JP2006224517A - Method for producing antistatic film/sheet - Google Patents

Method for producing antistatic film/sheet Download PDF

Info

Publication number
JP2006224517A
JP2006224517A JP2005042259A JP2005042259A JP2006224517A JP 2006224517 A JP2006224517 A JP 2006224517A JP 2005042259 A JP2005042259 A JP 2005042259A JP 2005042259 A JP2005042259 A JP 2005042259A JP 2006224517 A JP2006224517 A JP 2006224517A
Authority
JP
Japan
Prior art keywords
film sheet
sheet
film
oxidizing agent
antistatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005042259A
Other languages
Japanese (ja)
Inventor
Jinyeol Kim
ジンヨル キム
Hidekazu Kobayashi
英一 小林
Tatsuya Hirono
廣野  達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANOIINIKUSU Inc
JSR Corp
Original Assignee
NANOIINIKUSU Inc
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANOIINIKUSU Inc, JSR Corp filed Critical NANOIINIKUSU Inc
Priority to JP2005042259A priority Critical patent/JP2006224517A/en
Priority to TW095102103A priority patent/TW200641920A/en
Priority to KR1020060015382A priority patent/KR20060093052A/en
Publication of JP2006224517A publication Critical patent/JP2006224517A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stretched conductive film/sheet which is transparent and of low reflective. <P>SOLUTION: In a method for producing the antistatic film/sheet, an oxidizing agent is appled on at least one surface of a substrate film/sheet to form an oxidizing agent layer, a monomer is supplied and brought into contact with the oxidizing agent, a conductive polymer layer is formed on the surface of the substrate film/sheet, and the film/sheet is stretched. The antistatic film/sheet is obtained by the method. The substrate film/sheet is made of a norbornene resin, polyethylene terephthalate, a polycarbonate, a poly(ether sulfone), a poly(ether nitrile), or a cellulosic resin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、新規な帯電防止性フィルムシートの製造方法および当該製造方法により得られる新規な帯電防止性延伸フィルムシートに関する。   The present invention relates to a novel method for producing an antistatic film sheet and a novel antistatic stretched film sheet obtained by the production method.

従来、透明延伸フィルムシートは数々の光学フィルムシートとして用いられている。
しかしながら、従来の光学フィルムシートでは帯電防止機能を有さないために、帯電し易く、埃やゴミが発生した静電気により吸着して、表面が汚れるという問題があった。このために、樹脂フィルムシートに帯電防止剤を配合したり、新たに帯電防止層(導電層)を形成して帯電を防止する必要があった。
Conventionally, a transparent stretched film sheet has been used as a number of optical film sheets.
However, since the conventional optical film sheet does not have an antistatic function, it has a problem that it is easily charged and is adsorbed by static electricity generated by dust and dirt, and the surface becomes dirty. For this reason, it has been necessary to prevent charging by adding an antistatic agent to the resin film sheet or forming a new antistatic layer (conductive layer).

例えば帯電防止剤を配合する場合には、透明性が低下したり、着色したり、帯電防止剤のブリードにより表面のべたつきが生じたり、湿気の少ない冬場には帯電防止機能が低下する本質的な問題もあった。   For example, when an antistatic agent is blended, transparency is lowered, coloring, surface stickiness is caused by bleeding of the antistatic agent, and the antistatic function is lowered in winter when moisture is low. There was also a problem.

また、帯電防止層としてスパッタ等の方法でITO等の導電層を設ける方法では、透明性の低下や着色等光学特性が低下する問題が生じ、かつ加工コストが大幅に上昇する問題があった。   In addition, in the method of providing a conductive layer such as ITO as the antistatic layer by a method such as sputtering, there are problems that the optical characteristics such as transparency and coloring are lowered, and the processing cost is significantly increased.

このような無機系の導電層の代わりに、ポリピロールやポリチオフェンなる複素環状の伝導性高分子を使用することも考えられている。これらは、電気化学的重合法や化学酸化法で比較的容易に合成できることが知られており、高い電気伝導性と優れた大気下での安定性を有するが、溶融や溶解が困難なことが多く、フィルムシート状に加工しにくい問題があった。また電気化学的重合法によれば薄いフィルムシート状のものを得ることは可能であるが、得られたフィルムシートは、機械強度が低く、フィルムシートロールでの連続生産に問題があって実質的に応用には困難が伴っていた。更に、従来知られているこれらの製法により得られる有機導電膜フィルムシートの導電性高分子鎖は機械強度が弱く、フィルムシートを延伸すると主鎖切断に伴い、導電性が著しく損なわれるという問題があった。   It is also considered to use a heterocyclic conductive polymer such as polypyrrole or polythiophene instead of such an inorganic conductive layer. These are known to be relatively easy to synthesize by electrochemical polymerization and chemical oxidation methods, and have high electrical conductivity and excellent stability in the atmosphere, but are difficult to melt and dissolve. There were many problems that were difficult to process into a film sheet. Although it is possible to obtain a thin film sheet by the electrochemical polymerization method, the obtained film sheet has a low mechanical strength and has a problem in continuous production with a film sheet roll. The application was difficult. Further, the conductive polymer chain of the organic conductive film sheet obtained by these conventionally known methods has a low mechanical strength, and there is a problem that when the film sheet is stretched, the conductivity is significantly impaired along with the main chain breakage. there were.

上述した問題点を補完するための一般的な方法としては、粒子状の伝導性高分子を他の一般的な高分子と混合して複合材料とすることで、加工性と接着性等の物性を向上させる方法が提案されている。   As a general method for complementing the above-mentioned problems, a physical property such as workability and adhesiveness can be obtained by mixing a particulate conductive polymer with another general polymer to form a composite material. A method for improving the above has been proposed.

この複合材料を他の基材に塗布することで、帯電防止機能を付与することができるが、基材に対し十分な接着性を与えるには、通常、混合される一般的な高分子の量が50重量%以上、場合によっては80重量%以上と多くする必要があった。この複合材料の主なる物性値は、混合された一般的な高分子の物性値に支配されることになり、常に充分な帯電防止機能が発現されるとは限らなかった。   By applying this composite material to another substrate, an antistatic function can be imparted, but in order to give sufficient adhesion to the substrate, the amount of a general polymer to be mixed is usually Of 50% by weight or more, and in some cases, 80% by weight or more. The main physical property values of this composite material are governed by the physical property values of the mixed general polymer, and a sufficient antistatic function is not always exhibited.

また、上記複合材料を、高分子樹脂フィルムシートに塗布し、帯電防止機能を付与できた場合においても、塗布層の厚みが、数ミクロン程度と厚くする必要がある場合が多く、このため混合された一般高分子に起因して、透明性が悪化したり、着色が起こったり、耐熱性や耐湿性に問題が生じる場合が多い。しかも、耐擦傷性が低いので、強い摩耗に対してはげ落ちる場合が多いという問題を有していた。また複合材料系では、導電性を有する
粒子同士が直接接触していないと、導電パスが形成されないため、粒子間距離を伸ばす延伸加工において、著しく伝導度が劣化する傾向にあり、延伸倍率1.2倍から10倍程度の広範囲の条件下で加工した際に、所望の伝導度を維持することが困難であった。
In addition, even when the composite material is applied to a polymer resin film sheet and an antistatic function can be imparted, the thickness of the coating layer often needs to be increased to about several microns, and therefore, it is mixed. Due to the general polymer, transparency often deteriorates, coloring occurs, and problems with heat resistance and moisture resistance often occur. In addition, since the scratch resistance is low, there is a problem that peeling often occurs against strong wear. Further, in the composite material system, if the conductive particles are not in direct contact with each other, a conductive path is not formed. Therefore, in the stretching process that increases the distance between the particles, the conductivity tends to deteriorate significantly. It was difficult to maintain the desired conductivity when processed under a wide range of conditions of 2 to 10 times.

本発明の目的は、上記課題を解決した帯電防止機能を持つ延伸フィルムシートの製造方法を提供することにある。また本発明の更なる目的は、前記製造方法により、とくにフラットパネルディスプレイやタッチパネル、実装材料、包装材料等の光学材料、電子材料用途に好適な延伸フィルムシートを提供することにある。   The objective of this invention is providing the manufacturing method of the stretched film sheet which has the antistatic function which solved the said subject. A further object of the present invention is to provide a stretched film sheet particularly suitable for use in optical materials and electronic materials such as flat panel displays, touch panels, mounting materials, packaging materials, etc., by the production method.

本発明は、基体フィルムシートの少なくとも一方の面に、気相重合法により少なくとも1層の導電性ポリマー層を形成させた後、当該フィルムシートを延伸することを特徴とするフィルムシート及びその製造方法を提供するものである。   The present invention provides a film sheet characterized by forming at least one conductive polymer layer on at least one surface of a base film sheet by a gas phase polymerization method and then stretching the film sheet, and a method for producing the film sheet Is to provide.

すなわち、本発明に係る帯電防止製フィルムシートの製造方法は以下のとおりである。(1)基体フィルムシートの少なくとも一方の面に、酸化剤を塗布して酸化剤層を形成し、
単量体を供給して前記酸化剤と接触させて、基材フィルムシートの表面に導電性ポリマー層を形成後、当該フィルムシートを延伸する帯電防止性フィルムシートの製造方法。
(2)基体フィルムシートがノルボルネン系樹脂、ポリエチレンテレフタレート、ポリカー
ボネート、ポリエーテルスルホン、ポリエーテルニトリルまたはセルロース系樹脂からなる。
(3)導電性ポリマーがポリピロール、ポリチオフェン、ポリフラン、ポリセレノフェンま
たはポリ(3,4−エチレンジオキシチオフェン)およびこれらの誘導体である。
(4)廷伸倍率が1.01倍〜30倍の範囲にある。
That is, the manufacturing method of the antistatic film sheet according to the present invention is as follows. (1) On at least one surface of the base film sheet, an oxidizing agent is applied to form an oxidizing agent layer,
A method for producing an antistatic film sheet, in which a monomer is supplied and brought into contact with the oxidizing agent to form a conductive polymer layer on the surface of a base film sheet, and then the film sheet is stretched.
(2) The base film sheet is made of norbornene resin, polyethylene terephthalate, polycarbonate, polyether sulfone, polyether nitrile, or cellulose resin.
(3) The conductive polymer is polypyrrole, polythiophene, polyfuran, polyselenophene or poly (3,4-ethylenedioxythiophene) and derivatives thereof.
(4) The court stretch ratio is in the range of 1.01 times to 30 times.

本発明によれば、透明でかつ低反射であり、かつ、導電性が付与された延伸フィルムシートが得られる。かかるフィルムシートは、ディスプレーの前面に配置すると帯電防止および低反射機能を併せ持つので、有用である。また、延伸しても導電性が損なわれないため、光学材料や電子材料、実装材料、包装材料、など様々な分野に使用されている延伸フィルムシートに帯電防止能を賦与することが可能である。このような帯電防止能は、例えば、液晶ディスプレイに用いられる位相差フィルム用は、本発明によれば、帯電防止付きの位相差フィルムとすることができ、液晶パネルの大型化に伴うパネル製造工程中の静電気対策として必要な除電設備の簡略化を可能にするなど多大なメリットを提供する。また電子材料用や包装材料用の延伸フィルムにも、本発明によれば簡便に低コストで帯電防止付き延伸フィルムを適用することができ、電子デバイスの保護やホコリ付着防止に有用な効果をもたらす。更には、半導体チップ用に成形加工してつくられるキャリアトレイについても、本発明により得られる帯電防止付きシートをプレス加工するだけで、所望の帯電防止能を維持したまま、簡便に製造することが可能となる。また、高い延伸倍率でも導電性が損なわれないため、従来技術と比較して、薄膜フィルムシートの成形が容易となり、軽薄化が進む各種光学デバイス、電子材料用途に新たな付加価値をもたらすものである。   According to the present invention, it is possible to obtain a stretched film sheet that is transparent and has low reflection and is imparted with conductivity. Such a film sheet is useful because it has both an antistatic function and a low reflection function when placed in front of the display. In addition, since the conductivity is not impaired even when stretched, it is possible to impart antistatic ability to stretched film sheets used in various fields such as optical materials, electronic materials, mounting materials, and packaging materials. . Such antistatic ability is, for example, for a retardation film used in a liquid crystal display, according to the present invention, can be a retardation film with antistatic, and a panel manufacturing process associated with an increase in the size of a liquid crystal panel It provides great benefits such as simplification of static elimination equipment required as a countermeasure against static electricity. In addition, according to the present invention, a stretched film with antistatic properties can be applied to a stretched film for electronic materials and packaging materials easily and at low cost, which brings about a useful effect for protecting electronic devices and preventing dust adhesion. . Furthermore, carrier trays formed by molding for semiconductor chips can be easily manufactured while maintaining the desired antistatic ability by simply pressing the antistatic sheet obtained by the present invention. It becomes possible. In addition, since the conductivity is not impaired even at a high draw ratio, compared to the prior art, it becomes easier to form a thin film sheet and brings new added value to various optical devices and electronic materials that are becoming lighter and thinner. is there.

以下、本発明に係る帯電防止用フィルムシートの製造方法について説明する。
本発明に使用する基体フィルムシートとしては、ノルボルネン系樹脂、例えば商品名ARTON(JSR株式会社製)、商品名ZEONEX(日本ゼオン株式会社製)、商品名ZEONOR(日本ゼオン株式会社製)など、ポリエーテルテレフタレート、ポリカーボネート、ポリエーテルスルホン、ポリエーテルニトリル、セルロース系フィルムシート、例えばトリアセチルセルロース(TAC)、セルロースアセテートプロピオネート(CAP)などを挙げることができる。
Hereinafter, the manufacturing method of the film sheet for antistatic which concerns on this invention is demonstrated.
Examples of the base film sheet used in the present invention include norbornene-based resins, such as trade name ARTON (manufactured by JSR Corporation), trade name ZEONEX (manufactured by Nippon Zeon Corporation), trade name ZEONOR (manufactured by Nippon Zeon Corporation), and the like. Examples include ether terephthalate, polycarbonate, polyether sulfone, polyether nitrile, and cellulose film sheets such as triacetyl cellulose (TAC) and cellulose acetate propionate (CAP).

これらの基体フィルムシートは、公知の方法、例えば射出成形法、溶融押し出し法、溶液流延法や型内で重合させるキャスティング法等で製造されたフィルムシートであり、特に製造方法は限定されるものではない。また、ロール状、枚葉等形状も限定されるものではなく、厚みは、通常0.1μmから10,000μm、取り扱いの容易さから、好まし
くは10μmから5000μmのものが使用される。
These base film sheets are film sheets manufactured by a known method such as an injection molding method, a melt extrusion method, a solution casting method or a casting method for polymerization in a mold, and the manufacturing method is particularly limited. is not. Also, the shape of rolls, single wafers, etc. is not limited, and the thickness is usually from 0.1 μm to 10,000 μm, and from the viewpoint of ease of handling, a thickness of 10 μm to 5000 μm is preferably used.

また、本発明の導電性ポリマー層が形成される面もしくは反対面に、或いは両面のフィルムシート表面にドットやプリズムなどの特殊な形状を有していても良く、公知の方法で種々の目的に応じて反射防止層、アンチグレア層、防汚層、ハードコート層等公知の機能層が、1種もしくは数種が組み合わせてあらかじめ処理されているものであっても構わない。これらの機能層は、特性の均一性の面から、後述する延伸加工後に、形成することが好ましい。   Further, it may have special shapes such as dots and prisms on the surface on which the conductive polymer layer of the present invention is formed or on the opposite surface, or on both surfaces of the film sheet. Accordingly, known functional layers such as an antireflection layer, an antiglare layer, an antifouling layer, and a hard coat layer may be processed in advance by combining one kind or several kinds. These functional layers are preferably formed after the stretching process described later from the viewpoint of uniformity of characteristics.

かかる基材フィルムシート表面に、本発明では、導電性ポリマー層を形成する。
酸化剤層の形成
本発明では、まず、基材フィルムシート表面に、0.5〜10重量%の酸化剤を含む溶液を塗布して、数ナノメートルから数ミクロン単位の酸化剤層を形成する。酸化剤は、フィルムシートの片面または両面に塗布される。
In the present invention, a conductive polymer layer is formed on the surface of the base film sheet.
Formation of Oxidant Layer In the present invention, first, a solution containing 0.5 to 10% by weight of an oxidant is applied to the surface of a base film sheet to form an oxidant layer of several nanometers to several microns. . The oxidizing agent is applied to one side or both sides of the film sheet.

塗布に当たり、基体フィルムシートは、生産性の観点で、ロール状で連続的に供給するのが好ましい。また、接着性をあげるために、必要に応じてフィルムシートはコロナ処理やプラズマ処理等を行い、表面を荒らしておいてもよいし、あるいはプライマー処理を施していても良い。   In application, the base film sheet is preferably supplied continuously in a roll form from the viewpoint of productivity. Moreover, in order to improve adhesiveness, the film sheet may be subjected to corona treatment or plasma treatment as necessary to roughen the surface or may be subjected to primer treatment.

酸化剤は通常溶剤に溶解または分散させて使用される。溶剤は使用基材および酸化剤の種類に応じて適宜選択され、通常2種以上の有機溶剤を混合して用いられる。
酸化剤としては、CuCl3、トルエンスルホン酸鉄(III)、過塩素酸鉄(III)、FeCl3及びCu(ClO4)2・6H2O、スルフィン酸鉄、硝酸鉄等の遷移金属化合物や強酸性の
ルイス酸からなる群から少なくとも1種が選択される。
The oxidizing agent is usually used after being dissolved or dispersed in a solvent. The solvent is appropriately selected according to the type of substrate used and the oxidizing agent, and usually two or more organic solvents are mixed and used.
Examples of oxidizing agents include transition metal compounds such as CuCl 3 , iron (III) toluenesulfonate, iron (III) perchlorate, FeCl 3 and Cu (ClO 4 ) 2 · 6H 2 O, iron sulfinate, and iron nitrate. At least one selected from the group consisting of strongly acidic Lewis acids is selected.

有機溶媒としては、メチルアルコール、エチルアルコール、イソプロピルアルコール、2−ブチルアルコール等のアルコール類、エチルセルソルブ等のセルソルブ類、メチルアセテートやエチルアセテート等のアセテート類、アセトンやメチルエチルケトン等のケトン類、シクロヘキサンやトルエン等のハイドロカーボン類等から適宜選ばれた少なくとも1種が挙げられる。溶剤は、用いた酸化剤の種類によって、溶解性や分散性を考慮して選ぶことができる。また、上記溶剤以外に問題が生じない程度の別の溶剤を混入させることも可能である。   Examples of the organic solvent include alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol and 2-butyl alcohol, cellsolves such as ethyl cellosolve, acetates such as methyl acetate and ethyl acetate, ketones such as acetone and methyl ethyl ketone, cyclohexane And at least one selected appropriately from hydrocarbons such as toluene. The solvent can be selected in consideration of solubility and dispersibility depending on the type of oxidizing agent used. Moreover, it is also possible to mix another solvent of the grade which does not produce a problem other than the said solvent.

前記酸化剤の濃度は、特に限定されるものではないが、塗布性や溶解性もしくは分散性を考慮して、0.3重量%〜10重量%、より好適には0.5〜10重量%の範囲が望ましい。   The concentration of the oxidizing agent is not particularly limited, but is 0.3 to 10% by weight, more preferably 0.5 to 10% by weight in consideration of applicability, solubility or dispersibility. A range of is desirable.

酸化剤を溶解もしくは分散させた溶液を、公知のディップ法、コーティング法、印刷法等で基体フィルムシート上に塗布することができる。
塗布された酸化剤層の厚みは、目的に応じ適宜選択されるが、通常数ナノメートルから数ミクロン単位、好ましくは数ナノメートルから数100ナノメートルの厚みで薄く塗布するのが好ましい。
A solution in which an oxidizing agent is dissolved or dispersed can be applied onto a substrate film sheet by a known dipping method, coating method, printing method or the like.
The thickness of the applied oxidant layer is appropriately selected according to the purpose, but it is usually preferable to apply thinly with a thickness of several nanometers to several microns, preferably several nanometers to several hundred nanometers.

塗布されたフィルムシートは、フィルムシートの種類や用いた溶剤の種類によって適宜
選定された温度で乾燥させる。通常、乾燥は、150℃以下、好ましくは30℃から120℃にて、1秒から1時間の条件で行う。フィルムシートの変質や乾燥速度、乾燥状態の観点で、更に好ましくは50℃から120℃の温度で10秒から10分間の乾燥を行う方法があげられる。
The applied film sheet is dried at a temperature appropriately selected according to the type of film sheet and the type of solvent used. Usually, the drying is performed at 150 ° C. or lower, preferably 30 ° C. to 120 ° C. for 1 second to 1 hour. From the viewpoint of film sheet alteration, drying speed, and dry state, a method of drying at a temperature of 50 ° C. to 120 ° C. for 10 seconds to 10 minutes is more preferable.

前記酸化剤の他に、ホスト高分子が添加されていてもよい。ホスト高分子は、酸化剤層に機械的強度をもたせ、さらに、後述するピロールやチオフェン等の単量体に対して高い親和力をもたせるためのものである。   In addition to the oxidizing agent, a host polymer may be added. The host polymer is for imparting mechanical strength to the oxidant layer, and for imparting high affinity to monomers such as pyrrole and thiophene, which will be described later.

ホスト高分子としては、ポリアクリル酸ブチルやポリメタクリル酸メチル等のポリ(メタ)アクリル酸エステル類及び数種の共重合体、ポリカーボネート類、ポリエステル類、ポリウレタン類ポリ塩化ビニル類、ポリビニルアルコール類、メチルセルロース類、キトサン類から選択される1種もしくは数種の混合物から選択され、これらの紫外線硬化型または熱硬化型のアクリル樹脂を用いることもできる。このホスト高分子の濃度は、特に限定されるものではないが、全体重量の0.1%から10重量%の間で適宜選択できる。   Host polymers include poly (meth) acrylates such as polybutyl acrylate and polymethyl methacrylate and several copolymers, polycarbonates, polyesters, polyurethane polyvinyl chlorides, polyvinyl alcohols, It is selected from one or several kinds of mixtures selected from methylcelluloses and chitosans, and these ultraviolet curable or thermosetting acrylic resins can also be used. The concentration of the host polymer is not particularly limited, but can be appropriately selected between 0.1% and 10% by weight of the total weight.

導電性ポリマー層の形成
次に、酸化剤で塗布された基材に、導電性ポリマーを形成しうる単量体を接触させて、酸化剤層表面で重合反応を行ない、導電性ポリマー層を形成する。
Formation of conductive polymer layer Next, a substrate that is coated with an oxidizing agent is brought into contact with a monomer capable of forming a conductive polymer, and a polymerization reaction is performed on the surface of the oxidizing agent layer to form a conductive polymer layer. To do.

かかる単量体としては、ピロール、チオフェン、フラン、セレノフェン、3,4−エチレンジオキシチオフェン及びこれらの誘導体から構成される群から選択される1種以上が好ましい。したがって導電性ポリマーとしては、ポリピロール、ポリチオフェン、ポリフラン、ポリセレノフェン、ポリ(3,4-エチレンジオキシチオフェン)およびこれらの誘導体が好ましい。これらの単量体は、気化されて接触させる。単量体を気化させる方法としては、密閉されたチャンバー内で単量体を0〜100℃で蒸留させる方法と、CVD(Chemical Vapor Deposition)による方法などが挙げられる。   Such a monomer is preferably at least one selected from the group consisting of pyrrole, thiophene, furan, selenophene, 3,4-ethylenedioxythiophene and derivatives thereof. Accordingly, polypyrrole, polythiophene, polyfuran, polyselenophene, poly (3,4-ethylenedioxythiophene) and derivatives thereof are preferable as the conductive polymer. These monomers are vaporized and brought into contact. Examples of the method for vaporizing the monomer include a method in which the monomer is distilled at 0 to 100 ° C. in a sealed chamber and a method by CVD (Chemical Vapor Deposition).

この時、温度条件と反応時間を適宜調整することが望ましく、重合反応は、2秒〜40分程度行なわれ、一般的には、単量体の種類に応じて変化するが、膜厚および表面抵抗値などが目標値に達するまで行う。   At this time, it is desirable to appropriately adjust the temperature conditions and reaction time, and the polymerization reaction is carried out for about 2 seconds to 40 minutes, and generally varies depending on the type of monomer. Repeat until the resistance value reaches the target value.

重合完了後、未反応の単量体及び酸化剤を除去するために溶剤による洗浄を行う。この際の使用溶剤としては、通常メタノールなどのアルコール類が挙げられ、必要に応じて水で洗浄することもできる。上記のような一連の工程は、段階的または連続的に行われることができ、単量体の重合から導電膜の形成までは、一連の作業工程で処理することができる。得られた導電性ポリマーフィルムシートは、基材に対する密着性は良好であり、アルコール溶剤に対する耐性も十分である。   After the polymerization is completed, washing with a solvent is performed to remove unreacted monomers and oxidizing agents. As the solvent used in this case, alcohols such as methanol are usually mentioned, and it can be washed with water as necessary. The series of steps as described above can be performed stepwise or continuously, and from the polymerization of the monomer to the formation of the conductive film, it can be processed in a series of working steps. The obtained conductive polymer film sheet has good adhesion to the substrate and sufficient resistance to alcohol solvents.

フィルムシート基体上に形成される導電性ポリマーの膜厚は、通常0.01〜10μmとすることが好ましいが、更に透明性を必要とする用途に適用する場合には、通常、0.02〜0.5μmとすることが好ましい。 導電性ポリマーの表面抵抗は、101Ω/□
〜108Ω/□であり、この表面抵抗値は、導電性ポリマーの種類、酸化剤の濃度、重合
時間及び温度によって制御される。
The film thickness of the conductive polymer formed on the film sheet substrate is usually preferably 0.01 to 10 μm, but usually 0.02 to 0.02 when applied to applications requiring transparency. The thickness is preferably 0.5 μm. The surface resistance of the conductive polymer is 10 1 Ω / □
10 8 Ω / □, and this surface resistance value is controlled by the type of conductive polymer, the concentration of the oxidizing agent, the polymerization time, and the temperature.

フィルムシートの延伸
基体フィルムシートに導電性ポリマー層を形成したフィルムシートは、次いで、公知の一軸延伸法あるいは二軸延伸法により延伸される。すなわち、テンター法による横一軸延伸法、ロール間圧縮延伸法、周遠の異なるロールを利用する縦一軸延伸法等あるいは横一軸と縦一軸を組合せた二軸延伸法、インフレーション法による延伸法等を用いることがで
きる。
Film Sheet Stretching A film sheet in which a conductive polymer layer is formed on a base film sheet is then stretched by a known uniaxial stretching method or biaxial stretching method. That is, a horizontal uniaxial stretching method by a tenter method, a compression stretching method between rolls, a longitudinal uniaxial stretching method using rolls with different circumferences, a biaxial stretching method combining horizontal uniaxial and longitudinal uniaxial, a stretching method by an inflation method, etc. Can be used.

一軸延伸法の場合、延伸速度は通常は1〜5,000%/分であり、好ましくは50〜1,000%/分であり、さらに好ましくは100〜1,000%/分である。
二軸延伸法の場合、同時2方向に延伸を行う場合や一軸延伸後に最初の延伸方向と異なる方向に延伸処理する場合がある。この時、屈折率楕円体の形状を制御するための2つの延伸軸の交わり角度は、所望する特性により決定されるため特に限定はされないが、通常は120〜60度の範囲である。また、延伸速度は各延伸方向で同じであってもよく、異なっていてもよく、通常は1〜5,000%/分であり、好ましくは50〜1,000%/分であり、さらに好ましくは100〜1,000%/分であり、特に好ましくは100〜500%/分である。
In the case of the uniaxial stretching method, the stretching speed is usually 1 to 5,000% / min, preferably 50 to 1,000% / min, and more preferably 100 to 1,000% / min.
In the case of the biaxial stretching method, stretching may be performed in two directions at the same time, or the stretching may be performed in a direction different from the first stretching direction after uniaxial stretching. At this time, the intersecting angle of the two stretching axes for controlling the shape of the refractive index ellipsoid is not particularly limited because it is determined by desired characteristics, but is usually in the range of 120 to 60 degrees. The stretching speed may be the same or different in each stretching direction, and is usually 1 to 5,000% / min, preferably 50 to 1,000% / min, more preferably Is from 100 to 1,000% / min, particularly preferably from 100 to 500% / min.

延伸加工温度は、特に限定されるものではないが、用いる基体フィルムシートを構成するポリマーのガラス転移温度(以下、単に「Tg」という)を基準として、通常は前記Tg±30℃、好ましくはTg±15℃、さらに好ましくはTg−5〜Tg+15℃の範囲である。   The stretching temperature is not particularly limited, but is usually Tg ± 30 ° C., preferably Tg based on the glass transition temperature of the polymer constituting the base film sheet used (hereinafter simply referred to as “Tg”). ± 15 ° C., more preferably in the range of Tg−5 to Tg + 15 ° C.

延伸倍率は、所望する特性により決定されるため特に限定はされないが、通常は1.01〜30倍、好ましくは1.03〜20倍、さらに好ましくは1.2〜10倍である。本発明による導電性フィルムシートも、延伸倍率によっては電気伝導度が若干低下することがあるが、前記既知の他の製造方法で製造したフィルムを延伸した際の電気伝導度の低下と極めて著しく小さい。とくに1.2倍から10倍の延伸倍率での加工に際しては、本発明により製造した帯電防止付きフィルムの伝導度低下は、通常、既知の他の方法で製造した帯電防止付きフィルムの伝導度低下に対して、1/2〜1/1000程度に抑えられる。延伸したフィルムシートは、そのまま冷却してもよいが、Tg−20℃〜Tgの温度雰囲気下に少なくとも10秒以上、好ましくは30秒〜60分間、さらに好ましくは1分〜60分間保持してヒートセットすることが好ましい。
[実施例]
以下、本発明の具体的な実施例について説明するが、本発明は、これらの実施例に限定されるものではない。なお、以下において、「部」は、特に断りのない限り「重量部」を意味する。
また、以下の実施例において、全光線透過率、ヘイズ値、表面抵抗率、透過光の位相差は、下記の方法により測定した。
The draw ratio is not particularly limited because it is determined by desired properties, but is usually 1.01 to 30 times, preferably 1.03 to 20 times, and more preferably 1.2 to 10 times. In the conductive film sheet according to the present invention, the electrical conductivity may slightly decrease depending on the stretching ratio, but it is extremely small with a decrease in electrical conductivity when the film manufactured by the other known manufacturing method is stretched. . In particular, when processing at a draw ratio of 1.2 to 10 times, the conductivity decrease of the antistatic film produced according to the present invention is usually reduced by the conductivity of the antistatic film produced by another known method. On the other hand, it is suppressed to about 1/2 to 1/1000. The stretched film sheet may be cooled as it is, but is heated for at least 10 seconds or more, preferably 30 seconds to 60 minutes, more preferably 1 minute to 60 minutes in a temperature atmosphere of Tg-20 ° C. to Tg. It is preferable to set.
[Example]
Specific examples of the present invention will be described below, but the present invention is not limited to these examples. In the following description, “part” means “part by weight” unless otherwise specified.
In the following Examples, the total light transmittance, haze value, surface resistivity, and transmitted light phase difference were measured by the following methods.

[全光線透過率]
スガ試験機(株)製のヘイズメーター「HGM−2DP型」を用い、全光線透過率を測定した。
[Total light transmittance]
Total light transmittance was measured using a haze meter “HGM-2DP type” manufactured by Suga Test Instruments Co., Ltd.

[ヘイズ値]
スガ試験機(株)製のヘイズメーター「HGM−2DP型」を用い、全光線透過率を測定した。
[Haze value]
Total light transmittance was measured using a haze meter “HGM-2DP type” manufactured by Suga Test Instruments Co., Ltd.

[表面抵抗率]
三菱化学(株)製の低抵抗率計「ロレスタ−GP」を用い、表面抵抗率を測定した。
[透過光の位相差]
王子計測機器(株)製の「KOBRA−21ADH」を用い、波長590nmでの垂直透過光の位相差を測定した。
[Surface resistivity]
The surface resistivity was measured using a low resistivity meter “Loresta-GP” manufactured by Mitsubishi Chemical Corporation.
[Phase difference of transmitted light]
The phase difference of vertically transmitted light at a wavelength of 590 nm was measured using “KOBRA-21ADH” manufactured by Oji Scientific Instruments.

実施例1
基材として0.188mm厚のポリエチレンテレフタレートフィルムシート(PETフ
ィルムシート)を用い、この上に、メチルアルコール、2−ブチルアルコール及びエチルセロソルブを重量比で7:2:1の割合で混合された溶媒中に酸化剤としての3塩化鉄を重量比2%で溶解した溶液を、スピンコーティングし、65℃で3分間乾燥させた。
Example 1
A 0.188 mm thick polyethylene terephthalate film sheet (PET film sheet) was used as a base material, and a solvent in which methyl alcohol, 2-butyl alcohol and ethyl cellosolve were mixed at a weight ratio of 7: 2: 1. A solution in which iron trichloride as an oxidizing agent was dissolved at a weight ratio of 2% was spin-coated and dried at 65 ° C. for 3 minutes.

飽和状態のエチレンジオキシチオフェンが生成されるように設計されたCVDチャンバー内で、前記酸化剤が塗布された基材上に、40℃で1分間、エチレンジオキシチオフェンを蒸発させ付着、反応させた。その後、未反応物や酸化剤の残査をメタノールで十分に洗浄除去した。   In a CVD chamber designed to produce saturated ethylenedioxythiophene, the ethylenedioxythiophene is evaporated, deposited and reacted on a substrate coated with the oxidizing agent at 40 ° C. for 1 minute. It was. Thereafter, unreacted substances and oxidant residues were sufficiently washed away with methanol.

この結果、わずか青みのある透明なポリエチレンジオキシチオフェンが付着したPETフィルムシートを得た。導電性ポリマー層の厚みは52nm、表面抵抗値は8×104Ω
/□、全光線透過率は91%であった。この塗布層をイソプロピルアルコールで洗浄し、乾燥した。
As a result, a PET film sheet having a slightly bluish transparent polyethylene dioxythiophene adhered thereto was obtained. The thickness of the conductive polymer layer is 52 nm, and the surface resistance value is 8 × 10 4 Ω.
/ □, total light transmittance was 91%. This coating layer was washed with isopropyl alcohol and dried.

このフィルムシートをテンター内で、75℃に加熱し、延伸速度300%/分で1.2倍に延伸した後、75℃の雰囲気下で約1分間この状態を保持しながら冷却し、室温へとさらに冷却して取り出しフィルムシートを得た。   This film sheet was heated to 75 ° C. in a tenter and stretched 1.2 times at a stretching rate of 300% / min, and then cooled in an atmosphere at 75 ° C. while maintaining this state for about 1 minute. And further cooled to obtain a film sheet.

得られたフィルムシートの、全光線透過率は91%、ヘイズ値は1.8、表面抵抗値は9.5×104Ω/□であった。
実施例2
基材として0.1mm厚のJSR製ノルボルネン系の透明フィルムシート(商品名アートン:Tg130℃)を用い、表面をコロナ処理した。この透明フィルムシート上に、メチルアルコール、2−ブチルアルコール及びエチルセルソルブが重量比で6:2:2の割合で混合された溶媒に重量比で3%のCu(ClO4)2・6H2Oを溶解させた溶液を、実施例1と同様にスピンコーティングし、乾燥させたのち、エチレンジオキシチオフェンを蒸着・重合させて、導電性ポリマー層を形成した。
The obtained film sheet had a total light transmittance of 91%, a haze value of 1.8, and a surface resistance value of 9.5 × 10 4 Ω / □.
Example 2
A 0.1 mm thick JSR norbornene-based transparent film sheet (trade name Arton: Tg 130 ° C.) having a thickness of 0.1 mm was used, and the surface was corona-treated. On this transparent film sheet, 3% by weight of Cu (ClO 4 ) 2 .6H 2 is mixed with a solvent in which methyl alcohol, 2-butyl alcohol and ethyl cellosolve are mixed at a weight ratio of 6: 2: 2. The solution in which O was dissolved was spin-coated in the same manner as in Example 1, dried, and then ethylenedioxythiophene was deposited and polymerized to form a conductive polymer layer.

導電性ポリマー層の厚みは48nm、表面抵抗値は5×105Ω/□、全光線透過率は
93%、位相差は4nmであった。
このフィルムシートをテンター内で、140℃に加熱し、延伸速度300%/分で1.5倍に延伸した後、110℃の雰囲気下で約1分間この状態を保持しながら冷却し、室温へとさらに冷却して取り出しフィルムシートを得た。
The thickness of the conductive polymer layer was 48 nm, the surface resistance value was 5 × 10 5 Ω / □, the total light transmittance was 93%, and the phase difference was 4 nm.
This film sheet was heated to 140 ° C. in a tenter, stretched 1.5 times at a stretching rate of 300% / min, then cooled in an atmosphere at 110 ° C. for about 1 minute, and cooled to room temperature. And further cooled to obtain a film sheet.

得られたフィルムシートの、全光線透過率は93%、ヘイズ値は0.6、表面抵抗値は1.5×105Ω/□、位相差は140nmであった。
実施例3
基材として黒色に着色された3mm厚のポリカーボネートシートを用い、表面をコロナ処理した。このフィルムシート上に、メチルアルコール、2−ブチルアルコール及びエチルセルソルブが重量比で8:1:1の割合で混合された溶媒に重量比で1%の硝酸鉄を溶解させた溶液を、実施例1と同様にスピンコーティングし、乾燥させたのち、ピロールを蒸着・重合させて、導電性ポリマー層を形成した。
The obtained film sheet had a total light transmittance of 93%, a haze value of 0.6, a surface resistance value of 1.5 × 10 5 Ω / □, and a phase difference of 140 nm.
Example 3
A 3 mm thick polycarbonate sheet colored black was used as a substrate, and the surface was corona treated. On this film sheet, a solution was prepared by dissolving 1% iron nitrate by weight in a solvent in which methyl alcohol, 2-butyl alcohol and ethyl cellosolve were mixed at a weight ratio of 8: 1: 1. After spin coating and drying in the same manner as in Example 1, pyrrole was deposited and polymerized to form a conductive polymer layer.

導電性ポリマー層の厚みは0.12um、表面抵抗値は1.5×102Ω/□であった。
このフィルムシートにプレス成形で、縦、横5cm、深さ3cmの凹加工を行い、局所的にシートが延伸された導電性キャリアトレイを得た。最も応力が集中する褶曲部位においても導電性に顕著な劣化は認められず、半導体ICチップを絶縁破壊することなく運搬するキャリアトレイとして、そのまま好適に使用することができた。
The thickness of the conductive polymer layer was 0.12 μm, and the surface resistance value was 1.5 × 10 2 Ω / □.
This film sheet was subjected to press forming to form a recess having a length of 5 cm, a width of 3 cm, and a depth of 3 cm to obtain a conductive carrier tray in which the sheet was locally stretched. Even in the bent portion where stress is most concentrated, no significant deterioration in conductivity was observed, and it could be used as it is as a carrier tray for transporting a semiconductor IC chip without dielectric breakdown.

比較例1
導電ポリマー層を形成しなかったこと以外は実施例2と同様にして、延伸したフィルムシートを得た。
Comparative Example 1
A stretched film sheet was obtained in the same manner as in Example 2 except that the conductive polymer layer was not formed.

得られたフィルムシートの、全光線透過率は93%、ヘイズ値は0.6、表面抵抗値は1.5×1014Ω/□、位相差は140nmであった。
比較例2
エチレンジオキシチオフェンモノマーを購入し、ラジカル重合あるいはカチオン重合等の定法に従いホモポリマーを合成し、得られたホモポリマーを溶解塗布することで、実施例1と類似の帯電防止付きフィルムを得ようとしたが、高分子量化に伴いポリマーが難溶化し、基板フィルムへのコーティングに適切な溶媒種を見出すことができなかった。次いで、重合度を低く抑えMw1,500程度の可溶性ポリエチレンジオキシチオフェンオリ
ゴマーを得て、ケトン系溶剤、アルコール系溶剤など各種溶剤系で、実施例2に用いた0.1mm厚の基体フィルムシート上へのコーティングを試みたが、オリゴマーの分子量が低すぎて、基体フィルム上で綺麗に製膜することができず、いずれも激しい相分離を生じたため、全光線透過率、ヘイズ等の光学評価を実施し得なかった。
The obtained film sheet had a total light transmittance of 93%, a haze value of 0.6, a surface resistance value of 1.5 × 10 14 Ω / □, and a phase difference of 140 nm.
Comparative Example 2
Purchasing ethylenedioxythiophene monomer, synthesizing a homopolymer according to a conventional method such as radical polymerization or cationic polymerization, and trying to obtain an antistatic film similar to Example 1 by dissolving and applying the obtained homopolymer However, the polymer became insoluble with increasing molecular weight, and it was not possible to find a solvent species suitable for coating on the substrate film. Next, a soluble polyethylenedioxythiophene oligomer having a Mw of about 1,500 was obtained while keeping the degree of polymerization low, on a 0.1 mm thick substrate film sheet used in Example 2 in various solvent systems such as ketone solvents and alcohol solvents. However, the molecular weight of the oligomer was too low to form a beautiful film on the substrate film, and both produced severe phase separation, so optical evaluation of total light transmittance, haze, etc. Could not be implemented.

Claims (5)

基体フィルムシートの少なくとも一方の面に、酸化剤を塗布して酸化剤層を形成し、
単量体を供給して前記酸化剤と接触させて、基材フィルムシートの表面に導電性ポリマー層を形成後、
当該フィルムシートを延伸することを特徴とする帯電防止性フィルムシートの製造方法。
On at least one surface of the base film sheet, an oxidizing agent is applied to form an oxidizing agent layer,
Supply a monomer and contact with the oxidizing agent, after forming a conductive polymer layer on the surface of the base film sheet,
A method for producing an antistatic film sheet, which comprises stretching the film sheet.
基体フィルムシートがノルボルネン系樹脂、ポリエチレンテレフタレート、ポリカーボネート、ポリエーテルスルホン、ポリエーテルニトリルまたはセルロース系樹脂からなることを特徴とする請求項1に記載のフィルムシートの製造方法。   2. The method for producing a film sheet according to claim 1, wherein the base film sheet comprises norbornene resin, polyethylene terephthalate, polycarbonate, polyether sulfone, polyether nitrile, or cellulose resin. 導電性ポリマーがポリピロール、ポリチオフェン、ポリフラン、ポリセレノフェンまたはポリ(3,4−エチレンジオキシチオフェン)およびこれらの誘導体であることを特徴とする請求項1に記載のフィルムシートの製造方法。   The method for producing a film sheet according to claim 1, wherein the conductive polymer is polypyrrole, polythiophene, polyfuran, polyselenophene or poly (3,4-ethylenedioxythiophene) and derivatives thereof. 延伸倍率が1.01倍から30倍の範囲にある、請求項1〜3のいずれかに記載のフィルムシート製造方法。   The film sheet manufacturing method according to any one of claims 1 to 3, wherein a draw ratio is in a range of 1.01 to 30 times. 請求項1〜4のいずれかに記載された製造方法により得られる帯電防止性フィルムシート。   An antistatic film sheet obtained by the production method according to claim 1.
JP2005042259A 2005-02-18 2005-02-18 Method for producing antistatic film/sheet Pending JP2006224517A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005042259A JP2006224517A (en) 2005-02-18 2005-02-18 Method for producing antistatic film/sheet
TW095102103A TW200641920A (en) 2005-02-18 2006-01-19 Method for producing antistatic film/sheet
KR1020060015382A KR20060093052A (en) 2005-02-18 2006-02-17 Manufacturing method of antistatic film sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005042259A JP2006224517A (en) 2005-02-18 2005-02-18 Method for producing antistatic film/sheet

Publications (1)

Publication Number Publication Date
JP2006224517A true JP2006224517A (en) 2006-08-31

Family

ID=36986278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005042259A Pending JP2006224517A (en) 2005-02-18 2005-02-18 Method for producing antistatic film/sheet

Country Status (3)

Country Link
JP (1) JP2006224517A (en)
KR (1) KR20060093052A (en)
TW (1) TW200641920A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041461A1 (en) * 2006-09-29 2008-04-10 Tsurumi Soda Co., Ltd. Etching liquid for conductive polymer and method for patterning conductive polymer
JP2008088231A (en) * 2006-09-29 2008-04-17 Tsurumi Soda Co Ltd Etching solution for electrically conductive polymer and method for patterning electrically conductive polymer
JP2008115310A (en) * 2006-11-07 2008-05-22 Tsurumi Soda Co Ltd Etching liquid for conductive polymer and method for patterning conductive polymer
JP2012111964A (en) * 2009-11-19 2012-06-14 Mitsubishi Chemicals Corp Polycarbonate resin film, transparent film, and process for producing the same
JP2017502018A (en) * 2013-12-27 2017-01-19 ロレアル Brightening process using a substrate having an at least one oxidant and an aqueous composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400276B (en) * 2009-12-03 2013-07-01 Ind Tech Res Inst Chitosan-conductive polymer hybrid polymer composition with antioxidant properties
KR20150000683A (en) 2013-06-25 2015-01-05 삼성전자주식회사 Refrigerator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157522A (en) * 1984-12-28 1986-07-17 Hoechst Gosei Kk Production of molded article of electrically conductive composite high polymer
JPS6310409A (en) * 1986-06-28 1988-01-18 株式会社フジクラ Manufacture of transparent conductive film
JPS63251434A (en) * 1987-04-06 1988-10-18 Toppan Printing Co Ltd Conductive film
JPH05216164A (en) * 1992-02-03 1993-08-27 Konica Corp Plastic film provided with antistatic performance and manufacture thereof
JP2003281934A (en) * 2002-03-20 2003-10-03 Mitsubishi Rayon Co Ltd Conductive packaging material and container for electronic part molded therefrom
JP2003292655A (en) * 2002-04-04 2003-10-15 Teijin Dupont Films Japan Ltd Antistatic laminated polyester film
JP2004255857A (en) * 2003-02-25 2004-09-16 Hs Planning:Kk Low reflection film having conductive polymer layer laminated thereto

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157522A (en) * 1984-12-28 1986-07-17 Hoechst Gosei Kk Production of molded article of electrically conductive composite high polymer
JPS6310409A (en) * 1986-06-28 1988-01-18 株式会社フジクラ Manufacture of transparent conductive film
JPS63251434A (en) * 1987-04-06 1988-10-18 Toppan Printing Co Ltd Conductive film
JPH05216164A (en) * 1992-02-03 1993-08-27 Konica Corp Plastic film provided with antistatic performance and manufacture thereof
JP2003281934A (en) * 2002-03-20 2003-10-03 Mitsubishi Rayon Co Ltd Conductive packaging material and container for electronic part molded therefrom
JP2003292655A (en) * 2002-04-04 2003-10-15 Teijin Dupont Films Japan Ltd Antistatic laminated polyester film
JP2004255857A (en) * 2003-02-25 2004-09-16 Hs Planning:Kk Low reflection film having conductive polymer layer laminated thereto

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041461A1 (en) * 2006-09-29 2008-04-10 Tsurumi Soda Co., Ltd. Etching liquid for conductive polymer and method for patterning conductive polymer
JP2008088231A (en) * 2006-09-29 2008-04-17 Tsurumi Soda Co Ltd Etching solution for electrically conductive polymer and method for patterning electrically conductive polymer
CN101523517B (en) * 2006-09-29 2013-07-10 鹤见曹达株式会社 Etching liquid for conductive polymer and method for patterning conductive polymer
KR101412820B1 (en) 2006-09-29 2014-06-27 쯔루미소다 가부시끼가이샤 Etching liquid for conductive polymer and method for patterning conductive polymer
KR101465929B1 (en) * 2006-09-29 2014-11-26 쯔루미소다 가부시끼가이샤 Etching liquid for conductive polymer and method for patterning conductive polymer
JP2008115310A (en) * 2006-11-07 2008-05-22 Tsurumi Soda Co Ltd Etching liquid for conductive polymer and method for patterning conductive polymer
JP2012111964A (en) * 2009-11-19 2012-06-14 Mitsubishi Chemicals Corp Polycarbonate resin film, transparent film, and process for producing the same
US9709701B2 (en) 2009-11-19 2017-07-18 Mitsubishi Chemical Corporation Polycarbonate resin film, and transparent film and process for producing the same
US10632696B2 (en) 2009-11-19 2020-04-28 Mitsubishi Chemical Corporation Polycarbonate resin film, and transparent film and process for producing the same
JP2017502018A (en) * 2013-12-27 2017-01-19 ロレアル Brightening process using a substrate having an at least one oxidant and an aqueous composition
US10588831B2 (en) 2013-12-27 2020-03-17 L'oreal Lightening process using a substrate bearing at least one oxidizing agent and an aqueous composition

Also Published As

Publication number Publication date
KR20060093052A (en) 2006-08-23
TW200641920A (en) 2006-12-01

Similar Documents

Publication Publication Date Title
JP3626624B2 (en) Transparent conductive laminate and transparent tablet
TWI550642B (en) Conductive film composition, conductive film fabricated using the same, and optical display apparatus including the same
US20150123911A1 (en) Index matching and touch panel improvements in display devices
TWI686432B (en) Polyester film for optics and polarizing plate using the same
US20140186587A1 (en) Transparent conductor and apparatus including the same
JP2006224517A (en) Method for producing antistatic film/sheet
KR102296559B1 (en) Multilayer polyester film and polarizing plate using same
JP2008062418A (en) Conductive film
TWI781090B (en) Optical laminate and image display device using the same
TWI600919B (en) Optical film, polarizer and video display device
CN101006367A (en) Antistatic laminated body and polarizing plate using the same
KR20140085292A (en) Transparent conductor and apparatus comprising the same
JP5181539B2 (en) Method for producing transparent conductive film, touch panel having film obtained by the method, and display device having the touch panel
WO2012073437A1 (en) Optical film, image display device, and image display device comprising touch panel
JP2011053493A (en) Optical film having antistatic layer, polarizing plate and image display device
JP4605010B2 (en) Evaluation method of polarizing plate protective film
JP2009187687A (en) Method of manufacturing transparent conductive film, touch panel which has film obtained by the method, and display device which has the touch panel
KR20070105869A (en) Anti-static hard coating film with high hardness and manufacturing method thereof
JP2007269957A (en) Gas-barrier film, method for producing the same, and image display element using the same
JP2019066882A (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP2000108241A (en) Transparent conductive film and its manufacture
JPWO2004077131A1 (en) Polarizer
JP2004255857A (en) Low reflection film having conductive polymer layer laminated thereto
JPH10282336A (en) Optical film
US20050227053A1 (en) Anti-reflection film comprising conductive polymer layer and producing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104