JP2006224150A - Resistance spot welding method for different materials - Google Patents

Resistance spot welding method for different materials Download PDF

Info

Publication number
JP2006224150A
JP2006224150A JP2005041425A JP2005041425A JP2006224150A JP 2006224150 A JP2006224150 A JP 2006224150A JP 2005041425 A JP2005041425 A JP 2005041425A JP 2005041425 A JP2005041425 A JP 2005041425A JP 2006224150 A JP2006224150 A JP 2006224150A
Authority
JP
Japan
Prior art keywords
aluminum
spot welding
resistance spot
steel
welding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005041425A
Other languages
Japanese (ja)
Other versions
JP4425159B2 (en
Inventor
Satoru Iwase
哲 岩瀬
Seiji Sasabe
誠二 笹部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Kobe Steel Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Nisshin Steel Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2005041425A priority Critical patent/JP4425159B2/en
Publication of JP2006224150A publication Critical patent/JP2006224150A/en
Application granted granted Critical
Publication of JP4425159B2 publication Critical patent/JP4425159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the resistance spot welding method for different materials, with which different materials such as a steel and an aluminum material can be joined with a high welding strength without reducing thickness due to production of surface flash and with which a strong weld zone with a high breaking energy can be highly efficiently obtained. <P>SOLUTION: In carrying out resistance spot welding of a steel material 13 to an aluminum or an aluminum alloy material 14, a pulselike electric current is made to flow between electrodes 11, 12. In other words, an energizing period and a stopping period are alternately repeated, wherein the energizing time t1 is 0.6-10 times as long as the stopping time t2. The steel material 13 is a steel plate coated with zinc or zinc based alloy, or a steel plate plated with aluminum or aluminum alloy. The plating is hot-dip aluminum alloy plating containing 3-15 mass% Si and 0.5-5 mass% Fe. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車及び車輌等の各種構造材等として使用される鋼材とアルミニウム系(アルミニウム又はアルミニウム合金)材との複合構造体を得るための異材の抵抗スポット溶接方法に関する。   The present invention relates to a method for resistance spot welding of dissimilar materials to obtain a composite structure of a steel material and an aluminum-based (aluminum or aluminum alloy) material used as various structural materials for automobiles and vehicles.

アルミニウム又はアルミニウム合金(以下、総称してアルミニウム系という)材は、軽量な構造材料として、自動車及び車輌等に使用されている。この場合に、コスト、強度及び車体剛性等の種々の要因から、アルミニウム系材は、鋼材と組み合わせた複合材として使用されることが多い。このためには、アルミニウム系材と鋼材とを接合する必要がある。   Aluminum or aluminum alloy (hereinafter collectively referred to as aluminum-based) materials are used in automobiles and vehicles as lightweight structural materials. In this case, the aluminum-based material is often used as a composite material combined with a steel material due to various factors such as cost, strength, and vehicle body rigidity. For this purpose, it is necessary to join an aluminum-based material and a steel material.

鋼材同士の場合は、その簡便な接合方法として、抵抗スポット溶接方法が広く使用されている。そこで、アルミニウム系材と鋼材との接合にも、抵抗スポット溶接の適用が要望されている。この異種材料(以下、異材という)の抵抗スポット溶接方法として、特許文献1には、鋼材にコーティング層を設けることにより、鋼材とアルミニウム系材との間の溶接部の強度を高めた技術が開示されている。   In the case of steel materials, a resistance spot welding method is widely used as a simple joining method. Therefore, application of resistance spot welding is also demanded for joining aluminum-based materials and steel materials. As a resistance spot welding method for this dissimilar material (hereinafter referred to as a dissimilar material), Patent Document 1 discloses a technique in which the strength of the welded portion between the steel material and the aluminum-based material is increased by providing a coating layer on the steel material. Has been.

特開平4−251676号公報JP-A-4-251676

しかしながら、アルミニウム系材と鋼材との異材の抵抗スポット溶接方法においては、同種材料のスポット溶接とは異なり、異種の材料の溶融形態が相互に異なるために、溶接条件の適正化が重要である。つまり、図4に示すように、鋼材1及び鋼材2を抵抗スポット溶接する場合は、両者間に適正なナゲット3が形成される。しかし、図5に示すように、鋼材5とアルミニウム系材6との間の抵抗スポット溶接においては、特に、プレス成形後の油剤9がアルミニウム系材6の表面に残存し、被接合材間に油剤9が存在する場合においては、油剤の残留(巻込み)10が発生する。このように、油剤の残留10があると、アルミニウム系材6側にチリが発生し、肉厚の減少7が発生する。特に、異材接合においては、アルミニウム系材が過剰に加熱されることによりチリとなって滅失していまい、アルミニウム系材の肉厚が大幅に減少することにより、接合強度が低下してしまうという問題点があった。   However, in the resistance spot welding method of different materials of aluminum-based material and steel material, different from the spot welding of the same kind of material, since the melting forms of different materials are different from each other, it is important to optimize the welding conditions. That is, as shown in FIG. 4, when the steel materials 1 and 2 are resistance spot welded, an appropriate nugget 3 is formed between them. However, as shown in FIG. 5, in the resistance spot welding between the steel material 5 and the aluminum-based material 6, in particular, the oil agent 9 after press forming remains on the surface of the aluminum-based material 6, and between the materials to be joined. In the case where the oil agent 9 exists, the oil agent residue (entrainment) 10 occurs. Thus, if there is a residual 10 of the oil agent, dust is generated on the aluminum-based material 6 side, and a reduction 7 in thickness is generated. In particular, in dissimilar material bonding, aluminum-based materials are overheated and lost as dust, and the thickness of aluminum-based materials is greatly reduced, resulting in a decrease in bonding strength. There was a point.

一方、被接合材を洗浄して油分などを除去することも可能であるが、この場合は洗浄工程が増えるため、異材複合構造材の製造工程が複雑になる。従って、異材を洗浄しないまま接合できる抵抗スポット溶接方法が要望されている。   On the other hand, it is possible to clean the material to be joined to remove oil and the like, but in this case, the number of cleaning steps increases, which complicates the manufacturing process of the dissimilar composite structure material. Therefore, there is a demand for a resistance spot welding method capable of joining different materials without cleaning them.

本発明はかかる問題点に鑑みてなされたものであって、鋼材とアルミニウム系材との異材同士を、チリの発生による肉厚の減少なしに高接合強度で接合することができ、破断エネルギが高い強固な接合部を高効率で得ることができる異種材の抵抗スポット溶接方法を提供することを目的とする。   The present invention has been made in view of such problems, and can dissimilar materials of steel and aluminum-based materials can be joined with high joint strength without a reduction in wall thickness due to generation of dust. It is an object of the present invention to provide a resistance spot welding method for dissimilar materials capable of obtaining a high and strong joint with high efficiency.

本発明に係る異材の抵抗スポット溶接方法は、鋼材とアルミニウム又はアルミニウム合金材とを抵抗スポット溶接する異材の抵抗スポット溶接方法において、電極間に電流をパルス状に通電することを特徴とする。この場合に、パルス状に電流を通電するということは、矩形波又は三角波等の形状のパルス波の電流を繰り返し通電することであり、パルス波間の期間には、電流が0の場合と、低い電流が流れる場合とがある。   The different material resistance spot welding method according to the present invention is a different material resistance spot welding method in which a steel material and aluminum or an aluminum alloy material are resistance spot welded, wherein a current is pulsed between electrodes. In this case, energizing the current in a pulse form means repeatedly energizing a pulse wave current having a shape such as a rectangular wave or a triangular wave, and during the period between the pulse waves, the current is as low as 0. In some cases, current flows.

この異材の抵抗スポット溶接方法において、例えば、前記鋼材は、亜鉛又は亜鉛合金が被覆された被覆鋼板である。又は、例えば、前記鋼材は、アルミニウム又はアルミニウム合金がめっきされためっき鋼板である。この場合に、前記めっきは、Si:3〜15質量%、Fe:0.5〜5質量%を含む溶融アルミニウム合金めっきであることが好ましい。   In this dissimilar resistance spot welding method, for example, the steel material is a coated steel plate coated with zinc or a zinc alloy. Alternatively, for example, the steel material is a plated steel plate plated with aluminum or an aluminum alloy. In this case, the plating is preferably a molten aluminum alloy plating containing Si: 3 to 15% by mass and Fe: 0.5 to 5% by mass.

そして、前記溶接方法に用いる溶接電源はインバーター式であり、電極間に電流をパルス状に通電する際に、通電時間t1が停止時間t2の0.6〜10倍であり、かつ、t1×パルス数で計算される総通電時間が120〜800msecであることが好ましい。   And the welding power supply used for the said welding method is an inverter type | formula, When supplying an electric current between electrodes in a pulse form, energization time t1 is 0.6 to 10 times the stop time t2, and t1 * pulse The total energization time calculated by the number is preferably 120 to 800 msec.

また、前記電極間に電流をパルス状に通電する際に、単相交流式電源を使用する場合も、電極間に電流をパルス状に通電する際に、通電時間t1が停止時間t2の0.6〜10倍であることが好ましい。   Further, even when a single-phase AC power supply is used when applying current between the electrodes in a pulsed manner, when the current is applied in a pulsed manner between the electrodes, the energizing time t1 is 0. It is preferably 6 to 10 times.

本発明者は、異材の抵抗スポット溶接におけるアルミニウム系材のチリ発生について、種々実験研究を繰り返した結果、このチリ発生の原因が、油分等の介在物が鋼材とアルミニウム系材との間に存在することによって、両被接合材間の界面の接合部位における電流密度が過剰になり、融点が低いアルミニウム系材側が過剰に溶融し、滅失してしまうためであることを知見した。そこで、本発明においては、抵抗スポット溶接の通電に際し、電流をパルス状に通電することによって、通電電流を適度に抑制し、アルミニウムのチリの発生を防止する。これにより、アルミニウム系材の肉厚の滅失が防止され、高い継手強度の継手が得られる。   As a result of repeating various experimental studies on the generation of dust in aluminum-based materials in resistance spot welding of dissimilar materials, the present inventor found that the cause of this dust generation is that inclusions such as oil exist between the steel material and the aluminum-based material. As a result, it was found that the current density at the bonding portion at the interface between the two bonded materials becomes excessive, and the aluminum-based material side having a low melting point is excessively melted and lost. Therefore, in the present invention, when the resistance spot welding is energized, by energizing the current in a pulsed manner, the energized current is moderately suppressed and the generation of aluminum dust is prevented. Thereby, the loss of the thickness of the aluminum-based material is prevented, and a joint with high joint strength is obtained.

本発明によれば、抵抗スポット溶接における通電電流を、パルス状としたので、各通電期間の間に、電流が低いか、又は全く流れない期間が存在する。このため、接合界面温度が適度のものとなり、アルミニウム系材のチリ発生が防止される。その結果、アルミニウム系の減肉もなく、高強度の接合部を得ることができる。   According to the present invention, since the energization current in resistance spot welding is pulsed, there is a period in which the current is low or does not flow at all during each energization period. For this reason, the bonding interface temperature becomes moderate, and generation of dust in the aluminum-based material is prevented. As a result, a high-strength joint can be obtained without any aluminum-based thinning.

以下、本発明の実施の形態について添付の図面を参照して具体的に説明する。図1は、本発明の実施形態に係る異材の抵抗スポット溶接方法を示す縦断面図、図2はその通電電流の波形図である。板状の鋼材13とアルミニウム系材14とを重ね、電極11及び電極12により、鋼材13とアルミニウム系材14とを接合する部分を挟持する。そして、電極11,12間に図2に示すような波形の電流を通電する。これにより、電流が流れた部分が抵抗発熱し、その部分でスポット溶接される。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a longitudinal sectional view showing a resistance spot welding method for dissimilar materials according to an embodiment of the present invention, and FIG. 2 is a waveform diagram of the energization current. The plate-shaped steel material 13 and the aluminum-based material 14 are overlapped, and the electrode 11 and the electrode 12 sandwich the portion where the steel material 13 and the aluminum-based material 14 are joined. Then, a current having a waveform as shown in FIG. As a result, the portion where the current flows is heated by resistance, and spot welding is performed at the portion.

この場合に、本発明においては、図2(a)乃至(c)に示すように、通電電流の波形が、断続的なもの、つまりパルス状になるようにする。即ち、通電期間と停止期間とが交互に現れ、通電期間の時間(通電時間)がt1、停止期間の時間(停止時間)がt2である。図2(a)において、通電期間は正の電流と負の電流とが交互に現れるものである。図2(a)は、単相交流式電源を用いた場合の波形であり、交流波の1/2サイクル(時間t1+t2)の内に一定の停止時間t2をおいたものである。図2(b)は、インバーター式電源を用いた場合の波形であり、時間がt1の正の矩形波電流を、それらの間にt2の停止時間をおいて、断続的に通電したものである。図2(c)は、最大電流でフラットな部分を有し、上昇及び下降時に徐々に立ち上がり又は立ち下がる波形のパルス状の電流を通電したものである。なお、図3は従来の通電電流の波形を示し、所謂正弦波形であり、停止期間が存在しない。停止期間とは、一瞬電流が0になることではなく、電流0の時間が有限に存在するものである。   In this case, in the present invention, as shown in FIGS. 2A to 2C, the waveform of the energization current is made to be intermittent, that is, pulsed. That is, the energization period and the stop period appear alternately, the time of the energization period (energization time) is t1, and the time of the stop period (stop time) is t2. In FIG. 2A, a positive current and a negative current appear alternately during the energization period. FIG. 2 (a) shows a waveform when a single-phase AC power source is used, in which a fixed stop time t2 is placed within a half cycle (time t1 + t2) of the AC wave. FIG. 2 (b) shows a waveform when an inverter type power supply is used, in which a positive rectangular wave current of time t1 is intermittently energized with a stop time of t2 between them. . FIG. 2C shows a case where a pulse-shaped current having a flat portion with a maximum current and having a waveform that gradually rises or falls as it rises and falls is energized. FIG. 3 shows a waveform of a conventional energization current, which is a so-called sine waveform, and there is no stop period. The stop period does not mean that the current becomes zero for a moment, but has a finite time of current zero.

なお、図2(b)又は(c)に示すようなインバーター式電源による矩形波では、通電時間の間には、全く電流が流れないことが好ましいが、電流値が0〜6kA程度の低い電流が流れていても構わない。   In addition, in the rectangular wave by the inverter type power source as shown in FIG. 2 (b) or (c), it is preferable that no current flows during the energization time, but the current value is a low current of about 0-6 kA. May flow.

本発明においては、上述のように、各通電期間の間に、通電停止期間(状態)を入れることにより、電流が適度に抑えられるため、アルミニウム系材の滅失が起こらない。この場合に、通電時間t1は停止時間t2の0.6〜10倍であることが好ましい。通電時間/通電停止時間t1/t2が0.6よりも小さい場合は、通電に対して停止時間が長すぎるため電流が不十分となり、良好な溶融状態が得られない。一方、t1/t2が10を超えると、通電時間が長すぎるため、アルミニウム系材料が過剰に加熱され、チリとなって滅失してしまい、CTS、TSSなどの強度が著しく低くなる。   In the present invention, as described above, since an electric current is moderately suppressed by inserting an energization stop period (state) between the energization periods, the aluminum-based material is not lost. In this case, the energization time t1 is preferably 0.6 to 10 times the stop time t2. When energization time / energization stop time t1 / t2 is smaller than 0.6, the current is insufficient because the stop time is too long for energization, and a good molten state cannot be obtained. On the other hand, when t1 / t2 exceeds 10, since the energization time is too long, the aluminum-based material is excessively heated and lost as dust, and the strength of CTS, TSS, etc. is significantly reduced.

更に、鋼材13はアルミニウム又はアルミニウム合金をめっきしためっき鋼板であると、アルミニウム系材14と同種の金属が鋼材13の表面に被覆されていることになるため、アルミニウム系材14と鋼材13との間の親和性が高くなり、より強度が高い接合体が得られる。   Furthermore, if the steel material 13 is a plated steel plate plated with aluminum or an aluminum alloy, the same kind of metal as the aluminum material 14 is coated on the surface of the steel material 13. A high affinity is obtained, and a bonded body with higher strength is obtained.

ところで、被接合材である溶融アルミニウムめっき鋼板のめっき層組成が接合界面のAl−Fe二元合金層の生成に大きな影響を及ぼす。即ち、Si:3〜15質量%、Fe:0.5〜5質量%を含む溶融アルミニウムめっき層が形成されている溶融アルミニウムめっき鋼板をアルミニウム材料と抵抗スポット溶接で接合する場合、合金層消失域のある接合界面が形成され、接合強度が向上する。ここでいうSi、Feの含有量は、下地鋼/溶融アルミニウムめっき層の界面に形成されるAl−Fe−Si三元系合金層を含まない値である。   By the way, the plating layer composition of the hot dip galvanized steel sheet, which is the material to be joined, has a great influence on the formation of the Al—Fe binary alloy layer at the joint interface. That is, in the case where a hot-dip aluminum plated steel sheet on which a hot-dip aluminum plating layer containing Si: 3 to 15 mass% and Fe: 0.5 to 5 mass% is formed is joined to an aluminum material by resistance spot welding, the alloy layer disappearing region A certain bonding interface is formed, and the bonding strength is improved. The contents of Si and Fe here are values that do not include the Al—Fe—Si ternary alloy layer formed at the interface of the base steel / hot-dip aluminum plating layer.

鋼材13表面の溶融アルミニウムめっき層のSi,Fe濃度がAl−Fe二元合金層の生成に及ぼす影響は、次のように推察される。   The influence of the Si and Fe concentration of the molten aluminum plating layer on the surface of the steel material 13 on the formation of the Al—Fe binary alloy layer is presumed as follows.

Al−Fe二元合金層は、スポット溶接時の高温過熱で生成した溶融Alに溶け込んだFeが冷却過程で再析出した結果である。溶融Alに対するFeの溶け込み量は、下地鋼/めっき層のFeの濃度勾配に影響され、濃度勾配が大きいほど、換言すれば、めっき層のFe濃度が低いほど多くなる。溶出したFeは、拡散係数が比較的小さいことから下地鋼の近傍に存在し、冷却過程で多量のAl−Fe二元合金層となって接合界面に再析出する。そこで、めっき層のFe濃度を予め高くしておくと、下地鋼5からめっき層に溶け込むFeが少なくなり、結果としてAl−Fe二元合金層の生成が抑えられる。   The Al—Fe binary alloy layer is a result of reprecipitation of Fe dissolved in molten Al generated by high temperature overheating during spot welding during the cooling process. The amount of Fe penetration into the molten Al is affected by the Fe concentration gradient of the base steel / plating layer, and increases as the concentration gradient increases, in other words, as the Fe concentration in the plating layer decreases. The eluted Fe exists in the vicinity of the base steel because of its relatively small diffusion coefficient, and reprecipitates at the joint interface as a large amount of Al—Fe binary alloy layer during the cooling process. Therefore, if the Fe concentration of the plating layer is increased in advance, Fe that dissolves into the plating layer from the base steel 5 is reduced, and as a result, the generation of the Al—Fe binary alloy layer is suppressed.

めっき層のFe濃度が0.5質量%以上になると、電極の中心部ではAl−Fe2元合金層が生成するものの、中心部に比較して投入熱量の少ない電極の周辺部ではFeの溶け込みが抑えられ、合金層消失域が形成される。しかし、Fe濃度が5質量%を超えると、接合強度向上効果が得られない。   When the Fe concentration in the plating layer is 0.5% by mass or more, an Al—Fe binary alloy layer is formed at the center of the electrode, but Fe permeates at the periphery of the electrode with less input heat than the center. The alloy layer disappearing region is formed. However, if the Fe concentration exceeds 5% by mass, the effect of improving the bonding strength cannot be obtained.

めっき層に含まれるSiは、Feに比較して拡散係数が大きく、スポット溶接時の高温過熱でl−Fe−Si三元合金層から溶融Alに容易に移行し、めっき層の全体に分散される。そこで、めっき層のSi濃度を3〜15質量%と高めに設定することにより、Al−Fe−Si三元合金層から溶融AlへのSi拡散を遅延させ、接合界面を除く箇所で下地鋼に対するめっき層の密着性を確保する。また、Si濃度の増加に応じてAl−Fe二元合金層が減少する傾向がみられ、結果として接合強度も向上する。なお、めっき層中のSi濃度は15%を超えると、めっき浴浸漬後の凝固過程で粗大なSiが析出するため、めっき層自体の加工性が低下し、加工部材への適用が困難になる。このため、めっき層中のSiは15質量%以下とする。また、めっき鋼板自体の加工性には、めっき層厚さも大きく影響し、膜厚:5〜80μmの範囲とすることが好ましい。その他、Al−Feの相互拡散反応に大きな影響を及ぼさないTi、Sr、B、Cr、Mn、Zn等の元素は、スポット溶接以外の特性向上が必要な場合に、適宜含有することができる。   Si contained in the plating layer has a larger diffusion coefficient than Fe, and easily migrates from the l-Fe-Si ternary alloy layer to molten Al due to high temperature overheating during spot welding, and is dispersed throughout the plating layer. The Therefore, by setting the Si concentration of the plating layer as high as 3 to 15% by mass, the Si diffusion from the Al—Fe—Si ternary alloy layer to the molten Al is delayed, and the base steel is removed from the portion except the bonding interface. Ensure adhesion of plating layer. Further, there is a tendency that the Al—Fe binary alloy layer decreases as the Si concentration increases, and as a result, the bonding strength is also improved. If the Si concentration in the plating layer exceeds 15%, coarse Si is precipitated in the solidification process after immersion in the plating bath, so that the workability of the plating layer itself is lowered and it is difficult to apply it to a processed member. . For this reason, Si in a plating layer shall be 15 mass% or less. In addition, the thickness of the plating layer greatly affects the workability of the plated steel sheet itself, and the film thickness is preferably in the range of 5 to 80 μm. In addition, elements such as Ti, Sr, B, Cr, Mn, and Zn that do not greatly affect the Al—Fe interdiffusion reaction can be appropriately contained when it is necessary to improve properties other than spot welding.

下地鋼から溶融AlへのFe拡散は、下地鋼/めっき層界面にFe拡散防止層を形成することによっても抑えられる。Fe拡散防止層としては、本願出願人が開発したブレージング用アルミニウムめっき鋼板におけるN濃縮層が有効である。N濃縮層によって下地鋼から溶融Alに溶けこむFeが少なくなるので、接合界面に生成する脆弱なAl−Fe二元合金層がいっそう減少し、接合強度の高い接合構造体が得られる。   Fe diffusion from the base steel to the molten Al can also be suppressed by forming an Fe diffusion prevention layer at the base steel / plated layer interface. As the Fe diffusion preventing layer, an N enriched layer in an aluminized steel sheet for brazing developed by the present applicant is effective. Since the Fe enriched in the molten Al from the base steel is reduced by the N enriched layer, the fragile Al—Fe binary alloy layer generated at the joint interface is further reduced, and a joint structure having a high joint strength is obtained.

N:0.002〜0.020質量%を含む鋼板めっき原板として、溶融アルミニウムめっきした後、特定条件下で加熱処理すると、溶融めっき時に生成した合金層と下地鋼との界面にN濃縮層が生成する。この濃縮層の存在によって、Al−Feの相互拡散が著しく抑制され、鋼/アルミニウムの接合構造体として好適な溶融アルミニウムめっき鋼板が得られる。Al−Feの相互拡散抑制作用は、N濃縮層のN濃度が高いほどAl−Feの拡散抑制作用が得られるので、濃縮層のN濃度が3.0原子量%以上であることが好ましい。また、溶融めっき後の熱処理条件が一定の場合、下地鋼のN含有量が多くなるほどAl−Feの相互拡散抑制作用は向上する。しかし、0.02質量%を超える過剰量のNを含む場合、めっき鋼板自体の製造製が低下する。   N: As a steel plate plating original plate containing 0.002 to 0.020 mass%, after hot-dip aluminum plating, when heat-treated under specific conditions, an N-concentrated layer is formed at the interface between the alloy layer generated during hot-dip plating and the base steel. Generate. Due to the presence of this concentrated layer, interdiffusion of Al—Fe is remarkably suppressed, and a hot-dip aluminized steel sheet suitable as a steel / aluminum bonded structure can be obtained. Since the Al—Fe interdiffusion suppression effect is higher when the N concentration of the N concentrated layer is higher, the N—Fe concentration suppressing effect is preferably 3.0 atomic% or more. In addition, when the heat treatment conditions after hot dipping are constant, the Al—Fe interdiffusion suppression action improves as the N content of the base steel increases. However, when an excessive amount of N exceeding 0.02% by mass is included, the production of the plated steel sheet itself decreases.

鋼材に亜鉛又は亜鉛合金を被覆しためっき鋼板を、アルミニウム又はアルミニウム合金とのスポット溶接接合体に用いた場合、通常のスポット溶接では良好な強度が得られない。しかし、本発明のパルス制御によってスポット溶接時の温度が高温まで上昇しない適切な条件を選定すれば、亜鉛又は亜鉛合金めっき層自体の融点がアルミニウム合金より低いことから、良好な接合強度を示す接合構造体を得ることが可能になる。   When a plated steel sheet in which a steel material is coated with zinc or a zinc alloy is used for a spot welded joint with aluminum or an aluminum alloy, good strength cannot be obtained by ordinary spot welding. However, if an appropriate condition is selected so that the temperature during spot welding does not increase to a high temperature by the pulse control of the present invention, the melting point of the zinc or zinc alloy plating layer itself is lower than that of the aluminum alloy. A structure can be obtained.

次に、本発明の実施例について説明して、本発明の効果を説明する。下記表1に示す厚さ1.0mmのアルミニウムメッキ鋼板と厚さ1.0mmのJIS6061Al合金板とを、いずれの板も防錆油が付着したまま使用し、溶接加圧力を2.9kNとして、通電電流及び通電時間を下記表1に記載のように制御しながら、抵抗スポット溶接により接合し、異種接合体を得た。これらの溶接条件で接合した試験片における十字引張強度(CTS)および引張剪断試験(TSS)により破断した試験片における被溶接部の破断形態を表2に示す。また、得られた継手から図に示す引張試験片を加工し、引張剪断強度を求めた結果を表2に示す。   Next, examples of the present invention will be described to explain the effects of the present invention. A 1.0 mm thick aluminum-plated steel sheet and a 1.0 mm thick JIS6061Al alloy plate shown in Table 1 below are used with rust preventive oil attached to each plate, and the welding pressure is 2.9 kN. While controlling the energization current and the energization time as described in Table 1 below, joining was performed by resistance spot welding to obtain a heterogeneous joined body. Table 2 shows the fracture forms of the welded parts in the test pieces fractured by the cross tensile strength (CTS) and the tensile shear test (TSS) in the test pieces joined under these welding conditions. In addition, Table 2 shows the results obtained by processing the tensile test pieces shown in the figure from the obtained joints and obtaining the tensile shear strength.

Figure 2006224150
Figure 2006224150

Figure 2006224150
Figure 2006224150

この表1及び表2から明らかなように、実施例1乃至6はt1/t2が0.6乃至10であるので、接合強度が十分に高いと共に、アルミニウムのチリ飛散も少ないものであった。これに対し、比較例1は、t1/t2が0.6より小さく、溶融径(ナゲット)が小さく、十分な接合強度が得られなかった。比較例2はt1×Pが105であるので溶融径(ナゲット)が小さく、十分な接合強度が得られなかった。比較例3,4はt1/t2が10を超えているので、アルミニウムのチリが多量であり、接合強度が低いものであった。比較例5はt1×Pが800と高く、アルミニウムのチリが多量であり、接合強度が低いものであり、比較例6はパルス間電流/溶接電流が77%と高く、同様に、アルミニウムのチリが多量であり、接合強度が低いものであった。   As is clear from Tables 1 and 2, Examples 1 to 6 had t1 / t2 of 0.6 to 10, so that the bonding strength was sufficiently high and the aluminum dust was not scattered. On the other hand, in Comparative Example 1, t1 / t2 was smaller than 0.6, the melt diameter (nugget) was small, and sufficient bonding strength was not obtained. In Comparative Example 2, since t1 × P was 105, the melt diameter (nugget) was small, and sufficient bonding strength was not obtained. In Comparative Examples 3 and 4, since t1 / t2 exceeded 10, the amount of aluminum dust was large and the bonding strength was low. Comparative Example 5 has a high t1 × P of 800, a large amount of aluminum dust and low joint strength, and Comparative Example 6 has a high pulse current / welding current of 77%. Was a large amount and the bonding strength was low.

実施例2として、C:0.05質量%、Si:0.1質量%、Mn:0.25質量%、P:0.012質量%、S:0.006質量%、Al:0.006質量%を含み残部Feからなる冷延鋼板を溶融アルミニウムめっきした。この溶融アルミニウムめっき処理では、溶融アルミニウムめっき層のSi含有量を下記表3に示す値となるように調整し、厚さが25μmとなるように調整した。アルミニウム材には、厚さが1.0mmのJIS6061アルミニウム合金板を使用した。   As Example 2, C: 0.05 mass%, Si: 0.1 mass%, Mn: 0.25 mass%, P: 0.012 mass%, S: 0.006 mass%, Al: 0.006 A cold-rolled steel sheet including the remaining part and including the balance Fe was subjected to hot-dip aluminum plating. In this hot-dip aluminum plating treatment, the Si content of the hot-dip aluminum plating layer was adjusted to the value shown in Table 3 below, and the thickness was adjusted to 25 μm. As the aluminum material, a JIS6061 aluminum alloy plate having a thickness of 1.0 mm was used.

これらの被接合材に対し、溶接加圧力を2.9kNとして上記実施例2の溶接条件で抵抗スポット溶接を行った。作成された構造体の接合強度を引張剪断試験及び十字引張試験で測定した。表3の試験結果にみるように、溶融アルミニウムめっき層のSi、Fe濃度が適正範囲(Si:3〜15質量%、Fe:0.5〜5質量%)に維持されると、引張剪断強度:2.6kN以上、十字引張強度1.3kN以上と高い接合強度を持つ接合構造体が得られることがわかる。   Resistance spot welding was performed on the materials to be joined under the welding conditions of Example 2 above with a welding pressure of 2.9 kN. The joint strength of the prepared structure was measured by a tensile shear test and a cross tensile test. As can be seen from the test results in Table 3, when the Si and Fe concentrations of the molten aluminum plating layer are maintained in appropriate ranges (Si: 3 to 15% by mass, Fe: 0.5 to 5% by mass), the tensile shear strength : It can be seen that a bonded structure having a high bonding strength of 2.6 kN or more and a cross tensile strength of 1.3 kN or more can be obtained.

Figure 2006224150
Figure 2006224150

以上詳述したように、本発明によれば、アルミニウム系材と鋼材が抵抗スポット溶接によって強固に接合され、アルミニウム系材及び鋼材の長所を活かした接合構造体を得ることができ、車輌構造体、熱交換器用など、種々の構造部材に使用することができる。   As described above in detail, according to the present invention, an aluminum-based material and a steel material are firmly joined by resistance spot welding, and a bonded structure that takes advantage of the advantages of the aluminum-based material and the steel material can be obtained. It can be used for various structural members such as for heat exchangers.

本発明の実施形態に係る異材の抵抗スポット溶接方法を示す縦方向断面図である。It is longitudinal direction sectional drawing which shows the resistance spot welding method of the dissimilar material which concerns on embodiment of this invention. 本発明の通電電流の波形の一例を示す図である。It is a figure which shows an example of the waveform of the energization current of this invention. 従来の通電電流の波形を示す図である。It is a figure which shows the waveform of the conventional energization current. 鋼材同士の抵抗スポット溶接の断面を示す断面図である。It is sectional drawing which shows the cross section of the resistance spot welding of steel materials. 従来の鋼材とアルミニウム系材との抵抗スポット溶接の断面を示す断面図である。It is sectional drawing which shows the cross section of the resistance spot welding of the conventional steel materials and aluminum-type material.

符号の説明Explanation of symbols

1、2、5:鋼材
3:ナゲット
6:アルミニウム系材
9:油剤
10:油剤の残留(巻込み)
11,12:電極
13:鋼材
14:アルミニウム系材
1, 2, 5: Steel material 3: Nugget 6: Aluminum-based material 9: Oil agent 10: Residue of oil agent (entrainment)
11, 12: Electrode 13: Steel material 14: Aluminum-based material

Claims (5)

鋼材とアルミニウム又はアルミニウム合金材とを抵抗スポット溶接する異材の抵抗スポット溶接方法において、電極間に電流をパルス状に通電することを特徴とする異材の抵抗スポット溶接方法。 A resistance spot welding method for dissimilar materials, wherein a current is pulsed between electrodes in a resistance spot welding method for dissimilar materials in which a steel material and aluminum or an aluminum alloy material are resistance spot welded. 前記鋼材は、亜鉛又は亜鉛合金が被覆された被覆鋼板であることを特徴とする請求項1に記載の異材の抵抗スポット溶接方法。 2. The resistance spot welding method for dissimilar materials according to claim 1, wherein the steel material is a coated steel plate coated with zinc or a zinc alloy. 前記鋼材は、アルミニウム又はアルミニウム合金がめっきされためっき鋼板であることを特徴とする請求項1に記載の異材の抵抗スポット溶接方法。 2. The resistance spot welding method for dissimilar materials according to claim 1, wherein the steel material is a plated steel plate plated with aluminum or an aluminum alloy. 前記溶接方法に用いる溶接電源がインバーター式又は単相交流式であり、電極間に電流をパルス状に通電する際に、通電時間t1が停止時間t2の0.6乃至10倍であり、かつ、総通電時間が120乃至800msecであることを特徴とする請求項1乃至3のいずれか1項に記載の異材の抵抗スポット溶接方法。 The welding power source used in the welding method is an inverter type or a single-phase AC type, and when the current is applied between the electrodes in a pulsed manner, the energization time t1 is 0.6 to 10 times the stop time t2, and The resistance spot welding method for dissimilar materials according to any one of claims 1 to 3, wherein a total energization time is 120 to 800 msec. 前記めっきは、Si:3〜15質量%、Fe:0.5〜5質量%を含む溶融アルミニウム合金めっきであることを特徴とする請求項3に記載の異材の抵抗スポット溶接方法。

4. The resistance spot welding method for dissimilar materials according to claim 3, wherein the plating is a molten aluminum alloy plating containing Si: 3 to 15% by mass and Fe: 0.5 to 5% by mass.

JP2005041425A 2005-02-17 2005-02-17 Resistance spot welding method for dissimilar materials Active JP4425159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005041425A JP4425159B2 (en) 2005-02-17 2005-02-17 Resistance spot welding method for dissimilar materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005041425A JP4425159B2 (en) 2005-02-17 2005-02-17 Resistance spot welding method for dissimilar materials

Publications (2)

Publication Number Publication Date
JP2006224150A true JP2006224150A (en) 2006-08-31
JP4425159B2 JP4425159B2 (en) 2010-03-03

Family

ID=36985957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005041425A Active JP4425159B2 (en) 2005-02-17 2005-02-17 Resistance spot welding method for dissimilar materials

Country Status (1)

Country Link
JP (1) JP4425159B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152786A (en) * 2011-01-26 2012-08-16 Nippon Steel Corp Dissimilar metal welding method of steel sheet and aluminum alloy sheet, and dissimilar metal welded joint
JP2013151016A (en) * 2011-12-27 2013-08-08 Mazda Motor Corp Welding method
JP2014172053A (en) * 2013-03-06 2014-09-22 Nippon Steel & Sumitomo Metal Manufacturing method of weld joint
JP2014205174A (en) * 2013-04-15 2014-10-30 マツダ株式会社 Resistance spot welding method of dissimilar metal material
CN106513965A (en) * 2015-09-15 2017-03-22 通用汽车环球科技运作有限责任公司 Power pulse method for controlling resistance weld nugget growth and properties during steel spot welding
CN112570867A (en) * 2019-09-27 2021-03-30 中国科学院上海光学精密机械研究所 Method for inhibiting internal defects of resistance spot welding nuggets of aluminum alloy
WO2023130792A1 (en) * 2022-01-05 2023-07-13 Novelis Inc. Systems and methods for improving aluminum resistance spot welding

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572046B2 (en) 2010-09-13 2014-08-13 株式会社神戸製鋼所 Dissimilar material joining method
CN109317801A (en) * 2018-12-03 2019-02-12 闫宇 A kind of microdot Welding of nickel-clad copper harness and copper sheet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152786A (en) * 2011-01-26 2012-08-16 Nippon Steel Corp Dissimilar metal welding method of steel sheet and aluminum alloy sheet, and dissimilar metal welded joint
JP2013151016A (en) * 2011-12-27 2013-08-08 Mazda Motor Corp Welding method
JP2013151017A (en) * 2011-12-27 2013-08-08 Mazda Motor Corp Welding method
JP2013151018A (en) * 2011-12-27 2013-08-08 Mazda Motor Corp Welding method
JP2014172053A (en) * 2013-03-06 2014-09-22 Nippon Steel & Sumitomo Metal Manufacturing method of weld joint
JP2014205174A (en) * 2013-04-15 2014-10-30 マツダ株式会社 Resistance spot welding method of dissimilar metal material
CN106513965A (en) * 2015-09-15 2017-03-22 通用汽车环球科技运作有限责任公司 Power pulse method for controlling resistance weld nugget growth and properties during steel spot welding
CN106513965B (en) * 2015-09-15 2018-11-20 通用汽车环球科技运作有限责任公司 For controlling the power pulse method of resistance welding nugget growth and performance during steel spot welding
CN112570867A (en) * 2019-09-27 2021-03-30 中国科学院上海光学精密机械研究所 Method for inhibiting internal defects of resistance spot welding nuggets of aluminum alloy
WO2023130792A1 (en) * 2022-01-05 2023-07-13 Novelis Inc. Systems and methods for improving aluminum resistance spot welding

Also Published As

Publication number Publication date
JP4425159B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
JP4425159B2 (en) Resistance spot welding method for dissimilar materials
JP3927987B2 (en) Dissimilar material joining method
US20170297136A1 (en) Control of intermetallic compound growth in aluminum to steel resistance welding
JP5689492B2 (en) Dissimilar material joining filler metal and dissimilar material welding structure
US10376984B2 (en) Conical shaped current flow to facilitate dissimilar metal spot welding
JPWO2006046608A1 (en) Method of joining iron-based member and aluminum-based member
JP7261167B2 (en) Resistance welding of non-weldable metals with thermally sprayed interlayers
JP4656495B2 (en) Joining method and joining structure of oxide film forming material
JP2012152789A (en) Method for joining dissimilar metal plates by overlapping and electric resistance brazing, and brazing joint formed by the same
JP2007136525A (en) Method for joining dissimilar materials
KR102061471B1 (en) Laser Brazing Method and Manufacturing Method of Lap Joint Member
JP4911977B2 (en) Steel / aluminum joint structure
JP5051608B2 (en) Method of joining dissimilar metals by resistance spot welding
JP2006224127A (en) Method for manufacturing steel/aluminum joined structure
JPH0655277A (en) Joining method for steel material and aluminum-base material
JP6153744B2 (en) Manufacturing method of welded joint
JP5215986B2 (en) Dissimilar material joint and dissimilar material joining method
KR102061470B1 (en) MIG brazing method, manufacturing method of overlap joint member, and overlap joint member
JP7255652B2 (en) Weld bond joint manufacturing method
JP4962907B2 (en) Dissimilar metal joining method and joining structure
JP2019177408A (en) Welded structure and method for manufacturing the same
JP7194269B2 (en) Assembly of at least two metal substrates
JP2005199327A (en) Ultrasonic joining method of aluminum-based metal and steel
JP6133286B2 (en) MIG welded joint structure of aluminum and steel
JP6349597B2 (en) Molten metal electroplating method and cathodic protection method against molten metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091208

R150 Certificate of patent or registration of utility model

Ref document number: 4425159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250