JP2006228829A - Semiconductor device with capacitor - Google Patents

Semiconductor device with capacitor Download PDF

Info

Publication number
JP2006228829A
JP2006228829A JP2005038182A JP2005038182A JP2006228829A JP 2006228829 A JP2006228829 A JP 2006228829A JP 2005038182 A JP2005038182 A JP 2005038182A JP 2005038182 A JP2005038182 A JP 2005038182A JP 2006228829 A JP2006228829 A JP 2006228829A
Authority
JP
Japan
Prior art keywords
layer
conductive layer
capacitor
diffusion
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005038182A
Other languages
Japanese (ja)
Other versions
JP4855690B2 (en
Inventor
Masaru Horie
勝 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko NPC Corp
Original Assignee
Seiko NPC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko NPC Corp filed Critical Seiko NPC Corp
Priority to JP2005038182A priority Critical patent/JP4855690B2/en
Publication of JP2006228829A publication Critical patent/JP2006228829A/en
Application granted granted Critical
Publication of JP4855690B2 publication Critical patent/JP4855690B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the structure of a capacitor which provides a large capacitance value to the capacitor without increasing the size of a semiconductor device. <P>SOLUTION: In the semiconductor device, a plurality of LOCOS element isolation regions 2a, 2b, 2c, and 2d and conductive diffusion layers 3a, 3b, and 3c are formed on a silicon substrate 1 in the stripe geometry so as to be adjacent to each other to form an uneven surface on the silicon substrate 1. The diffusion layers 3a, 3b, and 3c are common-connected, and a first insulation layer 4, a lower-layer conductive layer 5, a second insulation layer 6, and an upper-layer conductive layer 7 are stacked in order on the uneven surface. Using these layers, two capacitors are fabricated. One capacitor uses the diffusion layers 3a, 3b, and 3c and the lower-layer conductive layer 5 as a pair of electrodes, and uses the first insulation layer 4 as a dielectric layer; while the other capacitor uses the lower-layer conductive layer 5 and the upper-layer conductive layer 7 as a pair of electrodes, and uses the second insulation layer 6 as a dielectric layer. The upper-layer conductive layer 7 and the common-connected diffusion layers 3a, 3b, and 3c are electrically connected. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、キャパシタを有する半導体装置に関し、特に前記キャパシタの構造に関する。 The present invention relates to a semiconductor device having a capacitor, and more particularly to the structure of the capacitor.

従来の半導体装置におけるキャパシタは、平坦な領域において、誘電体層を構成する絶縁層の上下に、一対の電極を構成する導電層を平面状に形成した構造が一般的である。そして、キャパシタの容量値は、誘電体層の誘電率と、誘電体層を挟んだ各導電層の対向面積の大きさによって決定される。
特開平5−190766号公報
A capacitor in a conventional semiconductor device generally has a structure in which a conductive layer constituting a pair of electrodes is formed in a planar shape above and below an insulating layer constituting a dielectric layer in a flat region. The capacitance value of the capacitor is determined by the dielectric constant of the dielectric layer and the size of the opposing area of each conductive layer sandwiching the dielectric layer.
Japanese Patent Laid-Open No. 5-190766

したがって、上述した従来のキャパシタでは、誘電率が同一であれば、各導電層の対向面積を大きくしなければ、容量値を大きくできないので、容量値の大きなキャパシタを得るには、平面的な大きさが必要であった。このため、大容量値のキャパシタを形成するには、半導体装置の大型化が避けられないという問題があった。本発明は、この問題を解決し、半導体装置を大型化することなく、大容量値を得られるキャパシタの構造を提供することを目的とする。 Therefore, in the conventional capacitor described above, if the dielectric constant is the same, the capacitance value cannot be increased unless the opposing area of each conductive layer is increased. Was necessary. For this reason, in order to form a capacitor having a large capacitance value, there has been a problem that an increase in the size of the semiconductor device cannot be avoided. An object of the present invention is to solve this problem and to provide a capacitor structure capable of obtaining a large capacitance value without increasing the size of a semiconductor device.

この目的を達成するために、本発明の請求項1に係るキャパシタの構造は、半導体装置において、シリコン基板上に形成した複数のLOCOS素子分離領域によって凹凸面を形成し、この凹凸面上に、下部電極である導電層と、誘電体層である絶縁層と、上部電極である導電層を重ねて形成してキャパシタを構成したものである。   In order to achieve this object, a capacitor structure according to claim 1 of the present invention is a semiconductor device in which a concavo-convex surface is formed by a plurality of LOCOS element isolation regions formed on a silicon substrate, and on the concavo-convex surface, A capacitor is configured by superposing and forming a conductive layer as a lower electrode, an insulating layer as a dielectric layer, and a conductive layer as an upper electrode.

同じくこの目的を達成するために、本発明の請求項2に係るキャパシタの構造は、半導体装置において、シリコン基板上に複数のLOCOS素子分離領域と導電層である拡散層とを互いに隣接するように、例えば縞状に形成して凹凸面を形成し、前記拡散層を共通接続する一方、前記凹凸面上に、絶縁層と導電層とを交互に複数重ねて形成して、前記各絶縁層を誘電体層とし、前記各絶縁層を挟む上下の前記拡散層を含む各導電層を一対の電極とするキャパシタを複数構成するとともに、前記各導電層を一つおきに電気的に接続したものである。   Similarly, in order to achieve this object, a capacitor structure according to claim 2 of the present invention is a semiconductor device in which a plurality of LOCOS element isolation regions and a diffusion layer as a conductive layer are adjacent to each other on a silicon substrate. For example, it is formed in a striped pattern to form an uneven surface, and the diffusion layers are connected in common, while an insulating layer and a conductive layer are alternately stacked on the uneven surface to form each insulating layer. A plurality of capacitors having a dielectric layer and a pair of electrodes, each conductive layer including the upper and lower diffusion layers sandwiching each insulating layer, and every other conductive layer electrically connected is there.

同じくこの目的を達成するために、本発明の請求項3に係るキャパシタの構造は、半導体装置において、シリコン基板上に複数のLOCOS素子分離領域と導電層である拡散層とを互いに隣接するように、例えば縞状に形成して凹凸面を形成し、前記各拡散層を共通接続する一方、前記凹凸面上に、第1絶縁層と、下層導電層と、第2絶縁層と、上層導電層とを順次重ねて形成することによって、前記各拡散層と前記下層導電層とを一対の電極とし前記第1絶縁層を誘電体層とするキャパシタと、前記下層導電層と前記上層導電層とを一対の電極とし前記第2絶縁層を誘電体層とするキャパシタとを構成するとともに、前記上層導電層と前記各拡散層とを電気的に接続したものである。   Similarly, in order to achieve this object, a capacitor structure according to claim 3 of the present invention is a semiconductor device in which a plurality of LOCOS element isolation regions and a diffusion layer as a conductive layer are adjacent to each other on a silicon substrate. For example, a concavo-convex surface is formed by forming a stripe shape, and the diffusion layers are connected in common, while a first insulating layer, a lower conductive layer, a second insulating layer, and an upper conductive layer are formed on the concavo-convex surface. Are formed in such a manner that each diffusion layer and the lower conductive layer are a pair of electrodes and the first insulating layer is a dielectric layer, and the lower conductive layer and the upper conductive layer are formed. A capacitor having a pair of electrodes and a dielectric layer as the second insulating layer is formed, and the upper conductive layer and each diffusion layer are electrically connected.

同じくこの目的を達成するために、本発明の請求項4に係るキャパシタの構造は、半導体装置において、シリコン基板上に複数のLOCOS素子分離領域と導電層である拡散層とを互いに隣接するように、例えば縞状に形成して凹凸面を形成し、この凹凸面上に、絶縁層と導電層とを交互に複数重ねて形成して、前記各絶縁層を誘電体層とし、前記各絶縁層を挟む上下の前記拡散層を含む各導電層を一対の電極とするキャパシタを複数構成する一方、前記シリコン基板上に前記各拡散層をソース/ドレイン電極とするトランジスタを形成し、これらトランジスタのゲート電極は、前記各拡散層を直上の導電層と対応しない位置で分断するように形成してなり、前記各拡散層の前記ソース/ドレイン電極の前記導電層対応側とは反対側の電極を共通接続するとともに、この共通接続した拡散層を含む各導電層を一つおきに電気的に接続したものである。   Similarly, in order to achieve this object, a capacitor structure according to claim 4 of the present invention is a semiconductor device in which a plurality of LOCOS element isolation regions and a diffusion layer as a conductive layer are adjacent to each other on a silicon substrate. For example, a concavo-convex surface is formed by forming a stripe shape, and a plurality of insulating layers and conductive layers are alternately stacked on the concavo-convex surface, and each of the insulating layers serves as a dielectric layer, and each of the insulating layers A plurality of capacitors each having a pair of electrodes, each of the conductive layers including the upper and lower diffusion layers sandwiching the substrate, and a transistor having the diffusion layers as source / drain electrodes are formed on the silicon substrate, and gates of these transistors are formed. The electrode is formed so as to divide each diffusion layer at a position not corresponding to the conductive layer immediately above, and an electrode opposite to the conductive layer corresponding side of the source / drain electrode of each diffusion layer is formed. While passing connection is obtained by electrically connecting the conductive layer including a diffusion layer which is the commonly connected every other.

同じくこの目的を達成するために本発明の請求項5に係るキャパシタの構造は、半導体装置において、シリコン基板上に複数のLOCOS素子分離領域と導電層である拡散層とを互いに隣接するように、例えば縞状に形成して凹凸面を形成し、この凹凸面上に、第1絶縁層と、下層導電層と、第2絶縁層と、上層導電層とを順次重ねて形成することによって、前記各拡散層と前記下層導電層とを一対の電極とし前記第1絶縁層を誘電体層とするキャパシタと、前記下層導電層と前記上層導電層とを一対の電極とし前記第2絶縁層を誘電体層とするキャパシタとを構成する一方、前記シリコン基板上に前記各拡散層をソース/ドレイン電極とするトランジスタを形成し、これらトランジスタのゲート電極は、前記各拡散層を前記下層導電層と対応しない位置で分断するように形成してなり、前記各拡散層の前記ソース/ドレイン電極の前記下層導電層対応側とは反対側の電極を、共通接続するとともに前記上層導電層と電気的に接続したものである。   Similarly, in order to achieve this object, the capacitor structure according to claim 5 of the present invention is a semiconductor device, wherein a plurality of LOCOS element isolation regions and a diffusion layer as a conductive layer are adjacent to each other on a silicon substrate. For example, by forming a concavo-convex surface by forming a striped shape, and forming a first insulating layer, a lower conductive layer, a second insulating layer, and an upper conductive layer on the concavo-convex surface in this order, A capacitor having each diffusion layer and the lower conductive layer as a pair of electrodes and the first insulating layer as a dielectric layer, and a capacitor having the lower conductive layer and the upper conductive layer as a pair of electrodes, and the second insulating layer as a dielectric While forming a capacitor as a body layer, a transistor having each diffusion layer as a source / drain electrode is formed on the silicon substrate, and the gate electrode of each of the transistors has the diffusion layer as a pair with the lower conductive layer. The electrode on the opposite side of the source / drain electrode corresponding to the lower conductive layer corresponding to the source / drain electrode is commonly connected and electrically connected to the upper conductive layer. It is a thing.

同じくこの目的を達成するために、本発明の請求項6に係るキャパシタの構造は、上述の請求項2〜請求項5のいずれか1つに係る半導体装置において、各拡散層の共通接続は、拡散層同士を一端側で一体的に連接してなるものである。   Similarly, in order to achieve this object, the capacitor structure according to claim 6 of the present invention is the semiconductor device according to any one of claims 2 to 5 described above, wherein the common connection of each diffusion layer is: The diffusion layers are integrally connected at one end side.

本願の請求項1に係る発明によれば、キャパシタを凹凸面上に形成するので、誘電体層を挟んで対向する一対の電極である導電層同士が曲面状になり、対向面積を平面状に対向する場合に比べて増大することができ、半導体装置を大型化することなく、大容量値のキャパシタを得ることができる。   According to the invention of claim 1 of the present application, since the capacitor is formed on the concavo-convex surface, the conductive layers as a pair of electrodes facing each other across the dielectric layer are curved, and the facing area is planar. Compared to the case of facing each other, the capacitance can be increased, and a capacitor having a large capacitance value can be obtained without increasing the size of the semiconductor device.

本願の請求項2及び請求項3に係る発明によれば、キャパシタを凹凸面上に複数重畳的に設けるので、キャパシタの電極の対向面積を、上記請求項1に係る発明よりもさらに増大することができる。   According to the invention according to claim 2 and claim 3 of the present application, a plurality of capacitors are provided on the concavo-convex surface, so that the facing area of the electrodes of the capacitor is further increased as compared with the invention according to claim 1. Can do.

本願の請求項4及び請求項5に係る発明によれば、キャパシタを凹凸面上に複数重畳的に設けるとともに、最下層のキャパシタはトランジスタを介して共通接続するので、上記請求項2及び請求項3に係る発明の効果に加えて、前記トランジスタのオン・オフ制御により、キャパシタの容量値を変更することができる。   According to the invention according to claim 4 and claim 5 of the present application, a plurality of capacitors are provided on the concavo-convex surface, and the capacitor in the lowermost layer is commonly connected via the transistor. In addition to the effect of the invention according to No. 3, the capacitance value of the capacitor can be changed by the on / off control of the transistor.

本願の請求項6に係る発明によれば、金属配線などの他の構成素子を使用することなく、各拡散層を共通接続することができるので、構成を簡素化できる。   According to the invention of claim 6 of the present application, since the respective diffusion layers can be connected in common without using other components such as metal wiring, the configuration can be simplified.

以下、本発明の好適な実施形態を添付図面に基づいて説明する。ここにおいて、図1〜図3は第1実施形態を示すもので、図1はキャパシタを有する半導体装置の概略的な断面図、図2は同じく平面図、図3はキャパシタの構成を説明する回路図である。また、図4は第2実施形態のキャパシタを有する半導体装置を示す概略的な平面図である。さらに、図5及び図6は第3実施形態を示すもので、図5はキャパシタを有する半導体装置の概略的な平面図、図6はキャパシタの構成を説明する回路図である。さらにまた、図7は第4実施形態のキャパシタを有する半導体装置を示す概略的な平面図である。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings. 1 to 3 show the first embodiment. FIG. 1 is a schematic sectional view of a semiconductor device having a capacitor, FIG. 2 is a plan view of the same, and FIG. 3 is a circuit for explaining the structure of the capacitor. FIG. FIG. 4 is a schematic plan view showing a semiconductor device having a capacitor according to the second embodiment. 5 and 6 show a third embodiment. FIG. 5 is a schematic plan view of a semiconductor device having a capacitor. FIG. 6 is a circuit diagram for explaining the configuration of the capacitor. FIG. 7 is a schematic plan view showing a semiconductor device having a capacitor according to the fourth embodiment.

まず、第1実施形態を説明すると、図1に示すように、半導体装置のシリコン基板1に、複数のLOCOS素子分離領域2a,2b,2c,2dと導電層である複数の拡散層3a,3b,3cとを隣接して縞状に形成している。これら各LOCOS素子分離領域2a,2b,2c,2dと各拡散層3a,3b,3cとは公知の方法で形成されるものであり、各LOCOS素子分離領域2a,2b,2c,2dと各拡散層3a,3b,3cとの段差によって、凹凸面が形成される。   First, the first embodiment will be described. As shown in FIG. 1, a plurality of LOCOS element isolation regions 2a, 2b, 2c and 2d and a plurality of diffusion layers 3a and 3b which are conductive layers are formed on a silicon substrate 1 of a semiconductor device. , 3c are formed adjacent to each other in a striped pattern. Each of these LOCOS element isolation regions 2a, 2b, 2c, 2d and each diffusion layer 3a, 3b, 3c is formed by a known method, and each LOCOS element isolation region 2a, 2b, 2c, 2d and each diffusion layer are formed. The uneven surface is formed by the steps with the layers 3a, 3b, 3c.

凹凸面を形成する各LOCOS素子分離領域2a,2b,2c,2dと各拡散層3a,3b,3cとの上には、第1絶縁層4を、例えば酸化シリコンを用いて形成している。前記第1絶縁層4の上には下層導電層5を、例えばポリシリコンやモリブデン等を用いて形成している。これによって、前記第1絶縁層4を誘電体層とし、前記各拡散層3a,3b,3cと前記下層導電層5とを一対の電極とするキャパシタが構成される。   On each of the LOCOS element isolation regions 2a, 2b, 2c, 2d and the diffusion layers 3a, 3b, 3c forming the uneven surface, the first insulating layer 4 is formed using, for example, silicon oxide. A lower conductive layer 5 is formed on the first insulating layer 4 using, for example, polysilicon or molybdenum. Thus, a capacitor is formed in which the first insulating layer 4 is a dielectric layer, and the diffusion layers 3a, 3b, 3c and the lower conductive layer 5 are a pair of electrodes.

また、下層導電層5上には第2絶縁層6を、例えば酸化シリコンを用いて形成している。前記第2絶縁層6上には上層導電層7を、例えばポリシリコンやモリブデン等を用いて形成している。これによって、前記第2絶縁層6を誘電体層とし、前記下層導電層5と前記上層導電層7とを一対の電極とするキャパシタが構成される。そして、前記下層導電層5は上下のキャパシタに共通する電極となっている。   Further, the second insulating layer 6 is formed on the lower conductive layer 5 using, for example, silicon oxide. An upper conductive layer 7 is formed on the second insulating layer 6 using, for example, polysilicon or molybdenum. Thus, a capacitor is formed in which the second insulating layer 6 is a dielectric layer, and the lower conductive layer 5 and the upper conductive layer 7 are a pair of electrodes. The lower conductive layer 5 is an electrode common to the upper and lower capacitors.

図2に示すように、各拡散層3a,3b,3cをアルミニウム等の金属配線8で電気的に共通接続し、この共通接続した拡散層3a,3b,3cを同じく金属配線8で上層導電層7に電気的に接続している。図示してはいないが、この拡散層3a,3b,3cにおける金属配線8との接点領域は、不純物の高濃度領域とすると好適である。これによって、図3に示すように、下層導電層5を共通な一方の電極とし、これと対向する他方の電極を各拡散層3a,3b,3cと上層導電層7とするキャパシタが並列接続されて構成される。さらに、下層導電層5は、アルミニウム等の金属配線9によって、例えばシリコン基板1上に形成した図示していないMOSトランジスタの電極と電気的に接続している。 As shown in FIG. 2, the diffusion layers 3a, 3b, 3c are electrically connected in common by a metal wiring 8 such as aluminum, and the diffusion layers 3a, 3b, 3c connected in common are connected to the upper conductive layer by the metal wiring 8. 7 is electrically connected. Although not shown, it is preferable that the contact region with the metal wiring 8 in the diffusion layers 3a, 3b, 3c is a high impurity concentration region. As a result, as shown in FIG. 3, a capacitor having the lower conductive layer 5 as one common electrode and the other electrode opposite thereto as the diffusion layers 3a, 3b, 3c and the upper conductive layer 7 is connected in parallel. Configured. Further, the lower conductive layer 5 is electrically connected to an electrode of a MOS transistor (not shown) formed on the silicon substrate 1 by a metal wiring 9 such as aluminum.

本実施形態は上述のように、各拡散層3a,3b,3cと下層導電層5とを一対の電極とするキャパシタと、前記下層導電層5と上層導電層7とを一対の電極とするキャパシタとを、重畳的に形成し、前記各拡散層3a,3b,3cと前記上層導電層7とを電気的に接続するとともに、前記下層導電層5と前記上層導電層7とを一対の電極とするキャパシタはLOCOS素子分離領域2a,2b,2c,2dにより形成された凹凸面上に形成することにより、一対の電極である前記各導電層5,7は、曲面状に対向するので、これら電極を水平方向に拡大形成することなく、対向面積を増大し、電極の水平方向の占有面積が同一のものと比較して、容量値がほぼ1.4倍のキャパシタを得ることができる。   In the present embodiment, as described above, each of the diffusion layers 3a, 3b, 3c and the lower conductive layer 5 has a pair of electrodes, and the capacitor has the lower conductive layer 5 and the upper conductive layer 7 as a pair of electrodes. And the diffusion layers 3a, 3b, 3c and the upper conductive layer 7 are electrically connected to each other, and the lower conductive layer 5 and the upper conductive layer 7 are connected to a pair of electrodes. Capacitors to be formed on the concavo-convex surface formed by the LOCOS element isolation regions 2a, 2b, 2c, and 2d, so that the conductive layers 5 and 7 that are a pair of electrodes face each other in a curved shape. Without increasing the size in the horizontal direction, the facing area can be increased, and a capacitor having a capacitance value of approximately 1.4 times that of the same electrode in the horizontal direction can be obtained.

図4は第2実施形態を示し、上述した第1実施形態と異なるのは、各拡散層3a,3b,3cの共通接続に関する構成であり、上述のような金属配線8によるのではなく、各拡散層3a,3b,3c同士を下層導電層5の下方に対応位置しない一端部で一体的に連接して、共通接続したものである。したがって、回路構成としては、図3に示す第1実施形態と同一である。   FIG. 4 shows the second embodiment, which is different from the first embodiment described above in the configuration relating to the common connection of the diffusion layers 3a, 3b, 3c, not by the metal wiring 8 as described above, The diffusion layers 3a, 3b, and 3c are integrally connected at one end not corresponding to the lower portion of the lower conductive layer 5 and commonly connected. Therefore, the circuit configuration is the same as that of the first embodiment shown in FIG.

続いて、図5及び図6に基づき、図1を参照して、本発明の第3実施形態を説明する。シリコン基板11上に複数のLOCOS素子分離領域12a,12b,12c,12dと導電層である複数の拡散層13a,13b,13cとを互いに隣接するように縞状に形成して凹凸面を形成し、この凹凸面上に、第1絶縁層14と、下層導電層15と、第2絶縁層16と、上層導電層17とを順次重ねて形成する(図1参照)。   Next, a third embodiment of the present invention will be described with reference to FIG. 1 based on FIG. 5 and FIG. A plurality of LOCOS element isolation regions 12a, 12b, 12c, and 12d and a plurality of diffusion layers 13a, 13b, and 13c, which are conductive layers, are formed in stripes on the silicon substrate 11 so as to be adjacent to each other, thereby forming an uneven surface. The first insulating layer 14, the lower conductive layer 15, the second insulating layer 16, and the upper conductive layer 17 are sequentially stacked on the uneven surface (see FIG. 1).

これによって、各拡散層13a,13b,13c,13dと下層導電層15とを一対の電極とし第1絶縁層14を誘電体層とするキャパシタと、前記下層導電層15と前記上層導電層17とを一対の電極とし第2絶縁層16を誘電体層とするキャパシタとを構成している(図1参照)。なお、以上の構成は上述した第1実施形態の構成と同一なので、図1には対応する構成要素に各符号を括弧付きで付してある。   Thus, each of the diffusion layers 13a, 13b, 13c, 13d and the lower conductive layer 15 as a pair of electrodes and a capacitor having the first insulating layer 14 as a dielectric layer, the lower conductive layer 15 and the upper conductive layer 17, And a capacitor having the second insulating layer 16 as a dielectric layer (see FIG. 1). In addition, since the above structure is the same as the structure of 1st Embodiment mentioned above, in FIG. 1, each code | symbol is attached | subjected with the code | symbol to the corresponding component.

図5に示すように、各拡散層13a,13b,13cを下層導電層15と対応しない位置で分断し、この分断部分にトランジスタのゲート電極20a,20b,20cを前記各拡散層13a,13b,13cとは絶縁状態で形成している。これらのゲート電極20a,20b,20cは、例えば、モリブデン等の高融点金属やポリシリコン等によって形成する。そして、前記各ゲート電極20a,20b,20cを挟んでそれぞれ位置する前記各拡散層13a,13b,13cの部分13a,13a,13b,13b,13c,13cを、ソース/ドレイン電極として、前記各トランジスタを構成している。また、前記各トランジスタの前記下層導電層15側とは反対側の各電極13a,13b,13cを金属配線18で共通接続して上層導電層17と電気的に接続している。 As shown in FIG. 5, each diffusion layer 13a, 13b, 13c is divided at a position not corresponding to the lower conductive layer 15, and the gate electrodes 20a, 20b, 20c of the transistor are divided into the respective diffusion layers 13a, 13b, 13c is formed in an insulating state. These gate electrodes 20a, 20b, and 20c are formed of, for example, a refractory metal such as molybdenum, polysilicon, or the like. Then, portions 13a 1 , 13a 2 , 13b 1 , 13b 2 , 13c 1 , 13c 2 of the respective diffusion layers 13a, 13b, 13c, which are respectively located across the respective gate electrodes 20a, 20b, 20c, are connected to the source / drain. Each of the transistors is configured as an electrode. Further, the electrodes 13a 1 , 13b 1 , 13c 1 on the opposite side to the lower conductive layer 15 side of the transistors are commonly connected by a metal wiring 18 and electrically connected to the upper conductive layer 17.

本実施形態は上述のように、各拡散層13a,13b,13cと下層導電層15とを一対の電極とするキャパシタと、前記下層導電層15と上層導電層17とを一対の電極とするキャパシタとを、重畳的に形成し、前記各拡散層13a,13b,13cを一方の電極とするキャパシタは、トランジスタを介して前記上層導電層17と電気的に接続したので、前記各トランジスタをオン・オフ制御することによって、キャパシタの容量値を4段階に変化させることができる。   In the present embodiment, as described above, each of the diffusion layers 13a, 13b, 13c and the lower conductive layer 15 has a pair of electrodes, and the capacitor has the lower conductive layer 15 and the upper conductive layer 17 as a pair of electrodes. Are superimposed on each other, and the capacitor having each diffusion layer 13a, 13b, 13c as one electrode is electrically connected to the upper conductive layer 17 via a transistor. By performing the off control, the capacitance value of the capacitor can be changed in four stages.

また、下層導電層15と上層導電層17とを一対の電極とするキャパシタはLOCOS素子分離領域12a,12b,12c,12dにより形成された凹凸面上に形成することにより、一対の電極である前記各導電層15,17は、曲面状に対向するので、これら電極を水平方向に拡大形成することなく、対向面積を増大し、電極の水平方向の占有面積が同一のものと比較して、容量値がほぼ1.4倍のキャパシタを得ることができる。   The capacitor having the lower conductive layer 15 and the upper conductive layer 17 as a pair of electrodes is a pair of electrodes formed on the concavo-convex surface formed by the LOCOS element isolation regions 12a, 12b, 12c, and 12d. Since the conductive layers 15 and 17 are opposed to each other in a curved shape, the facing area is increased without expanding the electrodes in the horizontal direction, and the capacitance is larger than that of the same occupied area in the horizontal direction of the electrodes. A capacitor having a value of about 1.4 times can be obtained.

図7は第4実施形態を示し、上述した第3実施形態と異なるのは、各トランジスタの電極13a,13b,13cの共通接続に関する構成であり、上述のような金属配線18によるのではなく、各拡散層13a,13b,13cの一端側である電極13a,13b,13c同士を一体的に連接して、共通接続したものである。したがって、回路構成としては、図6に示す第3実施形態と同一である。これら第3、第4の各実施形態は、その回路構成(図6参照)からみて、電波時計の電波受信装置におけるコンデンサアレイに適用することができる。 FIG. 7 shows the fourth embodiment, which is different from the third embodiment described above in the configuration related to the common connection of the electrodes 13a 1 , 13b 1 , 13c 1 of each transistor. Instead, the electrodes 13a 1 , 13b 1 , 13c 1 which are one end sides of the respective diffusion layers 13a, 13b, 13c are integrally connected and connected in common. Therefore, the circuit configuration is the same as that of the third embodiment shown in FIG. These third and fourth embodiments can be applied to a capacitor array in a radio wave receiver of a radio timepiece in view of its circuit configuration (see FIG. 6).

なお、本発明は上述の各実施形態に限定されるものではなく、例えば、各拡散層3a,3b,3c,13a,13b,13cと上層導電層7,17の電気的接続は、金属配線8,18によらず直接接続してもよいものである。また、重畳形成するキャパシタは2個に限らず、3個以上でもよく、この場合には、図8に示すように、上下に位置する導電層C1〜Cnを一つおきに電気的に接続すればよいものである。   The present invention is not limited to the above-described embodiments. For example, the electrical connection between the diffusion layers 3a, 3b, 3c, 13a, 13b, and 13c and the upper conductive layers 7 and 17 is the metal wiring 8. , 18 may be directly connected. Further, the number of capacitors formed in an overlapping manner is not limited to two, but may be three or more. In this case, as shown in FIG. 8, every other conductive layer C1 to Cn positioned above and below is electrically connected. It is good.

本発明の一実施形態であるキャパシタを有する半導体装置の概略的な断面図。1 is a schematic cross-sectional view of a semiconductor device having a capacitor according to an embodiment of the present invention. 同じく平面図。FIG. 同じくキャパシタの構成を説明する回路図。The circuit diagram explaining the structure of a capacitor similarly. 第2実施形態のキャパシタを有する半導体装置の概略的な平面図。FIG. 6 is a schematic plan view of a semiconductor device having a capacitor according to a second embodiment. 第3実施形態のキャパシタを有する半導体装置の概略的な平面図。FIG. 6 is a schematic plan view of a semiconductor device having a capacitor according to a third embodiment. 同じくキャパシタの構成を説明する回路図。The circuit diagram explaining the structure of a capacitor similarly. 第4実施形態のキャパシタを有する半導体装置の概略的な平面図。FIG. 6 is a schematic plan view of a semiconductor device having a capacitor according to a fourth embodiment. 本発明のさらに他の実施形態におけるキャパシタの構成を説明する回路図。The circuit diagram explaining the structure of the capacitor in further another embodiment of this invention.

符号の説明Explanation of symbols

1,11 シリコン基板
2a,2b,2c,2d,12a,12b,12c,12d LOCOS素子分離領域
3a,3b,3c,13a,13b,13c 拡散層
4,14 第1絶縁層
5,15 下層導電層
6,16 第2絶縁層
7,17 上層導電層
8,9,18,19 金属配線
13a,13a,13b,13b,13c,13cソース/ドレイン電極
20a,20b,20c ゲート電極
C1〜Cn 導電層
1,11 Silicon substrate 2a, 2b, 2c, 2d, 12a, 12b, 12c, 12d LOCOS element isolation region 3a, 3b, 3c, 13a, 13b, 13c Diffusion layer 4, 14 First insulating layer 5, 15 Lower conductive layer 6, 16 Second insulating layer 7, 17 Upper conductive layer 8, 9, 18, 19 Metal wiring 13a 1 , 13a 2 , 13b 1 , 13b 2 , 13c 1 , 13c 2 Source / drain electrode 20a, 20b, 20c Gate electrode C1-Cn conductive layer

Claims (6)

シリコン基板上に形成した複数のLOCOS素子分離領域によって凹凸面を形成し、この凹凸面上に、下部電極である導電層と、誘電体層である絶縁層と、上部電極である導電層を重ねて形成してキャパシタを構成した
ことを特徴とするキャパシタを有する半導体装置。
An uneven surface is formed by a plurality of LOCOS element isolation regions formed on a silicon substrate, and a conductive layer as a lower electrode, an insulating layer as a dielectric layer, and a conductive layer as an upper electrode are stacked on the uneven surface. A semiconductor device having a capacitor, wherein the capacitor is formed.
シリコン基板上に複数のLOCOS素子分離領域と導電層である拡散層とを互いに隣接するように形成して凹凸面を形成し、前記各拡散層を共通接続する一方、前記凹凸面上に、絶縁層と導電層とを交互に複数重ねて形成して、前記各絶縁層を誘電体層とし、前記各絶縁層を挟む上下の前記拡散層を含む各導電層を一対の電極とするキャパシタを複数構成するとともに、前記各導電層を一つおきに電気的に接続した
ことを特徴とするキャパシタを有する半導体装置。
A plurality of LOCOS element isolation regions and a diffusion layer as a conductive layer are formed on a silicon substrate so as to be adjacent to each other to form an uneven surface, and the diffusion layers are connected in common, while insulating on the uneven surface. A plurality of capacitors are formed by alternately stacking layers and conductive layers, using each insulating layer as a dielectric layer, and each conductive layer including the upper and lower diffusion layers sandwiching each insulating layer as a pair of electrodes. A semiconductor device having a capacitor, characterized in that every other conductive layer is electrically connected to each other.
シリコン基板上に複数のLOCOS素子分離領域と導電層である拡散層とを互いに隣接するように形成して凹凸面を形成し、前記各拡散層を共通接続する一方、前記凹凸面上に、第1絶縁層と、下層導電層と、第2絶縁層と、上層導電層とを順次重ねて形成することによって、前記各拡散層と前記下層導電層とを一対の電極とし前記第1絶縁層を誘電体層とするキャパシタと、前記下層導電層と前記上層導電層とを一対の電極とし前記第2絶縁層を誘電体層とするキャパシタとを構成するとともに、前記上層導電層と前記各拡散層とを電気的に接続した
ことを特徴とするキャパシタを有する半導体装置。
A plurality of LOCOS element isolation regions and a diffusion layer, which is a conductive layer, are formed on a silicon substrate so as to be adjacent to each other to form an uneven surface, and the diffusion layers are connected in common. A first insulating layer, a lower conductive layer, a second insulating layer, and an upper conductive layer are sequentially stacked to form each diffusion layer and the lower conductive layer as a pair of electrodes. A capacitor that is a dielectric layer, and a capacitor that includes the lower conductive layer and the upper conductive layer as a pair of electrodes and the second insulating layer as a dielectric layer, and the upper conductive layer and each diffusion layer A semiconductor device having a capacitor, wherein the capacitor is electrically connected to each other.
シリコン基板上に複数のLOCOS素子分離領域と導電層である拡散層とを互いに隣接するように形成して凹凸面を形成し、この凹凸面上に、絶縁層と導電層とを交互に複数重ねて形成して、前記各絶縁層を誘電体層とし、前記各絶縁層を挟む上下の前記拡散層を含む各導電層を一対の電極とするキャパシタを複数構成する一方、前記シリコン基板上に前記各拡散層をソース/ドレイン電極とするトランジスタを形成し、前記各拡散層を前記ソース/ドレイン電極の一方で共通接続するとともに、この共通接続した拡散層を含む各導電層を一つおきに電気的に接続した
ことを特徴とするキャパシタを有する半導体装置。
A concavo-convex surface is formed by forming a plurality of LOCOS element isolation regions and conductive layers as diffusion layers adjacent to each other on a silicon substrate, and a plurality of insulating layers and conductive layers are alternately stacked on the concavo-convex surface. Forming a plurality of capacitors each having a dielectric layer as each insulating layer and a pair of electrodes each having a conductive layer including the upper and lower diffusion layers sandwiching each insulating layer. A transistor having each diffusion layer as a source / drain electrode is formed, and each diffusion layer is commonly connected to one of the source / drain electrodes, and every other conductive layer including the commonly connected diffusion layer is electrically connected. A semiconductor device having a capacitor characterized in that the capacitor is connected.
シリコン基板上に複数のLOCOS素子分離領域と導電層である拡散層とを互いに隣接するように形成して凹凸面を形成し、この凹凸面上に、第1絶縁層と、下層導電層と、第2絶縁層と、上層導電層とを順次重ねて形成することによって、前記各拡散層と前記下層導電層とを一対の電極とし前記第1絶縁層を誘電体層とするキャパシタと、前記下層導電層と前記上層導電層とを一対の電極とし前記第2絶縁層を誘電体層とするキャパシタとを構成する一方、前記シリコン基板上に前記各拡散層をソース/ドレイン電極とするトランジスタを形成し、前記各拡散層を前記ソース/ドレイン電極の一方で共通接続して前記上層導電層と電気的に接続した
ことを特徴とするキャパシタを有する半導体装置。
A plurality of LOCOS element isolation regions and a diffusion layer as a conductive layer are formed on a silicon substrate so as to be adjacent to each other to form a concavo-convex surface, and on the concavo-convex surface, a first insulating layer, a lower conductive layer, The second insulating layer and the upper conductive layer are sequentially stacked to form a capacitor having each diffusion layer and the lower conductive layer as a pair of electrodes and the first insulating layer as a dielectric layer, and the lower layer A transistor having a conductive layer and the upper conductive layer as a pair of electrodes and a capacitor having the second insulating layer as a dielectric layer, and a transistor having each diffusion layer as a source / drain electrode is formed on the silicon substrate. Then, each of the diffusion layers is commonly connected to one of the source / drain electrodes and electrically connected to the upper conductive layer. A semiconductor device having a capacitor.
各拡散層の共通接続は、拡散層同士を一端側で一体的に連接してなることを特徴とする請求項2〜請求項5のいずれか1項に記載のキャパシタを有する半導体装置。
6. The semiconductor device having a capacitor according to claim 2, wherein the common connection of each diffusion layer is formed by integrally connecting the diffusion layers at one end side.
JP2005038182A 2005-02-15 2005-02-15 Semiconductor device having a capacitor Expired - Fee Related JP4855690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005038182A JP4855690B2 (en) 2005-02-15 2005-02-15 Semiconductor device having a capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005038182A JP4855690B2 (en) 2005-02-15 2005-02-15 Semiconductor device having a capacitor

Publications (2)

Publication Number Publication Date
JP2006228829A true JP2006228829A (en) 2006-08-31
JP4855690B2 JP4855690B2 (en) 2012-01-18

Family

ID=36989952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005038182A Expired - Fee Related JP4855690B2 (en) 2005-02-15 2005-02-15 Semiconductor device having a capacitor

Country Status (1)

Country Link
JP (1) JP4855690B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7031779B1 (en) * 2020-10-30 2022-03-08 株式会社明電舎 Variable capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112075A (en) * 1977-10-18 1978-09-30 Sanyo Electric Co Ltd Digital capacitor
JPH0240946A (en) * 1988-07-31 1990-02-09 Nec Corp Semiconductor integrated circuit
JPH0613571A (en) * 1992-06-25 1994-01-21 Texas Instr Japan Ltd Semiconductor device
JPH1074900A (en) * 1997-09-24 1998-03-17 Mitsubishi Electric Corp Semiconductor device
JP2002368119A (en) * 2001-06-11 2002-12-20 Sony Corp Semiconductor device and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112075A (en) * 1977-10-18 1978-09-30 Sanyo Electric Co Ltd Digital capacitor
JPH0240946A (en) * 1988-07-31 1990-02-09 Nec Corp Semiconductor integrated circuit
JPH0613571A (en) * 1992-06-25 1994-01-21 Texas Instr Japan Ltd Semiconductor device
JPH1074900A (en) * 1997-09-24 1998-03-17 Mitsubishi Electric Corp Semiconductor device
JP2002368119A (en) * 2001-06-11 2002-12-20 Sony Corp Semiconductor device and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7031779B1 (en) * 2020-10-30 2022-03-08 株式会社明電舎 Variable capacitor
WO2022091511A1 (en) * 2020-10-30 2022-05-05 株式会社明電舎 Variable capacitor

Also Published As

Publication number Publication date
JP4855690B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
US8274112B2 (en) Semiconductor memory device having pillar structures
US8941162B2 (en) Semiconductor device, method for forming the same, and data processing system
US9887200B2 (en) Dynamic random access memory
US20150022948A1 (en) Capacitor structure
JP2008211215A (en) Multi-finger transistor
US9818833B2 (en) Semiconductor device
JP4785623B2 (en) Semiconductor device and manufacturing method thereof
JP5592074B2 (en) Semiconductor device
JP2007157892A (en) Semiconductor integrated circuit and manufacturing method thereof
JP2005251896A (en) Semiconductor device and its manufacturing method
JP4855690B2 (en) Semiconductor device having a capacitor
JP2011082223A (en) Semiconductor integrated circuit device
TW202305952A (en) Semiconductor device
JP2004200640A (en) Semiconductor device and its manufacturing method
CN103715262B (en) Semiconductor device
TW202205680A (en) Multiplexer cell and semiconductor device having camouflage design, and method for forming multiplexer cell
JP6427068B2 (en) Semiconductor device
JP5863892B2 (en) Semiconductor device
KR100624584B1 (en) Semiconductor device and method of manufacturing the same
JPH0473960A (en) Integrated circuit
EP1691399A2 (en) Semiconductor device with capacitor structure for improving area utilization
JP4711620B2 (en) Semiconductor device and manufacturing method thereof
KR200156159Y1 (en) Structure of capacitor
JP2008108799A (en) Semiconductor device
JP2007273689A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4855690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees