JP2002248566A - Method and device for underwater welding - Google Patents
Method and device for underwater weldingInfo
- Publication number
- JP2002248566A JP2002248566A JP2001050721A JP2001050721A JP2002248566A JP 2002248566 A JP2002248566 A JP 2002248566A JP 2001050721 A JP2001050721 A JP 2001050721A JP 2001050721 A JP2001050721 A JP 2001050721A JP 2002248566 A JP2002248566 A JP 2002248566A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- ultrasonic
- underwater
- computer
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Arc Welding In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水中溶接工程の自
動化のために、水中アーク溶接に際し、超音波センサを
用いて、溶接部位の状態を観察しながら溶接位置及び溶
接条件を適切に制御する方法及びそれに用いる装置に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underwater arc welding system for automatically controlling a welding position and welding conditions while observing a state of a welding portion using an ultrasonic sensor in order to automate an underwater welding process. The present invention relates to a method and an apparatus used for the method.
【0002】[0002]
【従来の技術】陸上のロボットによる自動溶接や自動切
断に際しては、溶接部位を観察し、溶接線を追跡した
り、溶接状況を認識するために、CCDカメラやCCD
カメラとレーザ光を組み合わせた位置・形状センサが用
いられている。しかしながら、水中溶接においては、レ
ーザ光その他の光は水中における減衰が著しく、また溶
接時に生じる溶接スラグやヒュームの分解により作業部
位付近に生じる濁りや気泡に観察が妨害され、使用でき
ないため、自動化、ロボット化はほとんど行われておら
ず、潜水夫が手作業で溶接状態を肉視しながら溶接条件
を適切に選んで行っているのが現状である。2. Description of the Related Art At the time of automatic welding and automatic cutting by a land-based robot, a CCD camera or CCD is used to observe a welding portion, track a welding line, and recognize a welding situation.
A position / shape sensor combining a camera and a laser beam is used. However, in underwater welding, laser light and other light are significantly attenuated in water, and observations are hindered by turbidity and bubbles generated near the work site due to the decomposition of welding slag and fume generated during welding. At present, robots are rarely used, and divers manually select welding conditions while checking the welding conditions manually.
【0003】ところで、超音波は、大気中よりも水中に
おける方がはるかに伝播しやすく、しかも水の濁りによ
る影響が少ないことから、水中加工技術のセンシング手
段として好適であり、本発明者らはこの点に着目し、先
に湿式水中アーク溶接を行うに当り、溶接速度を30c
m/分以下に設定するとともに、溶接線と直角方向に走
査速度50cm/分以上で超音波センサによる走査を行
うことにより溶接部位の溶接状態を観察しながら、その
観察結果に応じて溶接位置及び溶接条件を制御すること
を特徴とする水中溶接方法を提案した(特願2001−
39958)。しかしながら、この方法は単一の焦点型
センサを用いて機械的走査を行うために特別な機構を必
要とする上に、走査に時間を要するという欠点がある。[0003] By the way, ultrasonic waves are much easier to propagate in water than in the atmosphere and are less affected by turbidity of water. Therefore, they are suitable as sensing means for underwater processing technology. Paying attention to this point, when performing wet underwater arc welding first, the welding speed was set to 30 c
m / min or less, and scanning by an ultrasonic sensor in a direction perpendicular to the welding line at a scanning speed of 50 cm / min or more, while observing the welding state of the welding site, and determining the welding position and An underwater welding method characterized by controlling welding conditions was proposed (Japanese Patent Application No. 2001-2001).
39958). However, this method has the disadvantages that it requires a special mechanism for performing mechanical scanning using a single focus sensor, and that scanning is time-consuming.
【0004】[0004]
【発明が解決しようとする課題】本発明は、前記の単一
の焦点型センサを用いて機械的走査を行う方法における
欠点を克服し、簡単に溶接部位を全体にわたって観察し
ながら水中溶接する方法及び装置を提供することを目的
としてなされたものである。SUMMARY OF THE INVENTION The present invention overcomes the disadvantages of the above-described method of performing mechanical scanning using a single focus sensor, and provides a method of performing underwater welding while simply observing the entire welded area. And a device.
【0005】[0005]
【課題を解決するための手段】本発明者らは、水中溶接
における超音波を利用した水中センシング法について種
々研究を重ねた結果、単一の焦点型センサを機械的に走
査する代りに、超音波アレイセンサを用いることによ
り、水中で溶接部位を連続的に検知しうることを見出
し、この知見に基づいて本発明をなすに至った。The present inventors have conducted various studies on underwater sensing methods using ultrasonic waves in underwater welding. As a result, instead of mechanically scanning a single focus sensor, the present inventors It has been found that the use of a sound wave array sensor enables continuous detection of a welded portion in water, and the present invention has been made based on this finding.
【0006】すなわち、本発明は、湿式水中アーク溶接
を行うに当り、溶接線上に配置した超音波アレイセンサ
の複数の振動子を順次切り替えながら、超音波ビームを
非接触的に急速に移動させることによって溶接状態を検
知し、その結果に基づいて溶接位置及び溶接条件を制御
することを特徴とする水中溶接方法、及び水中溶接トー
チ1、その進行方向前方に配置された超音波アレイセン
サ9、超音波反射波を送受信する超音波パルサ・レシー
バ17、超音波パルサ・レシーバ17からの情報をA/
D変換するA/D変換器18、A/D変換器18からの
情報を入力し、演算処理するコンピュータ19及びコン
ピュータ19からの出力に応じて水中溶接トーチ1を操
作するモータドライバ20から構成された水中溶接装置
を提供するものである。ここで超音波アレイセンサと
は、多数の超音波振動子を並列的に配列し、超音波を高
速度で送受信しながら移動させ、対象物を連続的に観察
するセンサである。That is, according to the present invention, in performing wet-type underwater arc welding, an ultrasonic beam is rapidly moved in a non-contact manner while sequentially switching a plurality of transducers of an ultrasonic array sensor arranged on a welding line. Underwater welding method, wherein the welding position and the welding conditions are controlled based on the welding condition, and the underwater welding torch 1, an ultrasonic array sensor 9 disposed in front of the underwater welding torch 1, The ultrasonic pulsar / receiver 17 for transmitting and receiving the reflected acoustic wave, and the information from the ultrasonic pulsar / receiver 17
It comprises an A / D converter 18 for D-conversion, a computer 19 for inputting information from the A / D converter 18 and performing arithmetic processing, and a motor driver 20 for operating the underwater welding torch 1 in accordance with an output from the computer 19. An underwater welding device is provided. Here, the ultrasonic array sensor is a sensor that arranges a number of ultrasonic transducers in parallel, moves ultrasonic waves while transmitting and receiving ultrasonic waves at a high speed, and continuously observes an object.
【0007】[0007]
【発明の実施の形態】次に添付図面に従って本発明をさ
らに詳細に説明する。図1は、本発明方法の1例を示す
説明図であり、水中溶接トーチ1において、ノズル外周
部2から円錐状に噴出させる水カーテン3とノズル内部
に充満させた二酸化炭素、アルゴンガスのようなシール
ドガス4との相互作用により、溶接部周辺の水を排除
し、局部的空洞5が形成され、安定した状態のシールド
ガス4中で消耗式電極ワイヤ6と基材7の間でアーク8
を発生させ、アーク溶接が行われる。超音波アレイセン
サ9は溶接トーチ1の移動方向前方に配設され、超音波
ビーム10を発信及び受信して、溶接ビードからの超音
波反射で得られる縦断面の輪郭像、いわゆるBスコープ
像を形成させる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory view showing one example of the method of the present invention. In a submerged welding torch 1, a water curtain 3 ejected in a conical shape from a nozzle outer peripheral portion 2 and carbon dioxide and argon gas filled inside the nozzle are shown. The interaction with the shielding gas 4 eliminates water around the weld, forms a local cavity 5, and creates an arc 8 between the consumable electrode wire 6 and the substrate 7 in the shielding gas 4 in a stable state.
And arc welding is performed. The ultrasonic array sensor 9 is disposed in front of the welding torch 1 in the moving direction, transmits and receives the ultrasonic beam 10, and forms a contour image of a longitudinal section obtained by ultrasonic reflection from the welding bead, a so-called B-scope image. Let it form.
【0008】図2は本発明で用いた電子走査式超音波リ
ニアアレイセンサの斜視図、図3はその平面図であっ
て、この超音波アレイセンサ自体は市販品として入手し
うるものである。これらの図において、センサ9は、並
列に配列した多数の超音波振動子11,…により構成さ
れ、各振動子ごとに電子スイッチ12を順次高速度で切
り替えることによって、超音波ビーム10を矢印方向に
直線的に移動させる。このようにして、センサ自体を移
動させることなくリニア走査を行うことができる。この
際の超音波波形は、音響レンズ13やマッチング層14
によって適正に整形される。各振動子11,…は数パル
スの超音波を送受信するため、細いシャープな像を形成
することができ、比較的精密な測定を行うことができ
る。測定により得られた情報は、送受信回路15を介し
てコンピュータに送られ、所定の処理が施される。FIG. 2 is a perspective view of an electronic scanning ultrasonic linear array sensor used in the present invention, and FIG. 3 is a plan view of the same. The ultrasonic array sensor itself can be obtained as a commercial product. In these figures, the sensor 9 is constituted by a number of ultrasonic transducers 11,... Arranged in parallel, and by sequentially switching the electronic switch 12 for each transducer at a high speed, the ultrasonic beam 10 is moved in the direction of the arrow. Move linearly. In this way, linear scanning can be performed without moving the sensor itself. At this time, the ultrasonic waveform is generated by the acoustic lens 13 and the matching layer 14.
Is properly shaped by Since each of the transducers 11,... Transmits and receives a few pulses of ultrasonic waves, a thin and sharp image can be formed, and relatively precise measurement can be performed. Information obtained by the measurement is sent to the computer via the transmission / reception circuit 15 and is subjected to predetermined processing.
【0009】上記の各振動子の幅及び数は、監視すべき
対象により異なるが、通常は0.5〜1.5mmの幅の
ものを30〜200個並列して用いる。また、センサ9
の有効視野としては、溶接部位の寸法からみて10〜7
0mm、通常は30〜50mmの範囲で選ばれる。この
超音波アレイセンサは、電子式走査を行うため、単一の
焦点型センサを用いる場合とは異なり、上記の有効視野
範囲内でセンサ自体を機械的に移動して走査する必要は
ない。The width and number of the above-mentioned vibrators differ depending on the object to be monitored, but usually 30 to 200 pieces having a width of 0.5 to 1.5 mm are used in parallel. Also, the sensor 9
The effective field of view is 10 to 7
0 mm, usually in the range of 30 to 50 mm. Since the ultrasonic array sensor performs electronic scanning, it is not necessary to mechanically move and scan the sensor itself within the effective visual field range, unlike the case where a single focus sensor is used.
【0010】次に図4は、超音波アレイセンサを用い
て、水中の物体の溶接状態を検知する計測システムの例
を示す系統図である。この図において、電子走査式リニ
アアレイセンサ9は溶接トーチ1の移動方向前方、水中
の溶接部位16の上方に位置して、溶接線と直交させて
配設されている。そして、このセンサ9から下方に向け
て超音波を発信し、溶接部位からの反射波信号を超音波
パルサ・レシーバ17でアナログ信号として受信し、ア
ナログ信号をA/D変換器18によって変換し、コンピ
ュータ19による処理で縦断面の輪郭像を得ると同時
に、センサ9を溶接線方向に移動したときの情報の蓄積
とフィードバック処理を行う。次いで、これらの結果か
ら、センサ9と溶接部位16との位置関係の変化に対応
し、溶接トーチ1の位置が常に溶接線上の適正な位置に
あるようにモータドライバ20によって溶接トーチ内の
溶接ノズルの位置制御を行う。Next, FIG. 4 is a system diagram showing an example of a measurement system for detecting a welding state of an underwater object using an ultrasonic array sensor. In this figure, the electronic scanning linear array sensor 9 is located in front of the welding torch 1 in the moving direction and above the underwater welding portion 16 and is arranged orthogonal to the welding line. Then, an ultrasonic wave is transmitted downward from the sensor 9, a reflected wave signal from the welding portion is received as an analog signal by the ultrasonic pulser / receiver 17, and the analog signal is converted by the A / D converter 18. At the same time as obtaining the contour image of the vertical section by the processing by the computer 19, information accumulation and feedback processing when the sensor 9 is moved in the welding line direction are performed. Next, based on these results, the motor driver 20 responds to the change in the positional relationship between the sensor 9 and the welding portion 16 so that the position of the welding torch 1 is always at an appropriate position on the welding line. Is performed.
【0011】ところで、超音波Bスコープ測定では、全
体的に輪郭線がぼやけて不鮮明であり、斜面部の検出も
容易でない上に、疑似エコー(虚像)が多く現われるこ
とがある。このような場合は、類似ケースから得た溶接
部位16に関する情報を、予めコンピュータ19に入力
しておき、これらと実際の測定により得られる溶接部位
16からの情報とを組み合わせて修正処理を施すこと、
換言すれば超音波受信波の位置、反射強度の測定値とそ
れらから得られる二次元情報に加えて測定対象の特徴を
参考にして余分な信号を除去し、正確な形状認識結果を
得ることにより、Bスコープ像の高画質化、鮮明化を図
ることができる。By the way, in the ultrasonic B-scope measurement, the outline is blurred and unclear as a whole, and it is not easy to detect a slope portion, and moreover, many pseudo echoes (virtual images) may appear. In such a case, the information on the welded part 16 obtained from the similar case is input to the computer 19 in advance, and a correction process is performed by combining the information with the information from the welded part 16 obtained by the actual measurement. ,
In other words, by removing the extra signal by referring to the position of the ultrasonic wave, the measured value of the reflection intensity and the two-dimensional information obtained from them and the characteristics of the measurement target, and obtaining the accurate shape recognition result , The B scope image can be improved in image quality and sharpened.
【0012】[0012]
【実施例】次に実施例により本発明をさらに詳細に説明
する。Next, the present invention will be described in more detail by way of examples.
【0013】実施例1 振動子90個、有効視野50mm、中心周波数5MHz
のセンサを溶接線上に垂直に設置し、板厚20mm、長
さ300mmの2枚の鋼板を突き合わせて水中溶接によ
り、1層から5層の肉盛り溶接を施したときの試験片の
形状を測定した。このようにして得た上方からの写真を
図5(a)に示す。図5(b)は、(a)に示された番
号の位置の対応する断面図であり、開先形状はV開先、
開先角度は60゜、ルート間隔は2mmであった。Embodiment 1 90 vibrators, effective field of view 50 mm, center frequency 5 MHz
Sensor is installed vertically on the welding line, and two steel plates of 20 mm in thickness and 300 mm in length are joined to each other to measure the shape of the test piece when one to five layers of overlay welding are performed by underwater welding. did. FIG. 5A shows a photograph from above obtained in this manner. FIG. 5B is a sectional view corresponding to the position of the number shown in FIG.
The included angle was 60 ° and the root interval was 2 mm.
【0014】実施例2 実施例1と同じ電子走査式超音波アレイセンサを用い、
実施例1で用いた試験片について、水中溶接したときの
肉盛りなしのV開先形状のBスコープ像(a)及び3層
の肉盛りを施したときのBスコープ像(b)を測定し
た。この結果を図6に(a)及び(b)として示す。こ
れらの図から分るように、Bスコープ像の輪郭線イ、
ロ、ハ、ニ、ホ、ヘ、ト、チの幅は広がっており、また
虚像などによるノイズ,リ、ヌが多く見られるが、従来
法では検出の難しかった斜辺部の形状ル、ヲが識別で
き、それぞれの溶接層の深さ方向の輪郭形状が認識でき
る。実際の水中溶接を行う場合の溶接ビード幅は通常は
10〜30mm程度であり、最大でも50mmを超える
ことはまずないので、超音波アレイセンサの有効計測幅
は50〜70mmにとっておけば、溶接線上に設置した
長方形の断面のアレイセンサ自体を機械的に走査する必
要はなく、溶接線上をそのまま移動するだけで連続的な
Bスコープ像が得られることになる。Embodiment 2 Using the same electronic scanning ultrasonic array sensor as in Embodiment 1,
With respect to the test piece used in Example 1, a B-scope image (a) of a V-groove shape without overlay when welded in water and a B-scope image (b) with overlay of three layers were measured. . The results are shown in FIG. 6 as (a) and (b). As can be seen from these figures, the contour line B of the B scope image,
The widths of b, c, d, e, f, g, and h are wide, and noise, ri, and nu are often seen due to virtual images, but the shape of the hypotenuse, ヲ, which was difficult to detect with the conventional method, It can be identified, and the profile in the depth direction of each welding layer can be recognized. The weld bead width when performing actual underwater welding is usually about 10 to 30 mm, and it is unlikely to exceed 50 mm at most, so if the effective measurement width of the ultrasonic array sensor is 50 to 70 mm, it is on the welding line It is not necessary to mechanically scan the array sensor itself having a rectangular cross section installed in the above, and a continuous B-scope image can be obtained by simply moving the array sensor as it is on the welding line.
【0015】実施例3 実施例2で得た3層の肉盛りを施したときのBスコープ
像(b)について、コンピュータによる修正処理を施し
た。この結果を図7に示す。この図において、斜面部ワ
や中心部カの細線で表わす輪郭線は処理後の結果であ
り、肉盛り溶接の形状がかなり明瞭に判断できることが
分る。Example 3 A B scope image (b) obtained by applying the three layers of overlay obtained in Example 2 was subjected to a computer correction process. The result is shown in FIG. In this figure, the outlines represented by the thin lines of the slopes and the center are the results after the processing, and it can be seen that the shape of the overlay welding can be determined quite clearly.
【0016】[0016]
【発明の効果】本発明は、(1)電子走査式などの超音
波アレイセンサを用い、溶接部位のBスコープ像を得る
ことにより、センサを走査することなくV開先をはじめ
とする溶接部位の位置・形状、目違いやルート間隔の検
出、溶接線の検出などを行うことができる、(2)水中
におけるセンシングのリアルタイム性向上(高速度化)
が図れ、情報を高速度でフィードバックし、溶接線の追
従、溶接条件の変更が可能になる、(3)小型で溶接ノ
ズルと一体化でき、狭隘部の水中熱加工などに適用でき
るなど実用性が向上する、(4)水カーテン式水中溶接
法と組み合わせて使用することにより、湿式水中溶接の
自動化とそれに伴う溶接品質の向上に寄与できる、
(5)測定対象の特徴(辺の連続性、事前にわかる既知
の形状)を考慮し、余分な超音波信号を除去することに
よって、より明瞭な形状認識を行うことができる、など
の効果を奏する。According to the present invention, (1) an ultrasonic array sensor of an electronic scanning type or the like is used to obtain a B-scope image of a welded portion, so that a welded portion including a V-groove can be obtained without scanning the sensor. It can detect the position / shape, misalignment, route interval, welding line, etc. of the surface. (2) Improve real-time sensing performance in water (increase speed)
It is possible to feed back information at high speed, follow the welding line, and change the welding conditions. (3) It is compact and can be integrated with the welding nozzle, and can be applied to underwater thermal processing of narrow parts, etc. (4) By using in combination with the water curtain type underwater welding method, it is possible to contribute to the automation of wet type underwater welding and the improvement of welding quality associated therewith.
(5) By taking into account the characteristics of the measurement object (continuity of sides, known shapes known in advance) and removing extra ultrasonic signals, clearer shape recognition can be performed. Play.
【図1】 本発明方法の1例の説明図。FIG. 1 is an explanatory view of one example of the method of the present invention.
【図2】 電子走査式超音波リニアアレイセンサの斜視
図。FIG. 2 is a perspective view of an electronic scanning ultrasonic linear array sensor.
【図3】 図2のセンサの平面図。FIG. 3 is a plan view of the sensor of FIG. 2;
【図4】 本発明装置の系統図。FIG. 4 is a system diagram of the device of the present invention.
【図5】 実施例1の試験片の形状を示す写真及びその
番号該当個所の断面図。FIG. 5 is a photograph showing the shape of the test piece of Example 1 and a cross-sectional view of a portion corresponding to the number.
【図6】 実施例2の試験片溶接部のBスコープ像。FIG. 6 is a B-scope image of a test piece welded part of Example 2.
【図7】 実施例3の修正Bスコープ像FIG. 7 is a modified B-scope image according to the third embodiment.
1 溶接トーチ 2 ノズル外周部 3 水カーテン 4 シールドガス 5 空洞 6 電極ワイヤ 7 基材 8 アーク 9 超音波アレイセンサ 10 超音波ビーム 11,…振動子 12 電子スイッチ 13 音響レンズ 14 マッチング層 15 送受信回路 16 溶接部位 17 超音波パルサ・レシーバ 18 A/D変換器 19 コンピュータ 20 モータドライバ DESCRIPTION OF SYMBOLS 1 Welding torch 2 Nozzle outer periphery 3 Water curtain 4 Shielding gas 5 Cavity 6 Electrode wire 7 Base material 8 Arc 9 Ultrasonic array sensor 10 Ultrasonic beam 11, ... Transducer 12 Electronic switch 13 Acoustic lens 14 Matching layer 15 Transmission / reception circuit 16 Welded part 17 Ultrasonic pulser / receiver 18 A / D converter 19 Computer 20 Motor driver
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 洋司 香川県高松市林町2217番14 経済産業省産 業技術総合研究所四国工業技術研究所内 (72)発明者 森田 孝男 香川県高松市林町2217番14 経済産業省産 業技術総合研究所四国工業技術研究所内 (72)発明者 榊原 実雄 香川県高松市林町2217番14 経済産業省産 業技術総合研究所四国工業技術研究所内 Fターム(参考) 4E001 AA03 BB09 DA01 DD02 DD04 DF08 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoji Ogawa 2217-14 Hayashi-cho, Takamatsu-shi, Kagawa Prefecture Inside SIC Industrial Technology Research Institute, Ministry of Economy, Trade and Industry (72) Inventor Takao Morita Hayashi-cho, Takamatsu-shi, Kagawa 2217-14 Ministry of Economy, Trade and Industry, National Institute of Advanced Industrial Science and Technology, Shikoku Institute of Industrial Technology (72) Inventor Minao Sakakibara 2217-14, Hayashi-cho, Takamatsu City, Kagawa Prefecture Reference) 4E001 AA03 BB09 DA01 DD02 DD04 DF08
Claims (4)
線上に配置した超音波アレイセンサの複数の振動子を順
次切り替えながら、超音波ビームを非接触的に急速に移
動させることによって溶接状態を検知し、その結果に基
づいて溶接位置及び溶接条件を制御することを特徴とす
る水中溶接方法。1. In performing wet underwater arc welding, an ultrasonic beam is rapidly moved in a non-contact manner while sequentially switching a plurality of transducers of an ultrasonic array sensor arranged on a welding line to change a welding state. An underwater welding method characterized by detecting and controlling a welding position and welding conditions based on the detection result.
鮮明な画像を、コンピュータにあらかじめ入力しておい
た画像情報に基づいて鮮明な画像に補正しながら行う請
求項1記載の水中溶接方法。2. The underwater welding method according to claim 1, wherein the unclear image obtained from the ultrasonic reflected wave of the ultrasonic beam is corrected to a clear image based on image information previously input to a computer. .
方に配置された超音波アレイセンサ(9)、超音波反射
波を送受信する超音波パルサ・レシーバ(17)、超音
波パルサ・レシーバ(17)からの情報をA/D変換す
るA/D変換器(18)、A/D変換器(18)からの
情報を入力し、演算処理するコンピュータ(19)及び
コンピュータ(19)からの出力に応じて水中溶接トー
チ(1)を操作するモータドライバ(20)から構成さ
れた水中溶接装置。3. An underwater welding torch (1), an ultrasonic array sensor (9) arranged in front of the underwater welding torch, an ultrasonic pulsar receiver (17) for transmitting and receiving ultrasonic reflected waves, and an ultrasonic pulsar receiver (17). 17) an A / D converter (18) for A / D converting information from the A / D converter (18), a computer (19) for inputting information from the A / D converter (18) and performing arithmetic processing, and an output from the computer (19) An underwater welding apparatus comprising a motor driver (20) for operating an underwater welding torch (1) according to the following.
せた請求項3記載の水中溶接装置。4. The underwater welding apparatus according to claim 3, wherein a water curtain is formed around the welding torch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001050721A JP3433229B2 (en) | 2001-02-26 | 2001-02-26 | Underwater welding method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001050721A JP3433229B2 (en) | 2001-02-26 | 2001-02-26 | Underwater welding method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002248566A true JP2002248566A (en) | 2002-09-03 |
JP3433229B2 JP3433229B2 (en) | 2003-08-04 |
Family
ID=18911634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001050721A Expired - Lifetime JP3433229B2 (en) | 2001-02-26 | 2001-02-26 | Underwater welding method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3433229B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2018930A1 (en) * | 2006-05-17 | 2009-01-28 | IHI Corporation | Submerged arc welding apparatus and submerged arc welding method |
CN103223544A (en) * | 2013-05-23 | 2013-07-31 | 华东交通大学 | Complex wavelet method for identifying welding torch posture welded with underwater wet method |
CN104227185A (en) * | 2014-10-13 | 2014-12-24 | 哈尔滨工业大学(威海) | Underwater wet process welding observation instrument and application method |
CN104475974A (en) * | 2014-12-03 | 2015-04-01 | 南京航空航天大学 | Wet underground laser welding test device and process |
CN104568970A (en) * | 2015-01-24 | 2015-04-29 | 无锡桑尼安科技有限公司 | Underwater welding seam automatic identification system |
CN104690455A (en) * | 2015-01-24 | 2015-06-10 | 无锡桑尼安科技有限公司 | Automatic underwater welding seam recognizing method |
CN105081516A (en) * | 2015-08-04 | 2015-11-25 | 刘杰 | Diver underwater welding system based on data communication |
CN105598559A (en) * | 2016-03-16 | 2016-05-25 | 湘潭大学 | Fillet weld tracking system and method based on ultrasonic swing scanning |
CN106182038A (en) * | 2016-09-08 | 2016-12-07 | 肇庆市小凡人科技有限公司 | One automatic welding machine people under water |
CN110181492A (en) * | 2019-07-07 | 2019-08-30 | 广州金世福珠宝有限公司 | A kind of artificial intelligence machinery arm Platform Alliance operating facilities |
CN110711960A (en) * | 2019-10-21 | 2020-01-21 | 望都恒泰机械制造有限公司 | Welding device for hot-rolled pulley |
CN112846551A (en) * | 2019-11-28 | 2021-05-28 | 湘潭大学 | Rotary ultrasonic-electric arc combined type welding seam tracking method |
CN112975050A (en) * | 2021-02-26 | 2021-06-18 | 江苏海事职业技术学院 | Submerged wet swing arc welding rod arc welding device for flat welding position for experiment |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102179599B (en) * | 2011-04-01 | 2013-04-17 | 清华大学 | Underwater welding local mask with welding line tracking function |
CN104741805B (en) * | 2015-03-18 | 2016-11-09 | 哈尔滨工业大学 | A kind of Aluminium Alloy with Pulsed ultrasonic electric arc composite welding apparatus and welding method thereof |
-
2001
- 2001-02-26 JP JP2001050721A patent/JP3433229B2/en not_active Expired - Lifetime
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2018930A1 (en) * | 2006-05-17 | 2009-01-28 | IHI Corporation | Submerged arc welding apparatus and submerged arc welding method |
EP2018930A4 (en) * | 2006-05-17 | 2011-05-04 | Ihi Corp | Submerged arc welding apparatus and submerged arc welding method |
US8502103B2 (en) | 2006-05-17 | 2013-08-06 | Ihi Corporation | Submerged arc welding apparatus and method for submerged arc welding |
CN103223544A (en) * | 2013-05-23 | 2013-07-31 | 华东交通大学 | Complex wavelet method for identifying welding torch posture welded with underwater wet method |
CN104227185A (en) * | 2014-10-13 | 2014-12-24 | 哈尔滨工业大学(威海) | Underwater wet process welding observation instrument and application method |
CN104475974A (en) * | 2014-12-03 | 2015-04-01 | 南京航空航天大学 | Wet underground laser welding test device and process |
CN105234597A (en) * | 2015-01-24 | 2016-01-13 | 宋健 | Automatic underwater weld joint recognition method |
CN104568970B (en) * | 2015-01-24 | 2017-03-08 | 烟台大有数据系统有限公司 | Underwater weld automatic recognition system |
CN104690455A (en) * | 2015-01-24 | 2015-06-10 | 无锡桑尼安科技有限公司 | Automatic underwater welding seam recognizing method |
CN105127626A (en) * | 2015-01-24 | 2015-12-09 | 无锡桑尼安科技有限公司 | Automatic recognition system for underwater weld joints |
CN104568970A (en) * | 2015-01-24 | 2015-04-29 | 无锡桑尼安科技有限公司 | Underwater welding seam automatic identification system |
CN105081516A (en) * | 2015-08-04 | 2015-11-25 | 刘杰 | Diver underwater welding system based on data communication |
CN105598559A (en) * | 2016-03-16 | 2016-05-25 | 湘潭大学 | Fillet weld tracking system and method based on ultrasonic swing scanning |
CN105598559B (en) * | 2016-03-16 | 2017-12-29 | 湘潭大学 | Fillet weld tracking system and method based on ultrasonic swing scanning |
CN106182038A (en) * | 2016-09-08 | 2016-12-07 | 肇庆市小凡人科技有限公司 | One automatic welding machine people under water |
CN110181492A (en) * | 2019-07-07 | 2019-08-30 | 广州金世福珠宝有限公司 | A kind of artificial intelligence machinery arm Platform Alliance operating facilities |
CN110711960A (en) * | 2019-10-21 | 2020-01-21 | 望都恒泰机械制造有限公司 | Welding device for hot-rolled pulley |
CN112846551A (en) * | 2019-11-28 | 2021-05-28 | 湘潭大学 | Rotary ultrasonic-electric arc combined type welding seam tracking method |
CN112846551B (en) * | 2019-11-28 | 2022-06-21 | 湘潭大学 | Rotary ultrasonic-electric arc combined type welding seam tracking method |
CN112975050A (en) * | 2021-02-26 | 2021-06-18 | 江苏海事职业技术学院 | Submerged wet swing arc welding rod arc welding device for flat welding position for experiment |
Also Published As
Publication number | Publication date |
---|---|
JP3433229B2 (en) | 2003-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002248566A (en) | Method and device for underwater welding | |
US7650789B2 (en) | Method and apparatus for examining the interior material of an object, such as a pipeline or a human body from a surface of the object using ultrasound | |
JP4564286B2 (en) | 3D ultrasonic imaging device | |
JP4984519B2 (en) | Method and apparatus for inspecting cross section of metal material by ultrasonic wave | |
CN108169331B (en) | Sheet grid wing structure welding seam phased array ultrasonic detection device and detection method | |
US20010052264A1 (en) | Method for the concurrent ultrasonic inspection of partially completed welds | |
CN112355440B (en) | Ultrasonic tracking system for underwater welding seam | |
JP4634336B2 (en) | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus | |
JP2011203037A (en) | Ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method | |
US4554834A (en) | Acoustic sensor and method of using same for determining the position of a tool relative to a workpiece | |
JP2012037307A (en) | Ultrasonic inspection system | |
JP4360175B2 (en) | Ultrasonic transmission / reception array sensor, ultrasonic flaw detector, and ultrasonic flaw detection method therefor | |
JP3433228B2 (en) | Underwater welding method and apparatus | |
DE59005272D1 (en) | Process for ultrasound imaging. | |
JP5994852B2 (en) | Steel quality evaluation method and quality evaluation apparatus | |
JP4564183B2 (en) | Ultrasonic flaw detection method | |
JPS6326343B2 (en) | ||
JP4633268B2 (en) | Ultrasonic flaw detector | |
JPS6228869B2 (en) | ||
JP4175762B2 (en) | Ultrasonic flaw detector | |
JP5118339B2 (en) | Ultrasonic flaw detection apparatus and method | |
JP2013108920A (en) | Ultrasonic inspection device | |
JP2005098768A (en) | Supersonic crack detection image display method and device | |
JP2003057214A (en) | Ultrasonic flaw detection method and apparatus in fillet welding section | |
JP2017075866A (en) | Measuring apparatus and measuring method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3433229 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |