記固定的な位相差Pのために前記差の信号の振幅を小さく出来ない。そのような場合、前記固定的な位相差Pの影響を除去する必要がある。
図7は、第4の実施形態に係る非破壊検査装置を示す図である。この非破壊検査装置は、固定的な位相差Pの影響を除去することができる。ここでは、検出コイル104の出力信号が参照コイル105の信号より位相Pだけ遅れている場合について説明する。
When there is a fixed phase difference P between the output signal of the reference coil 105 and the output signal of the detection coil 104, and there is a slight phase change ΔP due to the thickness variation of the subject 2 in this state, the reference coil Even if it is connected so as to take a difference signal between the output of 105 and the detection coil 104, the amplitude of the difference signal cannot be reduced due to the fixed phase difference P. In such a case, it is necessary to remove the influence of the fixed phase difference P.
FIG. 7 is a view showing a nondestructive inspection apparatus according to the fourth embodiment. This nondestructive inspection apparatus can remove the influence of the fixed phase difference P. Here, a case where the output signal of the detection coil 104 is delayed by the phase P from the signal of the reference coil 105 will be described.

図7に示すように、本実施形態における非破壊検査装置は、上記第3の実施形態で示した構成に加え、演算増幅器408、抵抗R4、R6、半固定抵抗R5、容量C1からなる演算回路が設けられている。このような演算回路の入力に、参照コイル105の出力が入力されている。   As shown in FIG. 7, the nondestructive inspection apparatus according to the present embodiment is an arithmetic circuit including an operational amplifier 408, resistors R4 and R6, a semi-fixed resistor R5, and a capacitor C1 in addition to the configuration shown in the third embodiment. Is provided. The output of the reference coil 105 is input to the input of such an arithmetic circuit.

この演算回路は遅延移相器として機能する。即ち、R4=R6の場合、半固定抵抗R5を変化させると演算増幅器408の出力は位相のみが変化し、振幅は変化しないように機能する。このような遅延移相器により、参照コイル105の出力信号を位相Pだけ遅らせ、その信号を基準信号としてマルチプレクサー403に入力するとともに、差をとるための信号として演算増幅器407、抵抗R1、R3、半固定抵抗R2からなる演算回路のR2に入力されている。   This arithmetic circuit functions as a delay phase shifter. That is, when R4 = R6, when the semi-fixed resistor R5 is changed, the output of the operational amplifier 408 functions so that only the phase changes and the amplitude does not change. By such a delay phase shifter, the output signal of the reference coil 105 is delayed by the phase P, and the signal is input to the multiplexer 403 as a reference signal, and the operational amplifier 407, resistors R1, R3 are used as signals for taking the difference. Are input to R2 of the arithmetic circuit including the semi-fixed resistor R2.

このようにすることで、定的な位相差Pの影響を除去して被検体の厚さ変化等による微小位相変化を拡大して検出することが可能となる。   By doing so, it becomes possible to remove and detect the influence of the constant phase difference P and to enlarge and detect a minute phase change due to a change in the thickness of the subject.

(その他の実施形態)
なお、本発明は、図面を参照して説明した上述の各実施形態に限定されるものではなく、その技術的範囲において様々な変形例が考えられる。
図8〜図10に本発明の他の実施形態を示す。
例えば、図8に示すように、励磁コイル101、これに電磁的に結合した参照コイル105、被検体に対向した検出コイル104の全てを空芯コイルとすることができる。励磁コイル101と参照コイル105は、例えば合成樹脂製の曲げやすいパイプに巻回したもので、検出コイル104の電圧と参照コイル105の電圧との差の電圧をとるごとく電気的に接続されている。
このように、励磁コイル101、参照コイル105、検出コイル104が空芯であるので、磁性コアを使用した場合のように磁極を生ずることがない。したがって、リフトオフに対する変化がゆるやかとなる。
(Other embodiments)
The present invention is not limited to the above-described embodiments described with reference to the drawings, and various modifications are conceivable within the technical scope thereof.
8 to 10 show another embodiment of the present invention.
For example, as shown in FIG. 8, the exciting coil 101, the reference coil 105 electromagnetically coupled thereto, and the detection coil 104 facing the subject can all be air core coils. The excitation coil 101 and the reference coil 105 are wound around, for example, a synthetic resin bendable pipe, and are electrically connected so as to take a voltage difference between the voltage of the detection coil 104 and the voltage of the reference coil 105. .
Thus, since the excitation coil 101, the reference coil 105, and the detection coil 104 are air cores, no magnetic poles are generated unlike when a magnetic core is used. Therefore, the change with respect to lift-off becomes gradual.

また、図9に示すように、励磁コイル101、参照コイル105、検出コイル104の全てを空芯コイルとすることができる。ここで、参照コイル105は、励磁コイル101の内周側に密着して設けることで、励磁コイル101に電磁的に結合した。また、検出コイル104は、励磁コイル101および参照コイル105よりも、被検体2に接近した位置に配置した。
このような構成によれば、簡易な検査に利便性がある。
Further, as shown in FIG. 9, all of the exciting coil 101, the reference coil 105, and the detecting coil 104 can be air core coils. Here, the reference coil 105 is electromagnetically coupled to the exciting coil 101 by being provided in close contact with the inner peripheral side of the exciting coil 101. In addition, the detection coil 104 was disposed at a position closer to the subject 2 than the excitation coil 101 and the reference coil 105.
According to such a configuration, there is convenience in simple inspection.

また、図10に示すように、励磁コイル101、参照コイル105、検出コイル104の全てを空芯コイルとし、被検体を貫通させるようにした。さらに、励磁コイル101、参照コイル105、検出コイル104は、各コイルの中心軸C1と被検体2の中心軸C2を一致させず、敢えて偏芯させるようにした。
このような構成によれば、被検体2の中心軸線に近い内部傷の探傷に有効である。
Further, as shown in FIG. 10, the excitation coil 101, the reference coil 105, and the detection coil 104 are all air-core coils, and the subject is penetrated. Further, the excitation coil 101, the reference coil 105, and the detection coil 104 are decentered without causing the center axis C1 of each coil and the center axis C2 of the subject 2 to coincide.
Such a configuration is effective for flaw detection of internal flaws close to the central axis of the subject 2.

また、上記実施形態においては、被検体2が磁性と導電性がある炭素鋼管で、しかも保温材上という大きなリフトオフをとった状態で、管壁厚、内面傷等の検出の著しく困難な場合にも有効な実施例で示したが、被検体については何ら限定するものではない。例えば、検出が比較的容易な、磁性がなく、導電性のみある被検体例えばオーステナイト系ステンレス鋼管等にも本発明は適応可能である。
これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
In the above embodiment, when the subject 2 is a carbon steel pipe having magnetism and conductivity, and a large lift-off on the heat insulating material is taken, it is extremely difficult to detect the tube wall thickness, inner surface scratches, etc. However, the subject is not limited in any way. For example, the present invention can be applied to an analyte that is relatively easy to detect, has no magnetism, and has only conductivity, such as an austenitic stainless steel pipe.
In addition to this, the configuration described in the above embodiment can be selected or changed to another configuration as appropriate without departing from the gist of the present invention.

[実施例]
上記第1の実施形態で示した構成について、検証を行ったので、その結果を以下に示す。
被検体2を、図1に示した非破壊検査装置により測定した。
被検体2は保温材3で覆われている。
被検体2は、磁性を有する炭素鋼管65ASGPで、外直径約76.3mm、肉厚4.2mmとし、一部を肉厚2.4mmになるよう内側を切削加工した。
保温材3は厚さ20mmのグラスウールとした。保温材3の外表面は厚さ0.1mmの熱反射と防露を兼ねたアルミ箔で覆った。
そして、被検体2の外表面とセンサ1の被検体2に対向する面の距離、即ちリフトオフは、可動空間を含めて23mmとした。
[Example]
Since the configuration shown in the first embodiment has been verified, the results are shown below.
The subject 2 was measured by the nondestructive inspection apparatus shown in FIG.
The subject 2 is covered with a heat insulating material 3.
The subject 2 was a magnetic carbon steel pipe 65ASGP having an outer diameter of about 76.3 mm and a wall thickness of 4.2 mm, and the inside was cut so that a part thereof had a wall thickness of 2.4 mm.
The heat insulating material 3 was glass wool having a thickness of 20 mm. The outer surface of the heat insulating material 3 was covered with an aluminum foil having both a thickness of 0.1 mm for heat reflection and dew prevention.
The distance between the outer surface of the subject 2 and the surface of the sensor 1 facing the subject 2, that is, the lift-off, was 23 mm including the movable space.

センサ1は、励磁コア102として断面積2平方cm、磁路長17cmの積層方向性珪素電磁鋼板を使用し、励磁コイル101として直径1mmのホルマル線を両脚合計で210回巻回した。
また、参照コイル105として、直径0.2mmのホルマル線を640回巻回した。
検出コア103は、断面積0.75平方cm、磁路長10cmの積層方向性珪素電磁鋼板を使用した。検出コイル104は、直径0.2mmのホルマル線を両脚合計で2400回巻回した。
In the sensor 1, a laminated directional silicon electromagnetic steel sheet having a cross-sectional area of 2 cm 2 and a magnetic path length of 17 cm was used as the exciting core 102, and a formal wire having a diameter of 1 mm was wound 210 times in total on both legs as the exciting coil 101.
Further, a formal wire having a diameter of 0.2 mm was wound 640 times as the reference coil 105.
As the detection core 103, a laminated directional silicon electromagnetic steel sheet having a cross-sectional area of 0.75 square cm and a magnetic path length of 10 cm was used. The detection coil 104 was a total of 2400 turns of a formal wire having a diameter of 0.2 mm.

端子106a,106b間の電圧即ち検出コイル104の電圧を、参照コイル105の電圧を基準として、高速フーリエ変換(FFT)により、波高値3V、周波数35Hzで測定した結果を図11、図12に示す。
また、比較例として、参照コイル105の出力との差をとることなく、検出コイル104の出力をそのまま測定した結果を図13,図14に示す。これらのグラフは比較を容易にするため、縦軸の幅を振幅、位相ともにそれぞれ同一にしてある。
FIG. 11 and FIG. 12 show the results of measuring the voltage between the terminals 106a and 106b, that is, the voltage of the detection coil 104 at a peak value of 3V and a frequency of 35Hz by fast Fourier transform (FFT) with reference to the voltage of the reference coil 105. .
Further, as a comparative example, the results of measuring the output of the detection coil 104 without taking the difference from the output of the reference coil 105 are shown in FIGS. In these graphs, the width of the vertical axis is the same for both amplitude and phase for easy comparison.

図11、図13は振幅比の測定結果を示し、端子108b,107b間の検出電圧の振幅(波高値)を端子106a,106b間の電圧、即ち励磁コイル101の電圧の振幅(波高値)で割ることにより振幅比を得た。この振幅比は、アナログ・デジタル変換器404の測定レンジの関係で3倍の数値になっており、実際の比はこの1/3になる、
図12、図14は位相差(radian)の測定結果を示す。
図11〜図14において、前半は被検体の管壁厚4.2mmの部位を測定し、後半は管壁厚2.4mmの部位を測定している。
11 and 13 show the measurement results of the amplitude ratio, and the amplitude (crest value) of the detected voltage between the terminals 108b and 107b is the voltage between the terminals 106a and 106b, that is, the amplitude (crest value) of the voltage of the exciting coil 101. The amplitude ratio was obtained by dividing. This amplitude ratio is a value that is three times the relationship of the measurement range of the analog-digital converter 404, and the actual ratio is 1/3 of this.
12 and 14 show the measurement results of the phase difference (radian).
In FIGS. 11 to 14, the first half measures a site with a tube wall thickness of 4.2 mm, and the second half measures a site with a tube wall thickness of 2.4 mm.

図11、図13に示すように、振幅比はほぼ同じであるが、図12、図14に示すように、位相差は、本実施例の方が、管壁厚4.2mmと2.4mmの厚さの違いによる偏差信号出力が大きい。
表1、表2は、図11〜14の詳細データである。このデータからわかるように、参照コイル105(後述)と検出コイル104(後述)の出力の差を取って検出信号とする本実施例は、保温材上で23mmという大きなリフトオフをとっているにもかかわらず、位相差において、比較例に対し、約41倍の感度がある。
As shown in FIGS. 11 and 13, the amplitude ratio is almost the same. However, as shown in FIGS. 12 and 14, the phase difference in this embodiment is the tube wall thickness of 4.2 mm and 2.4 mm. Deviation signal output due to differences in thickness is large.
Tables 1 and 2 are detailed data of FIGS. As can be seen from this data, the present embodiment, which uses the difference between the outputs of the reference coil 105 (described later) and the detection coil 104 (described later) as a detection signal, has a large lift-off of 23 mm on the heat insulating material. Regardless, the phase difference is about 41 times more sensitive than the comparative example.

Figure 2015087168
Figure 2015087168

Figure 2015087168
Figure 2015087168

図12〜図13,表1、表2は単一周波数35Hzで測定した結果であるが、次に、振幅の測定と位相の測定とで周波数を異ならせて測定を行った。
これには、コンピュータ405によりデジタル的に複数の周波数の正弦波の合成信号を発生させ、それをデジタル・アナログ変換器401によりアナログ信号に変換して電力増幅器402を介して励磁コイル101を励振し、高速フーリエ変換(FFT)により、各周波数ごとの振幅、位相を測定した。このとき、振幅比は周波数15Hz,位相差は周波数35Hzとして、励磁コイル101を励磁して測定を行った。
被検体の管壁厚2.4mmの時の値から管壁厚4.2mmの時の値を引いた結果の振幅比を図15に、位相差を図16に示す。図17は図16の縦軸を拡大して一部を示した図である。
FIGS. 12 to 13 and Tables 1 and 2 show the results of measurement at a single frequency of 35 Hz. Next, measurements were performed with different frequencies for amplitude measurement and phase measurement.
For this purpose, a computer 405 digitally generates a composite signal of sine waves of a plurality of frequencies, converts it into an analog signal by a digital / analog converter 401, and excites the exciting coil 101 via the power amplifier 402. The amplitude and phase for each frequency were measured by fast Fourier transform (FFT). At this time, the amplitude ratio was 15 Hz and the phase difference was 35 Hz, and the excitation coil 101 was excited to perform measurement.
FIG. 15 shows the amplitude ratio obtained by subtracting the value when the tube wall thickness is 4.2 mm from the value when the tube wall thickness is 2.4 mm, and FIG. 16 shows the phase difference. FIG. 17 is an enlarged view of a part of the vertical axis of FIG.

図15における振幅比の各コイル出力の比較から明らかなように、被検体の厚さによる変化は、参照コイル105と検出コイル104とではその変化の方向が逆である。したがって、参照コイル105と検出コイル104との差を取る本実施例では、これらの被検体の厚さによる変化分が相加され、15Hz付近で大きな振幅比となっている。
また、図16に示すように、本実施例は、比較例にくらべて極めて大きな位相差の変化を示し、35Hz付近に位相差変化のピークがあることを示す。
即ち、振幅比の変化最大の周波数と位相差変化の最大の周波数は必ずしも一致しないことが明らかである。したがって、振幅比、位相差変化のそれぞれ最良の周波数を選択することが有効である。つまり、振幅比と位相差を異なる周波数とすることにより、被検体の管壁厚の変化による検出信号をより大きく出来る。
また、図17においても参照コイル105と検出コイル104の被検体管壁厚の違いによる変化分が逆であり、差をとる本実施例の場合は相加的になることが明らかである。
As apparent from the comparison of the respective coil outputs of the amplitude ratio in FIG. 15, the direction of the change due to the thickness of the subject is opposite between the reference coil 105 and the detection coil 104. Therefore, in the present embodiment, which takes the difference between the reference coil 105 and the detection coil 104, the amount of change due to the thickness of the subject is added, resulting in a large amplitude ratio near 15 Hz.
Further, as shown in FIG. 16, the present example shows a very large change in phase difference as compared with the comparative example, and shows that there is a peak of the change in phase difference in the vicinity of 35 Hz.
That is, it is clear that the maximum frequency of change in amplitude ratio and the maximum frequency of change in phase difference do not always coincide. Therefore, it is effective to select the best frequencies for the amplitude ratio and the phase difference change. That is, by setting the amplitude ratio and the phase difference to different frequencies, the detection signal due to the change in the tube wall thickness of the subject can be increased.
Also, in FIG. 17, it is clear that the change due to the difference in the subject tube wall thickness between the reference coil 105 and the detection coil 104 is opposite, and in the case of this embodiment that takes the difference, it is additive.

次に、図1の回路を用い、リフトオフ23mm(保温材上)で高速フーリエ変換(FFT)により、振幅比、位相差を求め、それより連立方程式により被検体2の管壁厚を推定する方法で測定した。
また、比較例として、図23に示すように、検出コイル104のみの出力を使用して、被検体2の管壁厚を検出した。
なお、被検体2の管壁厚は、4.2mmと2.4mmの2通りとした。
Next, using the circuit shown in FIG. 1, the amplitude ratio and phase difference are obtained by fast Fourier transform (FFT) at a lift-off of 23 mm (on a heat insulating material), and the tube wall thickness of the subject 2 is estimated by simultaneous equations from the amplitude ratio and phase difference. Measured with
As a comparative example, as shown in FIG. 23, the tube wall thickness of the subject 2 was detected using the output of only the detection coil 104.
In addition, the tube wall thickness of the subject 2 was set to 4.2 mm and 2.4 mm.

その結果を、図18,図19に示す。なお、図18は、管壁厚4.2mmの場合の管壁厚推定結果であり、図19は、管壁厚2.4mmの場合の管壁厚推定結果を示している。
図18,図19に示すように、いずれの管壁厚においても検出コイル104のみの従来手法では検出結果バラツキが大きく、温度変化等によるドリフトも大きい。
これに対し、実施例では、バラツキが少なく、ドリフトもごく僅かである。
The results are shown in FIGS. 18 shows the tube wall thickness estimation result when the tube wall thickness is 4.2 mm, and FIG. 19 shows the tube wall thickness estimation result when the tube wall thickness is 2.4 mm.
As shown in FIGS. 18 and 19, the conventional method using only the detection coil 104 has a large variation in detection results and a large drift due to a temperature change or the like at any tube wall thickness.
On the other hand, in the embodiment, there is little variation and there is very little drift.

表3は詳細な数値を示すが、推定値の標準偏差は本発明の実施例では従来技術の1/10以下で、精度の良い測定が可能であることを示している。   Table 3 shows detailed numerical values, and the standard deviation of the estimated value is 1/10 or less of the prior art in the embodiment of the present invention, which indicates that accurate measurement is possible.

Figure 2015087168
Figure 2015087168

次に、被検体2の特定較正点で被検体2と検出コイル104との間の距離であるリフトオフを変化させた。
図20は較正点と測定値を示すベクトル図である。図21は図20におけるB較正点付近の拡大図である。図22は図20におけるC較正点付近の拡大図である。
図20に示すように、B較正点は、リフトオフ23mm,管壁厚4.2mm,C較正点はリフトオフ23mmで、管壁厚2.4mmで較正している。A較正点は、B較正点と同一の管壁厚であるが、リフトオフを僅かに小さくし、23−0.2=22.8mmで較正している。したがって、BC直線上またはその延長上に管壁厚が分布していることとなる。
そして、図21、図22に示すように、連立方程式の性質上、各測定値の位置からAB直線に平行に直線を引き、BC直線との交点を、各測定値より推定した管壁厚推定値とすることができる。
Next, the lift-off, which is the distance between the subject 2 and the detection coil 104, was changed at a specific calibration point of the subject 2.
FIG. 20 is a vector diagram showing calibration points and measured values. FIG. 21 is an enlarged view near the B calibration point in FIG. FIG. 22 is an enlarged view of the vicinity of the C calibration point in FIG.
As shown in FIG. 20, the B calibration point is calibrated at a lift-off of 23 mm and a tube wall thickness of 4.2 mm, the C calibration point is at a lift-off of 23 mm, and the tube wall thickness is 2.4 mm. The A calibration point has the same tube wall thickness as the B calibration point, but is calibrated at 23-0.2 = 22.8 mm with slightly lower lift-off. Therefore, the tube wall thickness is distributed on the BC straight line or on its extension.
Then, as shown in FIGS. 21 and 22, due to the nature of the simultaneous equations, a pipe wall thickness estimation is made by drawing a straight line parallel to the AB straight line from the position of each measured value and estimating the intersection with the BC straight line from each measured value. Can be a value.

1 センサ
2 被検体
4 測定装置(測定処理部)
101 励磁コイル
102 励磁コア(コア)
103 検出コア(第1のコイル)
104 検出コイル(第3のコイル)
105 参照コイル(第2のコイル)
1 Sensor 2 Subject 4 Measuring Device (Measurement Processing Unit)
101 Excitation coil 102 Excitation core (core)
103 Detection core (first coil)
104 Detection coil (third coil)
105 Reference coil (second coil)

Claims (5)

被検体に対向した第1のコイルと、
前記第1のコイルに電磁的に結合した第2のコイルと、
前記被検体に対向した第3のコイルと、
前記第1のコイルを交番電圧で励振し、前記第2のコイルに発生する電圧と前記第3のコイルに発生する電圧との差である被測定信号の振幅および位相を、前記第1または前記第2のコイルの電圧を基準信号として検出する測定処理部と、
を備えることを特徴とする非破壊検査装置。
A first coil facing the subject;
A second coil electromagnetically coupled to the first coil;
A third coil facing the subject;
The first coil is excited with an alternating voltage, and the amplitude and phase of the signal under measurement, which is the difference between the voltage generated in the second coil and the voltage generated in the third coil, A measurement processing unit for detecting the voltage of the second coil as a reference signal;
A nondestructive inspection apparatus comprising:
前記測定処理部は、前記基準信号と前記被測定信号とが入力されるステップと、
入力された前記被測定信号と前記基準信号との振幅比および位相差を、高速フーリエ変換により求めるステップと、
前記振幅比および前記位相差を変数とする連立方程式を立て、前記被検体の複数点の既知の厚さとその各点での振幅比および位相差の測定値により前記連立方程式の各係数を求めるステップと、
求まった各前記係数と未知の点での振幅比および位相差の測定値とから、該未知の点の被検体の厚さを推定するステップと、
を実行することを特徴とする請求項1に記載の非破壊検査装置。
The measurement processing unit is configured to input the reference signal and the signal under measurement;
Obtaining an amplitude ratio and a phase difference between the input signal under measurement and the reference signal by fast Fourier transform;
Establishing simultaneous equations using the amplitude ratio and the phase difference as variables, and obtaining each coefficient of the simultaneous equations from the known thicknesses of the plurality of points of the subject and the measured values of the amplitude ratio and phase difference at each point When,
Estimating the thickness of the subject at the unknown point from each of the obtained coefficients and the measured values of the amplitude ratio and phase difference at the unknown point;
The nondestructive inspection apparatus according to claim 1, wherein:
前記連立方程式の各係数を求めるステップでは、前記被検体の特定較正点で前記被検体と前記第3のコイルとの間の距離であるリフトオフを変化させることを特徴とする請求項2に記載の非破壊検査装置。   The step of obtaining each coefficient of the simultaneous equations changes a lift-off that is a distance between the subject and the third coil at a specific calibration point of the subject. Nondestructive inspection equipment. 前記測定処理部は、前記被測定信号と前記基準信号との振幅比の測定と、前記被測定信号と前記基準信号との位相差の測定とを、互いに異なった周波数で前記第1のコイルを励磁して行うことを特徴とする請求項1から3のいずれか一項に記載の非破壊検査装置。   The measurement processing unit performs the measurement of the amplitude ratio between the signal under measurement and the reference signal and the measurement of the phase difference between the signal under measurement and the reference signal with the first coil at different frequencies. The nondestructive inspection apparatus according to any one of claims 1 to 3, wherein the nondestructive inspection apparatus is performed by excitation. 請求項1から4のいずれか一項に記載の非破壊検査装置における非破壊検査方法であって、
前記第1および前記第3のコイルを前記被検体に対向させた状態で、前記第1のコイルを交番電圧で励振し、
前記第1のコイルを励振する交番電圧または前記第2のコイルに発生する電圧と、前記第3のコイルに発生する電圧と前記第2のコイルに発生する電圧の差の電圧を前記測定処理部に入力し、
前記測定処理部で、入力された前記交番電圧と前記差の電圧とについて、高速フーリエ変換によりそれぞれ振幅および位相を求め、
前記交番電圧を基準信号とした前記差の電圧との振幅比および位相差を検出することを特徴とする非破壊検査方法。
It is a nondestructive inspection method in the nondestructive inspection device according to any one of claims 1 to 4,
With the first and third coils facing the subject, the first coil is excited with an alternating voltage,
An alternating voltage for exciting the first coil or a voltage generated in the second coil and a voltage of a difference between a voltage generated in the third coil and a voltage generated in the second coil are measured in the measurement processing unit. Enter
In the measurement processing unit, for the input alternating voltage and the difference voltage, the amplitude and phase are obtained by fast Fourier transform,
A non-destructive inspection method, wherein an amplitude ratio and a phase difference with the difference voltage with the alternating voltage as a reference signal are detected.
JP2013224373A 2013-10-29 2013-10-29 Nondestructive inspection apparatus and nondestructive inspection method Active JP6242155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013224373A JP6242155B2 (en) 2013-10-29 2013-10-29 Nondestructive inspection apparatus and nondestructive inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013224373A JP6242155B2 (en) 2013-10-29 2013-10-29 Nondestructive inspection apparatus and nondestructive inspection method

Publications (2)

Publication Number Publication Date
JP2015087168A true JP2015087168A (en) 2015-05-07
JP6242155B2 JP6242155B2 (en) 2017-12-06

Family

ID=53050114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013224373A Active JP6242155B2 (en) 2013-10-29 2013-10-29 Nondestructive inspection apparatus and nondestructive inspection method

Country Status (1)

Country Link
JP (1) JP6242155B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003586A (en) * 2015-06-12 2017-01-05 大日機械工業株式会社 Nondestructive inspection device and nondestructive inspection method
JP2017067743A (en) * 2015-10-03 2017-04-06 国立大学法人 岡山大学 Non-destructive inspection device and non-destructive inspection method
JP2018059804A (en) * 2016-10-05 2018-04-12 大日機械工業株式会社 Calibration device for nondestructive inspection measurement system, and nondestructive inspection measurement method
CN109952506A (en) * 2016-03-18 2019-06-28 长野县 Check device, inspection method and noncontacting proximity sensor
JP2020148460A (en) * 2019-03-11 2020-09-17 大日機械工業株式会社 Non-destructive inspection measurement system and non-destructive inspection measurement method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686471A (en) * 1984-10-09 1987-08-11 Kawasaki Steel Corporation System for online-detection of the transformation value and/or flatness of steel or a magnetic material by detecting changes in induced voltages due to interlinked magnetic fluxes in detecting coils
JPH0854375A (en) * 1994-08-11 1996-02-27 Kaisei Enjinia Kk Electromagnetic induction-type inspecting apparatus
JPH10288605A (en) * 1997-04-14 1998-10-27 Takenaka Komuten Co Ltd Magnetic testing device and method
US6636037B1 (en) * 2000-03-31 2003-10-21 Innovative Materials Testing Technologies Super sensitive eddy-current electromagnetic probe system and method for inspecting anomalies in conducting plates
JP2007127600A (en) * 2005-11-07 2007-05-24 Kaisei Engineer Kk Electromagnetic induction type inspection device and method therefor
JP2012093095A (en) * 2010-10-22 2012-05-17 Okayama Univ Nondestructive inspection system, and nondestructive inspection method
JP2013205023A (en) * 2012-03-27 2013-10-07 Dainichi Kikai Kogyo Kk Electromagnetic induction inspection device and inspection method of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686471A (en) * 1984-10-09 1987-08-11 Kawasaki Steel Corporation System for online-detection of the transformation value and/or flatness of steel or a magnetic material by detecting changes in induced voltages due to interlinked magnetic fluxes in detecting coils
JPH0854375A (en) * 1994-08-11 1996-02-27 Kaisei Enjinia Kk Electromagnetic induction-type inspecting apparatus
JPH10288605A (en) * 1997-04-14 1998-10-27 Takenaka Komuten Co Ltd Magnetic testing device and method
US6636037B1 (en) * 2000-03-31 2003-10-21 Innovative Materials Testing Technologies Super sensitive eddy-current electromagnetic probe system and method for inspecting anomalies in conducting plates
JP2007127600A (en) * 2005-11-07 2007-05-24 Kaisei Engineer Kk Electromagnetic induction type inspection device and method therefor
JP2012093095A (en) * 2010-10-22 2012-05-17 Okayama Univ Nondestructive inspection system, and nondestructive inspection method
JP2013205023A (en) * 2012-03-27 2013-10-07 Dainichi Kikai Kogyo Kk Electromagnetic induction inspection device and inspection method of the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003586A (en) * 2015-06-12 2017-01-05 大日機械工業株式会社 Nondestructive inspection device and nondestructive inspection method
JP2017067743A (en) * 2015-10-03 2017-04-06 国立大学法人 岡山大学 Non-destructive inspection device and non-destructive inspection method
CN109952506A (en) * 2016-03-18 2019-06-28 长野县 Check device, inspection method and noncontacting proximity sensor
CN109952506B (en) * 2016-03-18 2022-12-27 长野县 Inspection device, inspection method, and noncontact sensor
JP2018059804A (en) * 2016-10-05 2018-04-12 大日機械工業株式会社 Calibration device for nondestructive inspection measurement system, and nondestructive inspection measurement method
US10578584B2 (en) 2016-10-05 2020-03-03 DAINICHI Machine and Engineering Co., Ltd. Calibration device for non-destructive inspection/measurement system and non-destructive inspection/measurement method
JP2020148460A (en) * 2019-03-11 2020-09-17 大日機械工業株式会社 Non-destructive inspection measurement system and non-destructive inspection measurement method
JP7170323B2 (en) 2019-03-11 2022-11-14 大日機械工業株式会社 Nondestructive inspection measurement system and nondestructive inspection measurement method

Also Published As

Publication number Publication date
JP6242155B2 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
JP6242155B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP4756409B1 (en) Nondestructive inspection apparatus and nondestructive inspection method using alternating magnetic field
EP3376216B1 (en) Method for eddy-current testing of electrically conductive objects and device for realizing said method
Nara et al. A sensor measuring the Fourier coefficients of the magnetic flux density for pipe crack detection using the magnetic flux leakage method
Rodrigues et al. A portable embedded contactless system for the measurement of metallic material conductivity and lift-off
CN109668506A (en) A kind of magnetic metal material thickness detecting method based on vortex steady-state characteristic
JP2009204342A (en) Eddy current type sample measurement method and eddy current sensor
JP2014219205A (en) Method or device for nondestructive inspection using alternating magnetic field
WO2008072508A1 (en) Nondestructive test instrument and nondestructive test method
JP6378554B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP6740077B2 (en) CALIBRATION DEVICE FOR NON-DESTRUCTIVE INSPECTION MEASUREMENT SYSTEM AND NON-DESTRUCTIVE INSPECTION MEASUREMENT METHOD
Dmitriev et al. Application of an eddy-current method to measure electrical conductivity of thin films
RU2384839C1 (en) Eddy current metre
JP6905884B2 (en) probe
KR101254300B1 (en) Apparatus for detecting thickness of the conductor using dual core
JP6015954B2 (en) Electromagnetic induction type inspection apparatus and electromagnetic induction type inspection method
WO2020049883A1 (en) Electric current measurement apparatus and electric current measurement method
Munoz et al. Design of a lock-in amplifier integrated with a coil system for eddy-current non-destructive inspection
JP6182695B2 (en) Complex permeability measuring device and its measuring method and application.
US10775347B2 (en) Material inspection using eddy currents
JP6688687B2 (en) Nondestructive inspection device and nondestructive inspection method
JP2013205023A (en) Electromagnetic induction inspection device and inspection method of the same
CN113608154B (en) In-situ magnetic permeability detection probe, equipment and detection method
JP7170323B2 (en) Nondestructive inspection measurement system and nondestructive inspection measurement method
JP2009287931A (en) Rust detecting device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171107

R150 Certificate of patent or registration of utility model

Ref document number: 6242155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250