JP2004255857A - Low reflection film having conductive polymer layer laminated thereto - Google Patents
Low reflection film having conductive polymer layer laminated thereto Download PDFInfo
- Publication number
- JP2004255857A JP2004255857A JP2003096527A JP2003096527A JP2004255857A JP 2004255857 A JP2004255857 A JP 2004255857A JP 2003096527 A JP2003096527 A JP 2003096527A JP 2003096527 A JP2003096527 A JP 2003096527A JP 2004255857 A JP2004255857 A JP 2004255857A
- Authority
- JP
- Japan
- Prior art keywords
- film
- resin film
- antistatic
- transparent resin
- conductive polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/202—Conductive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/21—Anti-static
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/212—Electromagnetic interference shielding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/416—Reflective
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/418—Refractive
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Laminated Bodies (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Elimination Of Static Electricity (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、特定の方法で導電性の重合体を透明樹脂フィルムに形成させた積層フィルムであって、帯電防止機能を持ちかつ低反射機能を有する積層フィルムに関する。
【0002】
【従来の技術】
従来、透明樹脂フィルムに反射防止層を設けた低反射フィルムが電子・電気機器分野に広く使用されている。例えば、ポリエステルフィルム、トリアセチルセルロースフィルム及びポリカーボネートフィルム等の透明樹脂フィルムに複数の無機酸化物層をスパッターや蒸着等の方法により形成させたり、フッ素含有の化合物をコーティングして反射防止層を設けたものが、ブラウン管や液晶パネル等の表示機器等に使用され、反射率を低減させることによって、画像をより見やすくすることに貢献している。
【0003】
しかしながら、従来の反射防止層では帯電防止機能を有さないために、帯電し易く、埃やゴミが発生した静電気により吸着して、表面が汚れるという問題があった。このために、樹脂フィルムに帯電防止剤を配合したり、新たに帯電防止層を形成して帯電を防止する必要があった。かかる方法では、例えば帯電防止剤を配合する場合には、透明性が低下したり、着色したり、帯電防止剤のブリードにより表面のべたつきが生じたり、湿気の少ない冬場には帯電防止機能が低下する本質的な問題もあった。また、スパッタ等の方法でITO等の導電層を設ける方法では、透明性の低下や着色等光学特性が低下する問題が生じ、かつ加工コストが大幅に上昇する問題があった。
【0004】
また、ポリピロールやポリチオフェンなる複素環状の伝導性高分子は、比較的合成が容易であり、高い電気伝導性と優れた大気下での安定性を有する。従って、電気化学的重合法や化学酸化法で合成されていることが知られているが、共役系の伝導性高分子と同様に溶融や溶解が困難なことが多く、フィルム状に加工しにくい問題があった。電気化学法では薄いフィルム状に形成させることも可能であるが、機械強度が低く連積生産に問題があって実質的に応用には困難が伴っていた。
【0005】
上述した問題点を補完するための一般的な方法としては、粒子状の伝導性高分子を他の一般的な高分子と混合し、加工性と接着性等の物性を強化した複合材料を製造する方法が提案されている。この複合材料を他の基材に塗布することで、帯電防止機能を付与することができるが、十分な接着性を与えるには通常、混合される一般高分子の量が50%以上、場合によれば、80%以上にする必要があり、この複合材料の主なる物性値は混合された一般高分子の物性値に支配されることになる。
【0006】
また、上記複合材料を、高分子樹脂フィルムに塗布し、帯電防止機能を付与できた場合においても、塗布層の厚みが、数ミクロン程度と厚くする必要がある場合が一般的であり、そのため混合された一般高分子に起因して、透明性が悪化したり、着色が起こったり耐熱性や耐湿性に問題が生じる場合が多い。しかも、強い摩耗に対しては、はげ落ちる場合が多いという問題を有していた。
【0007】
【発明が解決しようとする課題】
本発明の目的は、帯電防止機能と反射防止機能を同時に持つ透明樹脂フィルムを提供することにある。また、帯電防止機能と反射防止機能を付与する機能膜の製造が容易であり、機能膜が、極めて薄く形成されても高い導電性が得られ、かつ導電性を調節でき、高透明性や着色の殆ど無い透明樹脂フィルムを提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明者は、上記問題点を解決するために鋭意検討を進めたところ、透明樹脂フィルムの少なくとも一方の面に、酸化剤を塗布後、この基材上に気相状態で化−1なる構造式で示される少なくとも1種の単量体を接触させ、高分子重合層を形成させたフィルムは、帯電防止機能と反射防止機能を同時に有し、かつ製造が容易であり、得られた積層体の光学特性が優れていることを見出し、本発明に至った。
【0009】
【発明の実施の形態】
本発明の透明樹脂フィルムは、透明性が高ければ高い程好ましく、可視光線における透過率が50%以上、好ましくは70%以上、更に好ましくは80%以上が好適に用いられる。具体的には、ポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂、アセチルセルロース樹脂、ポリアリレート樹脂、ポリエーテルサルフォン樹脂、ノルボルネン樹脂等から、公知の方法、例えば射出成形法、溶融押し出し法、溶融流延法や型内で重合させるキャスティング法等で製造されたフィルムであり、特に製造方法は限定されるものではない。また、ロール状、枚葉等形状も限定されるものではなく、厚みは、通常0.1ミクロンから10,000ミクロン、取り扱いの容易さから、好ましくは10ミクロンから3000ミクロンである。また、本発明の重合体が塗布される面もしくは反対面に、或いは両面のフィルム表面にドットやプリズムなどの特殊な形状を有していても良く、公知の方法で種々の目的に応じて反射防止層、アンチグレア層、防汚層、ハードコート層等公知の機能層が、1種もしくは数種が組み合わせてあらかじめ処理されているものであっても構わない。
【0010】
本発明の透明樹脂フィルムは、本発明の気相法によって得られた重合体の屈折率より大きい屈折率をもつものと組み合わせることが、反射率を抑制できる点で好ましい。また、基材フィルム上に屈折率の高い物質をあらかじめ塗布しておくことも可能であり、反射率を抑制する観点から、好ましい場合も生じる。高屈折率を付与する物質としては、ITOなどの金属酸化物や金属類の複合酸化物等があり、スパッタ、蒸着やコーティングなどの方法で塗布することができる。また、金属酸化物粒子をアクリル等の樹脂の中に分散させたもの等公知のものも使用できる。本発明において、屈折率とは特に断りがない場合、JISK−7105に準拠し、アッベ屈折計を用いて23℃で測定した値である。
【0011】
次に、気相重合法について説明する。
上記透明樹脂フィルムに、酸化剤を塗布する。塗布するに当たり、フィルムは、生産性の観点で、ロール状で連続的に供給するのが好ましい。また、接着性をあげるために、フィルムはコロナ処理やプラズマ処理等を行い表面を荒らしておくこともでき、好ましい場合が生じる。また、接着性を向上させるために、アンカー材をあらかじめ塗布することも可能である。
【0012】
酸化剤としては、CuCl3、トルエンスルホン酸鉄(III)、過塩素酸鉄(III)、FeCl3及びCu(ClO4)2・6H2O等の遷移金属化合物や強酸性のルイス酸からなる群から少なくとも1種が選択され、これらの酸化剤は、メチルアルコール、エチルアルコール、イソプロピルアルコール、2−ブチルアルコール等のアルコール類、エチルセルソルブ等のセルソルブ類、メチルアセテートやエチルアセテート等のアセテート類、アセトンやメチルエチルケトン等のケトン類、シクロヘキサンやトルエン等のハイドロカーボン類等から適宜選ばれた有機溶剤の単一または数種の混合物に溶解もしくは分散させて用いることができる。用いた酸化剤の種類によって、溶解性や分散性を考慮して選ぶことができ、上記溶剤以外に問題が生じない程度の別の溶剤を混入させることも可能である。前記酸化剤の濃度は、特に限定されるものではないが、塗布性や溶解性もしくは分散性を考慮して、0.3重量%から10重量%の範囲が好ましい。
【0013】
酸化剤を溶解もしくは分散させた溶液を、公知のディップ法、コーティング法、印刷法等で透明樹脂フィルム上に塗布することができる。塗布された酸化剤の厚みは、目的に応じ適宜選択されるが、通常数10Å乃至数100Åの厚みで薄く塗布するのが好ましい。塗布されたフィルムは、フィルムの種類や用いた溶剤の種類によって適宜選定された温度で乾燥させる。通常、30℃から120℃にて、1秒から1時間の乾燥を行う。フィルムの変質や乾燥速度、乾燥状態の観点で、好ましくは50℃から80℃の温度で10秒から10分間の乾燥をするのが好ましい。
【0014】
前記酸化剤の他に、ホスト高分子の添加が可能であり、ホスト高分子としては、ポリアクリル酸ブチルやポリメタクリル酸メチル等のポリ(メタ)アクリル酸エステル類及び数種の共重合体、ポリカーボネート類、ポリエステル類、ポリウレタン類、ポリ塩化ビニル類、ポリビニルアルコール類、メチルセルロース類、キトサン類から選択される1種もしくは数種の混合物から選択され、これらの紫外線硬化型または熱硬化型のアクリル樹脂を用いることもできる。これらのホスト高分子は、優秀な機械的強度をもち、本発明のピロール等の単量体に対して高い親和力を示すものである。このホスト高分子の濃度は、特に限定されるものではないが、全体重量の0.1%から10重量%の間で適宜選択できる。
【0015】
このフィルムに気相状態で接触させる単量体は、既に記述した化−1なる構造式で示される重合体を重合後形成する単量体である。(化−1において、Xは硫黄、酸素、セレニウム及びNHから構成される群から選択され、R1及びR2は水素、3個乃至15個の炭素を含むアルキル類、3個乃至15個の炭素を含むエーテル、酸素原子を含む環構造、ハロゲン元素及びベンゼン基から構成される群から選択される。)具体的には、ピロール類、チオフェン類、フラン類、セレノフェン類、2,3−ジヒドロチオ−3,4−ダイオキシン類であり、基本的には、重合後において、化−1の範疇に入る重合体が得られる単量体である。このうちの1種でも良く、数種が混合されて使用することもできる。
【0016】
特に、ポリチオフェン誘導体は、そのものの導電性が高いために、105Ω/口が容易に得られ、膜を極めて薄くすることで、着色を抑えることができ、かつ屈折率も後述するように低いと予想され、着色、導電性、低反射という観点で、極めて優れた伝導性重合体であり、最も好ましい重合体である。また、1.45以上の屈折率の透明樹脂フィルム上に薄膜を形成させると、もともとの基材のフィルムの反射率を低減させることができる。この反射率の低減率は、上記樹脂フィルムの屈折率が大きいほど良く、好ましくは1.48以上であり、更に好ましくは1.55以上である。
【0017】
蒸発室で前記単量体が気化され、酸化剤があらかじめ塗布されたフィルムに蒸気として接触させることにより重合反応が行われる。重合後には、上記フィルム上に薄膜のコーティングフィルムが得られる。塗布された酸化剤の種類や量、用いた単量体の種類、用いたフィルムの種類等により、重合温度と重合時間は適宜選定することができるが、生産性を考慮すると、0℃乃至100℃が好ましく、反応時間は10秒乃至40分である。また、重合後の未反応単量体や酸化剤は、適当に選定された溶剤で洗浄除去される。溶剤としては、乾燥の容易さや除去効率の観点から、水とメタノール等のアルコール類が好ましい。重合後、もしくは洗浄が完了した後に、樹脂フィルムのガラス転移温度以上の温度で熱処理をすると導電性高分子の樹脂フィルムへの密着性が向上することがあり好ましい。
【0018】
このようにして得られた重合体は、化−1に示される構造をもつものであり、ポリピロール、ポリチオフェン、ポリフラン、ポリセレノフェン及びこの誘導体であり、単量体を数種組み合わせた場合には、これらの混合物となる。また、これらの重合体は、フィルム基材上に薄膜状で塗布されている。厚みは、目的に応じて製造条件で調整することができ、適宜設定できる。伝導性、膜の均一性やコスト等を考慮して、通常0.001ミクロン乃至10ミクロンの範囲で製造するのが好ましい。
【0019】
次に、透明樹脂フィルム上に形成されたフィルム状の化−1で示される伝導性高分子の特性について説明する。
透明樹脂フィルム上に形成されたフィルム状の伝導性高分子は、他の組成物が殆ど混入してないフィルムとして形成される。従って、極めて薄いフィルム状で高い伝導性が得られる。通常、厚みは0.001ミクロン乃至10ミクロンであり、薄膜であるために、この伝導性重合体そのものやホスト高分子に起因する透明性の低下や着色を極力抑制することができる。例えば、厚みが増すと、ポリピロールでは黒みがかかり、ポリチオフェンでは青みがかることが知られているが、本発明では薄膜であるためにこれらの着色が小さく抑えられている。着色と伝導性の観点から、厚みは0.01ミクロン乃至5ミクロンの厚みにするのが好ましい。また、反射率は、導電層の厚みとサインカーブ曲線にて依存が認められるので、反射率を下げるためには、導電層の厚みを選定する必要がある。
【0020】
本発明で得られたフィルム状の導電性ポリマーの表面の平滑性は、製造条件に依存するが、一般的には、極めて優れている。また、表面の鉛筆硬度は、単量体の種類、重合体の厚み、透明樹脂フィルムの種類や製造条件で変化するが、通常H乃至3Hである。
【0021】
本発明により形成された化−1なる構造式で示される共役系高分子は、導電性を示し、用いた単量体の種類、重合体の厚み、製造条件等により抵抗値を調整することができる。一般的に、導電性や帯電防止性に必要な102Ω/口乃至1011Ω/口の範囲の抵抗値が選定される。
【0022】
次に、低反射について説明する。例えば、透明樹脂フィルムとしてポリエチレンテレフタレートフィルムを用い、本発明の方法にて、ポリチオフェンをフィルムの片面に50nmの厚みで形成させたところ、この透明樹脂フィルムの550nmでの反射率が、両面で10%であったものが、6%に低下していることが見出された。このことは、ポリチオフェンの屈折率が、ポリエチレンテレフタレートに比べ小さいことが驚くべきことに見出された。また、この場合のポリチオフェン膜の抵抗値は105Ω/口であり、導電性に基づく帯電防止作用と反射防止作用が、1層にて発現していることになる。
【0023】
このように、本発明に従って製造された透明樹脂フィルム上に伝導性高分子層を形成した複合フィルムは、導電性が付与され、導電性、静電気防止、帯電防止及び電磁波遮断性を有するフィルムとして有効であるだけでなく、低反射能力をも備え、かつ優れた透明性、表面の平滑性及び硬度を有している。そのため、各種のディスプレー等の導電性フィルム、帯電防止フィルム、静電気防止フィルム、電磁波遮断フィルム、低反射フィルム、或いはこれらの機能を複合させたフィルムとして有用である。
【0024】
以下、実施例で本発明をより詳しく説明するが、本発明は実施例に限定されるものではない。
【実施例1】
基材として0.188mm厚のポリエチレンテレフタレートフィルム(PETフィルム)を用い、この上に、メチルアルコール、2−ブチルアルコール及びエチルセロソルブを重量比で7:2:1の割合で混合された溶媒中に酸化剤としての3塩化鉄を重量比2%で溶解した溶液をスピンコーティングし、65℃で3分間乾燥させた。飽和状態のエチレンジオキシチオフェンが生成されるように設計されたCVDチャンバー内で、前記酸化剤が塗布された基材上に、40℃で1分間蒸発させ付着、反応させた。その後、未反応物や酸化剤の残査をメタノールで十分に洗浄除去した。この結果、わずか青みのある透明なポリエチレンジオキシチオフェンが付着したPETフィルムを得た。塗布層の厚みは52nm、面抵抗値は8x104Ω/口、可視光線の透過率は87%、反射率は8%であった。この塗布層をイソプロピルアルコールで洗浄した後及びセロテープによる碁盤目剥がれテストを行っても塗布層の剥がれは認められなかった。また、120℃で5分間の熱処理をしても、抵抗値の変化は認められなかった。このように、極めて薄い膜厚でも、溶剤や熱に対して安定であり、かつ密着性が優れた導電性ポリマー膜が得られ、透明性が優れ、塗布前のPETフィルム単独の反射率の12%に比べ塗布後に反射率が低減し、かつ低抵抗値のフィルムが得られた。このフィルムを液晶ディスプレーの前面に配置すると、帯電防止と低反射機能が付与でき、帯電によるゴミ付着が抑制され、低反射であるために写り込みの少ない画像が得られた。
【0025】
【比較例1】
実施例1で用いた導電ポリマーの膜が付着する前のPETフィルムの可視光線の透過率は88%であるが、反射率は11.5%であり、面抵抗値は1016Ω/口であった。表面をこすったところ簡単に帯電し、反射率が大きいことが判る。
【0026】
【実施例2】
実施例1における蒸気発生温度を30℃とした以外は、実施例1と全く同様にしてPETフィルム上に導電ポリマーの膜を生成させた。塗布層の厚みは、24nm、面抵抗値は5x107Ω/口、可視光線の透過率は89%、反射率は9%であった。膜の密着性や熱安定性は実施例1の膜と同様であった。
【0027】
【実施例3】
実施例1における蒸気発生温度を45℃とした以外は、実施例1と全く同様にしてPETフィルム上に導電ポリマーの膜を生成させた。塗布層の厚みは98nm、面抵抗値は1x104Ω/口、可視光線の透過率は83%、反射率は7%であった。膜の密着性や熱安定性は実施例1の膜と同様であった。
【0028】
【実施例4】
実施例1における蒸気発生温度を55℃とし、接触時間を5分とした以外は実施例1と全く同様にしてPETフィルム上に導電ポリマーの膜を生成させた。塗布層の厚みは280nm、面抵抗値は3200Ω/口、可視光線の透過率は78%、反射率は6%であった。膜の密着性や熱安定性は実施例1の膜と同様であった。
【0029】
【実施例5】
基材として0.1mm厚のJSR製ノルボルネン系の透明フィルム(商品名アートン)を用い、表面をコロナ処理し、この上にメチルアルコール、2−ブチルアルコール及びエチルセルソルブが重量比で6:2:2の割合で混合された溶媒に重量比で3%のCu(ClO4)2・6H2Oを溶解した。これを実施例1と全く同様にして上記フィルムに導電ポリマーを生成させ洗浄乾燥させた。塗布層の厚みは48nm、面抵抗値は5x105Ω/口、可視光線の透過率は91%、反射率は7%であった。膜の密着性や熱安定性は実施例1の膜と同様であった。
【0030】
【比較例2】
実施例5における導電ポリマーの膜が付着する前のノルボルネン系の透明フィルムの可視光線透過率は92%、反射率は8%であり、面抵抗値は1016Ω/口であった。表面をこすると簡単に静電気の発生が認められ、反射率も実施例5における導電ポリマーが付着したものより大きかった。
【0031】
【実施例6】
実施例1において、導電ポリマーを形成するための単量体をピロール単量体とし、蒸発温度を20℃、接触時間を30秒とした以外は、実施例1と全く同様にして、導電性ポリマーが付着された灰色がかったPETフィルムを製造した。膜の厚みは、1.8ミクロンm、面抵抗値は3x104Ω/口、可視光線の透過率は75%であり、反射率は11%であった。実施例1と同様の方法で、導電ポリマーの膜の密着性、熱安定性を調べたところ、変化は認められなかった。
【0032】
本発明において、面抵抗値は4端子法、透過率や反射率は分光光度計を用いて測定した。熱安定性はDupont製TGA2050分光計を用い、セロテープによるクロスカット密着性テストはJISに準じて行った。
【0033】
【発明の効果】
本発明は、透明かつ低反射で導電性が付与されたフィルムを提供するものであり、ディスプレーの前面に配置すると帯電防止および低反射機能を併せ持つフィルムとして有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a laminated film in which a conductive polymer is formed on a transparent resin film by a specific method, and which has an antistatic function and a low reflection function.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, low reflection films in which an antireflection layer is provided on a transparent resin film have been widely used in the field of electronic and electric devices. For example, a plurality of inorganic oxide layers were formed on a transparent resin film such as a polyester film, a triacetyl cellulose film and a polycarbonate film by a method such as sputtering or vapor deposition, or a fluorine-containing compound was coated to provide an antireflection layer. Such devices are used for display devices such as cathode ray tubes and liquid crystal panels, and contribute to making images easier to see by reducing the reflectance.
[0003]
However, since the conventional antireflection layer does not have an antistatic function, it has a problem that it is easily charged and is attracted by static electricity generated by dust and dirt, thereby staining the surface. For this reason, it has been necessary to mix an antistatic agent into the resin film or to form a new antistatic layer to prevent charging. In such a method, for example, when an antistatic agent is blended, the transparency is reduced, the color is reduced, the bleeding of the antistatic agent causes the surface to be sticky, and the antistatic function is reduced in winter when the humidity is low. There was also an essential problem. Further, in the method of providing a conductive layer such as ITO by a method such as sputtering, there is a problem that optical properties such as transparency and coloring are deteriorated, and a processing cost is significantly increased.
[0004]
Heterocyclic conductive polymers such as polypyrrole and polythiophene are relatively easy to synthesize, and have high electrical conductivity and excellent stability in the atmosphere. Therefore, it is known that it is synthesized by an electrochemical polymerization method or a chemical oxidation method, but it is often difficult to melt or dissolve like a conjugated conductive polymer, and it is difficult to process it into a film. There was a problem. Although it is possible to form a thin film by the electrochemical method, there is a problem in continuous production due to low mechanical strength and practically difficult to apply.
[0005]
As a general method to complement the above problems, a composite material with enhanced physical properties such as processability and adhesiveness is prepared by mixing a particulate conductive polymer with other general polymers. A way to do that has been proposed. By applying this composite material to another substrate, an antistatic function can be imparted. However, in order to provide sufficient adhesiveness, the amount of the general polymer to be mixed is usually 50% or more. According to this, it is necessary to make it 80% or more, and the main physical property value of this composite material is governed by the physical property value of the mixed general polymer.
[0006]
Further, even when the above-mentioned composite material is applied to a polymer resin film and an antistatic function can be imparted, it is generally necessary to increase the thickness of the applied layer to about several microns. Due to the general polymer used, transparency often deteriorates, coloring occurs, and problems occur in heat resistance and moisture resistance in many cases. In addition, there has been a problem that, in the case of strong abrasion, it often peels off.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a transparent resin film having both an antistatic function and an antireflection function. In addition, it is easy to manufacture a functional film having an antistatic function and an antireflection function, and even if the functional film is formed extremely thin, high conductivity can be obtained and the conductivity can be adjusted, and high transparency and coloring can be obtained. It is an object of the present invention to provide a transparent resin film having almost no problem.
[0008]
[Means for Solving the Problems]
The inventor of the present invention has made intensive studies to solve the above-mentioned problems, and found that after applying an oxidizing agent to at least one surface of the transparent resin film, a structure formed in a gas phase state on this substrate in a gaseous state-1 A film in which at least one monomer represented by the formula is contacted to form a high molecular weight polymer layer has an antistatic function and an antireflection function at the same time, is easy to manufacture, and has a laminated body. Have been found to have excellent optical properties, and have led to the present invention.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The higher the transparency of the transparent resin film of the present invention, the more preferable it is. The transmittance in visible light is 50% or more, preferably 70% or more, and more preferably 80% or more. Specifically, a polyester resin, a polycarbonate resin, an acrylic resin, an acetylcellulose resin, a polyarylate resin, a polyethersulfone resin, a norbornene resin, or the like, and a known method such as an injection molding method, a melt extrusion method, and a melt casting method. And a film produced by a casting method or the like in which polymerization is performed in a mold, and the production method is not particularly limited. The shape of a roll, a sheet or the like is not limited, and the thickness is usually 0.1 to 10,000 microns, and preferably 10 to 3000 microns for easy handling. Further, the polymer of the present invention may have a special shape such as a dot or a prism on the surface or opposite surface to which the polymer is applied, or on both surfaces of the film. Known functional layers such as an anti-glare layer, an anti-glare layer, an anti-fouling layer and a hard coat layer may be those which have been treated in advance by one kind or a combination of several kinds.
[0010]
It is preferable that the transparent resin film of the present invention is combined with a polymer having a refractive index larger than the refractive index of the polymer obtained by the gas phase method of the present invention, since the reflectance can be suppressed. It is also possible to apply a substance having a high refractive index on the base film in advance, which is preferable from the viewpoint of suppressing the reflectance. Examples of the substance imparting a high refractive index include metal oxides such as ITO and composite oxides of metals and the like, which can be applied by a method such as sputtering, vapor deposition or coating. Known materials such as metal oxide particles dispersed in a resin such as acryl can also be used. In the present invention, the refractive index is a value measured at 23 ° C. using an Abbe refractometer according to JIS K-7105, unless otherwise specified.
[0011]
Next, the gas phase polymerization method will be described.
An oxidizing agent is applied to the transparent resin film. Upon application, it is preferable that the film be continuously supplied in a roll form from the viewpoint of productivity. Further, in order to improve the adhesiveness, the film may be subjected to a corona treatment, a plasma treatment or the like to roughen the surface, which is preferable. In addition, in order to improve the adhesiveness, it is also possible to apply an anchor material in advance.
[0012]
The oxidizing agent, CuCl 3, toluenesulfonate (III), perchlorate (III), consisting of FeCl 3 and Cu (ClO 4) 2 · 6H 2 O such as a transition metal compound and a strongly acidic Lewis acids at least one is selected from the group, these oxidizing agents are methyl alcohol, and ethyl alcohol, isopropyl alcohol, 2-butyl alcohol, cellosolves such as ethyl cellosolve, acetates such as methyl acetate and ethyl acetate It can be used by dissolving or dispersing it in a single or several kinds of mixtures of organic solvents appropriately selected from ketones such as acetone and methyl ethyl ketone, and hydrocarbons such as cyclohexane and toluene. Depending on the type of the oxidizing agent used, the oxidizing agent can be selected in consideration of solubility and dispersibility, and it is also possible to mix another solvent to the extent that no problem occurs other than the above-mentioned solvents. The concentration of the oxidizing agent is not particularly limited, but is preferably in the range of 0.3% by weight to 10% by weight in consideration of applicability, solubility or dispersibility.
[0013]
The solution obtained by dissolving or dispersing the oxidizing agent can be applied onto the transparent resin film by a known dip method, coating method, printing method, or the like. The thickness of the applied oxidizing agent is appropriately selected according to the purpose, but it is usually preferable to apply the oxidizing agent thinly in a thickness of several tens to several hundreds of degrees. The applied film is dried at a temperature appropriately selected according to the type of the film and the type of the solvent used. Usually, drying is performed at 30 ° C. to 120 ° C. for 1 second to 1 hour. From the viewpoints of the deterioration of the film, the drying speed, and the drying state, it is preferable to perform drying at a temperature of 50 ° C. to 80 ° C. for 10 seconds to 10 minutes.
[0014]
In addition to the oxidizing agent, a host polymer can be added. Examples of the host polymer include poly (meth) acrylates such as polybutyl acrylate and polymethyl methacrylate, and several types of copolymers, Selected from one or a mixture of one or more selected from polycarbonates, polyesters, polyurethanes, polyvinyl chlorides, polyvinyl alcohols, methyl celluloses, and chitosans, and ultraviolet-curing or thermosetting acrylic resins thereof Can also be used. These host polymers have excellent mechanical strength and show high affinity for monomers such as pyrrole of the present invention. The concentration of the host polymer is not particularly limited, but can be appropriately selected from 0.1% to 10% by weight of the total weight.
[0015]
The monomer to be brought into contact with this film in a gaseous state is a monomer formed after polymerization of the polymer represented by the structural formula 1 described above. (Wherein, X is selected from the group consisting of sulfur, oxygen, selenium and NH, and R1 and R2 are hydrogen, alkyls containing 3 to 15 carbons, and 3 to 15 carbons Ether, a ring structure containing an oxygen atom, a halogen element, and a benzene group.) Specifically, pyrroles, thiophenes, furans, selenophenes, 2,3-dihydrothio-3 , 4-dioxins, and are basically monomers from which a polymer falling into the category of Chemical Formula 1 is obtained after polymerization. One of these may be used, or a mixture of several types may be used.
[0016]
In particular, since the polythiophene derivative itself has high conductivity, a resistance of 10 5 Ω / mouth can be easily obtained, coloring can be suppressed by making the film extremely thin, and the refractive index is low as described later. From the viewpoints of coloring, conductivity, and low reflection, it is a very excellent conductive polymer, and is the most preferable polymer. When a thin film is formed on a transparent resin film having a refractive index of 1.45 or more, the reflectance of the original base film can be reduced. The reduction rate of the reflectance is better as the refractive index of the resin film is larger, preferably 1.48 or more, and more preferably 1.55 or more.
[0017]
In the evaporation chamber, the monomer is vaporized, and the polymerization reaction is performed by bringing the oxidizing agent into contact with the previously coated film as vapor. After polymerization, a thin coating film is obtained on the film. Depending on the type and amount of the applied oxidizing agent, the type of the used monomer, the type of the used film, etc., the polymerization temperature and the polymerization time can be appropriately selected. C. is preferred, and the reaction time is from 10 seconds to 40 minutes. Unreacted monomers and oxidizing agents after polymerization are removed by washing with an appropriately selected solvent. As the solvent, water and alcohols such as methanol are preferable from the viewpoint of ease of drying and removal efficiency. After the polymerization or after the washing is completed, it is preferable that the heat treatment is performed at a temperature higher than the glass transition temperature of the resin film because the adhesion of the conductive polymer to the resin film may be improved.
[0018]
The polymer thus obtained has a structure represented by Chemical Formula 1, and is polypyrrole, polythiophene, polyfuran, polyselenophene, and derivatives thereof. , And a mixture thereof. These polymers are applied in a thin film form on a film substrate. The thickness can be adjusted under manufacturing conditions according to the purpose, and can be set as appropriate. In consideration of conductivity, uniformity of the film, cost and the like, it is usually preferable to manufacture the film in the range of 0.001 to 10 microns.
[0019]
Next, the characteristics of the conductive polymer represented by Chemical Formula 1 formed on a transparent resin film will be described.
The film-shaped conductive polymer formed on the transparent resin film is formed as a film with almost no other composition mixed therein. Therefore, high conductivity is obtained in the form of an extremely thin film. Usually, the thickness is 0.001 μm to 10 μm, and since it is a thin film, a decrease in transparency and coloring due to the conductive polymer itself or the host polymer can be suppressed as much as possible. For example, it is known that when the thickness is increased, polypyrrole becomes blackish and polythiophene becomes bluish. However, in the present invention, since the film is a thin film, these colorings are suppressed to be small. From the viewpoint of coloring and conductivity, the thickness is preferably 0.01 to 5 microns. In addition, since the reflectance depends on the thickness of the conductive layer and the sine curve, it is necessary to select the thickness of the conductive layer in order to reduce the reflectance.
[0020]
The surface smoothness of the film-like conductive polymer obtained in the present invention depends on the production conditions, but is generally extremely excellent. The pencil hardness of the surface varies depending on the type of the monomer, the thickness of the polymer, the type of the transparent resin film, and the production conditions, but is usually H to 3H.
[0021]
The conjugated polymer represented by the structural formula represented by Chemical Formula 1 formed according to the present invention exhibits conductivity, and its resistance value can be adjusted by the type of monomer used, the thickness of the polymer, production conditions, and the like. it can. Generally, a resistance value in the range of 10 2 Ω / port to 10 11 Ω / port required for conductivity and antistatic property is selected.
[0022]
Next, the low reflection will be described. For example, when a polyethylene terephthalate film is used as a transparent resin film and polythiophene is formed with a thickness of 50 nm on one side of the film by the method of the present invention, the reflectance at 550 nm of this transparent resin film is 10% on both sides. Was found to have dropped to 6%. This was surprisingly found that the refractive index of polythiophene was smaller than that of polyethylene terephthalate. In this case, the resistance value of the polythiophene film is 10 5 Ω / port, which means that the antistatic effect and the antireflection effect based on the conductivity are exhibited in one layer.
[0023]
As described above, the composite film in which the conductive polymer layer is formed on the transparent resin film manufactured according to the present invention is provided with conductivity, and is effective as a film having conductivity, antistatic, antistatic and electromagnetic wave shielding properties. Not only that, it also has low reflection ability, and has excellent transparency, surface smoothness and hardness. Therefore, it is useful as a conductive film such as various displays, an antistatic film, an antistatic film, an electromagnetic wave shielding film, a low reflection film, or a film combining these functions.
[0024]
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.
Embodiment 1
A polyethylene terephthalate film (PET film) having a thickness of 0.188 mm was used as a base material, and a methyl alcohol, 2-butyl alcohol and ethyl cellosolve were mixed in a solvent mixed at a weight ratio of 7: 2: 1. A solution in which iron trichloride as an oxidizing agent was dissolved at a weight ratio of 2% was spin-coated and dried at 65 ° C. for 3 minutes. In a CVD chamber designed to generate saturated ethylenedioxythiophene, the substrate was evaporated at 40 ° C. for 1 minute on the substrate coated with the oxidizing agent and allowed to react. Thereafter, unreacted substances and residues of the oxidizing agent were sufficiently removed by washing with methanol. As a result, a slightly bluish transparent PET film to which polyethylene dioxythiophene was attached was obtained. The thickness of the coating layer was 52 nm, the sheet resistance was 8 × 10 4 Ω / mouth, the visible light transmittance was 87%, and the reflectance was 8%. After the coating layer was washed with isopropyl alcohol and a cross-cut test using a cellophane tape, the coating layer was not peeled off. Further, even after the heat treatment at 120 ° C. for 5 minutes, no change in the resistance value was observed. As described above, even if the film thickness is extremely small, a conductive polymer film which is stable to solvents and heat and has excellent adhesion can be obtained, has excellent transparency, and has a reflectance of 12% of the PET film alone before coating. %, The reflectance was lower after coating, and a film having a low resistance value was obtained. When this film was disposed on the front surface of the liquid crystal display, antistatic and low reflection functions could be provided, dust adhesion due to charging was suppressed, and an image with less reflection was obtained because of low reflection.
[0025]
[Comparative Example 1]
Before the conductive polymer film used in Example 1 was attached, the PET film had a visible light transmittance of 88%, a reflectance of 11.5%, and a sheet resistance of 10 16 Ω / port. there were. When the surface was rubbed, it was easily charged and the reflectance was high.
[0026]
Embodiment 2
A conductive polymer film was formed on a PET film in exactly the same manner as in Example 1 except that the steam generation temperature in Example 1 was changed to 30 ° C. The thickness of the coating layer was 24 nm, the sheet resistance was 5 × 10 7 Ω / mouth, the transmittance of visible light was 89%, and the reflectance was 9%. The adhesiveness and thermal stability of the film were the same as those of the film of Example 1.
[0027]
Embodiment 3
A conductive polymer film was formed on a PET film in exactly the same manner as in Example 1 except that the steam generation temperature in Example 1 was changed to 45 ° C. The thickness of the coating layer was 98 nm, the sheet resistance was 1 × 10 4 Ω / mouth, the visible light transmittance was 83%, and the reflectance was 7%. The adhesiveness and thermal stability of the film were the same as those of the film of Example 1.
[0028]
Embodiment 4
A conductive polymer film was formed on a PET film in exactly the same manner as in Example 1 except that the steam generation temperature in Example 1 was 55 ° C and the contact time was 5 minutes. The thickness of the coating layer was 280 nm, the sheet resistance was 3200 Ω / mouth, the visible light transmittance was 78%, and the reflectance was 6%. The adhesiveness and thermal stability of the film were the same as those of the film of Example 1.
[0029]
Embodiment 5
As a base material, a 0.1 mm thick norbornene-based transparent film (arton) manufactured by JSR was used, and the surface was subjected to corona treatment. Methyl alcohol, 2-butyl alcohol and ethyl cellosolve were added thereto in a weight ratio of 6: 2. : 3% by weight of Cu (ClO 4 ) 2 .6H 2 O was dissolved in a solvent mixed at a ratio of 2: 2. In the same manner as in Example 1, a conductive polymer was formed on the film, and the film was washed and dried. The thickness of the coating layer was 48 nm, the sheet resistance was 5 × 10 5 Ω / mouth, the transmittance of visible light was 91%, and the reflectance was 7%. The adhesiveness and thermal stability of the film were the same as those of the film of Example 1.
[0030]
[Comparative Example 2]
The visible light transmittance of the norbornene-based transparent film before the conductive polymer film was adhered in Example 5 was 92%, the reflectance was 8%, and the sheet resistance was 10 16 Ω / port. When the surface was rubbed, the generation of static electricity was easily recognized, and the reflectance was higher than that of Example 5 to which the conductive polymer was attached.
[0031]
Embodiment 6
A conductive polymer was formed in the same manner as in Example 1 except that the monomer for forming the conductive polymer was a pyrrole monomer, the evaporation temperature was 20 ° C., and the contact time was 30 seconds. To produce a grayish PET film. The thickness of the film was 1.8 μm, the sheet resistance was 3 × 10 4 Ω / mouth, the transmittance of visible light was 75%, and the reflectance was 11%. When the adhesion and thermal stability of the conductive polymer film were examined in the same manner as in Example 1, no change was observed.
[0032]
In the present invention, the sheet resistance was measured using a four-terminal method, and the transmittance and reflectance were measured using a spectrophotometer. The thermal stability was measured using a TGA2050 spectrometer manufactured by Dupont, and the cross-cut adhesion test using cellotape was performed according to JIS.
[0033]
【The invention's effect】
The present invention provides a film having conductivity which is transparent and has low reflection, and is useful as a film having both antistatic and low reflection functions when disposed on the front surface of a display.
Claims (3)
(ここで、Xは硫黄(S)、酸素(O)、セレニウム(Se)及びNHから構成される群から選択され、R1及びR2は水素、3個乃至15個の炭素をもつアルキル基、3個乃至15個の炭素を含むエーテル、酸素原子を含む環構造、ハロゲン元素及びベンゼン基から構成される群から選択される)After applying an oxidizing agent to at least one surface of the transparent resin film, at least one kind of monomer which can obtain a polymer represented by the following structural formula 1 is brought into contact with the substrate in a gas phase state. , A laminated film formed with at least one polymerized layer.
(Where X is selected from the group consisting of sulfur (S), oxygen (O), selenium (Se) and NH, and R1 and R2 are hydrogen, an alkyl group having 3 to 15 carbons, 3 Selected from the group consisting of ethers containing 1 to 15 carbons, ring structures containing oxygen atoms, halogen elements and benzene groups)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003096527A JP2004255857A (en) | 2003-02-25 | 2003-02-25 | Low reflection film having conductive polymer layer laminated thereto |
KR1020030038996A KR100579110B1 (en) | 2003-02-25 | 2003-06-17 | Anti-reflection film composed with conducting polymer and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003096527A JP2004255857A (en) | 2003-02-25 | 2003-02-25 | Low reflection film having conductive polymer layer laminated thereto |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004255857A true JP2004255857A (en) | 2004-09-16 |
Family
ID=33127486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003096527A Pending JP2004255857A (en) | 2003-02-25 | 2003-02-25 | Low reflection film having conductive polymer layer laminated thereto |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2004255857A (en) |
KR (1) | KR100579110B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006116806A (en) * | 2004-10-21 | 2006-05-11 | Jsr Corp | Composite film, its production method, and electrode |
JP2006209050A (en) * | 2004-12-28 | 2006-08-10 | Jsr Corp | Antireflection film |
JP2006224517A (en) * | 2005-02-18 | 2006-08-31 | Nanoiinikusu Inc | Method for producing antistatic film/sheet |
JP2006243084A (en) * | 2005-03-01 | 2006-09-14 | Denki Kagaku Kogyo Kk | Light diffusion plate |
JP2007529094A (en) * | 2004-03-11 | 2007-10-18 | バイエル・ベタイリグングスフェアヴァルトゥング・ゴスラー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Functional layers for optical applications based on polythiophene |
-
2003
- 2003-02-25 JP JP2003096527A patent/JP2004255857A/en active Pending
- 2003-06-17 KR KR1020030038996A patent/KR100579110B1/en not_active IP Right Cessation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007529094A (en) * | 2004-03-11 | 2007-10-18 | バイエル・ベタイリグングスフェアヴァルトゥング・ゴスラー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Functional layers for optical applications based on polythiophene |
JP2006116806A (en) * | 2004-10-21 | 2006-05-11 | Jsr Corp | Composite film, its production method, and electrode |
JP2006209050A (en) * | 2004-12-28 | 2006-08-10 | Jsr Corp | Antireflection film |
JP2006224517A (en) * | 2005-02-18 | 2006-08-31 | Nanoiinikusu Inc | Method for producing antistatic film/sheet |
JP2006243084A (en) * | 2005-03-01 | 2006-09-14 | Denki Kagaku Kogyo Kk | Light diffusion plate |
Also Published As
Publication number | Publication date |
---|---|
KR20040076561A (en) | 2004-09-01 |
KR100579110B1 (en) | 2006-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103890700B (en) | The display device of capacitor formula touch panel, capacitive touch panels | |
TWI550642B (en) | Conductive film composition, conductive film fabricated using the same, and optical display apparatus including the same | |
JP4840037B2 (en) | Conductive transparent film and use thereof | |
TWI356083B (en) | Hard-coated film, method of manufacturing the same | |
JP5651106B2 (en) | Transparent conductive film | |
JP5501800B2 (en) | Transparent conductive film and touch panel | |
KR102038206B1 (en) | Conductive film, polarizing plate, and touch panel display device | |
JP4481713B2 (en) | Conductive film and method for producing the same | |
CN102438822A (en) | Transparent conductive laminate and transparent touch panel | |
WO2005064367A1 (en) | Polarizing plate protective film, polarizing plate with reflection preventing function and optical product | |
CN101893728A (en) | The manufacture method of antiglare film, antiglare film and display device | |
JP4081862B2 (en) | Thin film and antireflection film using the same | |
JP2009226932A (en) | Conductive laminated film, polarizing plate, and touch panel | |
TW200523569A (en) | Anti-reflection film for plasma display front panel and process for producing the same | |
JP2013127546A (en) | Anti-reflection film with transparent electrodes | |
JP2005314671A (en) | Method for producing conductive resin cured product and composition for conductive resin cured product | |
JP2006224517A (en) | Method for producing antistatic film/sheet | |
JP7548221B2 (en) | Transparent electrode and electronic device having the same | |
JP5380211B2 (en) | Optical film having antistatic layer, antireflection film, polarizing plate, and image display device | |
JP2004255857A (en) | Low reflection film having conductive polymer layer laminated thereto | |
JP5554578B2 (en) | Conductive film | |
JP2012243460A (en) | Conductive film | |
WO2004088369A1 (en) | Polarization plate protection film | |
TWI836107B (en) | Polarizing film and LCD panel with adhesive layer | |
JP4000698B2 (en) | Anti-reflective touch panel, manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080610 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081209 |