JP2006231392A - Method for producing cast slab - Google Patents

Method for producing cast slab Download PDF

Info

Publication number
JP2006231392A
JP2006231392A JP2005053275A JP2005053275A JP2006231392A JP 2006231392 A JP2006231392 A JP 2006231392A JP 2005053275 A JP2005053275 A JP 2005053275A JP 2005053275 A JP2005053275 A JP 2005053275A JP 2006231392 A JP2006231392 A JP 2006231392A
Authority
JP
Japan
Prior art keywords
slab
flaw detection
pipe
cutting
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005053275A
Other languages
Japanese (ja)
Other versions
JP4655675B2 (en
Inventor
Minoru Matsui
穣 松井
Yukimichi Iizuka
幸理 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005053275A priority Critical patent/JP4655675B2/en
Publication of JP2006231392A publication Critical patent/JP2006231392A/en
Application granted granted Critical
Publication of JP4655675B2 publication Critical patent/JP4655675B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flaw detection scanning method and a method for producing a cast slab by using this flaw detection scanning method with which the optimum cutting-off position is decided from starting of the flaw detection with one sensor and the time till cutting off is made to drastically high speed. <P>SOLUTION: When the flaw of a cast steel material is detected, the flaw detection is performed from a prescribed starting position of the flaw detection to the longitudinal direction toward the inside from the end surface of the steel material, and at the position in the longitudinal direction that a shrinkage-pipe is not detected, the flaw detecting direction is changed into the width direction perpendicular to the longitudinal direction to perform the flaw detection. At the position in the width direction which detects the shrinkage pipe, the flaw detection is repeatedly performed by changing the flaw detecting direction into the longitudinal direction, and the longitudinal directional position where the shrinkage pipe is not detected over the whole width in the width direction, is decided as the cutting-off position and the steel material is cut off at this decided cutting-off position. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鋳片の製造方法に関するもので、特に切断面に内部欠陥(以下、パイプと称する)が現れず切断量が最小となる切断位置を決定して、切断を行う鋳片の製造方法である。   The present invention relates to a method for manufacturing a slab, and in particular, a method for manufacturing a slab for performing cutting by determining a cutting position where an internal defect (hereinafter referred to as a pipe) does not appear on the cut surface and the cutting amount is minimized. It is.

鋳造スラブの最トップ部(連続鋳造された鋳片の最尾端部、因みに先端部はボトムと称する)や異鋼種連々鋳継目には、パイプまたはメカニカルパイプと呼ばれる空孔ができる。図1は、鋳造スラブの最トップ部およびカット位置を模式的に表した図である。L方向は、鋳片の端面から内側に向かっての長手方向であり、C方向は、L方向と直交する方向すなわち鋳片の幅方向を表す。鋳造スラブの最トップ部1にできる大きなパイプ2を一次パイプ、他所にできるパイプ3を二次パイプと呼ぶ。一次パイプは空孔も大きく、圧延工程で二枚割れの原因となる為、最トップ部分を切り落とすことで一次パイプの除去が行われている。二次パイプの空隙の中は真空であり、熱間圧延によって圧着され無害化される。   Holes called pipes or mechanical pipes are formed in the uppermost part of the cast slab (the rearmost end part of the continuously cast slab, and the tip part is called the bottom) and the continuous joints of different steel types. FIG. 1 is a diagram schematically showing the topmost portion and the cutting position of a cast slab. The L direction is a longitudinal direction from the end face of the slab to the inside, and the C direction represents a direction orthogonal to the L direction, that is, a width direction of the slab. The large pipe 2 that can be the topmost portion 1 of the cast slab is called a primary pipe, and the pipe 3 that can be made elsewhere is called a secondary pipe. Since the primary pipe has large pores and causes cracks in the rolling process, the primary pipe is removed by cutting off the top portion. The space in the secondary pipe is vacuum, and is crimped and detoxified by hot rolling.

現状の最トップ部の切り落とし作業では、切断前にパイプの分布状況がわからない為に、切断面に一次パイプまたは二次パイプが開口してしまうことが多々ある。切断面4に現れたパイプ部分5は酸化することにより、圧延時に二枚割れの原因となる。その為、切断面にパイプが現れた場合には、更に切断面にパイプが現れなくなるまで切り落としを繰り返し行なうことになる。   In the current cutting operation of the top part, since the distribution state of the pipe is not known before cutting, the primary pipe or the secondary pipe often opens on the cut surface. The pipe portion 5 appearing on the cut surface 4 is oxidized, thereby causing a double crack during rolling. Therefore, when a pipe appears on the cut surface, the cutting is repeated until the pipe no longer appears on the cut surface.

図1(B)は、図1(A)に示す切断位置A1でカットした場合を、模式的に示す図である。一次パイプ2の一部が残り、切断面にパイプ5が現れるので再切断することになる。2回目の切断位置をA3とした場合には、パイプは切断面には現れないことから切り落とし作業は完了となる。しかし、一次パイプのある部位に加えて良片部分も多く切り落とすことになり、歩留まりを低下させることになる。さらにもし、2回目の切断位置をA4とした場合には、二次パイプ3が切断面に現れるので、先に述べた理由(切断面に現れたパイプ部分は酸化することにより、圧延時に二枚割れの原因となる)から更に再切断を行うことになる。よって、A3における切断よりも更に歩留まりが低下することとなる。   FIG. 1 (B) is a diagram schematically showing a case of cutting at the cutting position A1 shown in FIG. 1 (A). Since part of the primary pipe 2 remains and the pipe 5 appears on the cut surface, it is cut again. When the second cutting position is A3, the pipe does not appear on the cut surface, and the cutting operation is completed. However, in addition to the portion where the primary pipe is located, many good pieces are cut off, resulting in a decrease in yield. Furthermore, when the second cutting position is set to A4, the secondary pipe 3 appears on the cut surface. Therefore, the reason described above (the pipe portion appearing on the cut surface is oxidized, so that two sheets are rolled during rolling. This will cause re-cutting. Therefore, the yield is further lowered than the cutting at A3.

例えば、図1に示すようなパイプの分布状況を事前に知ることができれば、図1におけるA2での切断が、切断面に内部欠陥(パイプ)が現れず、切り落としてしまう良片部分の量を最小とするベストの切断位置であると決定できる。さらに、複数回の切断を行うことなく、一回の切断で一次パイプ部分を切り落とすことも可能となる。   For example, if the distribution situation of the pipe as shown in FIG. 1 can be known in advance, the cutting at A2 in FIG. It can be determined that it is the cutting position of the best vest. Furthermore, it is possible to cut off the primary pipe portion by a single cut without performing a plurality of cuts.

このような課題を解決するために、これまでに例えば、特許文献1、特許文献2および非特許文献1にあるような鋳片のパイプの有無を計測するための方法が開示・開発されている。特許文献1は、鋳片を分塊圧延後に局部水浸法によるカップリングで超音波を鋳片に送信し、鋳片の底面からの反射波と内部からの反射波を受信することでパイプの有無を判定して、最適な切断位置を決定し切断する方法である。また、特許文献2および非特許文献1は、電磁超音波探触子を用いて鋳片に対して超音波を送信して、反射法または透過法で鋳片内部からの反射波を受信してパイプを探傷する方法である。
特開昭62−181817号公報 特開昭60−45372号公報 川島捷宏;電磁超音波技術とその応用,西山記念技術講座,日本鉄鋼協会,76,1981,p.229
In order to solve such a problem, methods for measuring the presence or absence of a slab pipe as disclosed in Patent Document 1, Patent Document 2, and Non-Patent Document 1, for example, have been disclosed and developed so far. . In Patent Document 1, ultrasonic waves are transmitted to the slab by coupling by a local water immersion method after the slab is rolled into pieces, and the reflected wave from the bottom surface of the slab and the reflected wave from the inside are received to receive the pipe. In this method, the presence or absence is determined, the optimum cutting position is determined, and cutting is performed. Patent Document 2 and Non-Patent Document 1 transmit an ultrasonic wave to a slab using an electromagnetic ultrasonic probe, and receive a reflected wave from the inside of the slab by a reflection method or a transmission method. This is a method of flaw detection on pipes.
Japanese Patent Laid-Open No. 62-181817 JP-A-60-45372 Akihiro Kawashima; Electromagnetic Ultrasound Technology and its Applications, Nishiyama Memorial Technology Course, Japan Iron and Steel Institute, 76, 1981, p.229

特許文献1記載の方法では、実施例としてセンサーを幅方向の任意の位置に設置して、長さ方向に走査また鋳片を長さ方向に移動させることにより、任意の位置における長さ方向でのパイプの有無を探傷する方法をとっている。   In the method described in Patent Document 1, the sensor is installed at an arbitrary position in the width direction as an example, and the length direction at an arbitrary position is obtained by scanning in the length direction or moving the slab in the length direction. The method of flaw detection is taken.

図2は、実際に連鋳鋳片のパイプ部の形状とその分布状況を、超音波探傷による正面像で調査した結果の一例であり、(A)および(B)のパイプ部形状が大きく異なる2種類を例に挙げている。図2(B)のようなC方向に平坦な形状をしたパイプであれば、特許文献1の方法で切断位置を決定することはできるが、実際には図2(A)のようなC方向に凸凹したいわゆる角が伸びているような形状をしたパイプも存在しており、特許文献1の探傷走査方法では不十分で、最適な切断位置を決定することはできない。   FIG. 2 is an example of the result of investigating the shape of the pipe part of a continuous cast slab and its distribution in a front image by ultrasonic flaw detection, and the pipe part shapes of (A) and (B) are greatly different. Two types are given as examples. If the pipe has a flat shape in the C direction as shown in FIG. 2 (B), the cutting position can be determined by the method of Patent Document 1, but in practice the C direction as shown in FIG. 2 (A). There are also pipes that are so shaped that the so-called corners are elongated, and the flaw detection scanning method of Patent Document 1 is insufficient, and an optimal cutting position cannot be determined.

そこで、特許文献2にあるように1個または複数個のセンサーで全面探傷する方法の適用が考えられる。しかし、1個のセンサーによる全面探傷方法では、探傷範囲が広く切断位置を決定するまでの探傷時間が長くなってしまい結果として歩留まり低下となりかねない。また、複数個のセンサーを用いて探傷する方法では、探傷時間を短縮することはできるものの、複数個センサー設置のための設備負担が大きくなってしまうという問題がある。   Therefore, as disclosed in Patent Document 2, it is conceivable to apply a method of flaw-detecting the entire surface with one or a plurality of sensors. However, in the whole surface flaw detection method using one sensor, the flaw detection range is wide and the flaw detection time until the cutting position is determined may become long, resulting in a decrease in yield. Further, in the method of flaw detection using a plurality of sensors, although the flaw detection time can be shortened, there is a problem that the equipment burden for installing a plurality of sensors increases.

1個のセンサーで探傷を行い、探傷開始から切断位置を決定し切断するまでの時間を飛躍的に高速化することができれば、設備負担を少なく歩留まりを向上することが可能となる。   If flaw detection is performed with one sensor and the time from the start of flaw detection to the cutting position and cutting can be dramatically increased, the equipment load can be reduced and the yield can be improved.

上述のように、パイプを検知する方法は数多く検討・開発されているが、これらは切断位置を決定するための最適な探傷走査方法であるとはいい難い。   As described above, many methods for detecting a pipe have been studied and developed. However, it is difficult to say that these are optimum flaw detection scanning methods for determining a cutting position.

本発明は、上記事情に鑑みてなされたもので、1個のセンサーで探傷開始から最適な切断位置を決定し、切断するまでの時間を飛躍的に高速化する探傷走査方法およびこの探傷走査方法を用いた鋳片の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a flaw detection scanning method for determining the optimum cutting position from the start of flaw detection with a single sensor and dramatically speeding up the time until cutting, and this flaw detection scanning method. It aims at providing the manufacturing method of the slab using this.

本発明の請求項1に係る発明は、鋳片の最トップ部に発生する内部欠陥のパイプを検出するセンサを用いて、該センサでパイプが検出される位置では、その位置から前記鋳片の鋳造引き抜き方向である長手方向の中央部に向かってセンサを移動させ、該センサでパイプが検出されない位置では、その位置から前記長手方向と直交する鋳片幅方向にセンサを移動させて、計測することを繰り返し、前記幅方向にセンサを移動して計測した際に、鋳片の全幅にわたりパイプが検出されない場合に、その長手方向位置を鋳片の切断位置と決定して、その切断位置にて鋳片を幅方向に切断して鋳片を製造することを特徴とする鋳片の製造方法である。   The invention according to claim 1 of the present invention uses a sensor for detecting a pipe having an internal defect generated at the topmost part of the slab, and at the position where the pipe is detected by the sensor, the slab is moved from that position. The sensor is moved toward the center of the longitudinal direction, which is the casting drawing direction, and at a position where the pipe is not detected by the sensor, the sensor is moved from that position to the slab width direction perpendicular to the longitudinal direction, and measurement is performed. When the pipe is not detected over the entire width of the slab when measuring by moving the sensor in the width direction, the longitudinal position is determined as the cutting position of the slab, and the cutting position is A slab manufacturing method comprising cutting a slab in a width direction to manufacture the slab.

また本発明の請求項2に係る発明は、請求項1の鋳片の製造方法において、計測を開始する位置を、鋳造の操業条件とパイプの伸び位置の関係から決定することを特徴とする鋳片の製造方法である。   The invention according to claim 2 of the present invention is the casting slab manufacturing method according to claim 1, wherein the position at which measurement is started is determined from the relationship between the casting operating conditions and the pipe elongation position. It is a manufacturing method of a piece.

また本発明の請求項3に係る発明は、請求項1の鋳片の製造方法において、計測を開始する位置の幅方向位置を、鋳片両側面から鋳片幅の1/4以内の位置に、設定することを特徴とする鋳片の製造方法である。   The invention according to claim 3 of the present invention is the method for manufacturing a slab of claim 1, wherein the position in the width direction at which measurement is started is set to a position within 1/4 of the slab width from both sides of the slab. A method for manufacturing a slab characterized by being set.

また本発明の請求項4に係る発明は、請求項1の鋳片の製造方法において、計測を開始する位置を、鋳片の鋳造時におけるクレーターエンドの形状から決定することを特徴とする鋳片の製造方法である。   According to a fourth aspect of the present invention, in the method for producing a slab according to the first aspect, the measurement start position is determined from the shape of the crater end at the time of casting the slab. It is a manufacturing method.

さらに本発明の請求項5に係る発明は、請求項1ないし請求項4のいずれかに記載の鋳片の製造方法において、前記センサは、矩形状または楕円形状の超音波ビームを前記鋼材に送信し、前記鋼材の内部からの反射波を受信する超音波探触子を用い、前記矩形状または楕円形状の超音波ビームの長軸方向に前記超音波探触子を走査して、走査方向上の異なる位置での前記反射波を受信して、前記反射波を受信位置に対応した遅延時間により遅延合成して内部欠陥を検出するセンサであることを特徴とする鋳片の製造方法である。   Further, according to a fifth aspect of the present invention, in the method for producing a cast piece according to any one of the first to fourth aspects, the sensor transmits a rectangular or elliptical ultrasonic beam to the steel material. And using an ultrasonic probe that receives a reflected wave from the inside of the steel material, scanning the ultrasonic probe in the long axis direction of the rectangular or elliptical ultrasonic beam, This is a method for producing a slab, which is a sensor that receives the reflected wave at different positions and detects the internal defect by delay-combining the reflected wave with a delay time corresponding to the received position.

本発明は、1個のセンサーを用いて良塊切断量を最小に抑え、かつパイプが切断面に現れない切断位置を高速に決定することができるので、設備負担を少なく歩留まりを向上させることが可能となる。   Since the present invention can use a single sensor to minimize the amount of good mass cutting and determine the cutting position at which the pipe does not appear on the cutting surface at high speed, the equipment load is reduced and the yield can be improved. It becomes possible.

本発明に係る探傷走査方法から切断までの処理手順例を、図4のフローチャートに示す。
まず、はじめに探傷走査開始位置を決定する(S100)。長手方向(L方向)と長手方向と直交する幅方向(C方向)における開始位置は、一次パイプが最長となる位置とすることが好ましい。このため例えば、事前に鋳造の操業条件とパイプの伸び位置の関係についてデーターベース化しておき、鋳造の操業条件から最もパイプが伸びやすい位置を計算機で判定して決定するようにするとよい。
A processing procedure example from the flaw detection scanning method to cutting according to the present invention is shown in the flowchart of FIG.
First, a flaw detection scanning start position is determined (S100). The starting position in the longitudinal direction (L direction) and the width direction (C direction) orthogonal to the longitudinal direction is preferably the position where the primary pipe is the longest. For this reason, for example, it is preferable to make a database beforehand regarding the relationship between the casting operating conditions and the pipe elongation position, and determine the position where the pipe is most likely to extend from the casting operating conditions by determining with a computer.

または、鋳片中の未凝固部分であるクレーターエンドの形状から決定してもよい。これは、トップに生じるパイプは鋳造において凝固する時にそこに静圧がかかりにくいことから生じるとされており、クレーターエンド形状と密接な関係があるという本発明者等の知見によるものである。   Or you may determine from the shape of the crater end which is an unsolidified part in a slab. This is because the pipe generated at the top is caused by the fact that static pressure is not easily applied to the pipe when solidified in casting, and is based on the knowledge of the present inventors that the pipe has a close relationship with the crater end shape.

伝熱計算またはクレーターエンド検知センサーから得られたクレーターエンド形状において、未凝固部分がボトム側に最も伸びている長手方向と直交する方向位置を探傷開始位置とする(図9参照)。なお、図1に示す二次パイプ3に探索が収束してしまわないように、長手方向における探傷開始位置はできるかぎり、最トップに近い位置から探傷することが好ましい。   In the crater end shape obtained from the heat transfer calculation or the crater end detection sensor, the flaw detection start position is defined as the direction position orthogonal to the longitudinal direction in which the unsolidified portion extends most to the bottom side (see FIG. 9). In order to prevent the search from converging on the secondary pipe 3 shown in FIG. 1, the flaw detection start position in the longitudinal direction is preferably detected from the position closest to the top as much as possible.

探傷走査開始位置が決まれば、次にこの位置にセンサを移動し(S101)、探傷の準備を行う。そして、この探傷開始位置から長手方向に探傷を開始(S102)して、パイプの有無を判断し(S103)、パイプがなくなるまでS102に戻るという処理を繰返す。   When the flaw detection scanning start position is determined, the sensor is moved to this position (S101), and preparation for flaw detection is performed. Then, flaw detection is started in the longitudinal direction from this flaw detection start position (S102), the presence or absence of a pipe is determined (S103), and the process of returning to S102 is repeated until there is no pipe.

そして、パイプが消失した位置で、長手方向と直交する方向について探傷を行う(S104)。ここでも長手方向と同様に、パイプの有無を判断し(S105)、パイプがなくなるまでS102に戻るという処理を繰返す。長手方向と直交する方向に探傷した結果、全幅においてパイプが検知されなければその長手方向位置が切断位置として決定される(S106)。   Then, flaw detection is performed in the direction perpendicular to the longitudinal direction at the position where the pipe disappears (S104). Here again, as in the longitudinal direction, the presence or absence of a pipe is determined (S105), and the process of returning to S102 is repeated until there is no pipe. As a result of flaw detection in the direction orthogonal to the longitudinal direction, if no pipe is detected in the full width, the longitudinal position is determined as the cutting position (S106).

切断位置が決定後、この切断位置を出力装置に出力し(S107)、先の切断位置で鋳片を切断機(図示せず)にて切断して(S108)、切断位置探索から切断に至る一連の処理を終了する。   After the cutting position is determined, this cutting position is output to the output device (S107), and the slab is cut with a cutting machine (not shown) at the previous cutting position (S108), from cutting position search to cutting. A series of processing ends.

探傷方法としては、被検体を長手方向に探傷して、パイプが検知されない長手方向位置で、長手方向と直交する幅方向(C方向)について探傷走査を行いパイプが検知された場合には、また長手方向に探傷を行うことを繰り返し行う探傷方法であればよい。C方向の探傷走査すなわちセンサ移動と探傷走査の仕方により、たとえば、図5(A)、(B)、および(C)のような方法がある。図5(A)は、C方向における向かって右側の探傷走査を優先させる方法であり、(B)は一旦左端に戻り、全幅探傷走査を行う方法であり、(C)はより近い端に戻り、反対方向(内側)に向かって探傷走査を行う方法であり、それぞれ6は探傷開始位置および7は切断位置を示している。図に示すように、同じスタート位置からスタートして最終的に同じ切断位置に至っていても、途中の探傷経路が異なることが分かる。   As a flaw detection method, when a pipe is detected by performing a flaw detection scan in the width direction (C direction) perpendicular to the longitudinal direction at a longitudinal position where the pipe is not detected, the specimen is detected in the longitudinal direction. Any flaw detection method that repeats flaw detection in the longitudinal direction may be used. Depending on the method of flaw detection scanning in the C direction, that is, sensor movement and flaw detection scanning, for example, there are methods as shown in FIGS. FIG. 5A shows a method in which priority is given to flaw detection scanning on the right side in the C direction. FIG. 5B shows a method in which the full width flaw detection scanning is performed once returning to the left end, and FIG. 5C returns to the closer end. In this method, flaw detection scanning is performed in the opposite direction (inner side), where 6 indicates a flaw detection start position and 7 indicates a cutting position. As shown in the figure, it can be seen that the flaw detection path on the way is different even when starting from the same start position and finally reaching the same cutting position.

なお、以上は鋳片のトップ部を例に説明したが、本発明はボトム部でも、さらに言えば途中の切断部でも適用可能である。また、本発明を実施するための最良の形態では、長手方向の走査から計測を開始したが、幅方向の走査から計測を開始してもかまわず、これに限定されるものではない。   In the above description, the top portion of the slab has been described as an example. However, the present invention can be applied to the bottom portion, more specifically, a cut portion in the middle. In the best mode for carrying out the present invention, the measurement is started from the scanning in the longitudinal direction. However, the measurement may be started from the scanning in the width direction, and the present invention is not limited to this.

図6に、探傷装置の具体的構成の一例を模式図で示す。パルス繰り返し周波数が任意に変更可能なパルサー10にて任意の波形を作成して、探触子15から被検体に超音波を入射する。パルス繰り返し周波数は、被検体内部に残響が残ることで計測波形に影響がでないように設定する。   FIG. 6 is a schematic diagram illustrating an example of a specific configuration of the flaw detection apparatus. An arbitrary waveform is created by the pulser 10 whose pulse repetition frequency can be arbitrarily changed, and an ultrasonic wave is incident on the subject from the probe 15. The pulse repetition frequency is set so that reverberation remains in the subject and the measurement waveform is not affected.

被検体の表面または内部から反射する信号は、探触子15で受信されレシーバー11にてフィルター処理、信号増幅され、A/Dコンバーター12にてデジタル情報に変換されて計算機13に取り込まれる。探触子15は音波の送受信面が矩形状で、短辺側と平行方向に走査できる走査機構14に取り付ける。計算機13からの信号をうけて走査機構14は稼動し、超音波の発信、受信を行ないながら被検体を走査し、設定された時間または位置間隔毎に受信された超音波波形を、計算機13に取り込む。計算機13、は取り込んだ超音波波形を、設定された開口合成幅、焦点距離の探触子で計測したのと同様の効果が得られるように伝播時間を補正し合成を行う。超音波探触子と被検体は水柱超音波法(局部水浸法)により音響結合させている。その他、計算機13には、探傷条件などの入力を行う入力インターフェイス16、および探傷結果、切断位置等の表示を行う表示部17が接続されている。   A signal reflected from the surface or the inside of the subject is received by the probe 15, filtered and signal amplified by the receiver 11, converted into digital information by the A / D converter 12, and taken into the computer 13. The probe 15 is attached to a scanning mechanism 14 having a rectangular sound wave transmission / reception surface and capable of scanning in a direction parallel to the short side. The scanning mechanism 14 operates in response to a signal from the computer 13, scans the subject while transmitting and receiving ultrasonic waves, and receives the ultrasonic waveform received at a set time or position interval to the computer 13. take in. The computer 13 synthesizes the acquired ultrasonic waveform by correcting the propagation time so as to obtain the same effect as that measured by the probe having the set aperture synthesis width and focal length. The ultrasonic probe and the subject are acoustically coupled by the water column ultrasonic method (local water immersion method). In addition, the calculator 13 is connected to an input interface 16 for inputting flaw detection conditions and a display unit 17 for displaying flaw detection results, cutting positions, and the like.

図7は、探傷走査から切断に至る一連の処理流れを示すフローチャートである。基本的な処理フローは、図4と同じであるが、C方向の探傷に図5(C)に示した方法を採用した例を示している。以下、L方向は長手方向、C方向は長手方向と直交する方向、Wはスラブ幅、LoはL方向(長さ方向)における探傷開始位置、XoはC方向(幅方向)における探傷開始位置、dyはL方向における探傷ピッチ、dxはC方向における探傷ピッチ、YsはL方向における探傷位置、およびXsはC方向における探傷位置をそれぞれ示すものとする。   FIG. 7 is a flowchart showing a series of processing flow from flaw detection scanning to cutting. The basic processing flow is the same as that shown in FIG. 4, but an example is shown in which the method shown in FIG. 5C is adopted for flaw detection in the C direction. Hereinafter, the L direction is the longitudinal direction, the C direction is a direction orthogonal to the longitudinal direction, W is the slab width, Lo is the flaw detection start position in the L direction (length direction), Xo is the flaw detection start position in the C direction (width direction), dy represents the flaw detection pitch in the L direction, dx represents the flaw detection pitch in the C direction, Ys represents the flaw detection position in the L direction, and Xs represents the flaw detection position in the C direction.

まず、始めに探傷開始位置を決める。図3は、発明者らがパイプの形状を調査して1次パイプ最長端のL方向,C方向の位置をまとめたものである。図3より、C方向のパイプ最長端位置は、1点を除き、スラブ両側面から1/4Wの範囲に2分して分布していることが判る。この結果に基づき、実施例ではC方向探傷開始位置Xoを、スラブ幅の1/4Wまたは3/4Wの位置とした。L方向探傷開始位置Loについては、パイプ最長部位置はL方向に広範囲に存在しているため、できるかぎり最トップから探傷することが好ましい。   First, the flaw detection start position is determined. FIG. 3 shows a summary of the positions of the longest end of the primary pipe in the L direction and the C direction by the inventors examining the shape of the pipe. From FIG. 3, it can be seen that the pipe longest end position in the C direction is divided into two quarters of the slab from both sides except for one point. Based on this result, in the example, the C direction flaw detection start position Xo was set to a position of 1/4 W or 3/4 W of the slab width. As for the L direction flaw detection start position Lo, the longest pipe position exists in a wide range in the L direction, so it is preferable to perform flaw detection from the top as much as possible.

探傷開始位置を決定したならば、探傷を開始する。まず(1)探傷開始位置(Xo,Lo)からL方向に対してdy毎に、パイプが検知されなくなるまで探傷走査を行う。パイプがなくなったところでL方向の探傷走査を止めて、(2)現在のL方向位置において、C方向の探傷を開始する。このとき、幅方向の探傷は、センサーをより近いスラブ端に移動させて、C方向の探傷を開始する。たとえば、(1)でパイプがなくなった位置を(Xp1,Yp1)とした場合、以下の(1)式を満たすのであれば、C方向に−Xp1移動させて、+C方向に探傷を開始する。もし(1)式を満たさないのであれば、C方向にW−Xp1だけ移動させて、−C方向に探傷を開始する。   When the flaw detection start position is determined, flaw detection is started. First, (1) flaw detection scanning is performed for every dy in the L direction from the flaw detection start position (Xo, Lo) until no pipe is detected. When the pipe is exhausted, the flaw detection scanning in the L direction is stopped, and (2) the flaw detection in the C direction is started at the current L direction position. At this time, the flaw detection in the width direction starts the flaw detection in the C direction by moving the sensor to the closer slab end. For example, assuming that the position where the pipe disappears in (1) is (Xp1, Yp1), and if the following expression (1) is satisfied, −Xp1 is moved in the C direction and flaw detection is started in the + C direction. If the expression (1) is not satisfied, it is moved by W−Xp1 in the C direction, and flaw detection is started in the −C direction.

Xp1≦W−Xp1 ・・・・・・(1)
C方向についてdx毎にパイプ検知されるまで、探傷走査を行う。パイプが検知された場合には、その位置を(Xo,Yo)として上記の(1)と(2)の処理を行う。
Xp1 ≦ W−Xp1 (1)
The flaw detection scanning is performed until the pipe is detected every dx in the C direction. If a pipe is detected, the position (Xo, Yo) is set as (Xo, Yo) and the above processes (1) and (2) are performed.

(3)パイプが全幅に対して検知されなかった場合には、このときのL方向の探傷位置が、良塊切断量を最小にしてかつパイプが切断面に現れない切断位置として決定されることとなる。   (3) If the pipe is not detected for the entire width, the flaw detection position in the L direction at this time is determined as the cutting position where the amount of good mass cutting is minimized and the pipe does not appear on the cut surface. It becomes.

(4)オペレーターまたは自動切断機にこの切断位置を出力して、鋳片を切断する。   (4) Output this cutting position to an operator or an automatic cutting machine to cut the slab.

上述の(1)〜(4)の手順により高速に最適な切断位置を高速に決定し、最トップ部分を一回の切り落としで除去することが可能となる。   It becomes possible to determine the optimum cutting position at high speed at high speed by the procedures (1) to (4) described above, and to remove the topmost part by one cut-off.

L方向・C方向に走査可能な走査機構にセンサーを取り付け、図7のフローチャートに従って探傷走査および切断位置決定を行った。本実施例では、局部水浸超音波法によって鋳片に対して音波を送受信してパイプの有無を検知するセンサーを取り付けた。   A sensor was attached to a scanning mechanism capable of scanning in the L direction and the C direction, and flaw detection scanning and cutting position determination were performed according to the flowchart of FIG. In this example, a sensor for detecting the presence or absence of a pipe by transmitting and receiving sound waves to and from the slab by a local water immersion ultrasonic method was attached.

本実施例で用いた超音波探触子は、振動子形状が50mm×10mm、周波数を1MHzとし、振動子形状が50mm×50mmで焦点が115mmの探触子にて計測したのと同等の効果が得られるように開口合成計算を行なった。   The ultrasonic probe used in this example has the same effect as that measured by a probe having a transducer shape of 50 mm × 10 mm, a frequency of 1 MHz, a transducer shape of 50 mm × 50 mm, and a focal point of 115 mm. The aperture synthesis calculation was performed so that

幅1360mm、厚み約230mmの鋳造されたスラブに対して探傷開始位置をL方向に350mm,C方向に1/4Wに相当する340mmとした。探傷速度はL方向・C方向ともに100mm/sec、探傷走査ピッチはdx=1mm,dy=10mmとした。図8(A)に探傷走査の軌跡と決定された切断位置を示す。ここで、6は探傷開始位置および7は切断位置を示している。この結果、最トップ部からL方向に670mmの位置を最適な切断位置と決定した。   For a cast slab having a width of 1360 mm and a thickness of about 230 mm, the flaw detection start position was 350 mm in the L direction and 340 mm corresponding to 1/4 W in the C direction. The flaw detection speed was 100 mm / sec in both the L and C directions, and the flaw detection scanning pitch was dx = 1 mm and dy = 10 mm. FIG. 8A shows the flaw detection scanning trajectory and the determined cutting position. Here, 6 indicates a flaw detection start position and 7 indicates a cutting position. As a result, a position of 670 mm in the L direction from the topmost part was determined as the optimum cutting position.

全面探傷してパイプの分布状況を調べた結果が、図8(B)である。図8(B)と最適切断位置から良塊切断量も最小限に抑えることができていることが分る。決定された位置にて切断を行なった結果、切断面にパイプが現れることなく最トップ部を一度の切断で切り落とすことができた。   FIG. 8 (B) shows the result of examining the distribution status of the pipes by flaw detection on the entire surface. It can be seen from FIG. 8B that the amount of good mass cut can be minimized from the optimum cutting position. As a result of cutting at the determined position, it was possible to cut off the top part by one cutting without the pipe appearing on the cut surface.

鋳造スラブの最トップ部を模式的に表した図である。It is the figure which represented typically the top part of the casting slab. 連鋳鋳片のパイプ部の形状とその分布状況を示す超音波探傷による正面像を模式的に表した図である。It is the figure which represented typically the front image by the ultrasonic flaw which shows the shape of the pipe part of a continuous cast slab, and its distribution condition. 1次パイプ最長端のL方向,C方向の位置をまとめた図である。It is the figure which put together the position of the L direction of the primary pipe longest end, and the C direction. 探傷走査方法から切断までの処理手順例を示す図である。It is a figure which shows the example of a process sequence from a flaw detection scanning method to cutting | disconnection. 探傷走査方法の違いを示す図である。It is a figure which shows the difference in a flaw detection scanning method. 探傷装置の具体的構成の一例を示すブロック図である。It is a block diagram which shows an example of the specific structure of a flaw detection apparatus. 実施例における一連の処理流れを示す図である。It is a figure which shows a series of processing flows in an Example. 探傷走査の軌跡と決定された切断位置、およびパイプの分布状況を調べた結果を示す図である。It is a figure which shows the result of having investigated the locus | trajectory of a flaw detection scanning, the determined cutting position, and the distribution condition of a pipe. クレーターエンド形状による探傷開始位置を説明する図である。It is a figure explaining the flaw detection start position by a crater end shape.

符号の説明Explanation of symbols

1 最トップ部
2 一次パイプ
3 二次パイプ
4 切断面
5 開口したパイプ
6 探傷開始位置
7 切断位置
10 パルサー
11 レシーバー
12 A/Dコンバーター
13 計算機
14 走査機構
15 探触子
16 入力インターフェイス16
17 表示部
DESCRIPTION OF SYMBOLS 1 Top part 2 Primary pipe 3 Secondary pipe 4 Cutting surface 5 Open pipe 6 Flaw detection start position 7 Cutting position 10 Pulsar 11 Receiver 12 A / D converter 13 Computer 14 Scanning mechanism 15 Probe 16 Input interface 16
17 Display

Claims (5)

鋳片の最トップ部に発生する内部欠陥のパイプを検出するセンサを用いて、
該センサでパイプが検出される位置では、その位置から前記鋳片の鋳造引き抜き方向である長手方向の中央部に向かってセンサを移動させ、該センサでパイプが検出されない位置では、その位置から前記長手方向と直交する鋳片幅方向にセンサを移動させて、計測することを繰り返し、
前記幅方向にセンサを移動して計測した際に、鋳片の全幅にわたりパイプが検出されない場合に、その長手方向位置を鋳片の切断位置と決定して、
その切断位置にて鋳片を幅方向に切断して鋳片を製造することを特徴とする鋳片の製造方法。
Using a sensor that detects pipes with internal defects that occur at the top of the slab,
At the position where the pipe is detected by the sensor, the sensor is moved from that position toward the center in the longitudinal direction that is the casting drawing direction of the slab, and at the position where the pipe is not detected by the sensor, the position is Move the sensor in the slab width direction perpendicular to the longitudinal direction and repeat the measurement,
When measuring by moving the sensor in the width direction, when the pipe is not detected over the entire width of the slab, the longitudinal position is determined as the cutting position of the slab,
A method for producing a slab, comprising producing a slab by cutting the slab in the width direction at the cutting position.
請求項1の鋳片の製造方法において、
計測を開始する位置を、鋳造の操業条件とパイプの伸び位置の関係から決定することを特徴とする鋳片の製造方法。
In the manufacturing method of the slab of Claim 1,
A method for producing a cast slab, characterized in that a position to start measurement is determined from a relationship between a casting operating condition and a pipe elongation position.
請求項1の鋳片の製造方法において、
計測を開始する位置の幅方向位置を、鋳片両側面から鋳片幅の1/4以内の位置に、設定することを特徴とする鋳片の製造方法。
In the manufacturing method of the slab of Claim 1,
A method for manufacturing a slab, characterized in that the position in the width direction at which measurement is started is set to a position within ¼ of the slab width from both sides of the slab.
請求項1の鋳片の製造方法において、
計測を開始する位置を、鋳片の鋳造時におけるクレーターエンドの形状から決定することを特徴とする鋳片の製造方法。
In the manufacturing method of the slab of Claim 1,
A method for producing a slab, characterized in that a position to start measurement is determined from a shape of a crater end at the time of casting the slab.
請求項1ないし請求項4のいずれかに記載の鋳片の製造方法において、
前記センサは、矩形状または楕円形状の超音波ビームを前記鋼材に送信し、前記鋼材の内部からの反射波を受信する超音波探触子を用い、前記矩形状または楕円形状の超音波ビームの長軸方向に前記超音波探触子を走査して、走査方向上の異なる位置での前記反射波を受信して、前記反射波を受信位置に対応した遅延時間により遅延合成して内部欠陥を検出するセンサであることを特徴とする鋳片の製造方法。
In the manufacturing method of the slab in any one of Claim 1 thru | or 4,
The sensor transmits a rectangular or elliptical ultrasonic beam to the steel material, and uses an ultrasonic probe that receives a reflected wave from the inside of the steel material. The ultrasonic probe is scanned in the long axis direction, the reflected wave at a different position in the scanning direction is received, and the reflected wave is delayed and synthesized by a delay time corresponding to the reception position to eliminate internal defects. A method for producing a slab characterized by being a sensor for detection.
JP2005053275A 2005-02-28 2005-02-28 Slab manufacturing method Expired - Fee Related JP4655675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005053275A JP4655675B2 (en) 2005-02-28 2005-02-28 Slab manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005053275A JP4655675B2 (en) 2005-02-28 2005-02-28 Slab manufacturing method

Publications (2)

Publication Number Publication Date
JP2006231392A true JP2006231392A (en) 2006-09-07
JP4655675B2 JP4655675B2 (en) 2011-03-23

Family

ID=37039610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005053275A Expired - Fee Related JP4655675B2 (en) 2005-02-28 2005-02-28 Slab manufacturing method

Country Status (1)

Country Link
JP (1) JP4655675B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045372B2 (en) * 1976-09-01 1985-10-09 新日本製鐵株式会社 Shear control device for processed metal objects using electromagnetic ultrasonic waves
JPS62181817A (en) * 1986-02-04 1987-08-10 Daido Steel Co Ltd Cutting method and device for top portion of steel chip
JP2003103351A (en) * 2001-09-26 2003-04-08 Nkk Corp Manufacturing method for continuous casting ingot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045372B2 (en) * 1976-09-01 1985-10-09 新日本製鐵株式会社 Shear control device for processed metal objects using electromagnetic ultrasonic waves
JPS62181817A (en) * 1986-02-04 1987-08-10 Daido Steel Co Ltd Cutting method and device for top portion of steel chip
JP2003103351A (en) * 2001-09-26 2003-04-08 Nkk Corp Manufacturing method for continuous casting ingot

Also Published As

Publication number Publication date
JP4655675B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP4816731B2 (en) Ultrasonic flaw detection method, welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus
JP4491800B2 (en) Ultrasonic flaw detection method and apparatus
KR101641014B1 (en) Defect detection device, defect detection method, and storage medium
JP5003275B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body
JP2007163470A (en) Apparatus and method for ultrasonically detecting flaw of tube
JP4955359B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2002248566A (en) Method and device for underwater welding
JP6399275B1 (en) Defect detection apparatus, defect detection method and program
JP4655675B2 (en) Slab manufacturing method
JP2009150679A (en) Surface flaw evaluation device of round bar steel by submerged ultrasonic flaw detection using electron scanning type array prob,e and surface flaw evaluation method of round bar steel
JP4144703B2 (en) Tube inspection method using SH waves
WO2020250379A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
JP4419598B2 (en) Ultrasonic flaw detection
JP5699695B2 (en) Electric seam pipe seam detection method and apparatus
JPH10185881A (en) Method and device for ultrasonic flaw detection
JP6089805B2 (en) Measuring device, measuring method, program, and storage medium
JP3868443B2 (en) Ultrasonic inspection method of metal material and manufacturing method of steel pipe
TW201643424A (en) Steel material cleanliness evaluation method and cleanliness evaluation device
JP2002323481A (en) Ultrasonic flaw detection method and device
JP2019191062A (en) Ultrasonic flaw detection method and ultrasonic flaw detection device
JP2005084036A (en) Ultrasonic flaw detection method
JP2005257465A (en) Automatic ultrasonic flaw inspection method and device
JP6586280B2 (en) Ultrasonic flaw detector, ultrasonic flaw detector, and ultrasonic flaw detection method
JP2022145146A (en) Method for specifying growth direction of columnar crystal structure

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees