JP2019191062A - Ultrasonic flaw detection method and ultrasonic flaw detection device - Google Patents

Ultrasonic flaw detection method and ultrasonic flaw detection device Download PDF

Info

Publication number
JP2019191062A
JP2019191062A JP2018085889A JP2018085889A JP2019191062A JP 2019191062 A JP2019191062 A JP 2019191062A JP 2018085889 A JP2018085889 A JP 2018085889A JP 2018085889 A JP2018085889 A JP 2018085889A JP 2019191062 A JP2019191062 A JP 2019191062A
Authority
JP
Japan
Prior art keywords
noise signal
distance
inspected
ultrasonic
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018085889A
Other languages
Japanese (ja)
Inventor
啓司 樹神
Keiji Kodama
啓司 樹神
光宏 伊藤
Mitsuhiro Ito
光宏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2018085889A priority Critical patent/JP2019191062A/en
Publication of JP2019191062A publication Critical patent/JP2019191062A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

To provide an ultrasonic flaw detection method for an object to be inspected, such as a steel material having a large attenuation due to the propagation of ultrasonic waves, in which the calibration test piece is not required, the reduction of the SN ratio by the DAC correction is suppressed, and the signal-to-noise ratio is improved so as to improve the SN ratio depending on the position of the defect signal.SOLUTION: The ultrasonic flaw detection method includes a first step for receiving an echo of an ultrasonic wave emitted from an ultrasonic probe 2 disposed on the surface of the object to be inspected 1 in the inspection region I of the object 1 to be received by the distance x within the inspection region I of the subject 1; a second step for calculating the attenuation amount of the function f (x) representing the attenuation amount of the noise signal group from the maximum noise signal y in the noise signal group in the test region I in the graph of the signal intensity for the distance x obtained in the first step; and a third step for individually multiplying the noise signal group in the inspection area I by the correction coefficient calculated by the distance x by the function f (x) and increasing the signal intensity of the noise signal group individually.SELECTED DRAWING: Figure 3

Description

本発明は、例えば、鋼材の内部に生じ得る欠陥の有無を調べるための主に超音波の伝搬に伴う減衰が大きい鋼材などの被検査体を対象とする超音波探傷方法、および、これに用いる超音波探傷装置に関する。   The present invention is, for example, an ultrasonic flaw detection method for an object to be inspected, such as a steel material that is mainly attenuated due to the propagation of ultrasonic waves, for examining the presence or absence of defects that may occur inside the steel material, and to be used in this method. The present invention relates to an ultrasonic flaw detector.

一般に、超音波は、その伝搬過程において結晶粒などによる散乱などの影響を受けるため、伝搬距離が長くなる程、減衰して行く。そのため、同じ寸法の欠陥であっても、探傷面からの距離が長くなるに連れてエコーの信号強度が低下する。
上記減衰による影響を低減するため、距離振幅補正(DAC補正)方法が用いられている。例えば、超音波探触子にて受波された超音波のエコー信号をアナログ信号からデジタル信号に変換するA/D変換部と、校正モード設定時に校正試験片の所要箇所の探傷面にて上記探触子により受波された複数のエコー信号をA/D変換部を通してそれぞれ受け、且つ各エコー信号の距離振幅補正値を個別に算出してDACテーブルメモリに記憶させると共に、探傷モード設定時に被検体からのエコー信号を上記A/D変換部を通して受け、該エコー信号に上記DACテーブルメモリから読み出した距離振幅補正値を乗算させるマイクロプロセッサと、を有する超音波探傷装置が提案されている(例えば、特許文献1参照)。
In general, ultrasonic waves are affected by scattering due to crystal grains or the like in the propagation process, and therefore attenuate as the propagation distance increases. Therefore, even if the defect has the same size, the signal strength of the echo decreases as the distance from the flaw detection surface increases.
In order to reduce the influence of the attenuation, a distance amplitude correction (DAC correction) method is used. For example, the A / D converter that converts the echo signal of the ultrasonic wave received by the ultrasonic probe from an analog signal to a digital signal, and the flaw detection surface at the required location of the calibration test piece when the calibration mode is set. Each of the echo signals received by the probe is received through the A / D converter, and the distance amplitude correction value of each echo signal is individually calculated and stored in the DAC table memory. There has been proposed an ultrasonic flaw detector having a microprocessor that receives an echo signal from a specimen through the A / D converter and multiplies the echo signal by a distance amplitude correction value read from the DAC table memory (for example, , See Patent Document 1).

前記超音波探傷装置によれば、前記距離振幅補正によって、伝搬距離に応じた距離振幅補正値を乗算するため、同じ深さの欠陥信号(S)とノイズ信号(N)とのSN比を評価する場合、該SN比は距離振幅補正(以下、DAC補正と称する)の有無に影響されない。しかしながら、実際の探傷では、予め定められた範囲の深さ(探傷領域)における欠陥の有無を評価するため、前記SN比を算出する場合のN(ノイズ信号)は、探傷領域内で最も高いN値(ノイズ信号値)を指す。つまり、N値を受信した深さと、S値を受信した深さが異なる場合が多いため、前記DAC補正の有無は、SN比の算出に影響する。   According to the ultrasonic flaw detector, since the distance amplitude correction is multiplied by the distance amplitude correction value corresponding to the propagation distance, the SN ratio between the defect signal (S) and the noise signal (N) having the same depth is evaluated. In this case, the SN ratio is not affected by the presence or absence of distance amplitude correction (hereinafter referred to as DAC correction). However, in actual flaw detection, in order to evaluate the presence / absence of a defect in a predetermined range of depth (flaw detection region), N (noise signal) when calculating the SN ratio is the highest N in the flaw detection region. Value (noise signal value). That is, since the depth at which the N value is received is often different from the depth at which the S value is received, the presence or absence of the DAC correction affects the calculation of the SN ratio.

例えば、本発明の対象であり、且つ粗大結晶粒を有する高減衰材からなる角形ビレットを超音波探傷して、超音波の伝搬経路に欠陥がない健全部において、図6(A)に示す探傷波形を得たと仮定する。尚、図6(B)は、微細な結晶粒を有する一般的な鋼材の探傷波形(パターン)を示し、縦軸の信号強度が早期に横軸の探傷深さにおける浅い位置で降下している。この際、探傷領域を図6(C)中のIの範囲とすると、ノイズはNa%になる。
一方で、超音波の欠陥信号は、前記DAC補正なしの場合、深さaの位置に欠陥がある場合、図6(D)中のSaとなり、深さbの位置に欠陥がある場合、図6(E)中のSbとなり、深さcの位置に欠陥がある場合、図6(F)中のScとなる。前記深さa、b、cのSN比は、それぞれSa/Na、Sb/Na、Sc/Naとなる。
For example, the flaw detection shown in FIG. 6 (A) is carried out by ultrasonic flaw detection on a square billet made of a high attenuation material having coarse crystal grains, which is the subject of the present invention. Assume that the waveform is obtained. FIG. 6B shows a flaw detection waveform (pattern) of a general steel material having fine crystal grains, and the signal intensity on the vertical axis is rapidly lowered at a shallow position in the flaw detection depth on the horizontal axis. . At this time, if the flaw detection area is in the range I in FIG. 6C, the noise becomes Na%.
On the other hand, the ultrasonic defect signal is Sa in FIG. 6D when there is a defect at the position of depth a without the DAC correction, and when there is a defect at the position of depth b. 6 (E), and when there is a defect at the position of depth c, Sc in FIG. 6 (F). The SN ratios of the depths a, b, and c are Sa / Na, Sb / Na, and Sc / Na, respectively.

ここで、前記波形に対してDAC補正を掛けると、欠陥信号の深さaのSaをSa/Sa倍し、深さbのSbをSa/Sb倍し、深さcのScをSa/Sc倍した波形が個別に表示される。つまり、全ての信号値(s)がSaとなる。
ところで、ノイズ信号Nは、DAC補正なしの健全部における深さa、b、cごとの信号Na、Nb、Ncとなると(但し、Na>Nb>Ncとする)、表1のようになる。ここで、
(イ)Na≧(Sa/Sc)×Ncのとき、N=Naとなるので表1のようになる。
(ロ)Na<(Sa/Sc)×Ncのとき、N=(Sa/Sc)×Ncとなるので、表2のようになる。
Here, when DAC correction is applied to the waveform, Sa of the defect signal depth a is multiplied by Sa / Sa, Sb of depth b is multiplied by Sa / Sb, and Sc of depth c is Sa / Sc. The doubled waveform is displayed individually. That is, all signal values (s) are Sa.
By the way, when the noise signal N becomes the signals Na, Nb, and Nc for the depths a, b, and c in the healthy part without DAC correction (assuming that Na>Nb> Nc), the noise signal N is as shown in Table 1. here,
(A) When Na ≧ (Sa / Sc) × Nc, N = Na, so Table 1 is obtained.
(B) When Na <(Sa / Sc) × Nc, N = (Sa / Sc) × Nc, so Table 2 is obtained.

Figure 2019191062
Figure 2019191062

Figure 2019191062
Figure 2019191062

つまり、探傷条件(周波数、結晶粒サイズ、欠陥サイズなど)によっては、前記DAC補正を掛けることで、前記SN比が低下するおそれがあった。この問題は、DAC補正を掛けた下記のチャートからSN比を算出する場合にも生じ得るおそれがあった。
尚、上記チャートとは、例えば、断面角形形状の長尺なビレットをその長手(軸)方向に沿って超音波探傷する場合、縦軸には探傷方向ごとの各断面における探傷領域内で最も高い信号値をプロットし、且つ横軸には当該ビレットの端面から前記探傷方向ごとの各断面までの距離をプロットしたものである。
また、前記距離振幅補正の補正値を算出するために、異なる伝搬距離ごとの人工欠陥を内部に設けた校正用試験片を予め用意しておく必要がある、という問題もあった。
That is, depending on the flaw detection conditions (frequency, crystal grain size, defect size, etc.), there is a possibility that the S / N ratio may be lowered by applying the DAC correction. This problem may also occur when the S / N ratio is calculated from the following chart subjected to DAC correction.
The above chart is, for example, when ultrasonic flaw detection is performed along the longitudinal (axis) direction of a long billet having a square cross section, the vertical axis is the highest in the flaw detection area in each cross section for each flaw detection direction. The signal value is plotted, and the distance from the end face of the billet to each cross section in the flaw detection direction is plotted on the horizontal axis.
Moreover, in order to calculate the correction value of the distance amplitude correction, there is a problem that it is necessary to prepare in advance a test specimen for calibration in which artificial defects for different propagation distances are provided.

特開平1−227056号公報(第1〜6頁、第1〜6図)Japanese Patent Laid-Open No. 1-227056 (pages 1-6, FIGS. 1-6)

本発明は、背景技術で説明した問題点を解決し、前記校正用試験片を不要とし、距離振幅補正(DAC補正)によるSN比の低下を抑制し、且つ欠陥信号の位置によってはSN比を向上させ得る、主に超音波の伝搬に伴う減衰の大きい鋼材のように被検査体を対象とする超音波探傷方法、および、これに用いる超音波探傷装置を提供する、ことを課題とする。   The present invention solves the problems described in the background art, eliminates the need for the calibration test piece, suppresses a decrease in the SN ratio due to distance amplitude correction (DAC correction), and increases the SN ratio depending on the position of the defect signal. An object of the present invention is to provide an ultrasonic flaw detection method for an object to be inspected, such as a steel material that is largely attenuated due to propagation of ultrasonic waves, and an ultrasonic flaw detection apparatus used therefor.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、前記課題を解決するため、前記距離振幅補正方法を従来の欠陥信号を基準としたものに替えて、ノイズ信号群を基準としたものによって行う、ことに着想して成されたものである。
即ち、本発明の超音波探傷方法(請求項1)は、被検査体の検査領域内に位置し得る欠陥の有無を検出する超音波探傷方法であって、被検査体の表面に配置した超音波探触子から前記被検査体の内部に発信された超音波のエコーを、該被検査体の検査領域内で距離別に受信する第1ステップと、該第1ステップで得られた信号強度−距離別のグラフに現れた上記検査領域内のノイズ信号群において、最大のノイズ信号を起点としてノイズ信号群の減衰量を表す関数を算出する第2ステップと、上記検査領域内のノイズ信号群に対し、上記関数により上記距離別に算出された補正係数を個別に乗算して、上記ノイズ信号群の信号強度を個別に高める第3ステップと、を含む、ことを特徴とする。
In order to solve the above-mentioned problems, the present invention was conceived in that the distance amplitude correction method is performed based on a noise signal group instead of a conventional defect signal standard. It is.
That is, the ultrasonic flaw detection method according to the present invention (Claim 1) is an ultrasonic flaw detection method for detecting the presence or absence of a defect that can be located in the inspection region of the inspection object, and the ultrasonic inspection method disposed on the surface of the inspection object. A first step of receiving ultrasonic echoes transmitted from the acoustic probe into the inspected object for each distance within the inspection region of the inspected object, and a signal intensity obtained in the first step− In the noise signal group in the inspection region that appears in the graph according to distance, a second step of calculating a function representing the attenuation amount of the noise signal group starting from the maximum noise signal, and the noise signal group in the inspection region On the other hand, the method includes a third step of individually increasing the signal strength of the noise signal group by individually multiplying the correction coefficient calculated for each distance by the function.

前記超音波探傷方法によれば、以下の効果(1),(2)を得ることができる。
(1)前記第1ステップにおいて、前記検査領域内で超音波探触子側からの距離が長くなるに連れて、超音波のエコー(反射信号)信号群が指数関数的に減衰しても、該エコー信号群に対し、前記第2ステップで算出された関数を基に上記距離別に算出した補正係数を個別に乗算する前記第3ステップによって、探傷領域内におけるどの深さに欠陥があっとしても、SN比を低下させることなく、DAC補正を掛けることができ、且つ欠陥の深さ(位置)によってはSN比を向上させることが可能となる。従って、前記検査領域内の全体において、後述する欠陥の有無を正確且つ容易に検出することが可能となる。
(2)従来の距離振幅補正方法において必須とされていた前記校正用試験片を用いることなく、容易且つ迅速に検出することができる。
According to the ultrasonic flaw detection method, the following effects (1) and (2) can be obtained.
(1) In the first step, even if the ultrasonic echo (reflection signal) signal group attenuates exponentially as the distance from the ultrasonic probe side increases in the inspection region, According to the third step of individually multiplying the echo signal group by the correction coefficient calculated for each distance based on the function calculated in the second step, any depth in the flaw detection area can be detected. The DAC correction can be applied without lowering the SN ratio, and the SN ratio can be improved depending on the depth (position) of the defect. Therefore, it is possible to accurately and easily detect the presence or absence of a defect, which will be described later, in the entire inspection area.
(2) Detection can be performed easily and quickly without using the calibration test piece, which has been essential in the conventional distance amplitude correction method.

尚、前記被検査体は、例えば、断面が角形状で且つ長尺な鋼材(ビレット)が例示されるが、これに限定されない。
また、前記距離別の距離とは、前記超音波探触子が配置された被検査体の表面からの距離である。
更に、前記ノイズ信号は、前記欠陥のない位置からのエコー信号である。
また、前記減衰量を表す関数は、前記距離xを変数とし、該距離xの増大と共に曲線上に減少していき、f(x)で表示される。
加えて、前記検査領域内で最大のノイズ信号(デジタル信号)の強度の位置(距離)をx1とし、且つ上記検査領域内における任意の位置(距離)をx2とした場合、該位置x2での補正係数H(x2)は、f(x1)/f(x2)で表示される(数式1参照)。
In addition, as for the said to-be-inspected object, although a cross section is square shape and a long steel material (billet) is illustrated, for example, it is not limited to this.
The distance for each distance is a distance from the surface of the object to be inspected on which the ultrasonic probe is arranged.
Further, the noise signal is an echo signal from a position without the defect.
The function representing the amount of attenuation is displayed as f (x), with the distance x as a variable, decreasing on the curve as the distance x increases.
In addition, when the position (distance) of the maximum noise signal (digital signal) intensity in the inspection area is x1, and an arbitrary position (distance) in the inspection area is x2, the position at the position x2 The correction coefficient H (x2) is displayed as f (x1) / f (x2) (see Formula 1).

(数1)
H(x2)=f(x1)/f(x2)
但し、H(x2)>1
(Equation 1)
H (x2) = f (x1) / f (x2)
However, H (x2)> 1

また、本発明には、前記第1ステップでは、前記被検査体内の距離の比率における15〜85%の範囲を前記検査領域としており、前記第2ステップでは、上記被検査体内の距離の比率における15〜50%の領域において、最も信号強度が高い最大ノイズ信号を検出し、該最大ノイズ信号を起点としてノイズ信号群の減衰量を表す関数を算出する、超音波探傷方法(請求項2)も含まれる。
これによれば、前記被検査体内の距離の比率における15〜85%の範囲を前記検査領域として第1ステップが行われ、且つ記被検査体内の距離の比率における15〜50%の領域において、最も信号強度が高い最大ノイズ信号を検出し、該最大ノイズ信号を起点としてノイズ信号群の減衰量を表す関数を算出する第2ステップが行われる。従って、かかる形態の超音波探傷方法によっても、前記効果(1),(2)を得ることが可能である。
Further, in the present invention, in the first step, a range of 15 to 85% in the ratio of the distance in the subject to be inspected is set as the inspection region, and in the second step, in the ratio of the distance in the subject to be inspected. An ultrasonic flaw detection method (Claim 2) is also provided that detects a maximum noise signal having the highest signal intensity in a region of 15 to 50% and calculates a function representing an attenuation amount of the noise signal group from the maximum noise signal as a starting point. included.
According to this, the first step is performed with the range of 15 to 85% in the ratio of the distance in the inspected body as the inspection area, and in the area of 15 to 50% in the ratio of the distance in the inspected object, A second step of detecting a maximum noise signal having the highest signal strength and calculating a function representing the attenuation amount of the noise signal group from the maximum noise signal as a starting point is performed. Therefore, the effects (1) and (2) can be obtained also by this type of ultrasonic flaw detection method.

更に、本発明には、前記被検査体の検査領域内に欠陥が存在し、該欠陥に伴うエコーの信号強度も、前記第3ステップの補正係数を乗算されることにより高められる、超音波探傷方法(請求項3)も含まれる。
これによれば、前記効果(1)を確実に奏することができる。
Further, according to the present invention, there is a defect in the inspection region of the object to be inspected, and an ultrasonic flaw detection in which an echo signal intensity accompanying the defect is also increased by multiplying the correction coefficient in the third step. A method (claim 3) is also included.
According to this, the said effect (1) can be show | played reliably.

加えて、本発明には、前記被検査体は、断面が角形状の長尺な鋼材であり、該鋼材の長手方向に沿って複数回にわたって超音波が発信され、該複数の被検査断面ごとの前記検査領域内において最大の信号強度を個別に抽出し、該信号強度の値を基に欠陥の有無を判定する、超音波探傷方法(請求項4)も含まれる。
これによれば、上記鋼材内部の欠陥の有無を一層正確に検知できるので、前記効果(1)を一層確実に得ることが可能となる。
In addition, according to the present invention, the object to be inspected is a long steel material having a square cross section, and ultrasonic waves are transmitted a plurality of times along the longitudinal direction of the steel material, In addition, an ultrasonic flaw detection method (Claim 4) is also included, in which the maximum signal intensity is individually extracted in the inspection region and the presence or absence of a defect is determined based on the value of the signal intensity.
According to this, since the presence or absence of a defect inside the steel material can be detected more accurately, the effect (1) can be obtained more reliably.

一方、本発明の超音波探傷装置(請求項5)は、被検査体の検査領域内に位置し得る欠陥の有無を検出する超音波探傷装置であって、被検査体の表面に配置した超音波探触子から前記被検査体の内部に発信された超音波のノイズ信号を含むエコー信号群を、デジタル信号にするA/D変換器と、前記デジタル信号群のうち、上記被検査体の検査領域内に含まれ且つ特定の周波数帯域の信号群を取り出すフィルタと、上記検査領域内のノイズ信号群を距離別に抽出するゲートと、上記距離別とされたノイズ信号群について、最大のノイズ信号を起点としてノイズ信号群の減衰量を表す関数を算出する算出部と共に、上記ノイズ信号群に対し、上記関数により上記距離別に算出された補正係数を個別に乗算する演算部と、を備えている、ことを特徴とする。   On the other hand, the ultrasonic flaw detector of the present invention (Claim 5) is an ultrasonic flaw detector that detects the presence or absence of a defect that can be located in the inspection region of the inspection object, and is an ultrasonic inspection apparatus disposed on the surface of the inspection object. An A / D converter that converts an echo signal group including an ultrasonic noise signal transmitted from the acoustic probe into the inspected object to a digital signal, and of the inspected object in the digital signal group. A filter that extracts a signal group in a specific frequency band that is included in the inspection region, a gate that extracts the noise signal group in the inspection region by distance, and the maximum noise signal for the noise signal group that is separated by distance And a calculation unit that calculates a function representing the attenuation amount of the noise signal group from the starting point, and a calculation unit that individually multiplies the noise signal group by the correction coefficient calculated for each distance by the function. Special To.

前記超音波探傷装置によれば、以下の効果(3),(4)が得られる。
(3)前記A/D変換器により前記エコー信号群をデジタル信号化し、該デジタル信号群のうち、前記検査領域内に含まれ、且つ特定の周波数帯域(例えば、送信した周波数帯域)とは異なる周波数のノイズ信号群を前記フィルタによって除去し、特定の周波数帯域のノイズ信号群が前記ゲートにより前記距離別に抽出される。更に、該距離別とされたノイズ信号群について、前記算出部により、検査断面ごとにおける最大のノイズ信号を起点として減衰量を表す関数を算出すると共に、前記演算部による該関数によって上記距離別に算出された補正係数が上記ノイズ信号群に個別に乗算される。そのため、前記送信周波数とは異なる周波数のノイズ信号、例えば、電気ノイズが挙げられ、該電気ノイズなどをフィルタに掛けることで、電気ノイズなどを除去して減衰の関数を正確に出すことができる。従って、前記検査領域内の全体において、後述する欠陥の有無を容易且つ迅速に検知し得る超音波探傷装置を提供できる。
(4)従来の距離振幅補正方法にて必須とされていた前記校正用試験片を省略できると共に、探傷操作も簡素化することができる。
尚、前記算出部には、例えば、マイクロプロセッサなどのCPUが用いられる。
また、前記送信周波数(帯)とは、例えば、約1〜10MHzである。
According to the ultrasonic flaw detector, the following effects (3) and (4) can be obtained.
(3) The echo signal group is converted into a digital signal by the A / D converter, and the digital signal group is included in the inspection region and is different from a specific frequency band (for example, a transmitted frequency band). A noise signal group having a frequency is removed by the filter, and a noise signal group having a specific frequency band is extracted for each distance by the gate. Further, for the noise signal group classified according to the distance, the calculation unit calculates a function representing the attenuation amount with the maximum noise signal for each inspection section as a starting point, and calculates the distance according to the distance by the function by the calculation unit. The corrected correction coefficient is individually multiplied to the noise signal group. For this reason, a noise signal having a frequency different from the transmission frequency, for example, electric noise can be used. By filtering the electric noise or the like, the electric noise can be removed and the attenuation function can be accurately obtained. Accordingly, it is possible to provide an ultrasonic flaw detector that can easily and quickly detect the presence or absence of a defect, which will be described later, in the entire inspection region.
(4) The calibration test piece, which has been essential in the conventional distance amplitude correction method, can be omitted, and the flaw detection operation can be simplified.
For the calculation unit, for example, a CPU such as a microprocessor is used.
The transmission frequency (band) is, for example, about 1 to 10 MHz.

また、本発明には、前記エコー信号群および前記検査領域内のデジタル信号群には、ノイズ信号および前記被検査体の内部に含まれる欠陥による欠陥信号が含まれている、超音波探傷装置(請求項6)も含まれる。
これによれば、前記被検査体の検査領域からのエコー信号群を、前記距離による減衰量を補正された信号強度のノイズ信号にすると共に、欠陥によるエコー信号も前記減衰量を同様に補正して高められる。従って、前記効果(3)および効果(4)を確実に奏することができる。
According to the present invention, there is also provided an ultrasonic flaw detector in which the echo signal group and the digital signal group in the inspection region include a noise signal and a defect signal due to a defect included in the inspection object ( Claim 6) is also included.
According to this, the echo signal group from the inspection area of the object to be inspected is a noise signal having a signal intensity in which the attenuation amount due to the distance is corrected, and the attenuation amount of the echo signal due to the defect is similarly corrected. Can be enhanced. Therefore, the effects (3) and (4) can be reliably achieved.

更に、本発明には、前記被検査体は、断面が角形状の長尺な鋼材であり、該鋼材の長手方向に沿って複数回にわたって超音波が発信され、該複数の被検査断面ごとの前記検査領域内において最大のデジタル信号を抽出するピーク値検出器と、上記鋼材の長手方向に沿って複数の被検査断面ごとに、上記デジタル信号をプロットするプロット手段と、を更に有している、超音波探傷装置(請求項7)も含まれる。
これによれば、上記鋼材について、上記欠陥の有無を正確に検知することが可能となるので、前記効果(3)を確実に得ることができる。
Furthermore, in the present invention, the object to be inspected is a long steel material having a square cross section, and ultrasonic waves are transmitted a plurality of times along the longitudinal direction of the steel material, A peak value detector for extracting the maximum digital signal in the inspection region; and plotting means for plotting the digital signal for each of a plurality of cross sections to be inspected along the longitudinal direction of the steel material. An ultrasonic flaw detector (Claim 7) is also included.
According to this, since it becomes possible to accurately detect the presence or absence of the defect in the steel material, the effect (3) can be reliably obtained.

(A)、(B)は被検査体の端面図と側面図、(C)、(D)は前記被検査体における超音波の信号強度と伝搬距離との関係を示すグラフ、(E)は前記被検査体の軸方向に沿った探傷位置ごとにおけるSN比などを示すチャート。(A), (B) are end views and side views of the object to be inspected, (C), (D) are graphs showing the relationship between the ultrasonic signal intensity and the propagation distance in the object to be inspected, and (E), The chart which shows SN ratio etc. for every flaw detection position along the axial direction of the said to-be-inspected object. 本発明の超音波探傷装置の概略を示すブロック図。The block diagram which shows the outline of the ultrasonic flaw detector of this invention. (A)〜(C)は本発明による一形態の超音波探傷方法の第2,3ステップを示す前記同様のグラフ、(D)、(E)は前記被検査体の軸方向に沿った探傷位置を示す側面図、および該探傷位置ごとにおけるSN比などを示すチャート。(A) to (C) are the same graphs showing the second and third steps of the ultrasonic flaw detection method according to one embodiment of the present invention, and (D) and (E) are flaw detection along the axial direction of the inspection object. The side view which shows a position, and the chart which shows SN ratio etc. for every this flaw detection position. (A)、(B)は異なる形態の超音波探傷方法における前記図1(C),(D)と対応するグラフ。(A), (B) is a graph corresponding to FIG. 1 (C), (D) in the ultrasonic flaw detection method of a different form. (A)〜(C)は前記異なる形態の超音波探傷方法における第2,3ステップを示す前記同様のグラフ。(A)-(C) are the same graphs as the above which show the 2nd and 3rd step in the ultrasonic flaw detection method of the said different form. (A)は高減衰材の探傷波形パターンを示すグラフ、(B)は一般的な鋼材の探傷波形パターンを示すグラフ、(C)〜(F)は深さごとの探傷波形パターンを示すグラフ。(A) is a graph showing a flaw detection waveform pattern of a high attenuation material, (B) is a graph showing a flaw detection waveform pattern of a general steel material, and (C) to (F) are graphs showing a flaw detection waveform pattern for each depth.

以下において、本発明を実施するための形態について説明する。
図1(A)、(B)は、超音波の伝搬に伴う減衰が大きい鋼材(被検査体)1の端面図と側面図である。
上記鋼材1は、図示のように、端面(断面)が正方形(角形)状で且つ長尺な形態を有し、例えば、一辺が約50〜200mmで且つ長さが数m〜10数mの寸法である。該鋼材1の断面内には、種々の介在物や空隙などの欠陥d1〜d3が内在しているものと仮定する。例えば、図示のように、当該鋼材1の断面の中央側で、且つその長手方向に沿って仮想の検査領域Iを予め設定しておく。
図1(A)、(B)に示すように、前記鋼材1の上面には、超音波探触子2が長手方向に沿って移動可能に配置され、同図中で垂直な下向きの矢印で示すように、等間隔で複数の検査断面ごとに上記超音波探触子2から超音波が発信される。
Hereinafter, modes for carrying out the present invention will be described.
1A and 1B are an end view and a side view of a steel material (inspected object) 1 having a large attenuation due to propagation of ultrasonic waves.
As shown in the drawing, the steel material 1 has an end face (cross section) that is square (rectangular) and has a long shape. For example, one side is about 50 to 200 mm and the length is several m to several tens m. Dimensions. It is assumed that defects d1 to d3 such as various inclusions and voids are present in the cross section of the steel material 1. For example, as shown in the figure, a virtual inspection region I is set in advance on the center side of the cross section of the steel material 1 and along the longitudinal direction thereof.
As shown in FIGS. 1 (A) and 1 (B), an ultrasonic probe 2 is arranged on the upper surface of the steel material 1 so as to be movable along the longitudinal direction, and a vertical downward arrow in the figure. As shown, ultrasonic waves are transmitted from the ultrasonic probe 2 for each of a plurality of inspection sections at equal intervals.

図1(C)は、欠陥d1〜d3のない断面における超音波の伝搬距離xと、超音波のエコー信号群の信号強度との関係を示すグラフである。尚、該信号強度は、超音波の基準となる試験片において基準となる人工欠陥を100%とした際の関係(比率)を示す。また、検査領域Iは、前記鋼材1の一辺をYmmとし、且つ伝播距離をxmmとした場合に、((x/Y)×100%)とした値に基づいて、15〜85%とした。
図1(C)に示すように、前記鋼材1の上面(表面、探傷面)付近と下面(底面)付近とを除いた前記検査領域Iでは、前記超音波探触子2が配置された上面からの距離xが大きくなるに連れて、超音波のエコー信号群の信号強度は、全体として曲線状(指数関数的)に減少している。因みに、上記検査領域I内における最大のノイズ信号yの信号強度は、21%であった。
FIG. 1C is a graph showing the relationship between the ultrasonic propagation distance x and the signal intensity of the ultrasonic echo signal group in the cross section having no defects d1 to d3. The signal intensity indicates a relationship (ratio) when the artificial defect serving as a reference in a test piece serving as an ultrasonic reference is defined as 100%. The inspection region I was 15 to 85% based on the value of ((x / Y) × 100%) when one side of the steel material 1 was Ymm and the propagation distance was xmm.
As shown in FIG. 1C, in the inspection region I except for the vicinity of the upper surface (surface, flaw detection surface) and the vicinity of the lower surface (bottom surface) of the steel material 1, the upper surface on which the ultrasonic probe 2 is disposed. As the distance x from the distance increases, the signal intensity of the ultrasonic echo signal group decreases as a whole (exponentially). Incidentally, the maximum signal strength of the noise signal y in the inspection region I was 21%.

一方、図1(D)は、互いに同様なサイズの欠陥d1〜d3を個別に含む3つの検査断面ごとにおける超音波の伝搬距離xと、前記断面ごとにおける超音波のエコー信号群の信号強度との関係を示すように、1つに合成したグラフである。
図1(D)に示すように、前記鋼材1の上面および下面付近を除いた前記検査領域saでは、前記超音波探触子2が配置された上面からの距離xが大きくなるに連れて、超音波のエコー信号群の信号強度は、曲線状に減衰していると共に、前記欠陥d1〜d3による信号強度も距離xの増加に連れて順次減少している。
因みに、上記欠陥d1の信号強度は、71%、欠陥d2の信号強度は、46%、欠陥d3の信号強度は、16%であった。尚、検査領域saにおける最大のノイズ信号yの信号強度は、前記と同じ21%である。
On the other hand, FIG. 1D shows the ultrasonic propagation distance x for each of the three inspection cross sections individually including defects d1 to d3 having the same size, and the signal intensity of the ultrasonic echo signal group for each cross section. It is a graph synthesized into one so as to show the relationship.
As shown in FIG. 1D, in the inspection area sa excluding the vicinity of the upper surface and the lower surface of the steel material 1, as the distance x from the upper surface where the ultrasonic probe 2 is arranged increases, The signal intensity of the ultrasonic echo signal group is attenuated in a curved line, and the signal intensity due to the defects d1 to d3 also decreases sequentially as the distance x increases.
Incidentally, the signal intensity of the defect d1 was 71%, the signal intensity of the defect d2 was 46%, and the signal intensity of the defect d3 was 16%. The signal intensity of the maximum noise signal y in the inspection area sa is 21%, the same as described above.

そして、図1(E)に示すように、前記鋼材1の長手方向に沿った複数の検査断面を横軸とし、且つ各検査断面ごとにおける最大のエコー信号値をプロットしたチャート(一覧表)を作成した。図示のように、前記欠陥d1〜d3のない複数の検査断面では、何れも前記最大のノイズ信号y(信号強度;21%)がプロットされている。一方、上記欠陥d1,d2を含む2つの検査断面では、これらによる信号強度(71%、46%)がノイズ信号yの信号強度よりも大きいため、該信号強度がそれぞれプロットされた。   And as shown in FIG.1 (E), the chart (list) which plotted the maximum echo signal value for every test | inspection cross section by making the horizontal axis the some test | inspection cross section along the longitudinal direction of the said steel material 1 is shown. Created. As shown in the figure, the maximum noise signal y (signal intensity; 21%) is plotted in each of a plurality of inspection sections without the defects d1 to d3. On the other hand, in the two inspection sections including the defects d1 and d2, the signal intensity (71%, 46%) due to these is larger than the signal intensity of the noise signal y, and thus the signal intensity is plotted.

しかし、前記距離xが最も長い欠陥d3を含む検査断面では、該欠陥d3による信号強度(16%)が前記ノイズ信号y(21%)の信号強度よりも小さいため、当該ノイズ信号yの信号強度がプロットされている。
因みに、前記欠陥d1〜d3を含む3つの検査断面ごとのSN比(欠陥d1〜d3に基づく信号強度/ノイズ信号yの信号強度)は、図1(E)中にカツコ書きで記載したように、(3.4)、(2.2)、(0.8)であった。かかる結果からも、前記距離xの増大に連れて検出能が低下することが明らかである。
上記例では、ノイズを検出した深さと、信号を検出した深さとが異なるため、DAC補正によるSN比の改善(向上)が期待できる。
However, in the inspection section including the defect d3 having the longest distance x, the signal intensity (16%) due to the defect d3 is smaller than the signal intensity of the noise signal y (21%). Is plotted.
Incidentally, the S / N ratio (signal intensity based on the defects d1 to d3 / signal intensity of the noise signal y) for each of the three inspection cross sections including the defects d1 to d3 is as shown in FIG. , (3.4), (2.2), and (0.8). From these results, it is clear that the detection ability decreases as the distance x increases.
In the above example, since the depth at which the noise is detected is different from the depth at which the signal is detected, an improvement (improvement) in the SN ratio by DAC correction can be expected.

図2は、本発明の超音波探傷装置4を示すブロック図である。尚、以下では、前記鋼材1において欠陥のない健全部を対象として行う校正について説明する。
上記超音波探傷装置4は、図2に示すように、前記超音波探触子2から延びたケーブル3を介して接続されたレシーバ(パルサ)5、以下、同図中の矢印で順次示すA/D変換器6、フィルタ7、ゲート8、近似関数算出部(算出部)9、DAC補正演算部(演算部)10、ピーク値検出部11,および、プロット手段12を備えている。
前記超音波探触子2からケーブル3およびレシーバ5を介して送信された超音波のエコー信号群は、前記A/D変換器6によりデジタル信号化され、該デジタル信号群のうち、送信周波数(帯)とは異なる周波数のノイズ(例えば、電気ノイズなど)をフィルタ7よって除去し、前記検査領域I内のノイズ信号群が前記ゲート8により前記距離x別にして抽出される。
FIG. 2 is a block diagram showing the ultrasonic flaw detector 4 of the present invention. In the following, calibration performed on a healthy part having no defect in the steel material 1 will be described.
As shown in FIG. 2, the ultrasonic flaw detector 4 includes a receiver (pulser) 5 connected through a cable 3 extending from the ultrasonic probe 2, and hereinafter, A shown in order by arrows in the figure. / D converter 6, filter 7, gate 8, approximate function calculation unit (calculation unit) 9, DAC correction calculation unit (calculation unit) 10, peak value detection unit 11, and plotting unit 12.
The ultrasonic echo signal group transmitted from the ultrasonic probe 2 via the cable 3 and the receiver 5 is converted into a digital signal by the A / D converter 6, and the transmission frequency ( Noise (for example, electric noise) having a frequency different from that of the band is removed by the filter 7, and a group of noise signals in the inspection region I is extracted by the gate 8 according to the distance x.

次いで、前記距離x別とされたノイズ信号群について、前記算出部9により、検査断面ごとにおける最大のノイズ信号yを起点として、全体の減衰量を表す関数f(x)が算出されるDAC補正演算部10によって上記距離x別に算出された補正係数H(xn)が上記ノイズ信号群に個別に乗算される。
次いで、実際の検査対象である鋼材1の探傷を行う。この際、前記検査領域I内のノイズ信号群および欠陥によるエコー信号について、検査断面ごとにピーク値検出部11で最大値(ピーク値)を検出した後、前記プロット手段12で検査断面ごとに,前記最大値がプロットされる。
以上の構成からなる超音波探傷装置4の作用を、次述する本発明による一形態の超音波探傷方法に沿って説明する。
Next, for the noise signal group classified by the distance x, the correction unit 9 calculates a function f (x) representing the entire attenuation amount by using the maximum noise signal y for each inspection section as a starting point. The noise signal group is individually multiplied by the correction coefficient H (xn) calculated by the calculation unit 10 for each distance x.
Next, flaw detection is performed on the steel material 1 that is the actual inspection target. At this time, with respect to the noise signal group in the inspection region I and the echo signal due to the defect, the peak value detection unit 11 detects the maximum value (peak value) for each inspection section, and then the plotting unit 12 performs the inspection for each inspection section The maximum value is plotted.
The operation of the ultrasonic flaw detector 4 having the above configuration will be described along an ultrasonic flaw detection method according to an embodiment of the present invention described below.

先ずは、鋼材1内の欠陥のない健全部を用いて、以下の校正を行う。
即ち、前記図1(A),(B)で示した場合と同様に、前記鋼材1の上面に超音波探触子2を配置し、該鋼材1における前記欠陥d1〜d3のない検査断面に対し超音波を発信し、検前記査領域I内におけるノイズによるエコー信号群を、図3(A)のグラフで示すように、距離x別に受信した(第1ステップ)。
上記エコー信号群は、超音波探触子2から前記ケーブル3およびレシーバ5を介して送信されA/D変換器6にてデジタル信号化され、該デジタル信号群のうち、送信周波数とは異なる周波数のノイズ信号群を前記フィルタ7により除去し、前記検査領域sa内のノイズ信号群は、前記ゲート8によって前記グラフのように距離x別に抽出される。
次に、前記距離x別とされたノイズ信号群について、前記算出部9によって、前記検査断面における最大のノイズ信号を起点として、減衰量を表す図3(A)中の一点鎖線の曲線のような関数f(x)が算出される(第2ステップ)。
First, the following calibration is performed using a sound part without defects in the steel material 1.
That is, similarly to the case shown in FIGS. 1A and 1B, the ultrasonic probe 2 is arranged on the upper surface of the steel material 1, and the steel material 1 has an inspection cross section without the defects d1 to d3. On the other hand, ultrasonic waves were transmitted, and echo signal groups due to noise in the inspection area I were received for each distance x as shown in the graph of FIG. 3A (first step).
The echo signal group is transmitted from the ultrasound probe 2 via the cable 3 and the receiver 5 and converted into a digital signal by the A / D converter 6. Of the digital signal group, a frequency different from the transmission frequency. The noise signal group is removed by the filter 7 and the noise signal group in the inspection region sa is extracted by the distance x by the gate 8 as shown in the graph.
Next, with respect to the noise signal groups classified by the distance x, the calculation unit 9 uses the maximum noise signal in the inspection cross section as a starting point, and represents the attenuation amount as shown by a dashed line curve in FIG. A function f (x) is calculated (second step).

次いで、前記演算部10において、上記関数f(x)により上記距離x別に算出された補正係数H(xn)が、上記ノイズ信号群に対し個別に乗算される(第3ステップ)。
例えば、前記検査領域I内で最大のノイズ信号またはデジタル信号の強度の位置(距離)をx1とし、且つ検査領域I内における任意の位置(距離)をx2とした場合(但し、x1<x2)、該位置x2での補正係数H(x2)は、f(x1)/f(x2)で表示される。該補正係数H(x2)は、常に1よりも大きくなる。即ち、前記検査領域sa内で最大のノイズ信号yの位置(距離X1)を35mmとし、前記欠陥d2の位置(距離X2)を80mmとした場合、該位置x2における補正係数H(x2)は、f(35)/f(80)となる。
Next, the calculation unit 10 individually multiplies the noise signal group by the correction coefficient H (xn) calculated for each distance x by the function f (x) (third step).
For example, when the position (distance) of the maximum noise signal or digital signal intensity in the inspection area I is x1, and an arbitrary position (distance) in the inspection area I is x2 (where x1 <x2) The correction coefficient H (x2) at the position x2 is expressed as f (x1) / f (x2). The correction coefficient H (x2) is always larger than 1. That is, when the position (distance X1) of the maximum noise signal y in the inspection area sa is 35 mm and the position (distance X2) of the defect d2 is 80 mm, the correction coefficient H (x2) at the position x2 is f (35) / f (80).

その結果、前記鋼材1において前記欠陥d1〜d3のない検査断面は、図3(B)のグラフで示すように、前記検査領域saの全体に亘ってノイズ信号群の信号強度が、最大のノイズ信号y以下で高められる。
以上の各ステップによって、基準波形を得るための校正が完了する。
As a result, the inspection cross section without the defects d1 to d3 in the steel material 1 has the maximum signal intensity of the noise signal group over the entire inspection area sa, as shown in the graph of FIG. Increased below signal y.
The calibration for obtaining the reference waveform is completed by the above steps.

次に、前記校正により得られた基準波形を基準として、実際の探傷対象である鋼材1の探傷を行う。
先ず、検査領域I内のノイズ信号群および欠陥d1〜d3によるエコー信号は、前記ピーク値検出部11において、検査断面ごとに最大値(ピーク値)が検出された後、前記プロット手段12によって検査断面ごとに,前記最大値がプロットされる。
即ち、図3(D)に示すように、鋼材1の長手方向において、前記超音波が発信された複数の検査断面ごとにおける前記最大値は、図3(E)のチャートに示すように、前記検査領域I内で最大のノイズ信号yであるか、あるいは、前記欠陥d1〜d3に起因するエコー信号の何れかがであり、これらが図示のようにプロットされる。
Next, flaw detection is performed on the steel material 1 that is an actual flaw detection target with reference to the reference waveform obtained by the calibration.
First, the peak value detection unit 11 detects the maximum value (peak value) of the noise signal group in the inspection area I and the defects d1 to d3 for each inspection section, and then inspects by the plotting unit 12. The maximum value is plotted for each cross section.
That is, as shown in FIG. 3D, in the longitudinal direction of the steel material 1, the maximum value for each of the plurality of inspection sections from which the ultrasonic waves are transmitted is as shown in the chart of FIG. Either the maximum noise signal y in the inspection region I or the echo signal due to the defects d1 to d3, which are plotted as shown.

因みに、前記欠陥d1〜d3を含む3つの検査断面ごとのSN比は、図3(E)中にカツコ書きで記載したように、(4.5)、(4.6)、(5.8)となり、DAC補正を掛ける前と比較して各欠陥のSN比が増大する傾向を示した。
以上により、本発明の前記超音波探傷方法によれば、前記効果(1),(2)が得られ、且つ前記超音波探傷装置4によれば、前記効果(3),(4)を奏することが容易に理解される。
Incidentally, the S / N ratio for each of the three inspection sections including the defects d1 to d3 is (4.5), (4.6), (5.8), as described in FIG. Thus, the SN ratio of each defect tends to increase as compared to before the DAC correction.
As described above, according to the ultrasonic flaw detection method of the present invention, the effects (1) and (2) can be obtained, and the ultrasonic flaw detection apparatus 4 exhibits the effects (3) and (4). Can be easily understood.

次に、前記形態とは異なる形態の超音波探傷方法について説明する。
図4(A),(B)は、前記図1(C),(D)のグラフを、前記鋼材(被検査体)1の上面からの伝搬距離x(mm)を百分率(比率;%)に置き換えたものである。更に、図5(A)〜(C)は、前記図3(A)〜(C)のグラフを、上記と同様に置き換えたものである。
本形態の超音波探傷方法では、図4(A),(B)、図5(A)〜(C)に示すように、前記鋼材1内の上面から反対側の下面に至る伝播距離(x)を比率(%)で表示すると共に、前記探傷領域(sa)は、15〜85%の範囲とした。かかる範囲としたのは、発明者らの経験則に基づき、最適な探傷範囲であることに依るものである。尚、前記検査領域(Sa)を除いた伝搬距離x(mm)が、0〜15%と85〜100%の範囲は、別途、渦電流探傷法などにより検査される。
Next, an ultrasonic flaw detection method having a form different from the above form will be described.
4 (A) and 4 (B) are graphs of FIG. 1 (C) and FIG. 1 (D), and the propagation distance x (mm) from the upper surface of the steel material (inspected object) 1 is expressed as a percentage (ratio:%). It has been replaced with. Further, FIGS. 5A to 5C are obtained by replacing the graphs of FIGS. 3A to 3C in the same manner as described above.
In the ultrasonic flaw detection method of the present embodiment, as shown in FIGS. 4 (A), (B), and FIGS. 5 (A) to (C), the propagation distance from the upper surface in the steel material 1 to the lower surface on the opposite side (x ) In percentage (%), and the flaw detection area (sa) is in the range of 15 to 85%. This range is based on the optimum flaw detection range based on the empirical rules of the inventors. In addition, when the propagation distance x (mm) excluding the inspection region (Sa) is in the range of 0 to 15% and 85 to 100%, it is separately inspected by an eddy current flaw detection method or the like.

具体的には、第1ステップとして、前記鋼材1の上面(探傷面9からの伝播距離x(mm)において、該距離x(mm)の比率(%)を基準に15〜85%の範囲を検査領域(I)とし、上記鋼材1の上面に配置した前記超音波探触子2から該鋼材1の前記検査領域(I)に対して発信された超音波のエコー信号群を、図4(A),(B)のグラフで示すように、該検査領域(I)内において、上記比率(%)別に受信する。
次に、前記第1ステップで得られた図4(A),(B)のグラフで表れた検査領域(sa)内を含む伝播距離x(mm)の比率(%)において、15〜50%の領域で最も信号強度が高い最大ノイズ信号(y)を検出し、かかる最大ノイズ信号(y)を起点として、図5(A)中に示すように、検査領域(I)内におけるノイズ信号群の減衰量を示す関数f(x)を算出する第2ステップを行う。
Specifically, as a first step, in the upper surface of the steel material 1 (in the propagation distance x (mm) from the flaw detection surface 9), a range of 15 to 85% based on the ratio (%) of the distance x (mm) is set. As an inspection area (I), an ultrasonic echo signal group transmitted from the ultrasonic probe 2 arranged on the upper surface of the steel material 1 to the inspection area (I) of the steel material 1 is shown in FIG. As shown in the graphs of A) and (B), the data is received for each ratio (%) in the inspection area (I).
Next, in the ratio (%) of the propagation distance x (mm) including the inside of the inspection region (sa) shown in the graphs of FIGS. 4A and 4B obtained in the first step, 15 to 50% The maximum noise signal (y) having the highest signal intensity in the region is detected, and the noise signal group in the inspection region (I) is detected from the maximum noise signal (y) as shown in FIG. 5A. A second step of calculating a function f (x) indicating the amount of attenuation is performed.

また、SN比を算出する際のノイズ信号は、多くの場合、検査領域(I)内で最も探傷面(前記鋼材1の上面側)に近い位置でプロットされ、特に前記比率(%)を基準として、15〜50%の範囲において顕著に混在している。
更に、前記超音波探触子2を前記鋼材1の上面に沿って走査する際に、ノイズ信号の強度は殆ど変動しない波形を呈するので、該ノイズ信号と欠陥信号とは明確に判別し得る。
Further, in many cases, the noise signal when calculating the SN ratio is plotted at a position closest to the flaw detection surface (upper surface side of the steel material 1) in the inspection region (I), and particularly based on the ratio (%). As 15 to 50%.
Furthermore, when the ultrasonic probe 2 is scanned along the upper surface of the steel material 1, the intensity of the noise signal exhibits a waveform that hardly fluctuates, so that the noise signal and the defect signal can be clearly distinguished.

そして、前記検査領域(I)内のノイズ信号群に対し、前記関数f(x)によって前記比率(%)別に算出された補正係数H(xn)を個別に乗算する第3ステップを行う。
その結果、前記鋼材1において前記欠陥d1〜d3のない検査断面は、図5(B)のグラフで示すように、前記検査領域Iの全体に亘ってノイズ信号群の信号強度が、最大のノイズ信号y以下で高められる。
一方、前記欠陥d1〜d3を含む3つの検査断面ごとでは、図5(C)の合成済みグラフで示すように、前記検査領域Iの全体に亘ってノイズ信号群の信号強度が高められると共に、欠陥d1〜d3に起因するエコー信号も、最大のノイズ信号yよりも更に大きな信号強度に個別に高められる。
以上のような形態の超音波探傷方法によっても、前記効果(1),(2)が得られることは明らかである。
Then, a third step of individually multiplying the noise signal group in the inspection region (I) by the correction coefficient H (xn) calculated for each ratio (%) by the function f (x) is performed.
As a result, the inspection cross section without the defects d1 to d3 in the steel material 1 has a maximum noise intensity over the entire inspection area I as shown in the graph of FIG. Increased below signal y.
On the other hand, in each of the three inspection sections including the defects d1 to d3, as shown in the synthesized graph of FIG. 5C, the signal intensity of the noise signal group is increased over the entire inspection region I, The echo signals resulting from the defects d1 to d3 are also individually increased to a signal intensity that is greater than the maximum noise signal y.
It is clear that the effects (1) and (2) can be obtained by the ultrasonic flaw detection method having the above-described form.

本発明は、以上において説明した形態に限定されるものではない。
例えば、本発明は、探触子を用いた超音波探傷方法に関する技術であり、プローブを用いた探傷方法の他、アレイ探触子を用いたフェーズドアレイ探傷方法にも適用することが可能である。
また、前記超音波探傷方法の対象となる被検査体は、垂直探傷法が適用できる固体であれば、前記鋼材1に限らず、各種の金属や合金からなる金属部材、あるいは、種々の材料からなるセラミック部材や樹脂部材としても良い。
また、前記超音波探触子2は、前記鋼材1の上面に加え、該鋼材1の同じ検査断面における何れか一方の側面から対向する他方の側面に向かって更に配置し、同じ検査断面に対しタイミングをずらして2回ずつ超音波を発信しても良い。
The present invention is not limited to the embodiment described above.
For example, the present invention relates to an ultrasonic flaw detection method using a probe, and can be applied to a phased array flaw detection method using an array probe in addition to a flaw detection method using a probe. .
In addition, the object to be inspected by the ultrasonic flaw detection method is not limited to the steel material 1 as long as it is a solid to which the vertical flaw detection method can be applied, or from various metal or alloy metal members or various materials. It may be a ceramic member or a resin member.
In addition to the upper surface of the steel material 1, the ultrasonic probe 2 is further arranged from one side surface of the same steel material 1 toward the other side surface opposed to the same inspection cross section. The ultrasonic waves may be transmitted twice at different timings.

更に、前記超音波探傷装置4について、検査領域I内で最大のノイズ信号の信号強度yと、前記欠陥d1〜d3ごととのSN比とを個別に算出できるようにしても良い。
加えて、前記超音波探傷装置4のプロット手段12の下流側に対し、前記図3(E)で示したチャートを表示するディスプレイやプリンターを更に接続した形態としても良い。
Further, the ultrasonic flaw detector 4 may be configured to individually calculate the signal strength y of the maximum noise signal in the inspection region I and the SN ratio for each of the defects d1 to d3.
In addition, a display or a printer that displays the chart shown in FIG. 3E may be further connected to the downstream side of the plotting unit 12 of the ultrasonic flaw detector 4.

本発明によれば、校正用試験片を用いず、被検査体に伝搬させた超音波の伝搬距離の長短に拘わらず、ノイズ信号と欠陥信号との区別を正確に行え、且つ発信位置から離れた位置でのSN比を向上させ得る超音波探傷方法、および、これに用いる超音波探傷装置を提供することができる。   According to the present invention, it is possible to accurately distinguish between a noise signal and a defect signal regardless of the propagation distance of the ultrasonic wave propagated to the object to be inspected without using a calibration specimen, and away from the transmission position. An ultrasonic flaw detection method capable of improving the SN ratio at a certain position and an ultrasonic flaw detection apparatus used therefor can be provided.

1……………鋼材(被検査体)
2……………超音波探触子
4……………超音波探傷装置
6……………A/D変換器
7……………フィルタ
8……………ゲート
9……………近似関数算出部(算出部)
10…………DAC補正演算部(演算部)
11…………ピーク値検出部
12…………プロット手段
I……………検査領域
x……………距離
d1〜d3…欠陥
f(x)……関数
1 ... Steel (Inspected object)
2 …………… Ultrasonic probe 4 …………… Ultrasonic flaw detector 6 …………… A / D converter 7 …………… Filter 8 …………… Gate 9 ……… ...... Approximate function calculation unit (calculation unit)
10 ………… DAC correction calculation part (calculation part)
11 ………… Peak value detector 12 ………… Plotting means I ……………… Inspection area x ………… Distance d1 to d3… Defect f (x) …… Function

Claims (7)

被検査体の検査領域内に位置し得る欠陥の有無を検出する超音波探傷方法であって、
被検査体の表面に配置した超音波探触子から前記被検査体の内部に発信された超音波のエコーを、該被検査体の検査領域内で距離別に受信する第1ステップと、
上記第1ステップで得られた信号強度−距離別のグラフに現れた上記検査領域内のノイズ信号群において、最大のノイズ信号を起点としてノイズ信号群の減衰量を表す関数を算出する第2ステップと、
上記検査領域内のノイズ信号群に対し、上記関数により上記距離別に算出された補正係数を個別に乗算して、上記ノイズ信号群の信号強度を個別に高める第3ステップと、を含む、
ことを特徴とする超音波探傷方法。
An ultrasonic flaw detection method for detecting the presence or absence of a defect that can be located in an inspection area of an object to be inspected,
A first step of receiving ultrasonic echoes transmitted from the ultrasonic probe disposed on the surface of the object to be inspected to the inside of the object to be inspected according to the distance in the inspection region of the object to be inspected;
Second step of calculating a function representing the attenuation amount of the noise signal group starting from the maximum noise signal in the noise signal group in the inspection region appearing in the signal intensity-distance graph obtained in the first step. When,
A third step of individually multiplying the noise signal group in the inspection region by the correction coefficient calculated for each distance by the function and individually increasing the signal intensity of the noise signal group,
An ultrasonic flaw detection method characterized by the above.
前記第1ステップでは、前記被検査体内の距離の比率における15〜85%の範囲を前記検査領域としており、
前記第2ステップでは、上記被検査体内の距離の比率における15〜50%の領域において、最も信号強度が高い最大ノイズ信号を検出し、該最大ノイズ信号を起点としてノイズ信号群の減衰量を表す関数を算出する、
ことを特徴とする請求項1に記載の超音波探傷方法。
In the first step, a range of 15 to 85% in the ratio of the distance in the inspected body is set as the inspection region,
In the second step, a maximum noise signal having the highest signal strength is detected in an area of 15 to 50% of the distance ratio in the inspected body, and the attenuation amount of the noise signal group is expressed using the maximum noise signal as a starting point. Calculate the function,
The ultrasonic flaw detection method according to claim 1.
前記被検査体の検査領域内に欠陥が存在し、該欠陥に伴うエコーの信号強度も、前記第3ステップの補正係数を乗算されることにより高められる、
ことを特徴とする請求項1または2に記載の超音波探傷方法。
A defect exists in the inspection area of the inspection object, and the signal strength of the echo accompanying the defect is also increased by multiplying the correction coefficient of the third step.
The ultrasonic flaw detection method according to claim 1 or 2.
前記被検査体は、断面が角形状の長尺な鋼材であり、該鋼材の長手方向に沿って複数回にわたって超音波が発信され、該複数の被検査断面ごとの前記検査領域内において最大の信号強度を個別に抽出し、該信号強度の値を基に欠陥の有無を判定する、
ことを特徴とする請求項1乃至3の何れか一項に記載の超音波探傷方法。
The object to be inspected is a long steel material having a square cross section, ultrasonic waves are transmitted a plurality of times along the longitudinal direction of the steel material, and the largest in the inspection region for each of the plurality of inspected cross sections. Extract signal strength individually and determine the presence or absence of defects based on the value of the signal strength.
The ultrasonic flaw detection method according to any one of claims 1 to 3.
被検査体の検査領域内に位置し得る欠陥の有無を検出する超音波探傷装置であって、
被検査体の表面に配置した超音波探触子から前記被検査体の内部に発信された超音波のノイズ信号を含むエコー信号群を、デジタル信号にするA/D変換器と、
上記デジタル信号群のうち、検査領域内に含まれ且つ送信周波数とは異なる周波数のノイズ信号を除去して、上記被検査体の検査領域内に含まれるノイズ信号群を取り出すフィルタと、
上記検査領域内のノイズ信号群を距離別に抽出するゲートと、
上記距離別とされたノイズ信号群について、最大のノイズ信号を起点としてノイズ信号群の減衰量を表す関数を算出する算出部と、
上記ノイズ信号群に対し、上記関数により上記距離別に算出された補正係数を個別に乗算する演算部と、を備えている、
ことを特徴とする超音波探傷装置。
An ultrasonic flaw detector that detects the presence or absence of a defect that may be located within the inspection region of an inspection object,
An A / D converter that converts an echo signal group including an ultrasonic noise signal transmitted from the ultrasonic probe disposed on the surface of the object to be inspected into a digital signal, to a digital signal;
A filter for removing a noise signal group included in the inspection region of the inspected object by removing a noise signal having a frequency different from the transmission frequency included in the inspection region from the digital signal group;
A gate that extracts a group of noise signals in the inspection area according to distance;
For the noise signal group that is classified according to the distance, a calculation unit that calculates a function representing the attenuation amount of the noise signal group starting from the maximum noise signal;
A calculation unit that individually multiplies the noise signal group by a correction coefficient calculated for each distance by the function,
An ultrasonic flaw detector characterized by that.
前記エコー信号群および前記検査領域内のデジタル信号群には、ノイズ信号および前記被検査体の内部に含まれる欠陥による欠陥信号が含まれている、
ことを特徴とする請求項5に記載の超音波探傷装置。
The echo signal group and the digital signal group in the inspection area include a noise signal and a defect signal due to a defect included in the inspection object.
The ultrasonic flaw detector according to claim 5.
前記被検査体は、断面が角形状の長尺な鋼材であり、該鋼材の長手方向に沿って複数回にわたって超音波が発信され、該複数の被検査断面ごとの前記検査領域内において最大のデジタル信号を抽出するピーク値検出部と、
上記鋼材の長手方向に沿って複数の被検査断面ごとに、上記デジタル信号をプロットするプロット手段と、を更に有している、
ことを特徴とする請求項5または6に記載の超音波探傷装置。
The object to be inspected is a long steel material having a square cross section, ultrasonic waves are transmitted a plurality of times along the longitudinal direction of the steel material, and the largest in the inspection region for each of the plurality of inspected cross sections. A peak value detector for extracting a digital signal;
Plotting means for plotting the digital signal for each of a plurality of cross sections to be inspected along the longitudinal direction of the steel material;
The ultrasonic flaw detector according to claim 5 or 6.
JP2018085889A 2018-04-27 2018-04-27 Ultrasonic flaw detection method and ultrasonic flaw detection device Pending JP2019191062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018085889A JP2019191062A (en) 2018-04-27 2018-04-27 Ultrasonic flaw detection method and ultrasonic flaw detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018085889A JP2019191062A (en) 2018-04-27 2018-04-27 Ultrasonic flaw detection method and ultrasonic flaw detection device

Publications (1)

Publication Number Publication Date
JP2019191062A true JP2019191062A (en) 2019-10-31

Family

ID=68390005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018085889A Pending JP2019191062A (en) 2018-04-27 2018-04-27 Ultrasonic flaw detection method and ultrasonic flaw detection device

Country Status (1)

Country Link
JP (1) JP2019191062A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111521690A (en) * 2020-05-22 2020-08-11 中冶陕压重工设备有限公司 Curve quantification method for airborne total-acoustic-path workpiece body calibration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111521690A (en) * 2020-05-22 2020-08-11 中冶陕压重工设备有限公司 Curve quantification method for airborne total-acoustic-path workpiece body calibration
CN111521690B (en) * 2020-05-22 2023-01-24 中冶陕压重工设备有限公司 Curve quantification method for airborne total-acoustic-path workpiece body calibration

Similar Documents

Publication Publication Date Title
KR101391516B1 (en) Method for subjecting structure form of weld to imaging and device therefor
EP2811294B1 (en) Ultrasonic flaw-detection method, ultrasonic flaw-detection device, and method for producing pipe material
KR101833467B1 (en) Method for detecting and characterizing defects in a heterogeneous material via ultrasound
JP4491800B2 (en) Ultrasonic flaw detection method and apparatus
JP4679319B2 (en) Method and apparatus for detecting tissue change by ultrasound
CN112997075B (en) Method for ultrasonic detection and characterization of defects in heterogeneous materials
JP4437656B2 (en) Ultrasonic flaw detector
JP2019191062A (en) Ultrasonic flaw detection method and ultrasonic flaw detection device
JP7078128B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detector, steel material manufacturing equipment, steel material manufacturing method, and steel material quality control method
JP6479478B2 (en) Ultrasonic flaw detection method
Kananen et al. Discriminating pores from inclusions in rolled steel by ultrasonic echo analysis
JP2013011526A (en) Ultrasonic flaw detection method and ultrasonic flaw detection device
JP6061077B2 (en) Ultrasonic flaw detection method and apparatus
JP2010236886A (en) Method of measuring distribution of crystal grain size of metal material
Dupont-Marillia et al. Phased array inspection of large size forged steel parts
JP2006162321A (en) Method and apparatus for discriminating flaw by ultrasonic flaw inspection
JP4015935B2 (en) Inclusion detection evaluation method in steel by water immersion ultrasonic flaw detection
JP2006162321A5 (en)
JP2005331439A (en) Analysis method and analyzer of flaw detection signal
JP4135512B2 (en) Ultrasonic signal processing method and ultrasonic measurement apparatus
JP7167764B2 (en) Evaluation method for mixed grain ratio of crystal grains in metal structure
JP7072432B2 (en) Non-destructive inspection method for high manganese cast steel
JP2018004296A (en) Ultrasonic flaw detector and method for manufacturing components
Isaksson Evaluation of 25 MHz Ultrasonic Testing for Detection of Non-Metallic Inclusions in Steel
JP2022046081A (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, and manufacturing method of steel material

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200207