JP2006232969A - Method for producing precursor for rare earth-activated alkaline earth metal fluoride halide-based photostimulable phosphor, and rare earth-activated alkaline earth metal fluoride halide-based photostimulable phosphor, and radiation image conversion panel - Google Patents

Method for producing precursor for rare earth-activated alkaline earth metal fluoride halide-based photostimulable phosphor, and rare earth-activated alkaline earth metal fluoride halide-based photostimulable phosphor, and radiation image conversion panel Download PDF

Info

Publication number
JP2006232969A
JP2006232969A JP2005048719A JP2005048719A JP2006232969A JP 2006232969 A JP2006232969 A JP 2006232969A JP 2005048719 A JP2005048719 A JP 2005048719A JP 2005048719 A JP2005048719 A JP 2005048719A JP 2006232969 A JP2006232969 A JP 2006232969A
Authority
JP
Japan
Prior art keywords
earth metal
rare earth
halide
alkaline earth
metal fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005048719A
Other languages
Japanese (ja)
Inventor
Hideaki Wakamatsu
秀明 若松
Hiroyuki Nabeta
博之 鍋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Priority to JP2005048719A priority Critical patent/JP2006232969A/en
Publication of JP2006232969A publication Critical patent/JP2006232969A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing photostimulable phosphor imparting an image free from unevenness of luminescence, high in sensitivity and image quality, and to provide a photostimulable phosphor, and a radiation image conversion panel. <P>SOLUTION: The invention relates to the method for producing a precursor for photostimulable phosphor, based on alkaline earth metal fluoride halide activated with rare earth metal, expressed by general formula (1) comprising a process obtaining a crystal of the precursor for the photostimulable phosphor by carrying out a process forming a precipitate of the precursor for photostimulable phosphor based on alkaline earth metal fluoride halide by adding an aqueous solution of an inorganic fluoride into a reaction mother liquid dissolving barium halide and a process concentrating and removing solvent from the reaction mother liquid at the same time, and a process forming a rare earth metal halide layer on the surface of the crystal of the precursor for photostimulable phosphor. The general formula (1); Ba<SB>1-x</SB>M2<SB>x</SB>FBr<SB>y</SB>I<SB>1-y</SB>: aM1, bLn, cO (in the formula, M1 is an alkali metal, M2 is an alkaline earth metal, Ln is a rare earth element, 0≤x≤0.3, 0≤y≤0.3, 0≤a≤0.05. 0<b≤0.2, 0≤c≤0.1). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は医療用希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体(以下、単に輝尽性蛍光体前駆体、蛍光体前駆体、前駆体ともいう)の製造方法、希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体(以下、輝尽性蛍光体、蛍光体ともいう)及び医療用放射線画像変換パネルに関する。   The present invention relates to a method for producing a medical rare earth-activated alkaline earth metal fluoride halide-based stimulable phosphor precursor (hereinafter also simply referred to as stimulable phosphor precursor, phosphor precursor, precursor), rare earth The present invention relates to an activated alkaline earth metal fluoride halide photostimulable phosphor (hereinafter also referred to as photostimulable phosphor or phosphor) and a medical radiation image conversion panel.

従来の放射線写真法に代わる有効な診断手段として、特開昭55−12145号等に記載の輝尽性蛍光体を用いる放射線画像記録再生方法が知られている。この方法は、輝尽性蛍光体を含有する放射線画像変換パネル(蓄積性蛍光体シートとも呼ばれる)を利用するもので、被写体を透過した、又は被検体から発せられた放射線を輝尽性蛍光体に吸収させ、可視光線、紫外線などの電磁波(励起光と言う)で時系列的に輝尽性蛍光体を励起して、蓄積されている放射線エネルギーを蛍光(輝尽発光光と言う)として放射させ、この蛍光を光電的に読みとって電気信号を得、得られた電気信号に基づいて被写体又は被検体の放射線画像を可視画像として再生するものである。読取り後の変換パネルは、残存画像の消去が行われ、次の撮影に供される。   A radiation image recording / reproducing method using a stimulable phosphor described in Japanese Patent Application Laid-Open No. 55-12145 is known as an effective diagnostic means in place of conventional radiography. This method uses a radiation image conversion panel (also referred to as a storage phosphor sheet) containing a stimulable phosphor, and transmits the radiation transmitted through the subject or emitted from the subject. The stimulable phosphor is excited in time series by electromagnetic waves (referred to as excitation light) such as visible light and ultraviolet light, and the stored radiation energy is emitted as fluorescence (referred to as stimulated emission light). The fluorescence is photoelectrically read to obtain an electrical signal, and a radiographic image of the subject or subject is reproduced as a visible image based on the obtained electrical signal. The conversion panel after reading is subjected to erasure of the remaining image and used for the next photographing.

この方法によれば、放射線写真フィルムと増感紙とを組み合わせて用いる放射線写真法に比して、遙かに少ない被爆線量で情報量の豊富な放射線画像が得られる利点がある。又、放射線写真法では撮影毎にフィルムを消費するのに対して、放射線画像変換パネルは繰り返し使用されるので、資源保護や経済効率の面からも有利である。   According to this method, there is an advantage that a radiographic image having a large amount of information can be obtained with a much smaller exposure dose than radiography using a combination of a radiographic film and an intensifying screen. In contrast, the radiographic method consumes a film every time it is taken, whereas the radiographic image conversion panel is used repeatedly, which is advantageous in terms of resource protection and economic efficiency.

放射線画像変換パネルは、支持体とその表面に設けられた輝尽性蛍光体層、又は自己支持性の輝尽性蛍光体層のみから成り、輝尽性蛍光体層は通常輝尽性蛍光体とこれを分散支持する結合材から成るものと、蒸着法や焼結法によって形成される輝尽性蛍光体の凝集体のみから構成されるものがある。又、該凝集体の間隙に高分子物質が含浸されているものも知られている。更に、輝尽性蛍光体層の支持体側とは反対側の表面には、通常、ポリマーフィルムや無機物の蒸着膜から成る保護膜が設けられる。   The radiation image conversion panel comprises only a support and a photostimulable phosphor layer provided on the surface or a self-supporting photostimulable phosphor layer, and the photostimulable phosphor layer is usually a stimulable phosphor. And those composed only of aggregates of stimulable phosphors formed by vapor deposition or sintering. Also known is a polymer material impregnated in the gaps between the aggregates. Further, a protective film made of a polymer film or an inorganic vapor deposition film is usually provided on the surface of the photostimulable phosphor layer opposite to the support side.

輝尽性蛍光体としては、通常、400〜900nmの範囲にある励起光によって、波長300〜500nmの範囲にある輝尽発光を示すものが一般的に利用され、特開昭55−12145号、同55−160078号、同56−74175号、同56−116777号、同57−23673号、同57−23675号、同58−206678号、同59−27289号、同59−27980号、同59−56479号、同59−56480号等に記載の希土類元素賦活アルカリ土類金属弗化ハロゲン化物系蛍光体;特開昭59−75200号、同60−84381号、同60−106752号、同60−166379号、同60−221483号、同60−228592号、同60−228593号、同61−23679号、同61−120882号、同61−120883号、同61−120885号、同61−235486号、同61−235487号等に記載の2価のユーロピウム賦活アルカリ土類金属弗化ハロゲン化物系蛍光体;特開昭55−12144号に記載の希土類元素賦活オキシハライド蛍光体;特開昭58−69281号に記載のセリウム賦活3価金属オキシハライド蛍光体;特開昭60−70484号に記載のビスマス賦活アルカリ金属ハロゲン化物蛍光体;特開昭60−141783号、同60−157100号等に記載の2価のユーロピウム賦活アルカリ土類金属ハロ燐酸塩蛍光体;特開昭60−157099号に記載の2価のユーロピウム賦活アルカリ土類金属ハロ硼酸塩蛍光体;特開昭60−217354号に記載の2価のユーロピウム賦活アルカリ土類金属水素化ハロゲン化物蛍光体;特開昭61−21173号、同61−21182号等に記載のセリウム賦活希土類複合ハロゲン化物蛍光体;特開昭61−40390号に記載のセリウム賦活希土類ハロ燐酸塩蛍光体;特開昭60−78151号に記載の2価のユーロピウム賦活ハロゲン化セリウム・ルビジウム蛍光体;特開昭60−78151号に記載の2価のユーロピウム賦活複合ハロゲン化物蛍光体等が挙げられ、中でも、沃素を含有する2価のユーロピウム賦活アルカリ土類金属弗化ハロゲン化物蛍光体、沃素を含有する希土類元素賦活オキシハロゲン化物蛍光体及び沃素を含有するビスマス賦活アルカリ金属ハロゲン化物蛍光体等が知られているが、依然、高輝度の輝尽性蛍光体が要求されている。   As the photostimulable phosphor, those that exhibit photostimulated luminescence in the wavelength range of 300 to 500 nm by excitation light in the range of 400 to 900 nm are generally used. 55-160078, 56-74175, 56-116777, 57-23673, 57-23675, 58-206678, 59-27289, 59-27980, 59 -56479, 59-56480, etc .; rare earth element-activated alkaline earth metal fluoride halide phosphors; JP-A-59-75200, 60-84381, 60-106675, 60 -166379, 60-222143, 60-228592, 60-228593, 61-23679, 61-120 Divalent europium-activated alkaline earth metal fluorohalide phosphors described in 82, 61-120883, 61-128585, 61-235486, 61-235487, etc .; Rare earth element activated oxyhalide phosphors described in JP-A No. 55-12144; Cerium-activated trivalent metal oxyhalide phosphors described in JP-A-58-69281; Bismuth-activated alkali metal halogens described in JP-A-60-70484 Fluoride phosphors; divalent europium activated alkaline earth metal halophosphate phosphors described in JP-A-60-141783, JP-A-60-157100, etc .; divalent europium described in JP-A-60-157099 Activated alkaline earth metal haloborate phosphor; divalent europium activated alkali described in JP-A-60-217354 Metal hydride halide phosphors; cerium-activated rare earth composite halide phosphors described in JP-A-61-2173, JP-A-6-211822, etc .; cerium-activated rare earth halophosphates described in JP-A-61-1390 Salt phosphors; divalent europium-activated cerium / rubidium phosphors described in JP-A-60-78151; bivalent europium-activated composite halide phosphors described in JP-A-60-78151; In particular, a divalent europium activated alkaline earth metal fluoride halide phosphor containing iodine, a rare earth element activated oxyhalide phosphor containing iodine, a bismuth activated alkali metal halide phosphor containing iodine, etc. However, there is still a demand for stimulable phosphors with high brightness.

又、輝尽性蛍光体を利用する放射線画像変換方法の利用が進むにつれて、得られる放射線画像の画質の向上、例えば鮮鋭度の向上や粒状性の向上が更に求められるようになって来た。   In addition, as the use of radiographic image conversion methods using photostimulable phosphors has progressed, further improvements in image quality of the obtained radiographic images, such as improvement in sharpness and graininess, have been further demanded.

先に記載の輝尽性蛍光体の製造方法は、固相法あるいは焼結法と呼ばれる方法で、焼成後の粉砕が必須であり、感度、画像性能に影響する粒子形状の制御が困難であるという問題を有する。放射線画像の画質向上の手段の中で、輝尽性蛍光体の微粒子化と微粒子化された輝尽性蛍光体の粒径を揃えること、即ち、粒径分布を狭くすることは有効である。   The method for producing a photostimulable phosphor described above is a method called a solid phase method or a sintering method, and pulverization after firing is essential, and it is difficult to control the particle shape that affects sensitivity and image performance. Have the problem. Among the means for improving the image quality of the radiation image, it is effective to make the photostimulable phosphor fine particles and to make the particle size of the fine photostimulable phosphor uniform, that is, to narrow the particle size distribution.

特開平7−233369号、同9−291278号等で開示されている液相からの輝尽性蛍光体の製造法は、蛍光体原料溶液の濃度を調整して微粒子状の輝尽性蛍光体前駆体を得る方法であり、粒径分布の揃った輝尽性蛍光体粉末の製造法として有効である。又、放射線被爆量の低減という観点から、希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体の内、沃素含有量が高いものが好ましいことが知られている。これは、臭素に比べて沃素がX線吸収率が高いためである。   The method for producing a photostimulable phosphor from a liquid phase disclosed in JP-A-7-233369, 9-291278, etc. comprises adjusting the concentration of the phosphor raw material solution to form a particulate stimulable phosphor. This is a method for obtaining a precursor, and is effective as a method for producing a photostimulable phosphor powder having a uniform particle size distribution. From the viewpoint of reducing the radiation exposure amount, it is known that among rare earth activated alkaline earth metal fluoride halide stimulable phosphors, those having a high iodine content are preferable. This is because iodine has a higher X-ray absorption rate than bromine.

上記の様に液相で製造されるアルカリ土類金属弗化沃化物系輝尽性蛍光体は、輝度、粒状性の点で有利であるが、液相にて前駆体結晶を得る場合、以下の様な問題を持っている。即ち、特開平10−88125号、同9−291278号の記載に見られるように、
1)沃化バリウムを水あるいは有機溶媒に溶解し、この液を攪拌しながら無機弗化物の溶液を添加する、
2)弗化アンモニウムを水に溶解し、この液を攪拌しながら沃化バリウムの溶液を添加する、
方法が有効である。しかし、1)の方法では、溶液中に過剰の沃化バリウムを存在させておく必要があり、そのため投入した沃化バリウムと固液分離後に得られる弗化沃化バリウムの化学量論比は0.4前後と小さい値であることが多い。つまり、投入した沃化バリウムに対し、アルカリ土類金属弗化沃化物系輝尽性蛍光体前駆体の収率は40%程度であることが多い。
The alkaline earth metal fluoroiodide-based stimulable phosphor produced in the liquid phase as described above is advantageous in terms of luminance and granularity, but when obtaining a precursor crystal in the liquid phase, Have problems like That is, as seen in the description of JP-A-10-88125 and JP-A-9-291278,
1) Dissolve barium iodide in water or an organic solvent, and add a solution of inorganic fluoride while stirring this solution.
2) Ammonium fluoride is dissolved in water, and a solution of barium iodide is added while stirring this solution.
The method is effective. However, in the method 1), it is necessary to make excess barium iodide exist in the solution. Therefore, the stoichiometric ratio of the charged barium iodide and the barium fluoroiodide obtained after solid-liquid separation is 0. In many cases, the value is as small as around .4. That is, the yield of the alkaline earth metal fluoroiodide stimulable phosphor precursor is often about 40% with respect to the charged barium iodide.

又、2)の方法でも、無機弗化物に対して過剰の沃化バリウムを必要とし、収率が低い。このように、弗化沃化バリウムの液相合成は収率が低く、生産性が悪いという問題を有している。収率を上げるために母液中の沃化バリウム濃度を下げると粒子の肥大化を招き、これは画質特性上好ましくない。   The method 2) also requires an excess of barium iodide relative to the inorganic fluoride, and the yield is low. Thus, the liquid phase synthesis of barium fluoroiodide has the problems of low yield and poor productivity. Lowering the barium iodide concentration in the mother liquor to increase the yield leads to particle enlargement, which is undesirable from the standpoint of image quality.

希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体、特にアルカリ土類金属弗化沃化物系輝尽性蛍光体の収率を上げる試みとしては、特開平11−29324号に、反応母液の濃度と弗素源を添加した後、濃縮することにより基本組成式BaFI:xLn(Ln:Ce、Pr、Sm、Eu、Gd、Tb、Tm及びYbから選ばれる少なくとも1種の希土類元素、xは0<x≦0.1の数値を表す)で示される希土類元素含有角状弗化沃化バリウム結晶を得る方法が開示されている。   As an attempt to increase the yield of rare earth activated alkaline earth metal fluoride halide photostimulable phosphors, particularly alkaline earth metal fluoride iodide photostimulable phosphors, JP-A-11-29324 discloses a reaction. After adding the concentration of the mother liquor and the fluorine source and concentrating, the basic composition BaFI: xLn (Ln: Ce, Pr, Sm, Eu, Gd, Tb, Tm, and Yb, at least one rare earth element, x Represents a rare earth element-containing prismatic barium fluoroiodide crystal represented by 0 <x ≦ 0.1).

しかし、本発明者らが追試を行った結果、記載通りBaFI角状結晶は生成したものの、自然蒸発による濃縮を用いるため著しく生産性が低く、工業的には現実的ではないことが判った。又、得られる角状結晶も粒径が大きく、かつ粒径分布が広いため画像特性が悪く、実用に供することが出来ないことが判った。   However, as a result of a further examination by the present inventors, it was found that although BaFI square crystals were produced as described, productivity was remarkably low due to the use of concentration by natural evaporation, and this was not practical from an industrial viewpoint. Also, it was found that the obtained square crystals have a large particle size and a wide particle size distribution, so that the image characteristics are poor and cannot be put to practical use.

そこで、濃縮能力を向上させる方法として、乾燥気体を通気する方法、減圧する方法、液膜を形成する方法(伝熱面積を拡大する方法)等が考えられ、収率の高い蛍光体を得ることが開示されている(例えば、特許文献1参照。)。   Therefore, as a method for improving the concentration capacity, a method of ventilating dry gas, a method of reducing pressure, a method of forming a liquid film (a method of expanding the heat transfer area), and the like can be considered, and a phosphor with high yield can be obtained. Is disclosed (for example, see Patent Document 1).

しかし、この方法により得られた輝尽性蛍光体を放射線画像変換パネルとして使用される際に発光ムラが発生し、輝度、鮮鋭性の低下が確認され、問題が有ることが分かった。
特開2003−236303号公報
However, when the photostimulable phosphor obtained by this method is used as a radiation image conversion panel, light emission unevenness occurs, and it has been confirmed that there is a problem in that the brightness and sharpness are lowered.
JP 2003-236303 A

本発明の目的は、発光ムラのない、高感度・高画質の特性が得られる輝尽性蛍光体の製造方法、輝尽性蛍光体及び放射線画像変換パネルを提供することにある。   An object of the present invention is to provide a method for producing a photostimulable phosphor, a photostimulable phosphor and a radiation image conversion panel, which can obtain high sensitivity and high image quality characteristics without unevenness in light emission.

上記課題は、以下の構成により解決することができた。   The above problem could be solved by the following configuration.

(請求項1)
下記一般式(1)で示される希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の製造方法において、ハロゲン化バリウムを溶解させた反応母液中に無機弗化物水溶液を添加してアルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の沈澱物を形成する工程と反応母液から溶媒を濃縮除去する工程を平行して行うことにより輝尽性蛍光体前駆体結晶を得る工程と、得られた前記輝尽性蛍光体前駆体結晶表面に希土類金属ハロゲン化物層を形成する工程を含むことを特徴とする希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の製造方法。
(Claim 1)
In the method for producing a rare earth activated alkaline earth metal fluoride halide stimulable phosphor precursor represented by the following general formula (1), an aqueous inorganic fluoride solution is added to a reaction mother liquor in which barium halide is dissolved. The step of forming a precipitate of the alkaline earth metal fluoride halide stimulable phosphor precursor and the step of concentrating and removing the solvent from the reaction mother liquor are carried out in parallel to produce the stimulable phosphor precursor crystal. And a rare earth-activated alkaline earth metal fluoride halide-based stimulable phosphor, characterized by comprising a step of forming a rare earth metal halide layer on the surface of the obtained stimulable phosphor precursor crystal A method for producing a precursor.

一般式(1)
Ba1-xM2xFBry1-y:aM1,bLn,cO
(式中、M1はLi,Na,K,Rb,Csから選ばれる少なくとも一種のアルカリ金属原子、M2はBe,Mg,Sr及びCaから選ばれる少なくとも一種のアルカリ土類金属原子、LnはCe,Pr,Sm,Eu,Gd,Tb,Tm,Dy,Ho,Nd,Er及びYbから選ばれる少なくとも一種の希土類元素であり、x,y,a,b及びcは、それぞれ0≦x≦0.3,0≦y≦0.3,0≦a≦0.05,0<b≦0.2,0≦c≦0.1である。)
(請求項2)
前記一般式(1)で示される希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の製造方法において、ハロゲン化バリウムと希土類金属ハロゲン化物を溶解させた反応母液中に無機弗化物水溶液を添加してアルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の沈澱物を形成する工程と反応母液から溶媒を濃縮除去する工程を平行して行うことにより輝尽性蛍光体前駆体結晶を得る工程と、得られた前記輝尽性蛍光体前駆体結晶表面に希土類金属ハロゲン化物層を形成する工程を含むことを特徴とする希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の製造方法。
General formula (1)
Ba 1-x M2 x FBr y I 1-y: aM1, bLn, cO
(In the formula, M1 is at least one alkali metal atom selected from Li, Na, K, Rb, and Cs, M2 is at least one alkali earth metal atom selected from Be, Mg, Sr, and Ca, and Ln is Ce, It is at least one rare earth element selected from Pr, Sm, Eu, Gd, Tb, Tm, Dy, Ho, Nd, Er, and Yb, and x, y, a, b, and c are 0 ≦ x ≦ 0. 3, 0 ≦ y ≦ 0.3, 0 ≦ a ≦ 0.05, 0 <b ≦ 0.2, 0 ≦ c ≦ 0.1.)
(Claim 2)
In the method for producing a rare earth activated alkaline earth metal fluoride halide photostimulable phosphor precursor represented by the general formula (1), inorganic fluoride is contained in a reaction mother liquor in which barium halide and rare earth metal halide are dissolved. The process of forming a precipitate of an alkaline earth metal fluoride halide-based stimulable phosphor precursor with the addition of an aqueous fluoride solution and the process of concentrating and removing the solvent from the reaction mother liquor are performed in parallel. A rare earth-activated alkaline earth metal fluoride halide system, comprising: a step of obtaining a body precursor crystal; and a step of forming a rare earth metal halide layer on the surface of the photostimulable phosphor precursor crystal obtained. Method for producing photostimulable phosphor precursor.

(請求項3)
初期及び溶媒除去工程における反応母液中のバリウム濃度が3.0〜4.5mol/Lであることを特徴とする請求項1又は2に記載の希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の製造方法。
(Claim 3)
3. The rare earth-activated alkaline earth metal fluoride halide-based stimulant according to claim 1 or 2, wherein the barium concentration in the reaction mother liquor in the initial step and the solvent removing step is 3.0 to 4.5 mol / L. Method for producing a fluorescent phosphor precursor.

(請求項4)
前記輝尽性蛍光体前駆体形成の反応溶媒除去後の溶媒質量が反応溶媒除去前の溶媒質量に対して0.05〜0.97であることを特徴とする請求項1〜3の何れか1項に記載の希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の製造方法。
(Claim 4)
The solvent mass after removing the reaction solvent for forming the stimulable phosphor precursor is 0.05 to 0.97 with respect to the solvent mass before removing the reaction solvent. 2. A process for producing a rare earth activated alkaline earth metal fluoride halide stimulable phosphor precursor according to item 1.

(請求項5)
反応溶媒を除去するための反応液を加熱と、かつ、他の溶媒を除去する手段を併用することを特徴とする請求項1〜4の何れか1項に記載の希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の製造方法。
(Claim 5)
The rare earth activated alkaline earth metal fluoride according to any one of claims 1 to 4, wherein the reaction solution for removing the reaction solvent is used in combination with heating and means for removing the other solvent. For producing a halide-based stimulable phosphor precursor.

(請求項6)
希土類金属ハロゲン化物のハロゲン組成がヨウ素、あるいは臭素であることを特徴とする請求項1〜5の何れか1項に記載の希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の製造方法。
(Claim 6)
6. The rare earth-activated alkaline earth metal fluoride halide based stimulable phosphor precursor according to claim 1, wherein the halogen composition of the rare earth metal halide is iodine or bromine. Manufacturing method.

(請求項7)
請求項1〜6の何れか1項に記載の希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の製造方法によって得られた希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体を400℃〜1300℃、0.5時間〜12時間加熱して得られることを特徴とする希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体。
(Claim 7)
A rare earth-activated alkaline earth metal fluoride halide-based phosphor obtained by the method for producing a rare earth-activated alkaline earth metal fluoride halide-based stimulable phosphor precursor according to any one of claims 1 to 6. A rare earth-activated alkaline earth metal fluoride halide-based stimulable phosphor obtained by heating a stimulable phosphor precursor at 400 to 1300 ° C for 0.5 to 12 hours.

(請求項8)
請求項7に記載の希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体を含むことを特徴とする放射線画像変換パネル。
(Claim 8)
A radiation image conversion panel comprising the rare earth activated alkaline earth metal fluoride halide stimulable phosphor according to claim 7.

本発明の方法により、高収率で輝尽性蛍光体前駆体を得ることが出来、かつ、得られた蛍光体前駆体を焼成することにより、高輝度で、鮮鋭性のムラの無い放射線画像返還パネルを得ることができた。   By the method of the present invention, a stimulable phosphor precursor can be obtained with high yield, and the obtained phosphor precursor is baked to obtain a high-luminance and sharpness-free radiation image. I was able to get a return panel.

本発明の希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体の製造方法の代表的な態様を以下に詳しく説明する。   A typical embodiment of the method for producing a rare earth activated alkaline earth metal fluoride halide photostimulable phosphor of the present invention will be described in detail below.

液相法による輝尽性蛍光体前駆体製造については、特開2003−268360号に記載された前駆体製造方法、特開2003−236303号に記載された前駆体製造装置が好ましく利用できる。ここで輝尽性蛍光体前駆体とは、一般式(1)の物質が600℃以上の高温を経ていない状態を示し、輝尽性蛍光体前駆体は、輝尽発光性や瞬時発光性をほとんど示さない。   For the production of stimulable phosphor precursors by the liquid phase method, the precursor production method described in JP-A No. 2003-268360 and the precursor production apparatus described in JP-A No. 2003-236303 can be preferably used. Here, the photostimulable phosphor precursor indicates a state in which the substance of the general formula (1) has not passed through a high temperature of 600 ° C. or higher, and the photostimulable phosphor precursor has a stimulable light emission property or an instantaneous light emission property. Almost not shown.

本発明では以下の液相合成法により前駆体を得ることが好ましい。   In the present invention, the precursor is preferably obtained by the following liquid phase synthesis method.

製造法:
BaI2と、一般式(1)のxが0でない場合には更に、M2のハロゲン化物を、yが0でない場合はBaBr2を、そしてM1のハロゲン化物を含み、それらが溶解したのち、BaI2濃度が3.0mol/L以上、好ましくは3.3mol/L以上の溶液を調製する工程であり、その溶液中にLnのハロゲン化物は含んでもよく、含まなくてもよい;
これに濃度3mol/L以上、好ましくは6mol/L以上の無機弗化物(弗化アンモニウムもしくはアルカリ金属の弗化物)の溶液を徐々に添加してアルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体、または希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の沈澱物を形成する工程;
と、
上記の無機弗化物を添加しつつ、反応母液から溶媒を除去する工程;
とを平行して行い、
得られた前駆体結晶を反応母液から分離する工程;
好ましくは、得られた前駆体結晶を乾燥する工程;
得られた前記前駆体結晶表面にLn(希土類金属)ハロゲン化物層を形成する工程;
表面に希土類金属ハロゲン化物層が形成された前駆体結晶を焼結を避けながら焼成する工程;
を含む製造方法である。
Manufacturing method:
BaI 2 and, if x in the general formula (1) is not 0, further contain a halide of M2, BaBr 2 if y is not 0, and a halide of M1, and after they have dissolved, BaI 2 2 is a step of preparing a solution having a concentration of 3.0 mol / L or more, preferably 3.3 mol / L or more, and a halide of Ln may or may not be contained in the solution;
To this, a solution of inorganic fluoride (ammonium fluoride or alkali metal fluoride) having a concentration of 3 mol / L or more, preferably 6 mol / L or more is gradually added, and alkaline earth metal fluoride halide-based stimulable fluorescence is added. Forming a precipitate of a phosphor precursor or a rare earth activated alkaline earth metal fluoride halide stimulable phosphor precursor;
When,
Removing the solvent from the reaction mother liquor while adding the above inorganic fluoride;
And in parallel,
Separating the obtained precursor crystals from the reaction mother liquor;
Preferably, the step of drying the obtained precursor crystal;
Forming a Ln (rare earth metal) halide layer on the surface of the obtained precursor crystal;
Firing a precursor crystal having a rare earth metal halide layer formed on its surface while avoiding sintering;
It is a manufacturing method containing.

即ち、本発明は、アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体結晶を形成した後、その表面に賦活剤であるの希土類金属ハロゲン化物の層を形成し、その後焼成することにより、輝尽性蛍光体を形成することにより、高輝度で安定した希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体が得られることを見いだしたものである。   That is, in the present invention, after forming an alkaline earth metal fluoride halide photostimulable phosphor precursor crystal, a rare earth metal halide layer as an activator is formed on the surface, and then fired. Thus, it has been found that by forming a photostimulable phosphor, a high-brightness and stable rare earth-activated alkaline earth metal fluoride halide-based photostimulable phosphor can be obtained.

以下に輝尽性蛍光体の製造法の詳細について説明する。   Details of the method for producing the photostimulable phosphor will be described below.

(前駆体結晶の沈澱物の作製、輝尽性蛍光体作製)
最初に、水系媒体を用いて弗素化合物と、Ln(希土類金属)化合物以外の原料化合物を溶解させる。すなわち、BaI2を水系媒体中に入れ充分に混合し、溶解させて水溶液を調製する。そして必要により更にM2のハロゲン化物、そして更にM1のハロゲン化物を添加して充分に混合し、溶解させて水溶液を調製する。Lnハロゲン化物はこの段階では必要としないが添加されていてもよい。ただし、BaI2濃度が3.0mol/L以上好ましくは3.3mol/L以上となるように、BaI2濃度と水系溶媒との量比を調整しておく。このときバリウム濃度が低いと所望の組成の前駆体が得られないか、得られても粒子が肥大化する可能性がある。よって、バリウム濃度は適切に選択する必要があり、本発明者らの検討の結果、3.0mol/L以上、4.5mol/L以下の範囲で所望の前駆体粒子を形成することができることが分かった。このとき、少量の酸、アンモニア、アルコール、水溶性高分子ポリマー、水不溶性金属酸化物微粒子粉体などを添加してもよい。BaI2の溶解度が著しく低下しない範囲で低級アルコール(メタノール、エタノール)を適当量添加しておくのも好ましい態様である
次に、撹拌されている水溶液に、無機弗化物(弗化アンモニウム、アルカリ金属の弗化物など)の水溶液をポンプ付きのパイプなどを用いて注入する。
(Preparation of precursor crystal precipitate, stimulable phosphor)
First, a raw material compound other than a fluorine compound and an Ln (rare earth metal) compound is dissolved using an aqueous medium. That is, BaI 2 is placed in an aqueous medium and mixed well and dissolved to prepare an aqueous solution. Then, if necessary, further M2 halide and further M1 halide are added, mixed well, and dissolved to prepare an aqueous solution. Ln halide is not required at this stage, but may be added. However, the quantity ratio between the BaI 2 concentration and the aqueous solvent is adjusted so that the BaI 2 concentration is 3.0 mol / L or more, preferably 3.3 mol / L or more. At this time, if the barium concentration is low, a precursor having a desired composition cannot be obtained, or even if obtained, the particles may be enlarged. Therefore, it is necessary to select the barium concentration appropriately, and as a result of the study by the present inventors, desired precursor particles can be formed in the range of 3.0 mol / L or more and 4.5 mol / L or less. I understood. At this time, a small amount of acid, ammonia, alcohol, water-soluble polymer, water-insoluble metal oxide fine particle powder or the like may be added. It is also a preferred embodiment that an appropriate amount of lower alcohol (methanol, ethanol) is added within a range in which the solubility of BaI 2 is not significantly lowered. Next, inorganic fluoride (ammonium fluoride, alkali metal) is added to the stirred aqueous solution. Inject an aqueous solution such as fluoride using a pipe with a pump.

この注入は、撹拌が特に激しく実施されている領域部分に行なうのが好ましい。この無機弗化物水溶液の反応母液への注入によって、アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体結晶が沈澱する。   This injection is preferably carried out in the region where the stirring is particularly intense. By injecting the inorganic fluoride aqueous solution into the reaction mother liquor, alkaline earth metal fluoride halide photostimulable phosphor precursor crystals are precipitated.

この注入と同時に反応液から溶媒を除去する。溶媒の除去量は除去前と除去後の質量比で2%以上が好ましい。これ以下では結晶がBFIになりきらない場合がある。そのため除去量は2%以上が好ましく、5%以上がより好ましい。また、除去しすぎても反応溶液の粘度が過剰に上昇するなど、ハンドリングの面で不都合が生じる場合がある。   Simultaneously with this injection, the solvent is removed from the reaction solution. The removal amount of the solvent is preferably 2% or more by mass ratio before and after the removal. Below this, the crystal may not be fully BFI. Therefore, the removal amount is preferably 2% or more, and more preferably 5% or more. Moreover, even if it removes too much, inconvenience may arise in terms of handling, such as an excessive increase in the viscosity of the reaction solution.

そのため溶媒の除去量は除去前と除去後の質量比で97%以下が好ましい。   Therefore, the removal amount of the solvent is preferably 97% or less in terms of the mass ratio before and after the removal.

溶媒の除去に要する時間は生産性に大きく影響するばかりでなく、粒子の形状、粒径分布も溶媒の除去方法に影響されるので、除去方法は適切に選択する必要がある。一般的に溶媒の除去に際しては溶液を過熱し、溶媒を蒸発する方法が選択される。本発明においてもこの方法は有用である。溶媒の除去により、意図した組成の前駆体を得ることができる。   The time required for removing the solvent not only greatly affects the productivity, but also the shape and particle size distribution of the particles are affected by the method of removing the solvent, so the removal method needs to be appropriately selected. In general, when removing the solvent, a method of heating the solution and evaporating the solvent is selected. This method is also useful in the present invention. By removing the solvent, a precursor having the intended composition can be obtained.

更に、生産性を上げるため、また、粒子形状を適切に保つため、他の溶媒除去方法を併用することが好ましい。併用する溶媒の除去方法は特に問わない。例えば、逆浸透膜などの分離膜を用いる方法を選択することも可能である。本発明では生産性の面から、以下の除去方法を選択することが好ましい。   Furthermore, in order to increase productivity and to keep the particle shape appropriately, it is preferable to use another solvent removal method in combination. The method for removing the solvent used in combination is not particularly limited. For example, it is possible to select a method using a separation membrane such as a reverse osmosis membrane. In the present invention, it is preferable to select the following removal method from the viewpoint of productivity.

1.乾燥気体を通気する
反応容器を密閉型とし、少なくとも2箇所以上の気体が通過できる孔を設け、そこから乾燥気体を通気する。気体の種類は任意に選ぶことができる。安全性の面から、空気、窒素が好ましい。通気する気体の飽和水蒸気量に依存し、溶媒が気体に同伴され、除去される。反応容器の空隙部分に通気する方法の他、液相中に気体を気泡として噴出させ、気泡中に溶媒を吸収させる方法もまた有効である。
1. The reaction vessel for ventilating the dry gas is sealed, and at least two holes through which gas can pass are provided, and the dry gas is vented there. The kind of gas can be selected arbitrarily. Air and nitrogen are preferable from the viewpoint of safety. Depending on the amount of saturated water vapor in the gas to be vented, the solvent is entrained in the gas and removed. In addition to the method of venting the void portion of the reaction vessel, a method of jetting gas as bubbles in the liquid phase and absorbing the solvent in the bubbles is also effective.

2.減圧
よく知られるように減圧にすることにより、溶媒の蒸気圧は低下する。蒸気圧降下により効率的に溶媒を除去することができる。減圧度としては溶媒の種類により適宜選択することができる。溶媒が水の場合86kPa以下が好ましい。
2. Depressurization As is well known, the depressurization reduces the vapor pressure of the solvent. The solvent can be efficiently removed by the vapor pressure drop. The degree of reduced pressure can be appropriately selected depending on the type of solvent. When the solvent is water, 86 kPa or less is preferable.

3.液膜
蒸発面積を拡大することにより溶媒の除去を効率的に行うことができる。本発明のように、一定容積の反応容器をもちいて加熱、攪拌し、反応を行わせる場合、加熱方法としては、加熱手段を液体中に浸漬するか、容器の外側に加熱手段を装着する方法が一般的である。該方法によると、伝熱面積は液体と加熱手段が接触する部分に限定され、溶媒除去に伴い、伝熱面積が減少し、よって、溶媒除去に要する時間が長くなる。これを防ぐため、ポンプ、あるいは攪拌機を用いて反応容器の壁面に散布し、伝熱面積を増大させる方法が有効である。このように反応容器壁面に液体を散布し、液膜を形成する方法は”濡れ壁”として知られている。濡れ壁の形成方法としては、ポンプを用いる方法のほか、特開平6−335627号、同11−235522号に記載の攪拌機を用いる方法が挙げられる。
3. Liquid film The solvent can be removed efficiently by increasing the evaporation area. As in the present invention, when a reaction vessel having a constant volume is used for heating and stirring to carry out the reaction, the heating method is a method of immersing the heating means in a liquid or mounting the heating means outside the container. Is common. According to this method, the heat transfer area is limited to the portion where the liquid and the heating means are in contact with each other, and the heat transfer area decreases with the removal of the solvent, and thus the time required for the solvent removal increases. In order to prevent this, a method of increasing the heat transfer area by spraying on the wall surface of the reaction vessel using a pump or a stirrer is effective. Such a method of spraying a liquid on the reaction vessel wall surface to form a liquid film is known as a “wetting wall”. Examples of the method for forming the wet wall include a method using a stirrer described in JP-A Nos. 6-335627 and 11-235522, in addition to a method using a pump.

これらの方法は単独のみならず、組み合わせて用いてもかまわない。液膜を形成する方法と容器内を減圧にする方法の組み合わせ、液膜を形成する方法と乾燥気体を通気する方法の組み合わせなどが有効である。特に前者が好ましく、特開平6−335627号に記載の方法が好ましく用いられる。   These methods may be used not only alone but also in combination. A combination of a method of forming a liquid film and a method of reducing the pressure in the container, a combination of a method of forming a liquid film and a method of ventilating dry gas, and the like are effective. The former is particularly preferable, and the method described in JP-A-6-335627 is preferably used.

次に、上記の蛍光体前駆体結晶を、濾過、遠心分離などによって溶液から分離し、メタノールなどによって充分に洗浄する。ここで乾燥することが好ましいが、本発明においては、必ずしも乾燥する必要はなく、次工程を行っても良い。   Next, the phosphor precursor crystals are separated from the solution by filtration, centrifugation, etc., and washed sufficiently with methanol or the like. Although it is preferable to dry here, in this invention, it does not necessarily need to dry and you may perform the next process.

得られた前駆体をEuI3あるいはEuBr3のような希土類金属ハロゲン化物エタノール溶液中に混合、分散後、再び濾過、遠心分離などによって溶液から分離し、乾燥する。 Mixing the resultant precursor into a rare earth metal halide ethanol solution, such as EuI 3 or EuBr 3, after dispersion, it was separated from the solution filtered again such as by centrifugation, and dried.

この乾燥され、表面に希土類金属ハロゲン化物層が形成された蛍光体前駆体結晶に、アルミナ微粉末、シリカ微粉末などの焼結防止剤を添加、混合し、結晶表面に焼結防止剤微粉末を均一に付着させる。なお、焼成条件を選ぶことによって焼結防止剤の添加を省略することも可能である。   Sintering inhibitor fine powder such as alumina fine powder or silica fine powder is added to and mixed with the dried phosphor precursor crystal having a rare earth metal halide layer formed on the surface, and the powder is sintered on the crystal surface. To evenly adhere. It should be noted that the addition of the sintering inhibitor can be omitted by selecting the firing conditions.

次に、蛍光体前駆体の結晶を、石英ポート、アルミナルツボ、石英ルツボなどの耐熱性容器に充填し、電気炉の炉心に入れて焼結を避けながら焼成を行なう。焼成温度は400〜1300℃の範囲が適当であって、500〜1000℃の範囲が好ましい。焼成時間は蛍光体原料混合物の充填量、焼成温度および炉からの取出し温度などによっても異なるが、一般には0.5〜12時間が適当である。   Next, the phosphor precursor crystals are filled in a heat-resistant container such as a quartz port, an alumina crucible, or a quartz crucible, and placed in the core of an electric furnace and fired while avoiding sintering. The range of 400-1300 degreeC is suitable for a calcination temperature, and the range of 500-1000 degreeC is preferable. The firing time varies depending on the filling amount of the phosphor raw material mixture, the firing temperature, the temperature of taking out from the furnace, and the like, but generally 0.5 to 12 hours is appropriate.

焼成雰囲気としては、窒素ガス雰囲気、アルゴンガス雰囲気等の中性雰囲気、あるいは少量の水素ガスを含有する窒素ガス雰囲気、一酸化炭素を含有する二酸化炭素雰囲気などの弱還元性雰囲気、あるいは微量酸素導入雰囲気が利用される。焼成方法については特開2000−8034号に記載の方法が好ましく用いられる。   As the firing atmosphere, a neutral atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere, a weakly reducing atmosphere such as a nitrogen gas atmosphere containing a small amount of hydrogen gas, a carbon dioxide atmosphere containing carbon monoxide, or a small amount of oxygen introduced The atmosphere is used. As the firing method, the method described in JP-A No. 2000-8034 is preferably used.

上記の焼成によって目的の希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体が得られる。   The desired rare earth activated alkaline earth metal fluoride halide photostimulable phosphor is obtained by the above-mentioned firing.

(放射線画像変換パネル作製、蛍光体層、塗布工程、支持体、保護層)
本発明の放射線画像変換パネルにおいて用いられる支持体としては各種高分子材料、ガラス、金属等が用いられる。特に情報記録材料としての取り扱い上可撓性のあるシートあるいはウェブに加工できるものが好適であり、この点からいえばセルロースアセテートフィルム、ポリエチレンテレフタレート等のポリエステルフィルム、ポリアミドフィルム、ポリイミドフィルム、ポリカーボネートフィルム等のプラスチックフィルム、アルミニウム、鉄、銅、クロム等の金属シートあるいは該金属酸化物の被覆層を有する金属シート等が好ましい。
(Radiation image conversion panel production, phosphor layer, coating process, support, protective layer)
As the support used in the radiation image conversion panel of the present invention, various polymer materials, glass, metal and the like are used. In particular, those that can be processed into flexible sheets or webs as information recording materials are suitable. From this point, cellulose acetate films, polyester films such as polyethylene terephthalate, polyamide films, polyimide films, polycarbonate films, etc. Of these, a plastic sheet, a metal sheet of aluminum, iron, copper, chromium, or a metal sheet having a coating layer of the metal oxide is preferable.

また、これら支持体の層厚は用いる支持体の材質等によって異なるが、一般的には80μm〜1000μmであり、取り扱い上の点から、さらに好ましくは80μm〜500μmである。   The layer thickness of these supports varies depending on the material of the support used, but is generally 80 μm to 1000 μm, and more preferably 80 μm to 500 μm from the viewpoint of handling.

これらの支持体の表面は滑面であってもよいし、輝尽性蛍光体層との接着性を向上させる目的でマット面としてもよい。   The surface of these supports may be a smooth surface, or may be a mat surface for the purpose of improving the adhesion to the photostimulable phosphor layer.

さらに、これら支持体は、輝尽性蛍光体層との接着性を向上させる目的で輝尽性蛍光体層が設けられる面に下引層を設けてもよい。   Further, these supports may be provided with an undercoat layer on the surface on which the photostimulable phosphor layer is provided for the purpose of improving the adhesion to the photostimulable phosphor layer.

本発明において輝尽性蛍光体層に用いられる結合剤の例としては、ゼラチン等の蛋白質、デキストラン等のポリサッカライド、またはアラビアゴムのような天然高分子物質;および、ポリビニルブチラール、ポリ酢酸ビニル、ニトロセルロース、エチルセルロース、塩化ビニリデン・塩化ビニルコポリマー、ポリアルキル(メタ)アクリレート、塩化ビニル・酢酸ビニルコポリマー、ポリウレタン、セルロースアセテートブチレート、ポリビニルアルコール、線状ポリエステルなどのような合成高分子物質などにより代表される結合剤を挙げることができる。このような結合剤の中で特に好ましいものは、ニトロセルロース、線状ポリエステル、ポリアルキル(メタ)アクリレート、ニトロセルロースと線状ポリエステルとの混合物、ニトロセルロースとポリアルキル(メタ)アクリレートとの混合物およびポリウレタンとポリビニルブチラールとの混合物等である。なお、これらの結合剤は架橋剤によって架橋されたものであってもよい。   Examples of binders used in the stimulable phosphor layer in the present invention include proteins such as gelatin, polysaccharides such as dextran, or natural high molecular substances such as gum arabic; and polyvinyl butyral, polyvinyl acetate, Represented by synthetic polymer materials such as nitrocellulose, ethyl cellulose, vinylidene chloride / vinyl chloride copolymer, polyalkyl (meth) acrylate, vinyl chloride / vinyl acetate copolymer, polyurethane, cellulose acetate butyrate, polyvinyl alcohol, linear polyester, etc. Can be mentioned. Particularly preferred among such binders are nitrocellulose, linear polyesters, polyalkyl (meth) acrylates, mixtures of nitrocellulose and linear polyesters, mixtures of nitrocellulose and polyalkyl (meth) acrylates and For example, a mixture of polyurethane and polyvinyl butyral. Note that these binders may be crosslinked by a crosslinking agent.

輝尽性蛍光体層は、例えば、次のような方法により下塗層上に形成することができる。   The photostimulable phosphor layer can be formed on the undercoat layer by the following method, for example.

まず、ヨウ素含有輝尽性蛍光体、上記黄変防止のための亜燐酸エステル等の化合物および結合剤を適当な溶剤に添加し、これらを充分に混合して結合剤溶液中に蛍光体粒子および該化合物の粒子が均一に分散した塗布液を調製する。   First, an iodine-containing stimulable phosphor, a compound such as a phosphite for preventing yellowing, and a binder are added to a suitable solvent, and these are mixed thoroughly to add phosphor particles and A coating solution in which the compound particles are uniformly dispersed is prepared.

一般に結合剤は輝尽性蛍光体1質量部に対して0.01乃至1質量部の範囲で使用される。しかしながら得られる放射線画像変換パネルの感度と鮮鋭性の点では結合剤は少ない方が好ましく、塗布の容易さとの兼合いから0.03乃至0.2質量部の範囲がより好ましい。   In general, the binder is used in the range of 0.01 to 1 part by mass with respect to 1 part by mass of the stimulable phosphor. However, in terms of sensitivity and sharpness of the obtained radiation image conversion panel, it is preferable that the amount of the binder is small, and the range of 0.03 to 0.2 parts by mass is more preferable in view of the ease of application.

輝尽性蛍光体層用塗布液の調製に用いられる溶剤の例としては、メタノール、エタノール、1−プロパノール、イソプロパノール、n−ブタノール等の低級アルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン;酢酸メチル、酢酸エチル、酢酸n−ブチル等の低級脂肪酸と低級アルコールとのエステル;ジオキサン、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテルなどのエーテル;トリオール、キシロールなどの芳香族化合物;メチレンクロライド、エチレンクロライドなどのハロゲン化炭化水素およびそれらの混合物などが挙げられる。   Examples of the solvent used for the preparation of the stimulable phosphor layer coating solution include lower alcohols such as methanol, ethanol, 1-propanol, isopropanol, and n-butanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Ester of lower fatty acid such as methyl acetate, ethyl acetate, n-butyl acetate and lower alcohol; ether such as dioxane, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether; aromatic compound such as triol, xylol; methylene chloride, Halogenated hydrocarbons such as ethylene chloride and mixtures thereof.

なお、輝尽性蛍光体層用塗布液には、該塗布液中における蛍光体の分散性を向上させるための分散剤、また、形成後の輝尽性蛍光体層中における結合剤と蛍光体との間の結合力を向上させるための可塑剤などの種々の添加剤が混合されていてもよい。そのような目的に用いられる分散剤の例としては、フタル酸、ステアリン酸、カプロン酸、親油性界面活性剤などを挙げることができる。そして可塑剤の例としては、燐酸トリフェニル、燐酸トリクレジル、燐酸ジフェニルなどの燐酸エステル;フタル酸ジエチル、フタル酸ジメトキシエチル等のフタル酸エステル;グリコール酸エチルフタリルエチル、グリコール酸ブチルフタリルブチルなどのグリコール酸エステル;そして、トリエチレングリコールとアジピン酸とのポリエステル、ジエチレングリコールとコハク酸とのポリエステルなどのポリエチレングリコールと脂肪族二塩基酸とのポリエステルなどを挙げることができる。   The stimulable phosphor layer coating solution includes a dispersant for improving the dispersibility of the phosphor in the coating solution, and a binder and a phosphor in the formed stimulable phosphor layer. Various additives such as a plasticizer for improving the bonding strength between them may be mixed. Examples of the dispersant used for such purpose include phthalic acid, stearic acid, caproic acid, lipophilic surfactant and the like. Examples of plasticizers include phosphate esters such as triphenyl phosphate, tricresyl phosphate and diphenyl phosphate; phthalate esters such as diethyl phthalate and dimethoxyethyl phthalate; ethyl phthalyl ethyl glycolate, butyl phthalyl butyl glycolate, etc. And a polyester of triethylene glycol and adipic acid, a polyester of polyethylene glycol and an aliphatic dibasic acid such as a polyester of diethylene glycol and succinic acid, and the like.

上記のようにして調製された塗布液を、次に下塗層の表面に均一に塗布することにより塗布液の塗膜を形成する。この塗布操作は、通常の塗布手段、例えば、ドクターブレード、ロールコーター、ナイフコーターなどを用いることにより行なうことができる。   The coating liquid prepared as described above is then uniformly applied to the surface of the undercoat layer to form a coating film of the coating liquid. This coating operation can be performed by using a normal coating means, for example, a doctor blade, a roll coater, a knife coater or the like.

次いで、形成された塗膜を徐々に加熱することにより乾燥して、下塗層上への輝尽性蛍光体層の形成を完了する。輝尽性蛍光体層の層厚は、目的とする放射線像変換パネルの特性、輝尽性蛍光体の種類、結合剤と蛍光体との混合比などによって異なるが、通常は20μm乃至1mmとする。ただし、この層厚は50乃至500μmとするのが好ましい。   Next, the formed coating film is dried by gradually heating to complete the formation of the photostimulable phosphor layer on the undercoat layer. The layer thickness of the stimulable phosphor layer varies depending on the characteristics of the intended radiation image conversion panel, the type of stimulable phosphor, the mixing ratio of the binder and the phosphor, and is usually 20 μm to 1 mm. . However, this layer thickness is preferably 50 to 500 μm.

輝尽性蛍光体層用塗布液の調製は、ボールミル、サンドミル、アトライター、三本ロールミル、高速インペラー分散機、Kadyミル、および超音波分散機などの分散装置を用いて行なわれる。   The stimulable phosphor layer coating solution is prepared using a dispersing device such as a ball mill, a sand mill, an attritor, a three-roll mill, a high-speed impeller disperser, a Kady mill, and an ultrasonic disperser.

以上、ユーロピウム賦活弗化ヨウ化バリウム等の輝尽性蛍光体の例について主に説明したが、ユーロピウム賦活弗化臭化バリウムその他の一般式(1)で表されるアルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体の製造については、上記を参照すればよい。   In the foregoing, examples of stimulable phosphors such as europium-activated barium fluoride iodide have been mainly described. However, europium-activated barium fluoride bromide and other alkaline earth metal halides represented by the general formula (1) have been described. The above may be referred to for the production of the fluoride-based stimulable phosphor.

以下、実施例を挙げて本発明を具体的に説明するが、本発明の実施態様はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, the embodiment of this invention is not limited to these.

実施例1
ユーロピウム賦活弗化ヨウ化バリウムの輝尽性蛍光体前駆体を合成するために、2つの孔をもつ耐圧容器にBaI2水溶液(3.35mol/L)2500mlを反応器に入れた。更に、水溶液中にヨウ化カリウム992gを添加した。この反応器中の反応母液を撹拌しながら80℃で保温した。減圧度40kPaで溶液中の水分を除去しながら、弗化アンモニウム水溶液(10mol/L)600mlを反応母液中にローラーポンプを用いて注入し、沈澱物を生成させた。反応終了後通気前後の溶液の質量比は0.92であった。そのままの温度で90分間攪拌した。90分攪拌した後ろ過しエタノール2000mlで洗浄した。次に80℃、12時間放置し、残留エタノールを除去した。前記前駆体をEuI3エタノール溶液(0.04mol/L)331ml中に分散、撹拌し、エタノール溶液をろ過、分離後、80℃、12時間放置し、残留エタノールを除去した。得られた前駆体の質量を計測し、投入したBaI2量から、下記式により収率を求めた。
Example 1
In order to synthesize the stimulable phosphor precursor of europium-activated barium fluoroiodide, 2500 ml of BaI 2 aqueous solution (3.35 mol / L) was placed in a reactor in a pressure-resistant vessel having two holes. Furthermore, 992 g of potassium iodide was added to the aqueous solution. The reaction mother liquor in this reactor was kept at 80 ° C. with stirring. While removing water in the solution at a reduced pressure of 40 kPa, 600 ml of an aqueous ammonium fluoride solution (10 mol / L) was injected into the reaction mother liquor using a roller pump to form a precipitate. After completion of the reaction, the mass ratio of the solution before and after aeration was 0.92. The mixture was stirred for 90 minutes at the same temperature. The mixture was stirred for 90 minutes, filtered and washed with 2000 ml of ethanol. Next, it was left at 80 ° C. for 12 hours to remove residual ethanol. The precursor was dispersed in 331 ml of EuI 3 ethanol solution (0.04 mol / L) and stirred. The ethanol solution was filtered and separated, and then allowed to stand at 80 ° C. for 12 hours to remove residual ethanol. The mass of the obtained precursor was measured, and the yield was determined by the following formula from the amount of BaI 2 charged.

収率(%)=(前駆体収量/添加BaI2から得られる理論前駆体収量)×100
得られた結果を表1に示す。
Yield (%) = (Precursor yield / Theoretical precursor yield obtained from added BaI 2 ) × 100
The obtained results are shown in Table 1.

次に、粒子形状の変化、粒子間融着による粒子サイズ分布の変化を防止するために、アルミナの超微粒子粉体を1質量%添加し、ミキサーで充分撹拌して、結晶表面にアルミナの超微粒子粉体を均一に付着させた。これを石英ボートに充填して、チューブ炉を用いて水素ガス雰囲気中、850℃で2時間焼成してユーロピウム賦活弗化ヨウ化バリウム蛍光体粒子を得た。   Next, in order to prevent changes in particle shape and changes in particle size distribution due to fusion between particles, 1% by mass of ultrafine powder of alumina is added and stirred thoroughly with a mixer, and the surface of the alumina is added to the crystal surface. The fine particle powder was uniformly attached. This was filled in a quartz boat and baked at 850 ° C. for 2 hours in a hydrogen gas atmosphere using a tube furnace to obtain europium-activated barium fluoroiodide phosphor particles.

実施例2
ユーロピウム賦活弗化ヨウ化バリウムの輝尽性蛍光体前駆体を合成するために、2つの孔をもつ耐圧容器にBaI2水溶液(3.35mol/L)2500mlとEuI3水溶液(0.2mol/L)26.5mlを反応器に入れた。更に、水溶液中にヨウ化カリウム992gを添加した。この反応器中の反応母液を撹拌しながら80℃で保温した。減圧度40kPaで溶液中の水分を除去しながら、弗化アンモニウム水溶液(10mol/L)600mlを反応母液中にローラーポンプを用いて注入し、沈澱物を生成させた。反応終了後通気前後の溶液の質量比は0.92であった。そのままの温度で90分間攪拌した。90分攪拌した後ろ過しエタノール2000mlで洗浄した。次に80℃、12時間放置し、残留エタノールを除去した。前記前駆体をEuI3エタノール溶液(0.02mol/L)331ml中に分散、撹拌し、エタノール溶液をろ過、分離後、80℃、12時間放置し、残留エタノールを除去した。実施例1と同様にして収率を求めた。
Example 2
In order to synthesize a stimulable phosphor precursor of europium-activated barium fluoroiodide, 2500 ml of BaI 2 aqueous solution (3.35 mol / L) and EuI 3 aqueous solution (0.2 mol / L) were placed in a pressure-resistant container having two holes. ) 26.5 ml was placed in the reactor. Furthermore, 992 g of potassium iodide was added to the aqueous solution. The reaction mother liquor in this reactor was kept at 80 ° C. with stirring. While removing water in the solution at a reduced pressure of 40 kPa, 600 ml of an aqueous ammonium fluoride solution (10 mol / L) was injected into the reaction mother liquor using a roller pump to form a precipitate. After completion of the reaction, the mass ratio of the solution before and after aeration was 0.92. The mixture was stirred for 90 minutes at the same temperature. The mixture was stirred for 90 minutes, filtered and washed with 2000 ml of ethanol. Next, it was left at 80 ° C. for 12 hours to remove residual ethanol. The precursor was dispersed and stirred in 331 ml of EuI 3 ethanol solution (0.02 mol / L), and the ethanol solution was filtered and separated, and then allowed to stand at 80 ° C. for 12 hours to remove residual ethanol. The yield was determined in the same manner as in Example 1.

次に、粒子形状の変化、粒子間融着による粒子サイズ分布の変化を防止するために、アルミナの超微粒子粉体を1質量%添加し、ミキサーで充分撹拌して、結晶表面にアルミナの超微粒子粉体を均一に付着させた。これを石英ボートに充填して、チューブ炉を用いて水素ガス雰囲気中、850℃で2時間焼成してユーロピウム賦活弗化ヨウ化バリウム蛍光体粒子を得た。   Next, in order to prevent changes in particle shape and changes in particle size distribution due to fusion between particles, 1% by mass of ultrafine powder of alumina is added and stirred thoroughly with a mixer, and the surface of the alumina is added to the crystal surface. The fine particle powder was uniformly attached. This was filled in a quartz boat and baked at 850 ° C. for 2 hours in a hydrogen gas atmosphere using a tube furnace to obtain europium-activated barium fluoroiodide phosphor particles.

実施例3
EuBr3エタノール溶液にしたこと以外、実施例1と同様の操作を行い、ユーロピウム賦活弗化ヨウ化バリウム蛍光体粒子を得た。
Example 3
Except that the EuBr 3 ethanol solution was used, the same operation as in Example 1 was performed to obtain europium-activated barium fluoroiodide phosphor particles.

比較例1
ユーロピウム賦活弗化ヨウ化バリウムの輝尽性蛍光体前駆体を合成するために、2つの孔をもつ耐圧容器にBaI2水溶液(3.35mol/L)2500mlとEuI3水溶液(0.2mol/L)26.5mlを反応器に入れた。更に、水溶液中にヨウ化カリウム992gを添加した。この反応器中の反応母液を撹拌しながら80℃で保温した。減圧度40kPaで溶液中の水分を除去しながら、弗化アンモニウム水溶液(10mol/L)600mlを反応母液中にローラーポンプを用いて注入し、沈澱物を生成させた。反応終了後通気前後の溶液の質量比は0.92であった。そのままの温度で90分間攪拌した。90分攪拌した後ろ過しエタノール2000mlで洗浄した。エタノール溶液をろ過、分離後、80℃、12時間放置し、残留エタノールを除去した。実施例1と同様にして収率を求めた。
Comparative Example 1
In order to synthesize a stimulable phosphor precursor of europium-activated barium fluoroiodide, 2500 ml of BaI 2 aqueous solution (3.35 mol / L) and EuI 3 aqueous solution (0.2 mol / L) were placed in a pressure-resistant container having two holes. ) 26.5 ml was placed in the reactor. Furthermore, 992 g of potassium iodide was added to the aqueous solution. The reaction mother liquor in this reactor was kept at 80 ° C. with stirring. While removing water in the solution at a reduced pressure of 40 kPa, 600 ml of an aqueous ammonium fluoride solution (10 mol / L) was injected into the reaction mother liquor using a roller pump to form a precipitate. After completion of the reaction, the mass ratio of the solution before and after aeration was 0.92. The mixture was stirred for 90 minutes at the same temperature. The mixture was stirred for 90 minutes, filtered and washed with 2000 ml of ethanol. The ethanol solution was filtered and separated, then left at 80 ° C. for 12 hours to remove residual ethanol. The yield was determined in the same manner as in Example 1.

次に、粒子形状の変化、粒子間融着による粒子サイズ分布の変化を防止するために、アルミナの超微粒子粉体を1質量%添加し、ミキサーで充分撹拌して、結晶表面にアルミナの超微粒子粉体を均一に付着させた。これを石英ボートに充填して、チューブ炉を用いて水素ガス雰囲気中、850℃で2時間焼成してユーロピウム賦活弗化ヨウ化バリウム蛍光体粒子を得た。   Next, in order to prevent changes in particle shape and changes in particle size distribution due to fusion between particles, 1% by mass of ultrafine powder of alumina is added and stirred thoroughly with a mixer, and the surface of the alumina is added to the crystal surface. The fine particle powder was uniformly attached. This was filled in a quartz boat and baked at 850 ° C. for 2 hours in a hydrogen gas atmosphere using a tube furnace to obtain europium-activated barium fluoroiodide phosphor particles.

比較例2
ユーロピウム賦活弗化ヨウ化バリウムの輝尽性蛍光体前駆体を合成するために、BaI2水溶液(4.2mol/L)2500mlとEuI3水溶液(0.2mol/L)26.5mlを反応器に入れた。この反応器中の反応母液を撹拌しながら83℃で保温した。弗化アンモニウム水溶液(13mol/L)290mlを反応母液中にローラーポンプを用いて注入し、20ml/minで添加し、沈澱物を生成させた。注入終了後そのままの温度で90分間攪拌した。90分攪拌した後ろ過しエタノール2000mlで洗浄した。エタノール溶液をろ過、分離後、80℃、12時間放置し、残留エタノールを除去した。実施例1と同様にして収率を求めた。
Comparative Example 2
In order to synthesize a stimulable phosphor precursor of europium-activated barium fluoroiodide, 2500 ml of BaI 2 aqueous solution (4.2 mol / L) and 26.5 ml of EuI 3 aqueous solution (0.2 mol / L) were used in a reactor. I put it in. The reaction mother liquor in this reactor was kept at 83 ° C. with stirring. 290 ml of an aqueous ammonium fluoride solution (13 mol / L) was poured into the reaction mother liquor using a roller pump and added at 20 ml / min to form a precipitate. After completion of the injection, the mixture was stirred at the same temperature for 90 minutes. The mixture was stirred for 90 minutes, filtered and washed with 2000 ml of ethanol. The ethanol solution was filtered and separated, then left at 80 ° C. for 12 hours to remove residual ethanol. The yield was determined in the same manner as in Example 1.

次に、粒子形状の変化、粒子間融着による粒子サイズ分布の変化を防止するために、アルミナの超微粒子粉体を1質量%添加し、ミキサーで充分撹拌して、結晶表面にアルミナの超微粒子粉体を均一に付着させた。これを石英ボートに充填して、チューブ炉を用いて水素ガス雰囲気中、850℃で2時間焼成してユーロピウム賦活弗化ヨウ化バリウム蛍光体粒子を得た。   Next, in order to prevent changes in particle shape and changes in particle size distribution due to fusion between particles, 1% by mass of ultrafine powder of alumina is added and stirred thoroughly with a mixer, and the surface of the alumina is added to the crystal surface. The fine particle powder was uniformly attached. This was filled in a quartz boat and baked at 850 ° C. for 2 hours in a hydrogen gas atmosphere using a tube furnace to obtain europium-activated barium fluoroiodide phosphor particles.

比較例3
ユーロピウム賦活弗化ヨウ化バリウムの輝尽性蛍光体前駆体を合成するために、BaI2水溶液(4.2mol/L)2500mlを反応器に入れた。この反応器中の反応母液を撹拌しながら83℃で保温した。弗化アンモニウム水溶液(13mol/L)290mlを反応母液中にローラーポンプを用いて注入し、20ml/minで添加し、沈澱物を生成させた。注入終了後そのままの温度で90分間攪拌した。90分攪拌した後ろ過しエタノール2000mlで洗浄した。次に80℃、12時間放置し、残留エタノールを除去した。前記前駆体をEuI3エタノール溶液(0.02mol/L)265ml中に分散、撹拌し、エタノール溶液をろ過、分離後、80℃、12時間放置し、残留エタノールを除去した。実施例1と同様にして収率を求めた。
Comparative Example 3
In order to synthesize a stimulable phosphor precursor of europium-activated barium fluoroiodide, 2500 ml of an aqueous BaI 2 solution (4.2 mol / L) was placed in a reactor. The reaction mother liquor in this reactor was kept at 83 ° C. with stirring. 290 ml of an aqueous ammonium fluoride solution (13 mol / L) was poured into the reaction mother liquor using a roller pump and added at 20 ml / min to form a precipitate. After completion of the injection, the mixture was stirred at the same temperature for 90 minutes. The mixture was stirred for 90 minutes, filtered and washed with 2000 ml of ethanol. Next, it was left at 80 ° C. for 12 hours to remove residual ethanol. The precursor was dispersed and stirred in 265 ml of EuI 3 ethanol solution (0.02 mol / L), the ethanol solution was filtered and separated, and then allowed to stand at 80 ° C. for 12 hours to remove residual ethanol. The yield was determined in the same manner as in Example 1.

次に、粒子形状の変化、粒子間融着による粒子サイズ分布の変化を防止するために、アルミナの超微粒子粉体を1質量%添加し、ミキサーで充分撹拌して、結晶表面にアルミナの超微粒子粉体を均一に付着させた。これを石英ボートに充填して、チューブ炉を用いて水素ガス雰囲気中、850℃で2時間焼成してユーロピウム賦活弗化ヨウ化バリウム蛍光体粒子を得た。   Next, in order to prevent changes in particle shape and changes in particle size distribution due to fusion between particles, 1% by mass of ultrafine powder of alumina is added and stirred thoroughly with a mixer, and the surface of the alumina is added to the crystal surface. The fine particle powder was uniformly attached. This was filled in a quartz boat and baked at 850 ° C. for 2 hours in a hydrogen gas atmosphere using a tube furnace to obtain europium-activated barium fluoroiodide phosphor particles.

《放射線画像変換パネルの作製》
〔下引層の形成〕
以下に記載の下引層塗布液を、ドクターブレードを用いて、厚さ188μmの発泡ポリエチレンテレフタレートフィルム(東レ社製 188E60L)に塗布し、100℃で5分間乾燥させて、乾燥膜厚30μmの下引層を塗設した。
<Production of radiation image conversion panel>
(Formation of undercoat layer)
The undercoat layer coating solution described below was applied to a 188 μm thick polyethylene foam terephthalate film (188E60L manufactured by Toray Industries, Inc.) using a doctor blade, and dried at 100 ° C. for 5 minutes. A subbing layer was applied.

(下引層塗布液)
ポリエステル樹脂溶解品(東洋紡社製 バイロン55SS、固形分35%)288.2gに、β−銅フタロシアニン分散品0.34g(固形分35%、顔料分30%)及び硬化剤としてポリイソシアネート化合物(日本ポリウレタン工業社製 コロネートHX)11.22gを混ぜ、プロペラミキサーで分散して下引層塗布液を調製した。
(Undercoat layer coating solution)
Polyester resin dissolved product (Toyobo Co., Ltd. Byron 55SS, solid content 35%) 288.2 g, β-copper phthalocyanine dispersion 0.34 g (solid content 35%, pigment content 30%) and polyisocyanate compound (Japan) 11.22 g of Coronate HX (Polyurethane Industry Co., Ltd.) was mixed and dispersed with a propeller mixer to prepare an undercoat layer coating solution.

〔蛍光体層の形成〕
(蛍光体層塗布液の調製)
実施例1で調製したユーロピウム賦活弗化ヨウ化バリウム蛍光体粒子300gと、ポリエステル樹脂(東洋紡社製 バイロン530、固形分30質量%、溶剤:メチルエチルケトン/トルエン=5/5)52.63gとを、メチルエチルケトン0.13g、トルエン0.13g及びシクロヘキサノン41.84gの混合溶剤に添加、プロペラミキサーによって分散して蛍光体層塗布液を調製した。
[Formation of phosphor layer]
(Preparation of phosphor layer coating solution)
300 g of europium-activated barium fluoroiodide phosphor particles prepared in Example 1 and 52.63 g of a polyester resin (Byron 530 manufactured by Toyobo Co., Ltd., solid content: 30% by mass, solvent: methyl ethyl ketone / toluene = 5/5) A phosphor layer coating solution was prepared by adding to a mixed solvent of 0.13 g of methyl ethyl ketone, 0.13 g of toluene and 41.84 g of cyclohexanone and dispersing by a propeller mixer.

(蛍光体層1の形成、蛍光体シート1の作製)
上記調製した蛍光体層塗布液を、ドクターブレードを用いて、上記形成した下引層上に、膜厚が180μmとなるように塗布したのち、100℃で15分間乾燥させて蛍光体層を形成して、蛍光体シート1を作製した。
(Formation of phosphor layer 1, production of phosphor sheet 1)
The prepared phosphor layer coating solution is applied onto the formed undercoat layer using a doctor blade so as to have a film thickness of 180 μm, and then dried at 100 ° C. for 15 minutes to form a phosphor layer. Thus, the phosphor sheet 1 was produced.

〔防湿性保護フィルムの作製〕
上記作製した蛍光体シート1の蛍光体層塗設面側の保護フィルムとして下記構成(A)のものを使用した。
[Production of moisture-proof protective film]
The thing of the following structure (A) was used as a protective film of the phosphor layer coating surface side of the produced phosphor sheet 1.

構成(A)
NY15μm///VMPET12μm///VMPET12μm///PET12μm///CPP20μm
NY:ナイロン
PET:ポリエチレンテレフタレート
CPP:キャステングポリプロピレン
VMPET:アルミナ蒸着PET(市販品:東洋メタライジング社製)
上記「///」は、ドライラミネーション接着層で、該接着層の厚みが3.0μmである。使用したドライラミネーション用の接着剤は、2液反応型のウレタン系接着剤を用いた。
Configuration (A)
NY 15 μm /// VMPET 12 μm // VMPET 12 μm // PET 12 μm /// CPP 20 μm
NY: Nylon PET: Polyethylene terephthalate CPP: Casting polypropylene VMPET: Alumina-deposited PET (commercial product: manufactured by Toyo Metallizing Co., Ltd.)
The above “///” is a dry lamination adhesive layer, and the thickness of the adhesive layer is 3.0 μm. As the adhesive used for dry lamination, a two-component reaction type urethane adhesive was used.

また、蛍光体シート1の支持体裏面側の保護フィルムは、CPP30μm/アルミフィルム9μm/ポリエチレンテレフタレート188μmの構成のドライラミネートフィルムとした。また、上記「/」は、ドライラミネーション接着層で、該接着層の厚みは1.5μmで2液反応型のウレタン系接着剤を使用した。   The protective film on the back side of the support of the phosphor sheet 1 was a dry laminate film having a structure of CPP 30 μm / aluminum film 9 μm / polyethylene terephthalate 188 μm. The symbol “/” is a dry lamination adhesive layer, and the adhesive layer has a thickness of 1.5 μm and a two-component reaction type urethane adhesive is used.

〔放射線像変換パネルの作製〕
前記作製した蛍光体シート1を、各々一辺が20cmの正方形に断裁した後、上記作製した2種類の防湿性の保護フィルムを用いて挟み、減圧下で周縁部をインパルスシーラーを用いて融着、封止し、周縁をカットして、放射線画像変換パネル1を作製した。尚、融着部から蛍光体シート周縁部までの距離は1mmとなるように融着した。融着に使用したインパルスシーラーのヒーターは3mm幅のものを使用した。
[Production of radiation image conversion panel]
The prepared phosphor sheet 1 is cut into squares each having a side of 20 cm, and then sandwiched using the two types of moisture-proof protective films prepared above, and the peripheral portion is fused using an impulse sealer under reduced pressure. The radiation image conversion panel 1 was produced by sealing and cutting the periphery. In addition, it fused so that the distance from a fusion | melting part to a fluorescent substance sheet peripheral part might be set to 1 mm. The impulse sealer heater used for fusion was a 3 mm wide heater.

以下、実施例1のユーロピウム賦活弗化ヨウ化バリウム蛍光体粒子を、実施例2、3及び比較例1〜3で得られたユーロピウム賦活弗化ヨウ化バリウム蛍光体粒子に変更した以外は同様にして各放射線画像変換パネル2〜6を作製した。   Hereinafter, except that the europium activated barium fluoroiodide phosphor particles of Example 1 were changed to the europium activated barium fluoroiodide phosphor particles obtained in Examples 2 and 3 and Comparative Examples 1 to 3, the same manner was performed. The radiation image conversion panels 2 to 6 were prepared.

(放射線画像変換パネルの評価)
各放射線画像変換パネルについて、以下の評価を行った。
(Evaluation of radiation image conversion panel)
Each radiation image conversion panel was evaluated as follows.

《感度》
放射線画像変換パネルに管電圧80kVpのX線を照射した後、パネルをHe−Neレーザー光(633nm)で操作して励起し、蛍光体層から放射される輝尽発光を受光器(分光感度S−5の光電子像倍管)で受光して強度を測定した。表1において、感度は比較例1を100としたときの相対値で示した。
"sensitivity"
After irradiating the radiation image conversion panel with X-rays having a tube voltage of 80 kVp, the panel is excited by operating with a He—Ne laser beam (633 nm), and the stimulated emission emitted from the phosphor layer is received by a light receiver (spectral sensitivity S). The light intensity was measured by receiving the light with a photoelectron image multiplier (-5). In Table 1, the sensitivity is shown as a relative value when Comparative Example 1 is 100.

《鮮鋭度》
放射線画像変換パネルに、鉛製のMTFチャートを通して管電圧80kVpのX線を照射した後、パネルをHe−Neレーザー光で操作して励起し、蛍光体層から放射される輝尽発光を感度測定と同じ受光器で受光して電気信号に変換し、これをアナログ/デジタル変換して磁気テープに記録し、磁気テープをコンピューターで分析して、磁気テープに記録されているX線画像の変調伝達関数(MTF)を調べた。表1には、空間周波数2サイクル/mmにおけるMTF値(%)の比較例1を100としたときの相対値で示した。
《Sharpness》
Radiation image conversion panel is irradiated with X-ray with tube voltage of 80 kVp through lead MTF chart, then the panel is excited by operating with He-Ne laser light, and the sensitivity of stimulated luminescence emitted from phosphor layer is measured. Is received by the same receiver and converted into an electrical signal, analog / digital converted and recorded on a magnetic tape, the magnetic tape is analyzed by a computer, and the X-ray image recorded on the magnetic tape is transmitted. The function (MTF) was examined. Table 1 shows the relative value when the comparative example 1 of the MTF value (%) at a spatial frequency of 2 cycles / mm is set to 100.

結果を以下に示す。   The results are shown below.

Figure 2006232969
Figure 2006232969

表1から明らかなように、本発明の実施例が比較例に比して、収率、感度、鮮鋭度において優れていることが分かる。   As is clear from Table 1, it can be seen that the examples of the present invention are superior in yield, sensitivity, and sharpness as compared with the comparative examples.

Claims (8)

下記一般式(1)で示される希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の製造方法において、ハロゲン化バリウムを溶解させた反応母液中に無機弗化物水溶液を添加してアルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の沈澱物を形成する工程と反応母液から溶媒を濃縮除去する工程を平行して行うことにより輝尽性蛍光体前駆体結晶を得る工程と、得られた前記輝尽性蛍光体前駆体結晶表面に希土類金属ハロゲン化物層を形成する工程を含むことを特徴とする希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の製造方法。
一般式(1)
Ba1-xM2xFBry1-y:aM1,bLn,cO
(式中、M1はLi,Na,K,Rb,Csから選ばれる少なくとも一種のアルカリ金属原子、M2はBe,Mg,Sr及びCaから選ばれる少なくとも一種のアルカリ土類金属原子、LnはCe,Pr,Sm,Eu,Gd,Tb,Tm,Dy,Ho,Nd,Er及びYbから選ばれる少なくとも一種の希土類元素であり、x,y,a,b及びcは、それぞれ0≦x≦0.3,0≦y≦0.3,0≦a≦0.05,0<b≦0.2,0≦c≦0.1である。)
In the method for producing a rare earth activated alkaline earth metal fluoride halide stimulable phosphor precursor represented by the following general formula (1), an aqueous inorganic fluoride solution is added to a reaction mother liquor in which barium halide is dissolved. The step of forming a precipitate of the alkaline earth metal fluoride halide stimulable phosphor precursor and the step of concentrating and removing the solvent from the reaction mother liquor are carried out in parallel to produce the stimulable phosphor precursor crystal. And a rare earth-activated alkaline earth metal fluoride halide-based stimulable phosphor, characterized by comprising a step of forming a rare earth metal halide layer on the surface of the obtained stimulable phosphor precursor crystal A method for producing a precursor.
General formula (1)
Ba 1-x M2 x FBr y I 1-y: aM1, bLn, cO
(In the formula, M1 is at least one alkali metal atom selected from Li, Na, K, Rb, and Cs, M2 is at least one alkali earth metal atom selected from Be, Mg, Sr, and Ca, and Ln is Ce, It is at least one rare earth element selected from Pr, Sm, Eu, Gd, Tb, Tm, Dy, Ho, Nd, Er, and Yb, and x, y, a, b, and c are 0 ≦ x ≦ 0. 3, 0 ≦ y ≦ 0.3, 0 ≦ a ≦ 0.05, 0 <b ≦ 0.2, 0 ≦ c ≦ 0.1.)
前記一般式(1)で示される希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の製造方法において、ハロゲン化バリウムと希土類金属ハロゲン化物を溶解させた反応母液中に無機弗化物水溶液を添加してアルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の沈澱物を形成する工程と反応母液から溶媒を濃縮除去する工程を平行して行うことにより輝尽性蛍光体前駆体結晶を得る工程と、得られた前記輝尽性蛍光体前駆体結晶表面に希土類金属ハロゲン化物層を形成する工程を含むことを特徴とする希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の製造方法。 In the method for producing a rare earth activated alkaline earth metal fluoride halide photostimulable phosphor precursor represented by the general formula (1), inorganic fluoride is contained in a reaction mother liquor in which barium halide and rare earth metal halide are dissolved. The process of forming a precipitate of an alkaline earth metal fluoride halide-based stimulable phosphor precursor with the addition of an aqueous fluoride solution and the process of concentrating and removing the solvent from the reaction mother liquor are performed in parallel. A rare earth-activated alkaline earth metal fluoride halide system, comprising: a step of obtaining a body precursor crystal; and a step of forming a rare earth metal halide layer on the surface of the photostimulable phosphor precursor crystal obtained. Method for producing photostimulable phosphor precursor. 初期及び溶媒除去工程における反応母液中のバリウム濃度が3.0〜4.5mol/Lであることを特徴とする請求項1又は2に記載の希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の製造方法。 3. The rare earth-activated alkaline earth metal fluoride halide-based stimulant according to claim 1 or 2, wherein the barium concentration in the reaction mother liquor in the initial step and the solvent removing step is 3.0 to 4.5 mol / L. Method for producing a fluorescent phosphor precursor. 前記輝尽性蛍光体前駆体形成の反応溶媒除去後の溶媒質量が反応溶媒除去前の溶媒質量に対して0.05〜0.97であることを特徴とする請求項1〜3の何れか1項に記載の希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の製造方法。 The solvent mass after removing the reaction solvent for forming the stimulable phosphor precursor is 0.05 to 0.97 with respect to the solvent mass before removing the reaction solvent. 2. A process for producing a rare earth activated alkaline earth metal fluoride halide stimulable phosphor precursor according to item 1. 反応溶媒を除去するための反応液を加熱と、かつ、他の溶媒を除去する手段を併用することを特徴とする請求項1〜4の何れか1項に記載の希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の製造方法。 The rare earth activated alkaline earth metal fluoride according to any one of claims 1 to 4, wherein the reaction solution for removing the reaction solvent is used in combination with heating and means for removing the other solvent. For producing a halide-based stimulable phosphor precursor. 希土類金属ハロゲン化物のハロゲン組成がヨウ素、あるいは臭素であることを特徴とする請求項1〜5の何れか1項に記載の希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の製造方法。 6. The rare earth-activated alkaline earth metal fluoride halide based stimulable phosphor precursor according to claim 1, wherein the halogen composition of the rare earth metal halide is iodine or bromine. Manufacturing method. 請求項1〜6の何れか1項に記載の希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体の製造方法によって得られた希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体前駆体を400℃〜1300℃、0.5時間〜12時間加熱して得られることを特徴とする希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体。 A rare earth-activated alkaline earth metal fluoride halide-based phosphor obtained by the method for producing a rare earth-activated alkaline earth metal fluoride halide-based stimulable phosphor precursor according to any one of claims 1 to 6. A rare earth-activated alkaline earth metal fluoride halide-based stimulable phosphor obtained by heating a stimulable phosphor precursor at 400 to 1300 ° C for 0.5 to 12 hours. 請求項7に記載の希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体を含むことを特徴とする放射線画像変換パネル。 A radiation image conversion panel comprising the rare earth activated alkaline earth metal fluoride halide stimulable phosphor according to claim 7.
JP2005048719A 2005-02-24 2005-02-24 Method for producing precursor for rare earth-activated alkaline earth metal fluoride halide-based photostimulable phosphor, and rare earth-activated alkaline earth metal fluoride halide-based photostimulable phosphor, and radiation image conversion panel Pending JP2006232969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005048719A JP2006232969A (en) 2005-02-24 2005-02-24 Method for producing precursor for rare earth-activated alkaline earth metal fluoride halide-based photostimulable phosphor, and rare earth-activated alkaline earth metal fluoride halide-based photostimulable phosphor, and radiation image conversion panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005048719A JP2006232969A (en) 2005-02-24 2005-02-24 Method for producing precursor for rare earth-activated alkaline earth metal fluoride halide-based photostimulable phosphor, and rare earth-activated alkaline earth metal fluoride halide-based photostimulable phosphor, and radiation image conversion panel

Publications (1)

Publication Number Publication Date
JP2006232969A true JP2006232969A (en) 2006-09-07

Family

ID=37040982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005048719A Pending JP2006232969A (en) 2005-02-24 2005-02-24 Method for producing precursor for rare earth-activated alkaline earth metal fluoride halide-based photostimulable phosphor, and rare earth-activated alkaline earth metal fluoride halide-based photostimulable phosphor, and radiation image conversion panel

Country Status (1)

Country Link
JP (1) JP2006232969A (en)

Similar Documents

Publication Publication Date Title
JP4883005B2 (en) Rare earth activated alkaline earth metal fluorohalide stimulable phosphor and radiation image conversion panel using the same
WO2007007829A1 (en) Precursor of halide-type photostimulable phosphor, halide-type photostimulable phosphor, radiation image conversion panel, and process for producing them
JPWO2006054532A1 (en) Method for producing rare earth activated alkaline earth metal fluoride halide stimulable phosphor
JP4051972B2 (en) Oxygen-introduced rare earth activated alkaline earth metal fluoride halide photostimulable phosphor, method for producing the same, and radiation image conversion panel
JPWO2006082715A1 (en) Rare earth activated alkaline earth metal fluoride halide stimulable phosphor precursor manufacturing method, rare earth activated alkaline earth metal fluoride halide stimulable phosphor and radiation image conversion panel
JP4165029B2 (en) Method for producing rare earth activated alkaline earth metal fluoride halide photostimulable phosphor
JP3783464B2 (en) Method for producing photostimulable phosphor
JP3959984B2 (en) Oxygen-introduced rare earth activated alkaline earth metal fluoride halide photostimulable phosphor, method for producing the same, and radiation image conversion panel
JP2006232969A (en) Method for producing precursor for rare earth-activated alkaline earth metal fluoride halide-based photostimulable phosphor, and rare earth-activated alkaline earth metal fluoride halide-based photostimulable phosphor, and radiation image conversion panel
JP4228550B2 (en) Method for producing rare earth activated alkaline earth metal fluoroiodide stimulable phosphor
JP3846295B2 (en) Oxygen-introduced rare earth activated alkaline earth metal fluoride halide photostimulable phosphor, method for producing the same, and radiation image conversion panel
JP3777700B2 (en) Rare earth activated barium fluoride halide based stimulable phosphor and radiation image conversion panel using the same
JP2006083329A (en) Photostimulable phosphor composed of rare earth-doped alkaline earth metal fluoride halide and radiological image conversion panel produced by using the same
JP2006008977A (en) Stimulable phosphor composed of alkaline earth metal fluoride halide activated with rare earth metal, method for producing the same and radiation image conversion panel
JP2005171078A (en) Manufacturing method of rare earth-activated alkaline earth metal fluorohalide photostimulable phosphor, rare earth-activated alkaline earth metal fluorohalide photostimulable phosphor precursor, rare earth-activated alkaline earth metal fluorohalide photostimulable phosphor and radiation image-converting panel
JP2005171077A (en) Manufacturing method of photostimulable phosphor, photostimulable phosphor precursor, photostimulable phosphor and radiation image-converting panel
JP2003246980A (en) Rare earth activated alkaline earth metal halogen fluoride photostimulable phosphor, apparatus and method for producing the same and radioactive image converting panel using the same
JP3820957B2 (en) Oxygen-introduced rare earth activated alkaline earth metal fluoride halide photostimulable phosphor and radiation image conversion panel
JP4207393B2 (en) Rare earth activated alkaline earth metal fluoroiodide stimulable phosphor manufacturing method, radiation image conversion panel, and radiation image capturing method
JP2002277590A (en) Radiographic image conversion panel and manufacturing method thereof
JP2003268364A (en) Rare earth activated alkaline earth metal fluorohalide stimulable phosphor, manufacturing method of the same and radiation image conversion panel for the same
JP4254114B2 (en) Radiation image conversion panel and method for manufacturing radiation image conversion panel
JP2004018601A (en) Rare earth-activated alkaline earth metal fluoro-halide photostimulable phosphor, method for producing the same and radiation image conversion panel
JP2007045937A (en) Halogenated compound photostimulable phosphor, method for production thereof and radiographic image transformation panel using the same
JP2006143914A (en) Stimulable phosphor material and radiation image-converting panel