JP2006231640A - Insulating material for printed wiring board and manufacturing method of printed wiring board - Google Patents

Insulating material for printed wiring board and manufacturing method of printed wiring board Download PDF

Info

Publication number
JP2006231640A
JP2006231640A JP2005048012A JP2005048012A JP2006231640A JP 2006231640 A JP2006231640 A JP 2006231640A JP 2005048012 A JP2005048012 A JP 2005048012A JP 2005048012 A JP2005048012 A JP 2005048012A JP 2006231640 A JP2006231640 A JP 2006231640A
Authority
JP
Japan
Prior art keywords
layer
printed wiring
wiring board
adhesive layer
cured resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005048012A
Other languages
Japanese (ja)
Other versions
JP4534793B2 (en
Inventor
Daisuke Kanetani
大介 金谷
Shuji Maeda
修二 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005048012A priority Critical patent/JP4534793B2/en
Publication of JP2006231640A publication Critical patent/JP2006231640A/en
Application granted granted Critical
Publication of JP4534793B2 publication Critical patent/JP4534793B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulating material A for a printed wiring board B formed by laminating a cured resin layer 2, an adhesive layer 3 and a protective film layer 4 and to enhance the continuity reliability by preventing a viahole 9 from becoming long and large when the printed wiring board B is manufactured while preventing the lowering of reliability caused by the heat history of the printed wiring board B. <P>SOLUTION: The dimension between the contact surface with the adhesive layer 3 of the cured resin layer 2 and the surface of the glass cloth 1 in the cured resin layer 2 is set to 10 μm or below. A through-hole 5 is bored in the insulating material A for the printed wiring board B so as to pierce the insulating material A in its thickness direction and, after the through-hole 5 is filled with a conductive paste 6, the protective film layer 4 is peeled from the adhesive layer 3 and heating pressure molding is further performed in a state that a conductive layer 7 is laminated and superposed on the adhesive layer 3 to obtain the printed wiring board B characterized in that the length of the viahole 9 is prevented from becoming long, the coefficient of thermal expansion of the whole of an insulating layer 8 is reduced and the difference of the coefficient of thermal expansion between the conductive paste 6 and the insulating layer 8 in the viahole 9 is reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば電子機器、電気機器、コンピュータ、通信機器等に用いられるプリント配線板を製造するために用いられるプリント配線板用絶縁材料、及びこのプリント配線板用絶縁材料を用いたプリント配線板の製造方法に関するものである。   The present invention relates to an insulating material for a printed wiring board used for manufacturing a printed wiring board used in, for example, an electronic device, an electric device, a computer, a communication device, and the like, and a printed wiring board using the insulating material for a printed wiring board. It is related with the manufacturing method.

近年、半導体チップやチップ部品等の電子部品は軽薄小型化が進んでおり、それに伴ってこれら電子部品が実装されるプリント配線板の高密度配線化への要望が高まっている。このため、インターステーシャルバイアホール(以下、IVHということがある)が各層ごとに形成された多層構造体は、従来の貫通スルーホールをもつ多層基板に比べて配線密度が高く、注目を集めている。   In recent years, electronic components such as semiconductor chips and chip components are becoming lighter and thinner, and accordingly, there is an increasing demand for high-density wiring of printed wiring boards on which these electronic components are mounted. For this reason, a multilayer structure in which interstitial via holes (hereinafter sometimes referred to as IVH) are formed for each layer has a higher wiring density than conventional multilayer substrates having through-holes, and has attracted attention. Yes.

このようなIVHを有する多層配線基板は、特公昭45−13303号公報に開示されているようにその有用性が古くから認識されているが、近年ではレーザー加工技術やIVHの形成のためのペースト印刷技術の進歩もあって、特開平8−255982号公報、特開平9−36551公報に開示されているような画期的な工法が提案されるに至っている。特に特開平9−36551号公報に開示の工法による全層IVH基板の場合は積層成形のためのプレス回数が大幅に削減され、製造工程として洗練されてきている。   The usefulness of such a multilayer wiring board having IVH has been recognized for a long time as disclosed in Japanese Patent Publication No. 45-13303, but in recent years, a paste for forming a laser processing technique or IVH has been used. With the progress of printing technology, epoch-making methods such as those disclosed in JP-A-8-255982 and JP-A-9-36551 have been proposed. In particular, in the case of an all-layer IVH substrate by the method disclosed in Japanese Patent Application Laid-Open No. 9-36551, the number of presses for laminate molding has been greatly reduced, and the manufacturing process has been refined.

そして、特許文献1では、図2に示すように、ガラスクロス1にエポキシ樹脂を含浸・硬化させた硬化樹脂層2の両面にエポキシ樹脂組成物等からなる接着層3とPETフィルム等からなる保護フィルム層4が順次配された材料A’を用い(図2(a))、バイアホール9形成用の貫通孔5を形成してこれに導電性ペースト6を充填した後に前記PETフィルムを剥離し、銅箔や導体配線7a等の導体層7を積層成形するプリント配線板B’(図2(b))の製造方法が提案されている。
特開2002−103494号公報
And in patent document 1, as shown in FIG. 2, the protection layer which consists of the adhesive layer 3 which consists of an epoxy resin composition etc. on both surfaces of the cured resin layer 2 which impregnated and hardened the epoxy resin to the glass cloth 1, and PET film etc. Using the material A ′ in which the film layer 4 is sequentially arranged (FIG. 2A), the through-hole 5 for forming the via hole 9 is formed and filled with the conductive paste 6, and then the PET film is peeled off. A method of manufacturing a printed wiring board B ′ (FIG. 2B) in which a conductor layer 7 such as a copper foil or a conductor wiring 7a is laminated is proposed.
JP 2002-103494 A

しかし、上記のように硬化樹脂層2、接着層3、保護フィルムを積層して形成した絶縁材料を製造する場合には、次に示すような問題があった。   However, when manufacturing an insulating material formed by laminating the cured resin layer 2, the adhesive layer 3, and the protective film as described above, there are the following problems.

すなわち、ガラスクロス1を含む硬化樹脂層2としては、一般的な片面基板や、銅張積層板の表面の銅箔をエッチング除去したものなどが用いられるが、このような硬化樹脂層2では、そのガラスクロス1の表面と絶縁層8の表面との間には、前記除去される銅箔の粗面の凹凸(処理足)をカバーするために通常10μmを超える厚み(樹脂厚みW’)で樹脂が存在し、また、硬化樹脂層2を銅箔が設けられていないアンクラッド基板にて形成する場合にも、ガラスクロス1が表面に露出しないようにするために同様に樹脂厚みW’が10μmを超えるものであった。そして、このような硬化樹脂層2に接着層3を形成すると、更に全体の厚みが大きくなってしまうものであった。このため、硬化樹脂層2と接着層3とでプリント配線板Bの絶縁層8を形成する場合にこの絶縁層8の厚みが大きくなってしまい、この絶縁層8に形成されるバイアホール9(IVH)の長さも長くなってしまうものであった。このようにバイアホール9の長さが長くなると、それに伴ってバイアホール9の電気抵抗値が増大して導通信頼性の低下を招き、またこの導通信頼性を維持するためにはバイアホール9の断面積を増大させることでバイアホール9の電気伝導性を維持する必要が生じ、配線の高密度化に逆行する事態が生じてしまうものであった。   That is, as the cured resin layer 2 including the glass cloth 1, a general single-sided substrate, or a copper foil on the surface of the copper-clad laminate is etched away. In such a cured resin layer 2, Between the surface of the glass cloth 1 and the surface of the insulating layer 8, the thickness (resin thickness W ′) usually exceeds 10 μm in order to cover the rough surface of the copper foil to be removed (processing foot). In the case where a resin is present and the cured resin layer 2 is formed on an unclad substrate not provided with a copper foil, the resin thickness W ′ is similarly set so that the glass cloth 1 is not exposed on the surface. It exceeded 10 μm. When the adhesive layer 3 is formed on the cured resin layer 2 as described above, the overall thickness is further increased. For this reason, when the insulating layer 8 of the printed wiring board B is formed by the cured resin layer 2 and the adhesive layer 3, the thickness of the insulating layer 8 is increased, and a via hole 9 ( The length of IVH) is also increased. When the length of the via hole 9 is increased in this manner, the electrical resistance value of the via hole 9 increases accordingly, leading to a decrease in conduction reliability. In order to maintain this conduction reliability, By increasing the cross-sectional area, it is necessary to maintain the electrical conductivity of the via hole 9, and a situation reverse to the densification of the wiring occurs.

また、バイアホール9における導電性ペースト6は、上記のような硬化樹脂層2と接着層3とで構成される絶縁層8よりも熱膨脹係数が小さく、このためバイアホール9の形成後の処理工程やプリント配線板B’の使用時などに熱による負荷がかけられた場合、熱膨張の差のためにバイアホール9における導電性ペースト6と、このバイアホール9に接続されている導体配線7aとの間で剥離等が生じてしまい、耐熱信頼性が低くなってしまうという問題もあった。   In addition, the conductive paste 6 in the via hole 9 has a smaller thermal expansion coefficient than the insulating layer 8 composed of the cured resin layer 2 and the adhesive layer 3 as described above. Therefore, the processing steps after the formation of the via hole 9 are performed. When a load due to heat is applied when the printed wiring board B ′ is used, the conductive paste 6 in the via hole 9 and the conductor wiring 7a connected to the via hole 9 due to the difference in thermal expansion There was also a problem that peeling or the like occurred between the layers and the heat resistance reliability was lowered.

本発明は上記の点に鑑みて為されたものであり、硬化樹脂層、接着層、保護フィルム層を積層して形成したプリント配線板用絶縁材料に関し、これを用いてプリント配線板を製造する場合にバイアホールの長さの長大化を防止してバイアホールにおける導通信頼性を高く維持することができるプリント配線板用絶縁材料、及びこれを用いたプリント配線板の製造方法を提供することを目的とするものである。   The present invention has been made in view of the above points, and relates to an insulating material for a printed wiring board formed by laminating a cured resin layer, an adhesive layer, and a protective film layer, and a printed wiring board is manufactured using the insulating material. The present invention provides an insulating material for a printed wiring board that can prevent the via hole from becoming long and maintain high conduction reliability in the via hole, and a printed wiring board manufacturing method using the insulating material. It is the purpose.

また、本発明は、上記プリント配線板用絶縁材料Aにより製造されるプリント配線板Bの熱履歴による信頼性の低下を防ぐことも目的とするものである。   Another object of the present invention is to prevent a decrease in reliability due to the thermal history of the printed wiring board B manufactured from the insulating material A for printed wiring boards.

本発明のプリント配線板用絶縁材料Aは、ガラスクロス1に熱硬化性樹脂組成物を含浸硬化させた硬化樹脂層2の両面に、Bステージ状態の熱硬化性樹脂組成物からなる接着層3が積層して設けられ、各接着層3の外面に保護フィルム層4が積層されており、且つ前記硬化樹脂層2における接着層3に接する表面と硬化樹脂層2内のガラスクロス1の表面との間の寸法が10μm以下であることを特徴とするものである。このようなプリント配線板用絶縁材料Aを用い、このプリント配線板用絶縁材料Aに厚み方向に貫通する貫通孔5を穿設し、この貫通孔5に導電性ペースト6を充填した後、保護フィルム層4を接着層3から剥離し、更に接着層3に導体層7を積層して重ねた状態で加熱加圧成形を行うことで、バイアホールを有するプリント配線板Bを作製することができる。このようにして形成されるプリント配線板Bでは、硬化樹脂層2と接着層3とで形成される絶縁層8の厚みを薄く形成することができ、このためこの絶縁層8に形成されるバイアホールの長さの長大化を防止することができる。また、ガラスクロス1と硬化した熱硬化性樹脂とにて構成される絶縁層8において、ガラスクロス1の占める割合が相対的に大きくなることから、絶縁層8全体の熱膨張係数が小さくなり、このため、バイアホール9における導電性ペースト6と絶縁層8との間の熱膨張係数の差が小さくなる。   Insulating material A for printed wiring board of the present invention has an adhesive layer 3 made of a thermosetting resin composition in a B-stage state on both sides of a cured resin layer 2 obtained by impregnating and curing a glass cloth 1 with a thermosetting resin composition. Are provided, the protective film layer 4 is laminated on the outer surface of each adhesive layer 3, and the surface of the cured resin layer 2 in contact with the adhesive layer 3 and the surface of the glass cloth 1 in the cured resin layer 2 The dimension between is 10 μm or less. Using such a printed wiring board insulating material A, a through hole 5 penetrating in the thickness direction is formed in the printed wiring board insulating material A, and the through hole 5 is filled with a conductive paste 6 and then protected. The printed wiring board B having a via hole can be produced by peeling the film layer 4 from the adhesive layer 3 and further performing heat and pressure molding in a state where the conductor layer 7 is laminated and stacked on the adhesive layer 3. . In the printed wiring board B formed in this manner, the insulating layer 8 formed of the cured resin layer 2 and the adhesive layer 3 can be formed thin. For this reason, the via formed in the insulating layer 8 can be formed. An increase in the length of the hole can be prevented. In addition, in the insulating layer 8 composed of the glass cloth 1 and the cured thermosetting resin, since the proportion of the glass cloth 1 is relatively large, the thermal expansion coefficient of the entire insulating layer 8 is reduced, For this reason, the difference in thermal expansion coefficient between the conductive paste 6 and the insulating layer 8 in the via hole 9 is reduced.

上記プリント配線板用絶縁材料Aでは、上記接着層3を加熱硬化した際のガラス転移点が、上記硬化樹脂層2のガラス転移点よりも10℃以上高いものであることが好ましい。この場合、絶縁層8の熱膨張係数が小さく、バイアホール9における導電性ペースト6と絶縁層8との間の熱膨張係数の差が小さい状態にある温度域を広くすることができる。   In the insulating material A for printed wiring boards, the glass transition point when the adhesive layer 3 is cured by heating is preferably higher by 10 ° C. than the glass transition point of the cured resin layer 2. In this case, the thermal expansion coefficient of the insulating layer 8 is small, and the temperature range where the difference in the thermal expansion coefficient between the conductive paste 6 and the insulating layer 8 in the via hole 9 is small can be widened.

また、本発明のプリント配線板Bの製造方法は、上記のようなプリント配線板用絶縁材料Aに厚み方向に貫通する貫通孔5を穿設する工程、前記貫通孔5に導電性ペースト6を充填する工程、上記保護フィルム層4を上記接着層3から剥離する工程、前記接着層3に導体層7を積層して重ねた状態で加熱加圧成形を行う工程を含むことを特徴とするものである。   Moreover, the method for manufacturing the printed wiring board B of the present invention includes the step of drilling the through hole 5 penetrating in the thickness direction in the insulating material A for printed wiring board as described above, and the conductive paste 6 in the through hole 5. A step of filling, a step of peeling off the protective film layer 4 from the adhesive layer 3, and a step of heat-pressing in a state in which the conductor layer 7 is laminated and stacked on the adhesive layer 3 It is.

本発明によれば、プリント配線板用絶縁材料にて作製されるバイアホールが形成されたプリント配線板における、絶縁層に形成されるバイアホールの長さの長大化を防止してバイアホールの電気抵抗値の増大を抑制し、バイアホールにおける導通信頼性を高く維持することができるものであるものであり、また併せてバイアホールにおける導電性ペーストと絶縁層との間の熱膨張係数の差を小さくすることができて、バイアホール形成後の各種処理や、プリント配線板の使用時などに熱による負荷がかけられた場合でも、バイアホールと導体層との間の剥離等が生じにくくし、耐熱信頼性を向上することができるものである。   According to the present invention, in a printed wiring board in which a via hole made of an insulating material for a printed wiring board is formed, an increase in the length of the via hole formed in the insulating layer is prevented, and the electrical property of the via hole is prevented. The increase in the resistance value can be suppressed, and the conduction reliability in the via hole can be maintained at a high level. In addition, the difference in thermal expansion coefficient between the conductive paste and the insulating layer in the via hole is also reduced. Even if a heat load is applied when using various processes after forming via holes or using a printed wiring board, peeling between the via holes and the conductor layer is less likely to occur. The heat resistance reliability can be improved.

本発明に係るプリント配線板用絶縁材料Aは、硬化樹脂層2の両面にそれぞれ接着層3と保護フィルム層4とを順次積層して構成される。   The insulating material A for printed wiring boards according to the present invention is configured by sequentially laminating an adhesive layer 3 and a protective film layer 4 on both surfaces of the cured resin layer 2 respectively.

硬化樹脂層2は、ガラスクロス1に熱硬化性樹脂組成物を含浸硬化させた構造を有しているものであり、また、この硬化樹脂層2における接着層3に接する表面と硬化樹脂層2内のガラスクロス1の表面との間の寸法は、10μm以下に形成されている。   The cured resin layer 2 has a structure in which a glass cloth 1 is impregnated and cured with a thermosetting resin composition, and the surface of the cured resin layer 2 that is in contact with the adhesive layer 3 and the cured resin layer 2. The dimension between the inner surface of the glass cloth 1 is 10 μm or less.

硬化樹脂層2は、ガラスクロス1にエポキシ樹脂ワニス等の熱硬化性樹脂ワニスを含浸した後、加熱乾燥してBステージ状態としたプリプレグの両面に銅箔等の金属箔を配置した状態で加熱硬化することで両面金属箔張積層板を得た後、両面の金属箔をエッチング処理等にて除去することで形成することができる。また、前記プリプレグの両面に離型フィルムやアルミ箔のような離型箔を配置した状態で加熱硬化した後に前記離型箔を剥離して得られるアンクラッド基板にて硬化樹脂層2を形成するようにしても良い。このように硬化樹脂層2を形成する際には、硬化樹脂層2の表面と硬化樹脂層2内のガラスクロス1の表面との間の寸法、すなわち硬化樹脂層2の表面とガラスクロス1の表面との間に存在する樹脂の厚み(以下、樹脂厚みWという)が、10μm以下となるように、ガラスクロス1に対する熱硬化性樹脂ワニスの含浸量や、硬化成形時の成形厚みが調整されるものである。このとき、ガラスクロス1の厚みと、硬化樹脂層2の厚みとの差が、0.02mm以下となる。   The cured resin layer 2 is heated in a state in which a metal foil such as a copper foil is disposed on both surfaces of a prepreg in which a glass cloth 1 is impregnated with a thermosetting resin varnish such as an epoxy resin varnish and then dried by heating. After obtaining a double-sided metal foil-clad laminate by curing, it can be formed by removing the metal foils on both sides by etching or the like. Further, the cured resin layer 2 is formed on an unclad substrate obtained by peeling the release foil after heat-curing in a state where a release film such as a release film or aluminum foil is disposed on both surfaces of the prepreg. You may do it. Thus, when forming the cured resin layer 2, the dimension between the surface of the cured resin layer 2 and the surface of the glass cloth 1 in the cured resin layer 2, that is, the surface of the cured resin layer 2 and the glass cloth 1 The impregnation amount of the thermosetting resin varnish to the glass cloth 1 and the molding thickness at the time of curing molding are adjusted so that the thickness of the resin existing between the surfaces (hereinafter referred to as the resin thickness W) is 10 μm or less. Is. At this time, the difference between the thickness of the glass cloth 1 and the thickness of the cured resin layer 2 is 0.02 mm or less.

上記樹脂厚みWは薄いほど好ましく、厚みが0となって硬化樹脂層2の表面にガラスクロス1が露出しても良いが、好ましくはこの厚みを1μm以上となるようにする。   The resin thickness W is preferably as thin as possible. The thickness may be 0 and the glass cloth 1 may be exposed on the surface of the cured resin layer 2, but this thickness is preferably 1 μm or more.

このように硬化樹脂層2内の樹脂厚みWを小さくすると、硬化樹脂層2の表面にガラスクロス1が露出する可能性があり、また仮にこの硬化樹脂層2に対して銅箔等の金属箔や金属膜の導体層7を積層成形する際に十分な密着強度が得られないおそれも生じるが、硬化樹脂層2には接着層3を積層して設けるため、ガラスクロス1が露出してもこれを接着層3にて被覆し、またこの接着層3にて金属箔や金属膜との密着性を確保することができるものである。そして、このように樹脂厚みWを小さくすることで、硬化樹脂層2全体の厚みを小さくすることができ、ひいては硬化樹脂層2と接着層3とで構成されるプリント配線板Bの絶縁層8の厚みを小さくすることができるものである。   If the resin thickness W in the cured resin layer 2 is thus reduced, the glass cloth 1 may be exposed on the surface of the cured resin layer 2, and a metal foil such as a copper foil is temporarily provided to the cured resin layer 2. Although there is a possibility that sufficient adhesion strength may not be obtained when the conductive layer 7 of metal film is laminated and formed, the adhesive layer 3 is provided on the cured resin layer 2 so that the glass cloth 1 is exposed. This is covered with the adhesive layer 3, and the adhesive layer 3 can ensure adhesion with a metal foil or a metal film. By reducing the resin thickness W in this way, the thickness of the entire cured resin layer 2 can be reduced, and as a result, the insulating layer 8 of the printed wiring board B composed of the cured resin layer 2 and the adhesive layer 3. The thickness can be reduced.

また、接着層3はBステージ状態の熱硬化性樹脂組成物にて形成される。この接着層3の形成のための熱硬化性樹脂組成物としては、適宜のものを挙げることができ、例えばエポキシ樹脂及び硬化剤を含有するエポキシ樹脂組成物のほか、ポリイミド系、ビスマレイミドトリアジン系、アクリレート系、フェノール系等の熱硬化性樹脂組成物を用いることができる。接着層3の厚みは、金属箔や金属膜等との十分な接着性が確保することができる程度に適宜調整されるが、この厚みが過大になると絶縁層8の厚みの増大化を招くため、好ましくは50μm以下の範囲の厚みに形成される。   The adhesive layer 3 is formed of a thermosetting resin composition in a B stage state. Examples of the thermosetting resin composition for forming the adhesive layer 3 may include appropriate ones. For example, in addition to an epoxy resin composition containing an epoxy resin and a curing agent, a polyimide system, a bismaleimide triazine system Thermosetting resin compositions such as acrylates and phenols can be used. The thickness of the adhesive layer 3 is appropriately adjusted to such an extent that sufficient adhesion with a metal foil or a metal film can be ensured. However, if this thickness is excessive, the thickness of the insulating layer 8 is increased. The thickness is preferably in the range of 50 μm or less.

また、保護フィルム層4は適宜のシート材にて形成することができるが、例えばポリエチレンテレフタレート製のシート材にて形成することができる。ここで、保護フィルム層4の厚みにより、後述するように導電性ペースト6の貫通孔5からの突出寸法が決定されるため、保護フィルム層4の厚みは導電性ペースト6の突出量を十分確保することができるように適宜調整されるものであるが、好ましくは12〜50μmの範囲とする。   Moreover, although the protective film layer 4 can be formed with an appropriate sheet material, for example, it can be formed with a sheet material made of polyethylene terephthalate. Here, since the protrusion dimension from the through-hole 5 of the conductive paste 6 is determined by the thickness of the protective film layer 4 as described later, the thickness of the protective film layer 4 ensures a sufficient amount of protrusion of the conductive paste 6. However, the thickness is preferably adjusted to be in the range of 12 to 50 μm.

接着層3及び保護フィルム層4は適宜の手法で形成することができるが、例えば硬化樹脂層2の両面に接着層3の形成のための熱硬化性樹脂組成物をロールコータ、カーテンコータ、スプレーコータ、スクリーン印刷などの手段で塗布し、乾燥した後、保護フィルム層4となるシート材を積層して配置し、この状態で加熱することにより熱硬化性樹脂組成物を半硬化させてBステージ状態とする。これにより、Bステージ状態となった熱硬化性樹脂組成物にて接着層3が形成されると共に、シート材にて保護フィルム層4が形成される。また、保護シートとなるシート材の一面に接着層3の形成のための熱硬化性樹脂組成物を塗布した後、これを熱ロール等を用いて硬化樹脂層2の両面にラミネートしてもよく、この場合も、Bステージ状態となった熱硬化性樹脂組成物にて接着層3が形成されると共に、シート材にて保護フィルム層4が形成される。   The adhesive layer 3 and the protective film layer 4 can be formed by an appropriate method. For example, a thermosetting resin composition for forming the adhesive layer 3 is formed on both surfaces of the cured resin layer 2 by a roll coater, a curtain coater, or a spray. After coating and drying by means such as coater and screen printing, the sheet material to be the protective film layer 4 is laminated and disposed, and the thermosetting resin composition is semi-cured by heating in this state to be a B stage State. Thereby, the adhesive layer 3 is formed with the thermosetting resin composition in the B-stage state, and the protective film layer 4 is formed with the sheet material. Moreover, after applying the thermosetting resin composition for forming the adhesive layer 3 on one surface of the sheet material to be a protective sheet, this may be laminated on both surfaces of the cured resin layer 2 using a hot roll or the like. In this case as well, the adhesive layer 3 is formed with the thermosetting resin composition in the B-stage state, and the protective film layer 4 is formed with the sheet material.

このように形成されるプリント配線板用絶縁材料Aでは、硬化樹脂層2と接着層3をそれぞれ構成するための熱硬化性樹脂組成物について、その具体的組成は特に制限されるものではないが、後述するように優れた耐熱信頼性を得るためには、好ましくは硬化樹脂層2のガラス転移点よりも、接着層3を加熱硬化した場合のそのガラス転移点の方が、10℃以上高くなるようにする。このとき、硬化樹脂層2と接着層3を形成するための各熱硬化性樹脂組成物は、硬化物のガラス転移点が前記の条件となるように各組成を決定するものであるが、特に硬化樹脂層2を形成するための熱硬化性樹脂組成物としてその硬化物のガラス転移点が120〜180℃の範囲のものを用いると共に、接着層3を形成するための熱硬化性樹脂組成物としてその硬化物のガラス転移点が120〜200℃の範囲のものを用い、且つ両者のガラス転移点の差が10〜20℃の範囲となるようにすることが好ましいものである。具体的には、例えば硬化樹脂層2を、硬化物のガラス転移点が120℃であるFR−4グレードの熱硬化性樹脂組成物にて形成し、接着層3を、硬化物のガラス転移点が180℃であるFR−5グレードの熱硬化性樹脂組成物にて形成することができる。   In the insulating material A for printed wiring board thus formed, the specific composition of the thermosetting resin composition for constituting the cured resin layer 2 and the adhesive layer 3 is not particularly limited. In order to obtain excellent heat resistance reliability as described later, the glass transition point when the adhesive layer 3 is heated and cured is preferably higher by 10 ° C. or more than the glass transition point of the cured resin layer 2. To be. At this time, each thermosetting resin composition for forming the cured resin layer 2 and the adhesive layer 3 is to determine each composition so that the glass transition point of the cured product satisfies the above-mentioned conditions. A thermosetting resin composition for forming the adhesive layer 3 is used as the thermosetting resin composition for forming the cured resin layer 2 with a glass transition point of the cured product in the range of 120 to 180 ° C. It is preferable that the cured product has a glass transition point in the range of 120 to 200 ° C., and that the difference between the two glass transition points is in the range of 10 to 20 ° C. Specifically, for example, the cured resin layer 2 is formed of an FR-4 grade thermosetting resin composition having a cured product having a glass transition point of 120 ° C., and the adhesive layer 3 is formed of a glass transition point of the cured product. Can be formed with an FR-5 grade thermosetting resin composition having a temperature of 180 ° C.

次に、このようなプリント配線板用絶縁材料Aを用いたプリント配線板Bの製造方法について説明する。   Next, the manufacturing method of the printed wiring board B using such insulating material A for printed wiring boards is demonstrated.

まず、プリント配線板用絶縁材料Aにドリル加工やレーザ加工等を施すことにより、一方の保護シート材、一方の接着層3、硬化絶縁層8、他方の接着層3、他方の保護フィルム層4を順次貫通する貫通孔5を穿設する。この貫通孔5の開口径は特に制限されないがバイアホール9の電気抵抗値を十分に低減すると共に過剰な大径化による配線密度低下を防止するためには、直径100〜500μmの範囲とすることが好ましい。   First, the insulating material A for printed wiring board is subjected to drilling, laser processing, or the like, whereby one protective sheet material, one adhesive layer 3, the cured insulating layer 8, the other adhesive layer 3, and the other protective film layer 4 A through hole 5 is sequentially drilled. The opening diameter of the through-hole 5 is not particularly limited, but in order to sufficiently reduce the electrical resistance value of the via hole 9 and prevent a decrease in wiring density due to excessive increase in diameter, the diameter should be in the range of 100 to 500 μm. Is preferred.

次に、一方の保護フィルム層4側から、銀ペースト等の導電性ペースト6を貫通孔5内に印刷法等により充填した後、両側の保護フィルム層4を剥離する。このとき保護フィルム層4の厚み分だけ、導電性ペースト6が貫通孔5から突出することになる。   Next, from one protective film layer 4 side, a conductive paste 6 such as a silver paste is filled into the through holes 5 by a printing method or the like, and then the protective film layers 4 on both sides are peeled off. At this time, the conductive paste 6 protrudes from the through hole 5 by the thickness of the protective film layer 4.

次に、露出した各接着層3の表面にそれぞれ金属箔等からなる導体層7を配置した状態で、加熱加圧成形する。   Next, it heat-press-molds in the state which has arrange | positioned the conductor layer 7 which consists of metal foil etc. on the surface of each exposed adhesive layer 3, respectively.

この加熱加圧成形時においては、接着層3は一旦加熱により溶融した後、熱硬化することとなり、このため接着層3と導体層7(金属箔)とが密着し、また同時に硬化樹脂層2とその両側の接着層3とによって、絶縁層8が形成される。   At the time of this heat and pressure molding, the adhesive layer 3 is once melted by heating and then thermally cured. For this reason, the adhesive layer 3 and the conductor layer 7 (metal foil) are in close contact, and at the same time, the cured resin layer 2 An insulating layer 8 is formed by the adhesive layer 3 on both sides thereof.

また、このとき導電性ペースト6の貫通孔5から突出する部分が導体層7(金属箔)に密接し、これにより貫通孔5の形成位置において両側の導体層7(金属箔)間を導通するバイアホール9が形成される。   Further, at this time, the portion of the conductive paste 6 protruding from the through hole 5 is in close contact with the conductor layer 7 (metal foil), thereby conducting between the conductor layers 7 (metal foil) on both sides at the position where the through hole 5 is formed. A via hole 9 is formed.

次に、必要に応じて絶縁層8の両側の導体層7(金属箔)にアディティブ法やサブトラクティブ法等を施すことにより、導体配線7aを形成する。これにより、両面に導体配線7aが形成されたプリント配線板Bを得ることができる。   Next, the conductor wiring 7a is formed by subjecting the conductor layer 7 (metal foil) on both sides of the insulating layer 8 to an additive method, a subtractive method, or the like as necessary. Thereby, the printed wiring board B in which the conductor wiring 7a is formed on both surfaces can be obtained.

各接着層3の一方又は双方に重ねる導体層7としては、上記のような金属箔に限るものではない。例えば、ポリエチレンテレフタレートフィルム等の剥離フィルムの表面に導体層7として配線加工がなされた金属膜を形成したものを用いることもできる。この場合、保護フィルム層4を剥離することにより露出した各接着層3の表面にそれぞれ剥離フィルムを金属膜からなる導体層7が各接着層3と重なるように配置した状態で、加熱加圧成形する。このとき導体層7(金属膜)における所定位置が上記貫通孔5から突出する導電性ペースト6と重なるようにする。この加熱加圧成形時においても、接着層3と導体層7(金属膜)とが密着すると共に硬化樹脂層2とその両側の接着層3とによって絶縁層8が形成され、また貫通孔5の形成位置において両側の導体層7(金属膜)間を導通するバイアホール9が形成される。   The conductor layer 7 that overlaps one or both of the adhesive layers 3 is not limited to the metal foil as described above. For example, what formed the metal film by which the wiring process was made as the conductor layer 7 on the surface of peeling films, such as a polyethylene terephthalate film, can also be used. In this case, in the state where the release film is arranged so that the conductor layer 7 made of a metal film overlaps each adhesive layer 3 on the surface of each adhesive layer 3 exposed by peeling off the protective film layer 4, heat-press molding To do. At this time, a predetermined position in the conductor layer 7 (metal film) is overlapped with the conductive paste 6 protruding from the through hole 5. Even during the heat and pressure molding, the adhesive layer 3 and the conductor layer 7 (metal film) are in close contact, and the insulating resin layer 8 is formed by the cured resin layer 2 and the adhesive layers 3 on both sides thereof. Via holes 9 are formed to conduct between the conductor layers 7 (metal films) on both sides at the formation position.

次に、剥離フィルムを剥離して導体層7(金属膜)を絶縁層8側に残存させることにより、プリント配線板Bが形成される。このとき、導体層7(金属膜)は既に配線加工がなされているため、更にアディティブ法やサブトラクティブ法等を施すことなく、導体配線7aとして形成される。   Next, the printed film B is formed by peeling the release film and leaving the conductor layer 7 (metal film) on the insulating layer 8 side. At this time, since the conductor layer 7 (metal film) has already been subjected to wiring processing, the conductor layer 7 (metal film) is formed as the conductor wiring 7a without performing an additive method or a subtractive method.

また、各接着層3の一方又は双方に重ねる導体層7として、別のプリント配線板に形成された導体配線7aを適用することもできる。この場合、保護フィルム層4を剥離することにより露出した接着層3の表面に別のプリント配線板を、その導体配線7aが各接着層3と重なるように配置した状態で、加熱加圧成形する。このとき導体層7(導体配線7a)における所定位置が上記貫通孔5から突出する導電性ペースト6と重なるようにする。この加熱加圧成形時においても、接着層3と導体層7(導体配線7a)とが密着すると共に硬化樹脂層2とその両側の接着層3とによって絶縁層8が形成され、また貫通孔5の形成位置において両側の導体層7(導体配線7a)間を導通するバイアホール9が形成される。これにより、多層のプリント配線板Bが形成されるものである。   Moreover, the conductor wiring 7a formed in another printed wiring board can also be applied as the conductor layer 7 superimposed on one or both of each adhesive layer 3. In this case, another printed wiring board is formed on the surface of the adhesive layer 3 exposed by peeling off the protective film layer 4 in a state where the conductor wiring 7a is arranged so as to overlap the adhesive layer 3 and is heated and pressed. . At this time, a predetermined position in the conductor layer 7 (conductor wiring 7 a) is overlapped with the conductive paste 6 protruding from the through hole 5. Even during the heat and pressure molding, the adhesive layer 3 and the conductor layer 7 (conductor wiring 7a) are in close contact, and the insulating resin layer 8 is formed by the cured resin layer 2 and the adhesive layers 3 on both sides thereof. A via hole 9 is formed which conducts between the conductor layers 7 (conductor wirings 7a) on both sides at the formation position. Thereby, a multilayer printed wiring board B is formed.

また、上記のように形成されたプリント配線板Bに対して更に絶縁層と導体層を積層成形し、更に多層のプリント配線板Bを得ることもできる。   In addition, an insulating layer and a conductor layer can be further laminated and formed on the printed wiring board B formed as described above to obtain a multilayer printed wiring board B.

このようにして形成されるプリント配線板Bでは、上記のようにプリント配線板用絶縁材料Aにおける硬化樹脂層2の接着層3に接する表面と硬化樹脂層2内のガラスクロス1の表面との間の寸法(樹脂厚みW)が10μm以下となっているために、硬化樹脂層2と接着層3とで形成される絶縁層8の厚みを薄く形成することができ、このためこの絶縁層8に形成されるバイアホール9の長さの長大化を防止してバイアホール9の電気抵抗値の増大を抑制し、バイアホール9における導通信頼性を高く維持することができるものである。   In the printed wiring board B formed in this way, the surface of the insulating material A for printed wiring board in contact with the adhesive layer 3 of the cured resin layer 2 and the surface of the glass cloth 1 in the cured resin layer 2 as described above. Since the dimension (resin thickness W) between them is 10 μm or less, the insulating layer 8 formed by the cured resin layer 2 and the adhesive layer 3 can be formed thin, and for this reason, the insulating layer 8 Thus, the increase in the electrical resistance value of the via hole 9 can be suppressed by preventing an increase in the length of the via hole 9 formed in the first hole, and the conduction reliability in the via hole 9 can be maintained high.

また、上記のように樹脂厚みWを10μm以下とすると、ガラスクロス1と硬化した熱硬化性樹脂とにて構成される絶縁層8において、ガラスクロス1の占める割合が相対的に大きくなることから、絶縁層8全体の熱膨張係数が小さくなる。このため、バイアホール9における導電性ペースト6と絶縁層8との間の熱膨張係数の差が小さくなり、バイアホール9形成後の各種処理や、プリント配線板Bの使用時などに熱による負荷がかけられた場合でも、バイアホール9と導体層7との間の剥離等が生じにくくなり、耐熱信頼性が向上するものである。   In addition, when the resin thickness W is 10 μm or less as described above, the proportion of the glass cloth 1 in the insulating layer 8 composed of the glass cloth 1 and the cured thermosetting resin is relatively large. The thermal expansion coefficient of the entire insulating layer 8 is reduced. For this reason, the difference in the thermal expansion coefficient between the conductive paste 6 and the insulating layer 8 in the via hole 9 is reduced, and a load caused by heat during various processes after the via hole 9 is formed or when the printed wiring board B is used. Even when applied, peeling between the via hole 9 and the conductor layer 7 is less likely to occur, and heat resistance reliability is improved.

また、特に上記のようにプリント配線板用絶縁材料Aにおける接着層3を加熱硬化した際のガラス転移点が、硬化樹脂層2のガラス転移点よりも10℃以上高いものであると、プリント配線板Bに熱による負荷がかけられる場合での信頼性が更に向上する。すなわち、接着層3を構成する熱硬化性樹脂組成物の硬化物は、ガラス転移点以上となると熱膨張係数が急激に増大して、絶縁層8全体の熱膨張係数も大きくなるものであるが、上記のように接着層3を加熱硬化した際のガラス転移点を高くすることにより、絶縁層8の熱膨張係数が小さい状態にある温度域を広くすることができ、これにより上記のようなバイアホール9と導体層7との間の剥離等が生じることを更に抑制して、耐熱信頼性を向上することができるものである。   Moreover, when the glass transition point when the adhesive layer 3 in the insulating material A for printed wiring boards is heated and cured as described above is higher than the glass transition point of the cured resin layer 2 by 10 ° C. or more, the printed wiring The reliability in the case where a load due to heat is applied to the plate B is further improved. That is, although the cured product of the thermosetting resin composition constituting the adhesive layer 3 has a glass transition point or higher, the thermal expansion coefficient increases rapidly and the thermal expansion coefficient of the entire insulating layer 8 also increases. By increasing the glass transition point when the adhesive layer 3 is heat-cured as described above, the temperature range in which the thermal expansion coefficient of the insulating layer 8 is small can be widened. It is possible to further suppress the occurrence of peeling between the via hole 9 and the conductor layer 7 and improve the heat resistance reliability.

(実施例1)
ガラスクロス1(WEA品番106;厚み0.038mm)にエポキシ樹脂ワニス(松下電工株式会社製の積層板「R1766」の製造用途に用いられているエポキシ樹脂ワニス)を含浸、乾燥させることにより樹脂分70%のプリプレグを作製した。
Example 1
Glass cloth 1 (WEA product number 106; thickness 0.038 mm) is impregnated with epoxy resin varnish (epoxy resin varnish used for the production of laminate “R1766” manufactured by Matsushita Electric Works Co., Ltd.) and dried. A 70% prepreg was produced.

このプリプレグの両面にアルミニウム箔を配置した状態で、真空下、190℃、4.0MPaの条件下で180分の加熱加圧した後、アルミニウム箔を除去し、板厚0.050mmのアンクラッド基板からなる硬化樹脂層2を得た。このときの硬化樹脂層2における両側の樹脂厚みWは0.006mmであった。   An aluminum clad substrate having a thickness of 0.050 mm was removed after heating and pressurizing at 190 ° C. and 4.0 MPa for 180 minutes in a state where aluminum foils were arranged on both sides of the prepreg. The cured resin layer 2 consisting of was obtained. The resin thickness W on both sides of the cured resin layer 2 at this time was 0.006 mm.

次に、ビスフェノールA型臭素化エポキシ樹脂メチルエチルケトン溶液(ダウ・ケミカル社製「DER514」)80重量%、o−クレゾールノボラック型エポキシ樹脂メチルエチルケトン溶液(大日本インキ化学工業株式会社製「EPICLON−N−690」)7重量%、エタン型固形エポキシ樹脂(ジャパンエポキシレジン株式会社製「EOPN1031」)5重量%、ジシアンジアミド(日本カーバイド工業株式会社製、ジメチルホルアミド10%溶液)8重量%からなる熱硬化性樹脂組成物ワニスを調製し、これをロールコーターにて上記硬化樹脂層2の一面に10μmの厚みで塗布した後、50℃でタック性が無くなるまで60分乾燥することで、接着層3を形成した。次いで同様にして硬化樹脂層2の他面にも接着層3を形成した。   Next, 80% by weight of bisphenol A brominated epoxy resin methyl ethyl ketone solution (“DER514” manufactured by Dow Chemical Company), o-cresol novolac type epoxy resin methyl ethyl ketone solution (“EPICLON-N-690 manufactured by Dainippon Ink and Chemicals, Inc.) ”) 7% by weight, ethane-type solid epoxy resin (“ EOPN1031 ”manufactured by Japan Epoxy Resin Co., Ltd.) 5% by weight, dicyandiamide (Nihon Carbide Industries Co., Ltd., dimethylformamide 10% solution) 8% by weight A resin composition varnish is prepared and applied to one surface of the cured resin layer 2 with a roll coater to a thickness of 10 μm, followed by drying at 50 ° C. for 60 minutes until tackiness disappears, thereby forming an adhesive layer 3 did. Subsequently, the adhesive layer 3 was also formed on the other surface of the cured resin layer 2 in the same manner.

次に、保護フィルム層4として、ポリエチレンテレフタレート製のフィルム(東レ株式会社製「T−60」)を、50℃、0.49MPa(5kgf/cm2)の条件でロールラミネートすることにより、各接着層3の表面に貼着し、プリント配線板用絶縁材料Aを得た。 Next, as the protective film layer 4, a film made of polyethylene terephthalate (“T-60” manufactured by Toray Industries, Inc.) is roll laminated under the conditions of 50 ° C. and 0.49 MPa (5 kgf / cm 2 ). It stuck on the surface of the layer 3, and the insulating material A for printed wiring boards was obtained.

このプリント配線板用絶縁材料Aの絶縁層8と、硬化後の接着層3の各ガラス転移温度を、TMA法で測定したところ、それぞれ140℃と178℃であった。   The glass transition temperatures of the insulating layer 8 of the printed wiring board insulating material A and the cured adhesive layer 3 were measured by the TMA method, and were 140 ° C. and 178 ° C., respectively.

(実施例2)
硬化樹脂層2として、実施例1と同様のアンクラッド基板を形成した。
(Example 2)
As the cured resin layer 2, the same unclad substrate as in Example 1 was formed.

次に、液状臭素化ビスフェノールA型エポキシ樹脂(東都化成株式会社製「YDF−8170」)20重量部、臭素化ビスフェノールA型エポキシ樹脂(東都化成株式会社製「YDB−400」)20重量部を、溶媒であるメチルエチルケトンに攪拌しながら溶解させ、そこへフェノールノボラック型硬化剤(明和化成株式会社製「MEH−7500」)20重量部を加えて、熱硬化性樹脂組成物ワニスを調製し、これを硬化樹脂層2の一面に10μmの厚みで塗布した後、50℃でタック性が無くなるまで60分乾燥することで、接着層3を形成した。次いで同様にして硬化樹脂層2の他面にも接着層3を形成した
次に、実施例1と同様にして保護フィルム層4を各接着層3の表面に貼着し、プリント配線板用絶縁材料Aを得た。
Next, 20 parts by weight of liquid brominated bisphenol A type epoxy resin (“YDF-8170” manufactured by Toto Kasei Co., Ltd.) and 20 parts by weight of brominated bisphenol A type epoxy resin (“YDB-400” manufactured by Toto Kasei Co., Ltd.) Then, it is dissolved in methyl ethyl ketone as a solvent while stirring, and 20 parts by weight of a phenol novolac type curing agent (“MEH-7500” manufactured by Meiwa Kasei Co., Ltd.) is added thereto to prepare a thermosetting resin composition varnish. Was applied to one surface of the cured resin layer 2 to a thickness of 10 μm, and then dried at 50 ° C. for 60 minutes until tackiness disappeared, whereby the adhesive layer 3 was formed. Next, the adhesive layer 3 was also formed on the other surface of the cured resin layer 2 in the same manner. Next, the protective film layer 4 was adhered to the surface of each adhesive layer 3 in the same manner as in Example 1 to insulate the printed wiring board. Material A was obtained.

このプリント配線板用絶縁材料Aの絶縁層8と、硬化後の接着層3の各ガラス転移温度を、TMA法で測定したところ、それぞれ140℃と178℃であった。   The glass transition temperatures of the insulating layer 8 of the printed wiring board insulating material A and the cured adhesive layer 3 were measured by the TMA method, and were 140 ° C. and 178 ° C., respectively.

(比較例1)
ガラスクロス1(WEA品番106;厚み0.038mm)にエポキシ樹脂ワニス(松下電工株式会社製の積層板「R1766」の製造用途に用いられているエポキシ樹脂ワニス)を含浸、乾燥させることにより樹脂分70%のプリプレグを作製した。
(Comparative Example 1)
Glass cloth 1 (WEA product number 106; thickness 0.038 mm) is impregnated with epoxy resin varnish (epoxy resin varnish used for the production of laminate “R1766” manufactured by Matsushita Electric Works Co., Ltd.) and dried. A 70% prepreg was produced.

このプリプレグの両面にアルミニウム箔を配置した状態で、真空下、190℃、3.0MPaの条件下で180分の加熱加圧した後、アルミニウム箔を除去し、板厚0.064mmのアンクラッド基板からなる硬化樹脂層2を得た。このときの硬化樹脂層2における両側の樹脂厚みWは0.013mmであった。   An aluminum clad substrate having a thickness of 0.064 mm was removed after heating and pressing for 180 minutes under conditions of 190 ° C. and 3.0 MPa under vacuum with aluminum foil disposed on both sides of the prepreg. The cured resin layer 2 consisting of was obtained. The resin thickness W on both sides of the cured resin layer 2 at this time was 0.013 mm.

次に、実施例1と同様にして、硬化樹脂層2の両面に接着層3を形成した後、更に各接着層3の表面に保護フィルム層4を貼着し、プリント配線板用絶縁材料Aを得た。   Next, in the same manner as in Example 1, after forming the adhesive layer 3 on both surfaces of the cured resin layer 2, the protective film layer 4 was further adhered to the surface of each adhesive layer 3, and the printed wiring board insulating material A Got.

このプリント配線板用絶縁材料Aの絶縁層8と、硬化後の接着層3の各ガラス転移温度を、TMA法で測定したところ、それぞれ140℃と138℃であった。   When the glass transition temperatures of the insulating layer 8 of this printed wiring board insulating material A and the adhesive layer 3 after curing were measured by the TMA method, they were 140 ° C. and 138 ° C., respectively.

(プリント配線板Bの製造)
上記各実施例及び比較例にて得られたプリント配線板用絶縁材料Aに対して、炭酸ガスレーザー(三菱電機株式会社製「ML605」)を用いて、直径150μmの貫通孔5を穿設し、この貫通孔5内に、スキージ印刷法にて導電性ペースト6(銀コート銅粉)を印刷充填した。
(Manufacture of printed wiring board B)
Using the carbon dioxide laser ("ML605" manufactured by Mitsubishi Electric Corporation), a through-hole 5 having a diameter of 150 µm was formed in the insulating material A for printed wiring board obtained in each of the above examples and comparative examples. The conductive paste 6 (silver-coated copper powder) was printed and filled in the through holes 5 by a squeegee printing method.

次に、両面の保護フィルムを剥離して、導電性ペースト6からなるバンプを突出させて露出させ、この状態で厚み18μm銅箔を各両面に配して、真空プレスを用いて真空下で、180℃、3.0MPaの条件下で120分間、加熱加圧成形した。   Next, the protective films on both sides are peeled off, and the bumps made of the conductive paste 6 are projected and exposed. In this state, a 18 μm thick copper foil is arranged on each side, and under vacuum using a vacuum press, Heat-press molding was performed at 180 ° C. and 3.0 MPa for 120 minutes.

次に、基板の端面をカットしたのち、両面の銅箔に対して、ドライフィルムの形成、露光現像、塩化第二銅でのエッチング処理を順次施すことにより、配線加工を施した。   Next, after cutting the end face of the substrate, the copper foil on both sides was subjected to wiring processing by sequentially forming a dry film, exposing and developing, and etching with cupric chloride.

このように形成された導体層7(導体配線7a)における、バイアホール9と接続されている部分の電気抵抗値を測定し、これをバイアホール9あたりの電気抵抗値に換算した。   In the thus formed conductor layer 7 (conductor wiring 7a), the electrical resistance value of the portion connected to the via hole 9 was measured, and this was converted into the electrical resistance value per via hole 9.

また、同基板を260℃の半田槽に20秒間、3回フロートさせて熱負荷を与えた後、同様にしてバイアホール9あたりの電気抵抗値を導出した。   Further, the substrate was floated in a solder bath at 260 ° C. for 3 times for 20 seconds to give a thermal load, and the electrical resistance value per via hole 9 was similarly derived.

これらの結果は下記表1に示すとおりであり、比較例1に対して実施例1,2ではバイアホール9あたりの電気抵抗値が低く抑えられると共に、熱負荷が与えられた際の抵抗変化率値も小さく押さえられており、特に実施例2では抵抗変化率値が著しく抑制された。   These results are as shown in Table 1 below, and in Examples 1 and 2 with respect to Comparative Example 1, the electrical resistance value per via hole 9 is kept low, and the rate of change in resistance when a thermal load is applied. The value was also kept small, and in particular, the resistance change rate value was remarkably suppressed in Example 2.

Figure 2006231640
Figure 2006231640

本発明の実施の形態の一例を示すものであり、(a)乃至(b)は断面図である。An example of embodiment of this invention is shown and (a) thru | or (b) is sectional drawing. 従来技術の一例を示すものであり、(a)及び(b)は断面図である。An example of a prior art is shown, (a) And (b) is sectional drawing.

符号の説明Explanation of symbols

A プリント配線板用絶縁材料
B プリント配線板
1 ガラスクロス
2 硬化樹脂層
3 接着層
4 保護フィルム層
5 貫通孔
6 導電性ペースト
7 導体層
8 絶縁層
9 バイアホール
A Insulating material for printed wiring board B Printed wiring board 1 Glass cloth 2 Cured resin layer 3 Adhesive layer 4 Protective film layer 5 Through hole 6 Conductive paste 7 Conductive layer 8 Insulating layer 9 Via hole

Claims (3)

ガラスクロスに熱硬化性樹脂組成物を含浸硬化させた硬化樹脂層の両面に、Bステージ状態の熱硬化性樹脂組成物からなる接着層が積層して設けられ、各接着層の外面に保護フィルム層が積層されており、且つ前記硬化樹脂層における接着層に接する表面と硬化樹脂層内のガラスクロスの表面との間の寸法が10μm以下であることを特徴とするプリント配線板用絶縁材料。   Adhesive layers made of a thermosetting resin composition in a B-stage state are laminated on both sides of a cured resin layer obtained by impregnating and curing a thermosetting resin composition on a glass cloth, and a protective film is provided on the outer surface of each adhesive layer. An insulating material for a printed wiring board, wherein a layer is laminated, and a dimension between a surface in contact with the adhesive layer in the cured resin layer and a surface of the glass cloth in the cured resin layer is 10 μm or less. 上記接着層を加熱硬化した際のガラス転移点が、上記硬化樹脂層のガラス転移点よりも10℃以上高いものであることを特徴とする請求項1に記載のプリント配線板用絶縁材料。   The insulating material for printed wiring boards according to claim 1, wherein a glass transition point when the adhesive layer is heat-cured is higher by 10 ° C or more than a glass transition point of the cured resin layer. 請求項1又は2に記載のプリント配線板用絶縁材料に厚み方向に貫通する貫通孔を穿設する工程、前記貫通孔に導電性ペーストを充填する工程、上記保護フィルム層を上記接着層から剥離する工程、前記接着層に導体層を積層して重ねた状態で加熱加圧成形を行う工程を含むことを特徴とするプリント配線板の製造方法。
A step of forming a through hole penetrating in the thickness direction in the insulating material for a printed wiring board according to claim 1, a step of filling the through hole with a conductive paste, and peeling off the protective film layer from the adhesive layer And a step of performing heat and pressure molding in a state where a conductor layer is laminated and stacked on the adhesive layer.
JP2005048012A 2005-02-23 2005-02-23 Printed wiring board and printed wiring board manufacturing method Expired - Fee Related JP4534793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005048012A JP4534793B2 (en) 2005-02-23 2005-02-23 Printed wiring board and printed wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005048012A JP4534793B2 (en) 2005-02-23 2005-02-23 Printed wiring board and printed wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JP2006231640A true JP2006231640A (en) 2006-09-07
JP4534793B2 JP4534793B2 (en) 2010-09-01

Family

ID=37039824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005048012A Expired - Fee Related JP4534793B2 (en) 2005-02-23 2005-02-23 Printed wiring board and printed wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP4534793B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261861A (en) * 1992-03-19 1993-10-12 Shin Kobe Electric Mach Co Ltd Laminated sheet
JPH05283828A (en) * 1992-03-31 1993-10-29 Asahi Shiyueebell Kk Laminate for printed-circuit board
JP2000068644A (en) * 1998-08-26 2000-03-03 Matsushita Electric Works Ltd Manufacture of wiring board
JP2002064270A (en) * 2000-08-17 2002-02-28 Matsushita Electric Ind Co Ltd Circuit board and its manufacturing method
JP2004006773A (en) * 2002-04-02 2004-01-08 Toppan Printing Co Ltd Manufacturing method of printed board, printed board and semiconductor package

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261861A (en) * 1992-03-19 1993-10-12 Shin Kobe Electric Mach Co Ltd Laminated sheet
JPH05283828A (en) * 1992-03-31 1993-10-29 Asahi Shiyueebell Kk Laminate for printed-circuit board
JP2000068644A (en) * 1998-08-26 2000-03-03 Matsushita Electric Works Ltd Manufacture of wiring board
JP2002064270A (en) * 2000-08-17 2002-02-28 Matsushita Electric Ind Co Ltd Circuit board and its manufacturing method
JP2004006773A (en) * 2002-04-02 2004-01-08 Toppan Printing Co Ltd Manufacturing method of printed board, printed board and semiconductor package

Also Published As

Publication number Publication date
JP4534793B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
US7955454B2 (en) Method for forming wiring on insulating resin layer
JP5816239B2 (en) Multilayer printed wiring board manufacturing method and multilayer printed wiring board
US6451710B1 (en) Method of manufacturing multi-layer printed wiring board
JP6337927B2 (en) Manufacturing method of multilayer printed wiring board
US8198551B2 (en) Power core for use in circuitized substrate and method of making same
US20060210780A1 (en) Circuit board and production method therefor
JP2007288022A (en) Multilayer printed wiring board and its manufacturing method
JP2006156432A (en) Method for manufacturing multilayer printed wiring board
JP2004055618A (en) Process for producing multilayer printed wiring board
JP5532924B2 (en) Manufacturing method of multilayer printed wiring board
US20130025839A1 (en) Thermal substrate
JP2008277384A (en) Adhesive sheet for build-up type multilayer board, and manufacturing method for circuit board using the same
JP4992514B2 (en) Method for manufacturing printed wiring board
JPH1154938A (en) Multilayered wiring board
JP4534793B2 (en) Printed wiring board and printed wiring board manufacturing method
JP2005238520A (en) Prepreg and multilayered printed wiring board
JP4301152B2 (en) Via hole forming metal clad laminate and through hole forming unclad plate
JPH10335834A (en) Multilayered wiring board
JP2003086941A (en) Printed wiring board
JP2004327744A (en) Multilayer wiring board and manufacturing method therefor
JP2004134693A (en) Manufacturing method of multilayer printed circuit board
JP2001230550A (en) Method for manufacturing multil ayer printed wiring board circuit substrate
JP2007115993A (en) Printed wiring board, its production method and multilayered printed wiring board
JPH09260849A (en) Inner layer circuit board manufacturing method and multilayered printed wiring board manufacturing method
US20150041206A1 (en) Laminate for printed circuit board, printed circuit board using the same, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees