JP2006226741A - Manufacturing method of thin film gas sensor - Google Patents

Manufacturing method of thin film gas sensor Download PDF

Info

Publication number
JP2006226741A
JP2006226741A JP2005038614A JP2005038614A JP2006226741A JP 2006226741 A JP2006226741 A JP 2006226741A JP 2005038614 A JP2005038614 A JP 2005038614A JP 2005038614 A JP2005038614 A JP 2005038614A JP 2006226741 A JP2006226741 A JP 2006226741A
Authority
JP
Japan
Prior art keywords
thin film
gas sensor
manufacturing
porous
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005038614A
Other languages
Japanese (ja)
Other versions
JP4457912B2 (en
Inventor
Kenji Kunihara
健二 国原
Takuya Suzuki
卓弥 鈴木
Makoto Yoshida
吉田  誠
Makoto Okamura
誠 岡村
Mitsuo Kobayashi
光男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2005038614A priority Critical patent/JP4457912B2/en
Publication of JP2006226741A publication Critical patent/JP2006226741A/en
Application granted granted Critical
Publication of JP4457912B2 publication Critical patent/JP4457912B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a thin film gas sensor that has high controllability in the shape of a selective combustion layer and small variation in a gas sensor characteristic. <P>SOLUTION: The manufacturing method comprises a process of forming the selective combustion layer 7, a process of applying paste of mixed porous Al<SB>2</SB>O<SB>3</SB>impalpable powder carrying noble metal catalyst, an inorganic binder such as silica sol binder, and photoresist to gas sensing film 6 and its rim, a process of patterning the gas sensing film 6 of the paste, and a process of heating it in oxidizing atmosphere, burning off the resist component, and baking the porous Al<SB>2</SB>O<SB>3</SB>impalpable powder and the inorganic binder. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、電池駆動に適した低消費電力型の薄膜ガスセンサの製造方法に関する。   The present invention relates to a method of manufacturing a low power consumption thin film gas sensor suitable for battery driving.

一般的にガスセンサは、ガス漏れ警報器などの用途に用いられ、ある特定ガス、例えば、CO、CH4、C3H8、C2H5OH等に選択的に感応するデバイスであり、その性格上、高感度、高選択性、高応答性、高信頼性、低消費電力が必要不可決である。
ところで、家庭用として普及しているガス漏れ警報器には、都市ガス用やプロパンガス用の可燃性ガス検知を目的としたものと燃焼機器の不完全燃焼ガス検知を目的としたもの、または、両方の機能を合わせ持ったものなどがあるが、いずれもコストや設置性の問題から普及率はそれほど高くない。従って普及率の向上のためには、設置性の改善、具体的には、電池駆動としコードレス化することが望まれている。
接触燃焼式や半導体式のガスセンサでは、ガス検知部を200℃〜500℃の高温に加熱した状態でガス検知する必要があり、電池駆動を実現するためには、低消費電力化が最も重要である。そこで、微細加工プロセスによりダイヤフラム構造などとして、高断熱および低熱容量の薄膜ガスセンサの実現が待たれている。
In general, a gas sensor is a device that is selectively used for a specific gas such as CO, CH 4 , C 3 H 8 , C 2 H 5 OH, etc. In terms of character, high sensitivity, high selectivity, high response, high reliability, and low power consumption are indispensable.
By the way, the gas leak alarms that are widely used for home use include those for the purpose of detecting flammable gases for city gas and propane gas, and those for the purpose of detecting incomplete combustion gases in combustion equipment, or There are things that have both functions, but the penetration rate is not so high due to cost and installation problems. Therefore, in order to improve the penetration rate, it is desired to improve the installability, specifically, to be battery-driven and cordless.
In contact combustion and semiconductor type gas sensors, it is necessary to detect the gas while the gas detector is heated to a high temperature of 200 ° C to 500 ° C. To achieve battery operation, low power consumption is the most important. is there. Therefore, it is awaited to realize a thin film gas sensor with high heat insulation and low heat capacity as a diaphragm structure by a microfabrication process.

一般に、ガス感知膜に半導体薄膜を用いた場合、ガス感知膜単体では複数の還元性ガス種に感応してしまい、ある特定のガスだけに選択的に感応することは出来ない。そこでガス感知膜の上にPdまたはPt等の貴金属触媒からなる選択燃焼層を設け、検知ガスより酸化活性の強いガスを燃焼させることが有効である。
図1は薄膜ガスセンサの断面図である。Si基板1により両端または周縁を支持される支持膜および熱絶縁膜(ダイヤフラム)2には、ヒータ3が形成され、これを被覆する絶縁層4上に、感知負け電極5を有するガス感知膜6が形成されている。ガス感知膜6は選択燃焼層7によって被覆されている。
また、電池駆動形ガスセンサでは低消費電力を実現するためには、Duty比(ヒーターをONにしている時間の比 )が1/300〜1/100程度の間欠動作が必要である。
In general, when a semiconductor thin film is used for the gas sensing film, the gas sensing film alone is sensitive to a plurality of reducing gas species and cannot be selectively sensitive to a specific gas. Therefore, it is effective to provide a selective combustion layer made of a noble metal catalyst such as Pd or Pt on the gas sensing film and burn a gas having a stronger oxidation activity than the sensing gas.
FIG. 1 is a cross-sectional view of a thin film gas sensor. A heater 3 is formed on a support film and a thermal insulating film (diaphragm) 2 supported at both ends or peripheral edges by the Si substrate 1, and a gas sensing film 6 having a sensing loss electrode 5 on the insulating layer 4 covering the heater 3. Is formed. The gas sensing membrane 6 is covered by a selective combustion layer 7.
Further, in order to realize low power consumption in the battery-driven gas sensor, an intermittent operation with a duty ratio (ratio of time during which the heater is turned on) of about 1/300 to 1/100 is required.

また、薄膜を積層したダイヤフラム構造の場合、数μm程度の歪みが生じるので、選択燃焼層にもある程度以上の機械的強度が必要である。選択燃焼層の機械的強度を確保するためには、貴金属触媒を担持した多孔質Al2O3微粉末にシリカゾルやアルミナゾルのような無機バインダを添加したペーストを、ガス感知膜を完全に被覆するようにスクリーン印刷などの手法によりコーティングした後、500℃程度の温度で約1時間焼成して焼き付けることが行われている(例えば、特許文献1および特許文献2参照。)。
選択燃焼層に必要な膜厚は10〜20μmであり、ガス感知膜を完全に被覆する事が重要である。一方、選択燃焼層が大きすぎると選択燃焼層の熱容量によりガスセンサの消費電力を増加させる要因となるため、被覆面積を必要最小限にすることも重要である。
特開2000−292397号公報(第2頁−第3頁、図1) 特開2003−262598号公報(第2頁−第4頁、図1)
Further, in the case of a diaphragm structure in which thin films are laminated, distortion of about several μm occurs, so that the selective combustion layer also requires a certain level of mechanical strength. In order to ensure the mechanical strength of the selective combustion layer, the gas sensing membrane is completely covered with a paste in which an inorganic binder such as silica sol or alumina sol is added to porous Al 2 O 3 fine powder supporting a noble metal catalyst. As described above, after coating by a technique such as screen printing, baking is performed by baking at a temperature of about 500 ° C. for about 1 hour (see, for example, Patent Document 1 and Patent Document 2).
The film thickness required for the selective combustion layer is 10 to 20 μm, and it is important to completely cover the gas sensing film. On the other hand, if the selective combustion layer is too large, the heat capacity of the selective combustion layer increases the power consumption of the gas sensor, so it is also important to minimize the covering area.
Japanese Unexamined Patent Publication No. 2000-292397 (page 2 to page 3, FIG. 1) JP 2003-262598 A (2nd page-4th page, FIG. 1)

薄膜ガスセンサの場合、SnO2ガス感知膜は耐久性および加工精度などを考慮すると、100μm□程度の大きさが適当である。これを完全に被覆する最小限の選択燃焼層のサイズは選択燃焼層の製造方法によって異なる。
スクリーン印刷などの場合、位置合わせ精度、印刷精度などを考え合わせると、φ200μmの穴径のメタルマスクを用いて、選択燃焼層の径をφ170〜230μm程度に制御するのが高々である。またウェハー全面で見た場合、選択燃焼層/SnO2ガス感知膜の位置ずれが起こりやすく、断面形状としては中心部が厚く周辺部が薄い形状になる。
マイクロシリンジを用いての塗布の場合は、位置ずれは少ないが、作業時間がかかる、形状制御が難しい、あるいはペースト中の貴金属触媒を担持した多孔質Al2O3微粉末によりシリンジの目詰まりが起こりやすいなどの問題があった。
In the case of a thin film gas sensor, the SnO 2 gas sensing film is suitably about 100 μm □ in consideration of durability and processing accuracy. The minimum size of the selective combustion layer that completely covers this varies depending on the method of manufacturing the selective combustion layer.
In the case of screen printing or the like, considering the alignment accuracy, printing accuracy, etc., it is often the case that the diameter of the selective combustion layer is controlled to about φ170 to 230 μm using a metal mask having a hole diameter of φ200 μm. Further, when viewed over the entire surface of the wafer, the position of the selective combustion layer / SnO 2 gas sensing film is likely to shift, and the cross-sectional shape is thick at the center and thin at the periphery.
In the case of application using a microsyringe, the positional deviation is small, but it takes time to work, the shape control is difficult, or the porous Al 2 O 3 fine powder carrying the noble metal catalyst in the paste clogs the syringe. There were problems such as being easy to occur.

すなわちいずれの選択燃焼層の形成方法においても、選択燃焼層の形状の制御性は悪くばらつきが大きいため、結果的にはガスセンサ特性のばらつきが大きくなるという問題があった。
本発明の目的は、選択燃焼層の形状の制御性に優れ、ガスセンサ特性のばらつきの少ない薄膜ガスセンサの得られる薄膜ガスセンサの製造方法を提供することにある。
That is, in any method for forming the selective combustion layer, the controllability of the shape of the selective combustion layer is poor and the variation is large, resulting in a problem that the variation in the gas sensor characteristics becomes large as a result.
The objective of this invention is providing the manufacturing method of the thin film gas sensor which is excellent in controllability of the shape of a selective combustion layer, and can obtain the thin film gas sensor with little dispersion | variation in a gas sensor characteristic.

本発明の目的を達成するために、薄膜状のダイヤフラム(支持膜)の外周または両端部がSi基板に支持され、ダイヤフラム上に、少なくとも、半導体薄膜であるガス感知膜を形成した後、その最表面に、PdまたはPt等の貴金属触媒を多孔質Al2O3微粉末担体粒子に担持した選択燃焼層を形成する工程を有する薄膜ガスセンサの製造方法において、
前記選択燃焼層を形成する工程を、
貴金属触媒を担持した多孔質Al2O3微粉末とシリカゾルバインダあるいはアルミナゾルバインダ等の無機バインダとフォトレジストが混合されたペーストをガス感知膜およびその周縁に塗布する工程
前記ペーストのガス感知膜を完全に被覆する部分のみが残るようにフォトレジストをパターンニングする工程、
および、酸化雰囲気中で加熱処理を行い、上記のパターニングされたペースト中のレジスト成分を焼き飛ばし、多孔質Al2O3微粉末/無機バインダを焼き付ける工程、
からなるようにする。
In order to achieve the object of the present invention, the outer periphery or both ends of a thin film diaphragm (support film) are supported by a Si substrate, and after forming at least a gas sensing film as a semiconductor thin film on the diaphragm, In the method of manufacturing a thin film gas sensor, which has a step of forming a selective combustion layer in which a noble metal catalyst such as Pd or Pt is supported on a porous Al 2 O 3 fine powder carrier particle on the surface,
Forming the selective combustion layer,
Applying paste mixed with porous Al 2 O 3 fine powder supporting noble metal catalyst and inorganic binder such as silica sol binder or alumina sol binder and photoresist to the gas sensing film and its periphery The gas sensing film of the paste is completely applied Patterning the photoresist so that only the portion to be coated remains on,
And a heat treatment in an oxidizing atmosphere to burn off the resist component in the patterned paste, and to burn porous Al 2 O 3 fine powder / inorganic binder,
To be made up of.

前記フォトレジストはネガ型であると良い。
前記ペーストの塗布はスピンコーターによって行うと良い。
前記加熱処理は500℃以上、700℃以下であると良い。
前記ペーストの、前記ネガ型フォトレジストと、前記貴金属触媒を担持した多孔質Al2O3微粉末および無機バインダとの体積比〔ネガ型レジスト体積/(ネガ型レジスト体積+多孔質Al2O3微粉末及び無機バインダ)〕は50%以上、70%以下であると良い。
The photoresist is preferably negative.
The paste is preferably applied by a spin coater.
The heat treatment is preferably performed at 500 ° C. or higher and 700 ° C. or lower.
Volume ratio of the negative photoresist, the porous Al 2 O 3 fine powder supporting the noble metal catalyst and the inorganic binder in the paste [negative resist volume / (negative resist volume + porous Al 2 O 3 The fine powder and inorganic binder)] are preferably 50% or more and 70% or less.

本発明によれば、選択燃焼層を形成する工程を、貴金属触媒を担持した多孔質Al2O3微粉末とシリカゾルバインダあるいはアルミナゾルバインダ等の無機バインダとフォトレジストが混合されたペーストをガス感知膜およびその周縁に塗布するようにしたため、このペーストのガス感知膜を完全に被覆する部分のみが残るようにフォトレジストをパターンニングすることができるようになり、選択燃焼層の形状およびSnO2ガス感知膜に対する位置精度が向上し、その結果、選択燃焼層のサイズを必要最小限とすることができ、薄膜ガスセンサの熱容量を低減でき、ガスセンサの消費電力の低減が可能になる。また、製造歩留まりの向上が期待できる。
また、酸化雰囲気中で加熱処理を行うため、上記のパターニングされたペースト中のレジスト成分を焼き飛ばすことができるので、選択燃焼層にレジスト成分は残留せず、選択燃焼層の機能は十分発揮できる。
According to the present invention, the step of forming the selective combustion layer is performed by using a paste in which a porous Al 2 O 3 fine powder supporting a noble metal catalyst, an inorganic binder such as a silica sol binder or an alumina sol binder, and a photoresist are mixed. And its peripheral edge, the photoresist can be patterned so that only the part completely covering the gas sensing film of this paste remains, the shape of the selective combustion layer and SnO 2 gas sensing. The positional accuracy with respect to the membrane is improved. As a result, the size of the selective combustion layer can be minimized, the heat capacity of the thin film gas sensor can be reduced, and the power consumption of the gas sensor can be reduced. In addition, an improvement in manufacturing yield can be expected.
Further, since the heat treatment is performed in an oxidizing atmosphere, the resist component in the patterned paste can be burned out, so that the resist component does not remain in the selective combustion layer, and the function of the selective combustion layer can be sufficiently exhibited. .

上記の加熱処理は500℃以上として、レジスト成分を焼き飛ばし、700℃以下としてヒーターおよびガス感知電極の変質を回避しているので、上記のように選択燃焼層の機能は十分発揮でき、ガスセンサの特性にも問題はない。   Since the above heat treatment is performed at 500 ° C. or higher, the resist components are burned off, and the heat treatment and the gas sensing electrode are avoided at 700 ° C. or lower, so that the function of the selective combustion layer can be sufficiently exerted as described above. There is no problem with the characteristics.

本発明の薄膜ガスセンサの製造方法を、薄膜ガスセンサの製造工程に沿って説明する。本発明に係る製造方法の適用される薄膜ガスセンサの断面図は図1に同じである。
両面に熱酸化膜が付いたSi基板1上に、ダイヤフラム構造の支持膜および熱絶縁膜2としてSi3N4およびSiO2膜を順次プラズマCVDによって形成する。
次にPt-Wからなるヒーター層をパターニングしたヒータ3、およびSiO2からなる絶縁層4を順にスパッタによって形成し、その上に接合層を介したガス感知膜電極膜を形成し、パターニングしてガス感知膜電極5を形成する。成膜はRFマグネトロンスパッタリング装置を用い、通常のスパッタリングによって行う。成膜条件は接合層(TaあるいはTi)、ガス感知膜電極(PtあるいはAu)とも同じで、Arガス圧力1Pa、基板温度300℃、RFパワー密度 2 W/cm2、膜厚は、接合層/ガス感知膜電極=50nm/200nmである。
The manufacturing method of the thin film gas sensor of this invention is demonstrated along the manufacturing process of a thin film gas sensor. The cross-sectional view of the thin film gas sensor to which the manufacturing method according to the present invention is applied is the same as FIG.
Si 3 N 4 and SiO 2 films are sequentially formed by plasma CVD on a Si substrate 1 having a thermal oxide film on both sides as a support film having a diaphragm structure and a thermal insulating film 2.
Next, a heater 3 patterned with a heater layer made of Pt—W and an insulating layer 4 made of SiO 2 are sequentially formed by sputtering, and a gas sensing film electrode film is formed thereon through a bonding layer and patterned. A gas sensing membrane electrode 5 is formed. Film formation is performed by normal sputtering using an RF magnetron sputtering apparatus. The deposition conditions are the same for the bonding layer (Ta or Ti) and gas sensing film electrode (Pt or Au), Ar gas pressure 1Pa, substrate temperature 300 ° C, RF power density 2 W / cm 2 , film thickness is bonding layer / Gas sensing membrane electrode = 50 nm / 200 nm.

次に、ガス感知膜であるSnO2膜を成膜する。SnO2膜のサイズは100μm□である。成膜はRFマグネトロンスパッタリング装置を用い、反応性スパッタリングによって行う。ターゲットにはSbを0.5wt%含むSnO2を用いる。成膜条件は、ガスはAr+O2、ガス圧力2Pa、基板温度150〜300℃、RFパワー密度 2 W/cm2、膜厚500nmである。
つづいて、本発明に係る選択燃焼層の形成について図2に沿って説明する。
図2は本発明に係る選択燃焼層の製造工程順の断面図である。
SiO2絶縁膜4より上の部分でSnO2ガス感知膜1個部分のみを取り出して図示するが、基板ウェハーには規則正しく同じ部分が数100個以上存在する。
Pdを7.0wt%担持したγ−アルミナ(平均粒径2〜3μm)にアルミナゾルを5〜20wt%添加して、よく混合し800cPの粘度のペーストとする。紫外光を遮断した室内で、更に体積で1.5倍の同一粘度のネガ型フォトレジスト(例えば、東京応化製OMR83/800cP)を添加し、均一になるように混合する。
Next, an SnO 2 film that is a gas sensing film is formed. The size of the SnO 2 film is 100 μm □. Film formation is performed by reactive sputtering using an RF magnetron sputtering apparatus. SnO 2 containing 0.5 wt% Sb is used as the target. The deposition conditions are Ar + O 2 for gas, gas pressure 2 Pa, substrate temperature 150 to 300 ° C., RF power density 2 W / cm 2 , and film thickness 500 nm.
Next, formation of the selective combustion layer according to the present invention will be described with reference to FIG.
FIG. 2 is a sectional view of the selective combustion layer according to the present invention in the order of manufacturing steps.
Only one portion of the SnO 2 gas sensing film is taken out from the portion above the SiO 2 insulating film 4 and shown in the figure, but there are several hundred or more regular portions regularly on the substrate wafer.
Add 5 to 20 wt% of alumina sol to γ-alumina (average particle size 2 to 3 μm) carrying 7.0 wt% of Pd, and mix well to obtain a paste with a viscosity of 800 cP. In a room where ultraviolet light is blocked, a negative photoresist (for example, OMR83 / 800 cP manufactured by Tokyo Ohka Kogyo Co., Ltd.) 1.5 times in volume is added and mixed to be uniform.

次に上記のPd 7.0wt%担持γ−アルミナ/アルミナゾル/フォトレジスト混合物をスピナーでSnO2ガス感知膜まで成膜した前記ウェハーに塗布し塗膜7aとする(図2(a))。
スピナーでの塗布条件は1000rpm、1分で膜厚15μmの均一な膜が得られる。その後85℃のクリーンオーブンで約30分乾燥する。
倍の厚みが必要な場合は更に同一の条件で同様の処理を行うことで達成できる。
次に露光機にフォトマスクとウェハーをセットする。フォトマスクにはSnO2ガス感知膜6のピッチに合わせ120μm□の透明部が設けてある。100μm□のSnOガス感知膜が120μm□の透明部の中心にくるように露光機ジョイスティックにより位置合わせし、ウェハーとフォトマスクをコンタクトさせ、高圧水銀ランフ゜で紫外光を照射する(図2(b))。
露光エネルギーは200mW/cm(波長は405nm)である。次にOMR現像液で120秒現像し、露光されなかった部分のフォトレジストを除去し、120μm□(SnOガス感知膜の被覆部分)のPd 7.0wt%担持γ−アルミナ/アルミナゾル/フォトレジスト混合物、パターン後の膜7bを残す(図2(c))。感光したフォトレジストが架橋しPd 7.0wt%担持γ−アルミナ/アルミナゾルと共に残る/逆に感光しなかったフォトレジストは現像液に溶解するため分散していたPd 7.0wt%担持γ−アルミナ/アルミナゾルも同時に除去される。
Next, the above-mentioned Pd 7.0 wt% supported γ-alumina / alumina sol / photoresist mixture is applied to the wafer formed with a spinner up to the SnO 2 gas sensing film to form a coating film 7a (FIG. 2A).
The application condition with a spinner is 1000 rpm, and a uniform film with a film thickness of 15 μm can be obtained in one minute. Then, it is dried for about 30 minutes in a clean oven at 85 ° C.
When double thickness is required, it can achieve by performing the same process on the same conditions.
Next, a photomask and a wafer are set in the exposure machine. The photomask is provided with a 120 μm square transparent portion in accordance with the pitch of the SnO 2 gas sensing film 6. Align with a joystick that exposes the 100μm □ SnO 2 gas sensing film at the center of the 120μm □ transparent part, contact the wafer and photomask, and irradiate UV light with a high-pressure mercury lamp (Fig. 2 (b) )).
The exposure energy is 200 mW / cm 2 (wavelength is 405 nm). Next, develop for 120 seconds with OMR developer, remove the unexposed portion of the photoresist, and 120μm □ (coated part of SnO 2 gas sensing film) Pd 7.0wt% supported γ-alumina / alumina sol / photoresist mixture Then, the patterned film 7b is left (FIG. 2C). Photosensitive photoresist crosslinks and remains with Pd 7.0 wt% supported γ-alumina / alumina sol / Conversely, the unphotosensitized photoresist dissolved in the developer solution was dispersed because Pd 7.0 wt% supported γ-alumina / alumina sol Removed at the same time.

その後更に、電気炉にセットし酸素を流しながら550℃で1時間焼成する。フォトレジストは有機物であり酸化分解して完全に除去され、残ったPd 7.0wt%担持γ−アルミナ/アルミナゾルが焼結し基板(SnO2/SiO2面)に固着し選択燃焼層7が形成される。選択燃焼層7はPd 7.0wt%担持γ−アルミナ微粉末の焼結物であり、ガス透過性の良い多孔質体となる(図2(d))。選択燃焼層7のサイズは120μm□でSnO2ガス感知膜6を完全に被覆しており、膜厚としては約10μmとなる。
本発明に係る製造方法によれば選択燃焼層の膜厚制御性、位置精度制御性、寸法精度制御性が良いためガスセンサ特性のばらつきも少なくなった。
図3はスクリーン印刷による選択燃焼層の断面図である。スクリーン印刷により選択選択層を形成した場合は、比較すれば分かるが、選択燃焼層サイズはSnO2より大幅に大きくなることが分かる。
Thereafter, it is further set in an electric furnace and baked at 550 ° C. for 1 hour while flowing oxygen. The photoresist is an organic substance and is completely removed by oxidative decomposition. The remaining Pd 7.0 wt% supported γ-alumina / alumina sol is sintered and fixed to the substrate (SnO 2 / SiO 2 surface) to form the selective combustion layer 7. The The selective combustion layer 7 is a sintered product of Pd 7.0 wt% supported γ-alumina fine powder, and becomes a porous body having good gas permeability (FIG. 2D). The selective combustion layer 7 has a size of 120 μm and completely covers the SnO 2 gas sensing film 6, and the film thickness is about 10 μm.
According to the manufacturing method according to the present invention, since the film thickness controllability, the position accuracy controllability, and the dimensional accuracy controllability of the selective combustion layer are good, variations in gas sensor characteristics are reduced.
FIG. 3 is a cross-sectional view of the selective combustion layer by screen printing. When the selective selection layer is formed by screen printing, it can be seen that the selective combustion layer size is significantly larger than SnO 2 as compared.

この実施例では、フォトレジストを、酸化雰囲気中で熱分解して除去したが、酸素プラズマを用いたアッシャーを用いてフォトレジストを分解後、550℃で1時間焼成して焼き付けても良い。アッシャーを用いてフォトレジストを分解する場合、ポジ型フォトレジストを用いることができる。最後に基板裏面よりエッチングによりSiを除去し、ダイヤフラム構造と形成した。
本発明の選択燃焼層を有する素子は、図3に示したスクリーン印刷で選択燃焼層を形成した素子と比べガス感度/ガス種に対する選択性なども同じでありながら、約20%消費電力が低減できた。
In this embodiment, the photoresist is removed by thermal decomposition in an oxidizing atmosphere, but it may be baked at 550 ° C. for 1 hour after decomposition of the photoresist using an asher using oxygen plasma. When the photoresist is decomposed using an asher, a positive photoresist can be used. Finally, Si was removed from the back surface of the substrate by etching to form a diaphragm structure.
The element having the selective combustion layer of the present invention has about 20% lower power consumption than the element having the selective combustion layer formed by screen printing shown in FIG. did it.

本発明によれば、フォトレジスト/触媒担持アルミナ粉末/アルミナゾルの混合物レジストを用いて、微細加工技術により選択燃焼層を形成させることにより、位置精度、寸法精度、膜厚精度が向上し、従来のスクリーン印刷による選択燃焼層より低消費電力、特性ばらつきの少ないガスセンサが得られる、そのため、Si基板当りのガスセンサ数は増加し、歩留まりの向上と相伴い、低価格化につながり、薄膜ガスセンサの普及を図ることが出来るようになる。   According to the present invention, by using a photoresist / catalyst-supported alumina powder / alumina sol mixed resist to form a selective combustion layer by a microfabrication technique, positional accuracy, dimensional accuracy, and film thickness accuracy are improved. A gas sensor with lower power consumption and less characteristic variation than the selective combustion layer by screen printing can be obtained.Therefore, the number of gas sensors per Si substrate will increase, leading to lower prices in conjunction with improved yield, and the spread of thin film gas sensors. It becomes possible to plan.

薄膜ガスセンサの断面図である。It is sectional drawing of a thin film gas sensor. 本発明に係る選択燃焼層の製造工程順の断面図である。It is sectional drawing of the order of the manufacturing process of the selective combustion layer which concerns on this invention. スクリーン印刷による選択燃焼層の断面図である。It is sectional drawing of the selective combustion layer by screen printing.

符号の説明Explanation of symbols

1 Si基板
2 支持膜および熱絶縁膜
3 絶縁層
4 ヒータ
5 ガス感知膜電極
6 ガス感知膜
7 選択燃焼層
7a 塗膜
7b パターン後の膜
DESCRIPTION OF SYMBOLS 1 Si substrate 2 Support film and thermal insulating film 3 Insulating layer 4 Heater 5 Gas sensing film electrode 6 Gas sensing film 7 Selective combustion layer 7a Coating film 7b Film after pattern

Claims (5)

薄膜状のダイヤフラム(支持膜)の外周または両端部がSi基板に支持され、ダイヤフラム上に、少なくとも、半導体薄膜であるガス感知膜を形成した後、その最表面に、PdまたはPt等の貴金属触媒を多孔質Al2O3微粉末担体粒子に担持した選択燃焼層を形成する工程を有する薄膜ガスセンサの製造方法において、
前記選択燃焼層を形成する工程は、
貴金属触媒を担持した多孔質Al2O3微粉末とシリカゾルバインダあるいはアルミナゾルバインダ等の無機バインダとフォトレジストが混合されたペーストをガス感知膜およびその周縁に塗布する工程
前記ペーストのガス感知膜を完全に被覆する部分のみが残るようにフォトレジストをパターンニングする工程、
および、酸化雰囲気中で加熱処理を行い、上記のパターニングされたペースト中のレジスト成分を焼き飛ばし、多孔質Al2O3微粉末/無機バインダを焼き付ける工程、
からなることを特徴とする薄膜ガスセンサの製造方法。
The outer periphery or both ends of the thin film diaphragm (support film) is supported by the Si substrate, and after forming a gas sensing film, which is at least a semiconductor thin film, on the diaphragm, a noble metal catalyst such as Pd or Pt is formed on the outermost surface. In the method of manufacturing a thin film gas sensor, including a step of forming a selective combustion layer in which porous Al 2 O 3 fine powder carrier particles are supported,
The step of forming the selective combustion layer includes:
Applying paste mixed with porous Al 2 O 3 fine powder supporting noble metal catalyst and inorganic binder such as silica sol binder or alumina sol binder and photoresist to the gas sensing film and its periphery The gas sensing film of the paste is completely applied Patterning the photoresist so that only the portion to be coated remains on,
And a heat treatment in an oxidizing atmosphere to burn off the resist component in the patterned paste, and to burn porous Al 2 O 3 fine powder / inorganic binder,
A method for producing a thin film gas sensor, comprising:
前記フォトレジストはネガ型であることを特徴とする請求項1に記載の薄膜ガスセンサの製造方法。 2. The method of manufacturing a thin film gas sensor according to claim 1, wherein the photoresist is a negative type. 前記ペーストの塗布はスピンコーターによって行うことを特徴とする請求項1または2に記載の薄膜ガスセンサの製造方法。 3. The method of manufacturing a thin film gas sensor according to claim 1, wherein the application of the paste is performed by a spin coater. 前記加熱処理は500℃以上、700℃以下であることを特徴とする請求項2または3に記載の薄膜ガスセンサの製造方法。 4. The method of manufacturing a thin film gas sensor according to claim 2, wherein the heat treatment is performed at a temperature of 500 ° C. or higher and 700 ° C. or lower. 前記ペーストの、前記ネガ型フォトレジストと、前記貴金属触媒を担持した多孔質Al2O3微粉末および無機バインダとの体積比〔ネガ型レジスト体積/(ネガ型レジスト体積+多孔質Al2O3微粉末及び無機バインダ)〕は50%以上、70%以下であることを特徴とする請求項1ないし4のいずれかに記載の薄膜ガスセンサの製造方法。 Volume ratio of the negative photoresist, the porous Al 2 O 3 fine powder supporting the noble metal catalyst and the inorganic binder in the paste [negative resist volume / (negative resist volume + porous Al 2 O 3 The method for producing a thin film gas sensor according to any one of claims 1 to 4, wherein the fine powder and the inorganic binder)] are 50% or more and 70% or less.
JP2005038614A 2005-02-16 2005-02-16 Method for manufacturing thin film gas sensor Expired - Fee Related JP4457912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005038614A JP4457912B2 (en) 2005-02-16 2005-02-16 Method for manufacturing thin film gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005038614A JP4457912B2 (en) 2005-02-16 2005-02-16 Method for manufacturing thin film gas sensor

Publications (2)

Publication Number Publication Date
JP2006226741A true JP2006226741A (en) 2006-08-31
JP4457912B2 JP4457912B2 (en) 2010-04-28

Family

ID=36988259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005038614A Expired - Fee Related JP4457912B2 (en) 2005-02-16 2005-02-16 Method for manufacturing thin film gas sensor

Country Status (1)

Country Link
JP (1) JP4457912B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169634A (en) * 2010-02-16 2011-09-01 Fuji Electric Co Ltd Thin film gas sensor
JP2015031634A (en) * 2013-08-05 2015-02-16 富士電機株式会社 Gas sensor
JP2015219156A (en) * 2014-05-19 2015-12-07 富士電機株式会社 Thin film gas sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169634A (en) * 2010-02-16 2011-09-01 Fuji Electric Co Ltd Thin film gas sensor
JP2015031634A (en) * 2013-08-05 2015-02-16 富士電機株式会社 Gas sensor
JP2015219156A (en) * 2014-05-19 2015-12-07 富士電機株式会社 Thin film gas sensor

Also Published As

Publication number Publication date
JP4457912B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
JP4457912B2 (en) Method for manufacturing thin film gas sensor
KR100332742B1 (en) Method for manufacturing gas sensor
JP4641832B2 (en) Thin film gas sensor
JP3988999B2 (en) Thin film gas sensor and manufacturing method thereof
JP2010185774A (en) Membrane gas sensor
JP4450773B2 (en) Thin film gas sensor
JP2010060481A (en) Thin film gas sensor and method of manufacturing the same
JPH05114504A (en) Metallo-organic compound paste and manufacture using said metallo-organic compound paste
JPH06503925A (en) Plasma etching of indium oxide and tin oxide using a welded silicon nitride mask
JP4849620B2 (en) Thin film gas sensor and manufacturing method thereof
JP2003262599A (en) Thin film gas sensor
RU2426193C1 (en) Method of depositing platinum layers onto substrate
JP2004061306A (en) Manufacturing method of gas sensor
JP4580577B2 (en) Contact combustion type gas sensor and manufacturing method thereof
JP4855595B2 (en) Method for manufacturing glass substrate for plasma display panel
US8076245B2 (en) MOS low power sensor with sacrificial membrane
JP2005098947A (en) Thin-film gas sensor
JP4764981B2 (en) Method for manufacturing thin film gas sensor
JP4401145B2 (en) Method for manufacturing thin film gas sensor
JP2005017242A (en) Thin-film gas sensor and method of manufacturing the same
JP2005003472A (en) Method of manufacturing thin film gas sensor
JP2006019249A (en) Conductive pattern forming method, electron emission element using the conductive pattern forming method, electron source, and manufacturing method of image display device
JP2002313226A (en) Electrode forming method of thin display device and electrode material
KR100508189B1 (en) Micro gas sensor and method of manufacturing the same
JP2001289808A (en) Thin-film gas sensor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091105

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees