JP2012152786A - Dissimilar metal welding method of steel sheet and aluminum alloy sheet, and dissimilar metal welded joint - Google Patents

Dissimilar metal welding method of steel sheet and aluminum alloy sheet, and dissimilar metal welded joint Download PDF

Info

Publication number
JP2012152786A
JP2012152786A JP2011014081A JP2011014081A JP2012152786A JP 2012152786 A JP2012152786 A JP 2012152786A JP 2011014081 A JP2011014081 A JP 2011014081A JP 2011014081 A JP2011014081 A JP 2011014081A JP 2012152786 A JP2012152786 A JP 2012152786A
Authority
JP
Japan
Prior art keywords
energization
aluminum alloy
steel plate
dissimilar metal
alloy plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011014081A
Other languages
Japanese (ja)
Other versions
JP5624901B2 (en
Inventor
Tatsuya Sakiyama
達也 崎山
Hatsuhiko Oikawa
初彦 及川
Hajime Murayama
元 村山
Yasunobu Miyazaki
康信 宮崎
Yasuo Takahashi
靖雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Furukawa Sky Aluminum Corp
Original Assignee
Nippon Steel Corp
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Furukawa Sky Aluminum Corp filed Critical Nippon Steel Corp
Priority to JP2011014081A priority Critical patent/JP5624901B2/en
Publication of JP2012152786A publication Critical patent/JP2012152786A/en
Application granted granted Critical
Publication of JP5624901B2 publication Critical patent/JP5624901B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide the dissimilar metal welding method of a steel sheet and an aluminum alloy sheet for suppressing formation of an intermetallic compound on a weld interface, and can improve joint strength, fatigue strength and corrosion resistance, and dissimilar metal welded joint.SOLUTION: When a steel sheet 1 and an aluminum alloy sheet 2 are subjected to resistance spot welding, energizing time Bt(ms) and stop time Rt(ms) are made into the conditions satisfying expressions {2≤Bt≤10} and {1≤Rt≤5}, pulsation energizing under pressurizing force EF(kN) is performed in the range of 2 to 8 times, after the final energizing stop for the stop time Rt(ms) is completed, immediately, the pressurizing force is increased to pressurizing force FF(kN) after the completion of the energizing satisfying an expression {1.2×EF≤FF≤2.0×EF}, subsequently, the pressurizing is held for a holding time Ht(ms) satisfying an expression {50≤Ht≤300}, and thereafter, the pressurizing force is unloaded.

Description

本発明は、鋼板とアルミニウム合金板との異種金属接合方法および異種金属接合継手に関するものであり、特に、部分的なアルミニウム合金板の適用で軽量化された自動車用部品の製造や車体の組立等の工程において、鋼板とアルミニウム合金板とを接合する異種金属接合方法、および、それによって得られる異種金属接合継手に関するものである。   The present invention relates to a dissimilar metal joining method and a dissimilar metal joining joint between a steel plate and an aluminum alloy plate, and in particular, manufacture of automobile parts reduced in weight by application of a partial aluminum alloy plate, assembly of a vehicle body, and the like. In this process, the present invention relates to a dissimilar metal joining method for joining a steel plate and an aluminum alloy plate, and a dissimilar metal joint joint obtained thereby.

近年、自動車分野においては、低燃費化や炭酸ガス(CO)の排出量削減を目的とした車体の軽量化のため、車体や部品等に部分的にアルミニウム合金板を使用するニーズが高まっており、特に、ハイブリッド車等の分野において顕著となっている。一方、車体の組立や部品の取付け等の工程においては、主としてスポット溶接が用いられているが、アルミニウム合金板が部分的に使用された場合には、鋼板とアルミニウム合金板とをスポット溶接する必要性が生じる。 In recent years, in the automobile field, there has been a growing need to partially use aluminum alloy plates for car bodies and parts in order to reduce vehicle weight for the purpose of reducing fuel consumption and reducing carbon dioxide (CO 2 ) emissions. In particular, it is prominent in the field of hybrid vehicles and the like. On the other hand, spot welding is mainly used in processes such as vehicle body assembly and parts mounting. However, when an aluminum alloy plate is partially used, it is necessary to spot weld the steel plate and the aluminum alloy plate. Sex occurs.

ここで、一般に、スポット溶接によって得られる溶接継手で重要な特性としては、引張強さと疲労強度が挙げられるが、まず重要なのは引張強さである。溶接継手の引張強さには、せん断方向に引張荷重を負荷して測定する引張せん断強さ(TSS)と、剥離方向に引張荷重を負荷して測定する十字引張強さ(CTS)がある。   Here, in general, the important characteristics of a welded joint obtained by spot welding include tensile strength and fatigue strength, but the most important is tensile strength. The tensile strength of a welded joint includes a tensile shear strength (TSS) measured by applying a tensile load in the shear direction and a cross tensile strength (CTS) measured by applying a tensile load in the peeling direction.

しかしながら、鋼板とアルミニウム合金板とをスポット溶接した場合には、以下のような問題が生じる。
図6に示すように、鋼板101とアルミニウム合金板201とをスポット溶接した場合には、溶接部において脆性なFeAl等からなる金属間化合物203が生成される。この金属間化合物203は、鋼板101とアルミニウム合金板201側に生成されるAl溶融部201aの界面で生成され、特に、Fe溶融部101aが大きい場合には金属間化合物203の生成量も増大する。このような金属間化合物203が大量に生成されると、スポット溶接部(溶接継手)110の引張強さ、特に剥離方向の十字引張強さが極端に低下するという問題が生じる。また、上述のような金属間化合物203が生成された溶接継手に衝撃が加わった場合には、容易に破壊が起こるという問題も生じる。さらに、金属間化合物203が生成された溶接部では、腐食が優先的に進行するため、耐食性が劣るという問題もある。
However, when the steel plate and the aluminum alloy plate are spot-welded, the following problems occur.
As shown in FIG. 6, when the steel plate 101 and the aluminum alloy plate 201 are spot-welded, an intermetallic compound 203 made of brittle Fe 2 Al 5 or the like is generated in the welded portion. The intermetallic compound 203 is generated at the interface between the Al molten portion 201a generated on the steel plate 101 and the aluminum alloy plate 201 side. In particular, when the Fe molten portion 101a is large, the generation amount of the intermetallic compound 203 also increases. . When such a large amount of intermetallic compound 203 is produced, there arises a problem that the tensile strength of the spot welded portion (welded joint) 110, particularly the cross tensile strength in the peeling direction, is extremely lowered. In addition, when an impact is applied to the welded joint in which the intermetallic compound 203 as described above is generated, there is a problem that breakage easily occurs. Furthermore, in the welded portion where the intermetallic compound 203 is generated, corrosion preferentially progresses, so that there is a problem that the corrosion resistance is inferior.

鋼板とアルミニウム合金板とを溶接する際に金属間化合物が生成するのを抑制し、継手強度を高めるため、これまでに多くの方法が提案されている。例えば、溶接時の通電パターンを大電流・短時間通電とすることで金属間化合物の生成を抑制する方法(例えば、特許文献1等を参照)や、電極先端形状を工夫することによって金属間化合物の成長を抑制する方法(例えば、特許文献2等を参照)が提案されている。また、被溶接材である鋼板やアルミニウム合金板の組成、または、酸化皮膜におけるMnやSiの含有量を適正化することで、金属間化合物の生成を抑制する方法が提案されている(例えば、特許文献3等を参照)。   Many methods have been proposed so far in order to suppress the formation of intermetallic compounds when welding a steel plate and an aluminum alloy plate and increase the joint strength. For example, a method of suppressing the formation of intermetallic compounds by setting the energization pattern during welding to a large current and a short time energization (see, for example, Patent Document 1), and an intermetallic compound by devising the electrode tip shape A method (for example, see Patent Document 2) has been proposed. Moreover, the method of suppressing the production | generation of an intermetallic compound is proposed by optimizing the composition of the steel plate and aluminum alloy plate which are to-be-welded materials, or content of Mn and Si in an oxide film (for example, (See Patent Document 3).

また、鋼板とアルミニウム合金板とを溶接するにあたり、予め接合面間に接着層等を設け、接着と溶接を併用することで継手強度や耐食性を向上させる方法が提案されている(例えば、特許文献4等を参照)。また、鋼板とアルミニウム合金板とを溶接するにあたり、共晶反応を用いた溶接を行う方法が提案されている(例えば、特許文献等5を参照)。また、鋼板とアルミニウム合金板との溶接部に生成される金属間化合物の厚さや面積率を規定することで、継手強度を確保する方法も提案されている(例えば、特許文献6等を参照)。   In addition, when welding a steel plate and an aluminum alloy plate, a method has been proposed in which an adhesive layer or the like is provided in advance between the joint surfaces, and joint strength and corrosion resistance are improved by using adhesion and welding together (for example, Patent Documents). See 4). Moreover, in welding a steel plate and an aluminum alloy plate, a method of performing welding using a eutectic reaction has been proposed (see, for example, Patent Document 5). In addition, a method for securing joint strength by defining the thickness and area ratio of an intermetallic compound generated at a welded portion between a steel plate and an aluminum alloy plate has also been proposed (see, for example, Patent Document 6). .

また、例えば、鋼板とアルミニウム合金板との間にアルミクラッド鋼板をインサートして溶接することで、溶接後の継手強度を高める方法や、セルフピアスリベット等による機械的接合を使用する方法もある。また、ピンを回転させながら加圧力で被溶接材に押し付けて摩擦熱を発生させ、この摩擦熱と、ピンの回転と軸方向に発生した塑性流動によって接合を行う摩擦攪拌接合法を用いる方法もある。また、パイプ同士や棒同士の接合では、回転した被接合材同士を強い圧力で押し当てることで、その摩擦熱で接合する摩擦攪拌接合を用いる方法も考えられる。その他、例えば、アルミニウム合金板を鋼ピンで貫通させて鋼板に接触させ、鋼ピンと鋼板との間で通電を行うことで接触部を抵抗溶接することにより、鋼板とアルミニウム合金板とを接合させる方法等も考えられる。
しかしながら、上記何れの方法においても、鋼板とアルミニウム合金板との溶接部において脆弱な金属間化合物が大量に生成され、接合強度や耐食性が低下するという問題があった。また、これらの方法は、接合法が複雑であるという問題も抱えていた。
Also, for example, there are a method of increasing the joint strength after welding by inserting and welding an aluminum clad steel plate between a steel plate and an aluminum alloy plate, and a method of using mechanical joining by a self-piercing rivet or the like. There is also a method using a friction stir welding method in which a frictional heat is generated by pressing against a workpiece to be welded with a pressure while rotating the pin, and the frictional heat is joined by the rotation of the pin and the plastic flow generated in the axial direction. is there. Moreover, in joining pipes or rods, a method of using friction stir welding that joins by rotating the materials to be joined with strong pressure by pressing the members to be joined together with a strong pressure is also conceivable. In addition, for example, a method for joining a steel plate and an aluminum alloy plate by allowing an aluminum alloy plate to penetrate through a steel pin to contact the steel plate and resistance-welding the contact portion by energizing between the steel pin and the steel plate. Etc. are also conceivable.
However, in any of the above methods, there is a problem that a large amount of brittle intermetallic compound is generated in the welded portion between the steel plate and the aluminum alloy plate, and the bonding strength and corrosion resistance are lowered. These methods also have a problem that the joining method is complicated.

ここで、鋼板にアルミニウムめっき鋼板を用いるとともに、アルミニウムめっき中におけるSi等の成分組成を適正化する方法が提案されている(例えば、特許文献7等を参照)。特許文献7に記載の方法によれば、めっき中の成分が適正化されたアルミニウムめっき鋼板を用いることで、溶接部の接合強度が高められるとされている。しかしながら、特許文献7に記載の方法を用いても、鋼板とアルミニウム合金板で生成する溶融Al(Al溶融部)との界面において大量のFe−Al系金属間化合物が生成する。このため、上記同様に、溶接後の継手強度、特に剥離方向の十字引張強さや耐衝撃性、耐食性が低下するという問題があった。   Here, a method has been proposed in which an aluminum-plated steel plate is used as the steel plate and the composition of components such as Si in the aluminum plating is optimized (for example, see Patent Document 7). According to the method described in Patent Document 7, it is said that the joint strength of the welded portion can be increased by using an aluminum-plated steel sheet in which components during plating are optimized. However, even if the method described in Patent Document 7 is used, a large amount of Fe—Al-based intermetallic compound is produced at the interface between molten steel (Al melted part) produced by a steel plate and an aluminum alloy plate. For this reason, similarly to the above, there has been a problem that the joint strength after welding, particularly the cross tensile strength in the peeling direction, the impact resistance, and the corrosion resistance are lowered.

特開2004−114108号公報JP 2004-114108 A 特開2007−326146号公報JP 2007-326146 A 特開2006−336070号公報JP 2006-336070 A 特開2008−080394号公報JP 2008-080394 A 特開2010−099672号公報JP 2010-099672 A 特開2009−061500号公報JP 2009-061500 特開2006−198679号公報JP 2006-198679 A

本発明は上記問題に鑑みてなされたものであり、鋼板とアルミニウム合金板とをスポット溶接した場合においても、接合界面にFe−Al系金属間化合物が生成されるのを抑制することができ、継手強度、疲労強度および耐食性を向上させることが可能な、鋼板とアルミニウム合金板との異種金属接合方法、および、それによって得られる異種金属接合継手を提供することを目的とする。   The present invention has been made in view of the above problems, and even when a steel plate and an aluminum alloy plate are spot-welded, it is possible to suppress the formation of an Fe-Al intermetallic compound at the bonding interface, It is an object of the present invention to provide a dissimilar metal joining method between a steel plate and an aluminum alloy plate, which can improve joint strength, fatigue strength and corrosion resistance, and a dissimilar metal joint joint obtained thereby.

本発明者等が上記問題を解決するために鋭意研究したところ、鋼板とアルミニウム合金板との間で、スポット溶接による異種金属接合を行うにあたり、大電流・短時間のパルセーション通電を行う通電条件を採用し、通電終了後に直ちに加圧力を増加させることで、接合界面における金属間化合物の生成・成長が抑制され、かつ金属化合物が生成されても鋼板とアルミニウム合金板の界面から排出されることを知見した。即ち、適正な溶接条件で鋼板とアルミニウム合金板とをスポット溶接することにより、継手強度、特に剥離方向の十字引張強さが向上するとともに、疲労強度および耐食性を向上させることが可能となることを見出し、本発明を完成させた。
即ち、本発明の要旨は以下のとおりである。
When the present inventors have eagerly studied to solve the above-mentioned problem, when conducting dissimilar metal joining by spot welding between a steel plate and an aluminum alloy plate, energization conditions for conducting pulsation energization for a large current and for a short time are performed. By increasing the applied pressure immediately after the end of energization, the formation and growth of intermetallic compounds at the bonding interface is suppressed, and even if metal compounds are generated, they are discharged from the interface between the steel plate and the aluminum alloy plate. I found out. That is, by spot welding a steel plate and an aluminum alloy plate under appropriate welding conditions, the joint strength, particularly the cross tensile strength in the peeling direction, can be improved, and the fatigue strength and corrosion resistance can be improved. The headline and the present invention were completed.
That is, the gist of the present invention is as follows.

[1] 鋼板とアルミニウム合金板とを各1枚以上で合計2枚以上を重ね合わせた状態とし、前記鋼板およびアルミニウム合金板の上下に配置された電極で加圧しながら抵抗スポット溶接を行う、鋼板とアルミニウム合金板との異種金属接合方法であって、前記抵抗スポット溶接を行う際、通電時間Bt(ms)、休止時間Rt(ms)を下記(1)、(2)式を満たす条件とし、加圧力EF(kN)でのパルセーション通電を2〜8回の範囲で行い、前記休止時間Rt(ms)での最後の通電休止が完了した後、直ちに、加圧力を、下記(3)式を満たす通電完了後の加圧力FF(kN)まで増加させ、その後、下記(4)式を満足する保持時間Ht(ms)で加圧保持した後、加圧力を除荷することを特徴とする、鋼板とアルミニウム合金板との異種金属接合方法。
2 ≦ Bt ≦ 10 ・・・・・(1)
1 ≦ Rt ≦ 5 ・・・・・(2)
1.2×EF ≦ FF ≦ 2.0×EF ・・・・・(3)
50 ≦ Ht ≦ 300 ・・・・・(4)
{但し、上記(1)〜(4)式において、Bt:通電時間(ms)、Rt:休止時間(ms)、EF:パルセーション通電中の加圧力(kN)、FF:通電完了後の加圧力(kN)、Ht:保持時間(ms)を示す。}
[1] A steel plate in which one or more steel plates and aluminum alloy plates are superposed, and a total of two or more plates are superposed, and resistance spot welding is performed while applying pressure with electrodes arranged above and below the steel plates and aluminum alloy plates. Is a dissimilar metal joining method between an aluminum alloy plate and the resistance spot welding, the energization time Bt (ms), the rest time Rt (ms) is a condition satisfying the following formulas (1) and (2): The pulsation energization with the applied pressure EF (kN) is performed in the range of 2 to 8 times, and immediately after the final energization suspension with the rest time Rt (ms) is completed, the applied pressure is expressed by the following formula (3) The pressure is increased to the applied pressure FF (kN) after completion of energization satisfying the condition, and after that, the pressure is held for a holding time Ht (ms) that satisfies the following formula (4), and then the applied pressure is unloaded. Steel plate and aluminum alloy Dissimilar metal joining method with plate.
2 ≦ Bt ≦ 10 (1)
1 ≦ Rt ≦ 5 (2)
1.2 x EF ≤ FF ≤ 2.0 x EF (3)
50 ≦ Ht ≦ 300 (4)
{However, in the above formulas (1) to (4), Bt: energization time (ms), Rt: rest time (ms), EF: applied pressure during pulsation energization (kN), FF: applied after completion of energization Pressure (kN), Ht: holding time (ms). }

[2] 前記パルセーション通電を行う前に、予め、下記(5)、(6)を満たす前通電時間Pt(ms)および前通電中の加圧力PF(kN)の条件で前通電を行うことにより、前記鋼板とアルミニウム合金板との接合界面間に微小な散りを発生させ、その後、前記パルセーション通電を行うことを特徴とする、上記[1]に記載の鋼板とアルミニウム合金板との異種金属接合方法。
5 ≦ Pt ≦ 20 ・・・・・(5)
0.6×EF ≦ PF ≦ 0.8×EF ・・・・・(6)
{但し、上記(5)、(6)式において、Pt:前通電時間(ms)、EF:パルセーション通電中の加圧力(kN)、PF:前通電中の加圧力(kN)を示す。}
[2] Before conducting the pulsation energization, pre-energization is performed in advance under the conditions of the pre-energization time Pt (ms) satisfying the following (5) and (6) and the pressure PF (kN) during the pre-energization. Thus, the dissimilarity between the steel plate and the aluminum alloy plate according to the above [1] is characterized in that minute scattering is generated between the joining interfaces between the steel plate and the aluminum alloy plate, and then the pulsation energization is performed. Metal joining method.
5 ≦ Pt ≦ 20 (5)
0.6 × EF ≦ PF ≦ 0.8 × EF (6)
{However, in the above formulas (5) and (6), Pt: pre-energization time (ms), EF: pressure applied during pulsation energization (kN), PF: pressure applied during pre-energization (kN). }

[3] 上記[1]または[2]に記載の異種金属接合方法により、鋼板とアルミニウム合金板とが接合されてなる異種金属接合継手であって、前記鋼板とアルミニウム合金板との接合界面に、加圧通電時の電極中心部に対応する位置における厚さが0.5μm以下のFe−Al系金属間化合物層が生成されていることを特徴とする、鋼板とアルミニウム合金板との異種金属接合継手。   [3] A dissimilar metal joint obtained by joining a steel plate and an aluminum alloy plate by the dissimilar metal joining method according to [1] or [2], wherein the joint is formed between the steel plate and the aluminum alloy plate. A dissimilar metal between a steel plate and an aluminum alloy plate, characterized in that a Fe-Al intermetallic compound layer having a thickness of 0.5 μm or less at a position corresponding to the center of the electrode at the time of applying pressure is formed Joint joint.

本発明の鋼板とアルミニウム合金板との異種金属接合方法によれば、上記構成の如く、鋼板とアルミニウム合金板とをスポット溶接する際の溶接条件、即ち、通電ならびに加圧条件を最適化する方法を採用している。これにより、鋼板とアルミニウム合金板とを接合する際の良好な作業性を確保しつつ、溶接部の特性、即ち、継手強度、疲労強度および耐食性に優れた、信頼性の高い継手を形成させることが可能となる。   According to the dissimilar metal joining method of a steel plate and an aluminum alloy plate of the present invention, as described above, a method for optimizing the welding conditions when spot-welding the steel plate and the aluminum alloy plate, that is, energization and pressure conditions Is adopted. This makes it possible to form a highly reliable joint with excellent weldability, that is, joint strength, fatigue strength, and corrosion resistance, while ensuring good workability when joining a steel plate and an aluminum alloy plate. Is possible.

また、本発明に係る異種金属接合継手によれば、上記の異種金属接合方法によって鋼板とアルミニウム合金板とを接合することで得られ、金属間化合物の厚さが所定以下に抑制されたものなので、継手強度、疲労強度および耐食性に優れた信頼性の高いものとなる。   Further, according to the dissimilar metal joint according to the present invention, it is obtained by joining the steel plate and the aluminum alloy plate by the dissimilar metal joining method, and the thickness of the intermetallic compound is suppressed to a predetermined value or less. In addition, the joint strength, fatigue strength and corrosion resistance are excellent and highly reliable.

従って、例えば、自動車分野において、部分的なアルミニウム合金板の適用で軽量化された自動車用部品の製造や車体の組立等の工程に本発明を適用することにより、車体全体の軽量化による低燃費化や炭酸ガス(CO)の排出量削減等のメリットを十分に享受することができ、その社会的貢献は計り知れない。 Therefore, for example, in the automotive field, by applying the present invention to the process of manufacturing parts for automobiles that are lightened by applying a partial aluminum alloy plate, assembling the body, etc., low fuel consumption due to weight reduction of the entire body Benefits such as gasification and carbon dioxide (CO 2 ) emission reduction can be fully enjoyed, and its social contribution is immeasurable.

本発明に係る鋼板とアルミニウム合金板との異種金属接合方法および異種金属接合継手の一例を模式的に説明する図であり、スポット溶接によって鋼板とアルミニウム合金板とを接合する工程を示す断面図である。It is a figure explaining typically an example of a dissimilar metal joining method of a steel plate and an aluminum alloy plate concerning the present invention, and a dissimilar metal joining joint, and is a sectional view showing a process of joining a steel plate and an aluminum alloy plate by spot welding is there. 本発明に係る鋼板とアルミニウム合金板との異種金属接合方法および異種金属接合継手の一例を模式的に説明する図であり、鋼板とアルミニウム合金板とをスポット溶接で接合した後の溶接部を示す断面図である。It is a figure explaining typically an example of a dissimilar metal joining method of a steel plate and an aluminum alloy plate concerning the present invention, and a dissimilar metal joint joint, and shows a welded part after joining a steel plate and an aluminum alloy plate by spot welding It is sectional drawing. 本発明に係る鋼板とアルミニウム合金板との異種金属接合方法および異種金属接合継手の一例を模式的に説明する図であり、スポット溶接によって溶接部を形成させる際のパルセーション通電パターン、ならびに、電極による加圧力のパターンを示すグラフである。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining typically an example of the dissimilar metal joining method and dissimilar metal joining joint of the steel plate and aluminum alloy plate which concern on this invention, and the pulsation electricity supply pattern at the time of forming a welding part by spot welding, and an electrode It is a graph which shows the pattern of the applied pressure by. 本発明に係る鋼板とアルミニウム合金板との異種金属接合方法および異種金属接合継手の一例を模式的に説明する図であり、1枚の鋼板と1枚のアルミニウム合金板とが接合されてなる異種金属接合継手の十字引張強さの測定方法を示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which illustrates typically an example of the dissimilar metal joining method of the steel plate and aluminum alloy plate which concerns on this invention, and a dissimilar metal joint joint, and the dissimilarity formed by joining one steel plate and one aluminum alloy plate It is the schematic which shows the measuring method of the cross tensile strength of a metal joining joint. 本発明に係る鋼板とアルミニウム合金板との異種金属接合方法および異種金属接合継手の一例を模式的に説明する図であり、2枚の鋼板と1枚のアルミニウム合金板とが接合されてなる異種金属接合継手の十字引張強さの測定方法を示す概略図である。It is a figure which illustrates typically an example of a dissimilar metal joining method of a steel plate and an aluminum alloy plate concerning the present invention, and a dissimilar metal joining joint, and is a different kind formed by joining two steel plates and one aluminum alloy plate It is the schematic which shows the measuring method of the cross tensile strength of a metal joining joint. 従来の鋼板とアルミニウム合金板との異種金属接合方法および異種金属接合継手を模式的に説明する図であり、スポット溶接によって鋼板とアルミニウム合金板とを溶接した際に生成される金属間化合物を示す断面図である。It is a figure which illustrates typically the dissimilar-metal joining method and dissimilar-metal joining joint of the conventional steel plate and an aluminum alloy plate, and shows the intermetallic compound produced when welding a steel plate and an aluminum alloy plate by spot welding It is sectional drawing.

以下、本発明の鋼板とアルミニウム合金板との異種金属接合方法および異種金属接合継手(以下、単に異種金属接合方法、異種金属接合継手と略称することがある)の実施の形態について、図1〜図6を適宜参照しながら説明する。なお、本実施形態は、本発明における異種金属接合方法および異種金属接合継手の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り本発明を限定するものではない。   Hereinafter, embodiments of a dissimilar metal joining method and a dissimilar metal joining joint (hereinafter simply referred to as a dissimilar metal joining method, sometimes referred to as a dissimilar metal joining joint) between a steel plate and an aluminum alloy plate of the present invention will be described with reference to This will be described with reference to FIG. The present embodiment is described in detail for better understanding of the purpose of the dissimilar metal joining method and dissimilar metal joint in the present invention, and does not limit the present invention unless otherwise specified. .

近年、特に自動車分野においては、低燃費化や炭酸ガス(CO)の排出量削減を目的とした車体の軽量化のために、車体や部品等に部分的にアルミニウム合金板を使用するニーズが高まっており、この傾向は、特に、ハイブリッド車等の分野において顕著となっている。また、車体の組立や部品の取付け等を行う場合には、主としてスポット溶接方法が用いられるが、アルミニウム合金板が部分的に使用された場合には、鋼板とアルミニウム合金板とをスポット溶接する必要性が生じる。従来、鋼板とアルミニウム合金板とを溶接した場合には、特に、接合界面において生成されるFe−Al系金属間化合物により、溶接部の剥離方向における引張強さ(十字引張強さ)が低下したり、疲労強度や耐食性が低下したりする問題があった。このため、自動車分野におけるアルミニウム合金板の適用箇所の拡大に伴い、鋼板とアルミニウム合金板とをスポット溶接する際に金属間化合物が生成するのを抑制でき、優れた継手特性が実現できる方法が望まれていた。 In recent years, particularly in the automobile field, there has been a need to partially use aluminum alloy plates for vehicle bodies and parts in order to reduce vehicle weight for the purpose of reducing fuel consumption and reducing carbon dioxide (CO 2 ) emissions. This tendency is particularly noticeable in the field of hybrid vehicles and the like. In addition, spot welding methods are mainly used when assembling the vehicle body or attaching parts, but when an aluminum alloy plate is partially used, it is necessary to spot weld the steel plate and the aluminum alloy plate. Sex occurs. Conventionally, when a steel plate and an aluminum alloy plate are welded, the tensile strength (cross tensile strength) in the peeling direction of the welded portion is reduced particularly by the Fe-Al intermetallic compound produced at the joint interface. There is a problem that fatigue strength and corrosion resistance are reduced. For this reason, a method that can suppress the formation of intermetallic compounds when spot welding the steel plate and the aluminum alloy plate with the expansion of the application area of the aluminum alloy plate in the automobile field and realize excellent joint characteristics is desired. It was rare.

このような要求に対し、本発明の鋼板とアルミニウム合金板との異種金属接合方法では、上述したように、大電流による短時間のパルセーション通電を行う通電条件を採用し、さらに、通電終了後に直ちに加圧力を増加させる方法としている。これにより、従来と同様の抵抗スポット溶接設備等を用いて、溶接通電や加圧パターンを実用の溶接条件範囲内で適正に制御しながら、金属間化合物の生成を抑制することができ、継手強度、疲労強度および耐食性に優れた異種金属接合継手を得ることが可能となる。以下に、本発明の鋼板とアルミニウム合金板との異種金属接合方法および異種金属接合継手について詳細に説明する。   In response to such demands, the dissimilar metal joining method of the steel plate and the aluminum alloy plate of the present invention employs the energization condition for conducting pulsation energization for a short time with a large current as described above, and further, after energization is completed. Immediately increase the applied pressure. This makes it possible to suppress the formation of intermetallic compounds while properly controlling the welding energization and pressure pattern within the range of practical welding conditions using resistance spot welding equipment similar to the conventional one, and the joint strength It is possible to obtain a dissimilar metal joint having excellent fatigue strength and corrosion resistance. Below, the dissimilar metal joining method and dissimilar metal joining joint of the steel plate and aluminum alloy plate of this invention are demonstrated in detail.

[鋼板とアルミニウム合金板との異種金属接合方法]
本発明の鋼板1とアルミニウム合金板2との異種金属接合方法は、図1に示すように、鋼板1とアルミニウム合金板2とを各1枚以上で合計2枚以上(図示例では各1枚で合計2枚)を重ね合わせた状態とし、鋼板1およびアルミニウム合金板2の上下に配置された電極5(5A、5B)で加圧しながら抵抗スポット溶接を行う方法である。そして、本発明では、鋼板1とアルミニウム合金板2とを抵抗スポット溶接する際、通電時間Bt(ms)、休止時間Rt(ms)を下記(1)、(2)式を満たす条件とし、加圧力EF(kN)でのパルセーション通電を2〜8回の範囲で行い、休止時間Rt(ms)での最後の通電休止が完了した後、直ちに、加圧力を、下記(3)式を満たす通電完了後の加圧力FF(kN)まで増加させ、その後、下記(4)式を満足する保持時間Ht(ms)で加圧保持した後、加圧力を除荷する方法を採用している。
2 ≦ Bt ≦ 10 ・・・・・(1)
1 ≦ Rt ≦ 5 ・・・・・(2)
1.2×EF ≦ FF ≦ 2.0×EF ・・・・・(3)
50 ≦ Ht ≦ 300 ・・・・・(4)
但し、上記(1)〜(4)式において、Bt:通電時間(ms)、Rt:休止時間(ms)、EF:パルセーション通電中の加圧力(kN)、FF:通電完了後の加圧力(kN)、Ht:保持時間(ms)を示す。
[Dissimilar metal joining method between steel plate and aluminum alloy plate]
As shown in FIG. 1, the dissimilar metal joining method of the steel plate 1 and the aluminum alloy plate 2 according to the present invention includes one or more steel plates 1 and two aluminum alloy plates 2 in total (one each in the illustrated example). In this method, resistance spot welding is performed while applying pressure with the electrodes 5 (5A, 5B) arranged above and below the steel plate 1 and the aluminum alloy plate 2. In the present invention, when the steel plate 1 and the aluminum alloy plate 2 are subjected to resistance spot welding, the energizing time Bt (ms) and the downtime Rt (ms) are set to satisfy the following expressions (1) and (2). The pulsation energization at the pressure EF (kN) is performed in the range of 2 to 8 times, and immediately after the last energization stop at the stop time Rt (ms) is completed, the applied pressure satisfies the following formula (3). A method is adopted in which the pressure is increased to FF (kN) after completion of energization, and after that, pressure is held for a holding time Ht (ms) that satisfies the following expression (4), and then the pressure is unloaded.
2 ≦ Bt ≦ 10 (1)
1 ≦ Rt ≦ 5 (2)
1.2 x EF ≤ FF ≤ 2.0 x EF (3)
50 ≦ Ht ≦ 300 (4)
However, in the above formulas (1) to (4), Bt: energization time (ms), Rt: rest time (ms), EF: applied pressure during pulsation energization (kN), FF: applied pressure after completion of energization (KN), Ht: holding time (ms).

「抵抗スポット溶接」
図1は、本発明において鋼板1とアルミニウム合金板2とを溶接するのに用いられる抵抗スポット溶接方法を説明するための模式図である。
本発明で説明する抵抗スポット溶接とは、まず、被溶接材である鋼板1とアルミニウム合金板2とを重ね合わせる。図示例においては、鋼板1とアルミニウム合金板2とを各1枚ずつ重ね合わせた状態としている。そして、鋼板1とアルミニウム合金板2との重ね合わせ部分に対して両側から、即ち、図1中における上下方向から挟み込むように、銅合金からなる溶接電極5A、5Bを押し付けつつ通電することにより、鋼板1とアルミニウム合金板2との間に溶融金属を形成させる。この溶融金属は、パルセーション通電による溶接通電が終了した後、水冷された溶接電極5A、5Bによる抜熱や鋼板1およびアルミニウム合金板2への熱伝導によって急速に冷却されて凝固し、鋼板1とアルミニウム合金板2との間に凝固部が形成される。
"Resistance spot welding"
FIG. 1 is a schematic diagram for explaining a resistance spot welding method used for welding a steel plate 1 and an aluminum alloy plate 2 in the present invention.
In the resistance spot welding described in the present invention, first, a steel plate 1 and an aluminum alloy plate 2 which are welded materials are overlapped. In the illustrated example, the steel plate 1 and the aluminum alloy plate 2 are overlapped one by one. And by energizing while pressing the welding electrodes 5A, 5B made of a copper alloy so as to be sandwiched from both sides with respect to the overlapping portion of the steel plate 1 and the aluminum alloy plate 2, that is, from the vertical direction in FIG. Molten metal is formed between the steel plate 1 and the aluminum alloy plate 2. After the welding energization by pulsation energization is completed, the molten metal is rapidly cooled and solidified by heat removal by the water-cooled welding electrodes 5A and 5B and heat conduction to the steel plate 1 and the aluminum alloy plate 2, and the steel plate 1 is solidified. A solidified portion is formed between the aluminum alloy plate 2 and the aluminum alloy plate 2.

本発明では、図2に示す例のように、鋼板1とアルミニウム合金板2との接合界面において、薄い溶融金属層であるFe溶融部1aおよびAl溶融部2aが形成される。このようなFe溶融部1aおよびAl溶融部2aが凝固してナゲットが形成されることにより、鋼板1とアルミニウム合金板2とが溶接される。なお、鋼板1とアルミニウム合金板2の界面では必ずしも溶融する必要性はなく、両者またはどちらか一方が固相状態で接合されても良い。   In the present invention, as in the example shown in FIG. 2, the Fe molten portion 1 a and the Al molten portion 2 a that are thin molten metal layers are formed at the joint interface between the steel plate 1 and the aluminum alloy plate 2. When the Fe melt part 1a and the Al melt part 2a are solidified to form a nugget, the steel plate 1 and the aluminum alloy plate 2 are welded. In addition, it is not always necessary to melt at the interface between the steel plate 1 and the aluminum alloy plate 2, and both or one of them may be joined in a solid state.

また、図2に示す例では、接合界面におけるFe溶融部1aとAl溶融部2aとの間に、Fe−Al系金属からなる金属間化合物層3が生成されている。本発明においては、詳細を後述するが、金属間化合物層3の厚さが、加圧通電時の電極5A、5Bの中心部51に対応する中心位置31における厚さt1で0.5μm以下に制限されている。なお、この金属間化合物層3の厚さt1は、鋼板1とアルミニウム合金板2の両者、またはどちらか一方が固相状態で接合されている場合の厚さであっても良い。   Moreover, in the example shown in FIG. 2, the intermetallic compound layer 3 which consists of Fe-Al type metal is produced | generated between the Fe fusion | melting part 1a and the Al fusion | melting part 2a in a joining interface. Although details will be described later in the present invention, the thickness of the intermetallic compound layer 3 is 0.5 μm or less at the thickness t1 at the central position 31 corresponding to the central portion 51 of the electrodes 5A and 5B when applying pressure. Limited. Note that the thickness t1 of the intermetallic compound layer 3 may be a thickness when both or one of the steel plate 1 and the aluminum alloy plate 2 are joined in a solid state.

本発明に係る異種金属接合方法は、上述のような抵抗スポット溶接において、電極5A、5Bによる大電流で短時間のパルセーション通電を行う通電条件とし、また、通電終了後に直ちに加圧力を増加させる条件を組み合わせた方法としている。そして、これら各条件を以下に説明するような最適範囲に規定することにより、特に、鋼板1の母材側におけるFe溶融部1aの生成が抑制される。このように、鋼板1側におけるFe溶融部1aの生成を抑制することで、このFe溶融部1aとAl溶融部2aとから生成される、Fe−Al系金属間化合物の生成も抑制される。そして、Fe−Al系金属間化合物からなる金属間化合物層3の厚さが上記範囲となるように、その生成を抑制することで、継手強度、特に剥離方向の強度である十字引張強さを向上させ、また、疲労強度および耐食性に優れ、信頼性の高い溶接部を形成させることが可能となる。   In the dissimilar metal joining method according to the present invention, in the resistance spot welding as described above, the energization condition is such that pulsation energization is performed for a short time with a large current by the electrodes 5A and 5B, and the applied pressure is increased immediately after energization. The method is a combination of conditions. And by defining these conditions in the optimum ranges as described below, the generation of the Fe molten portion 1a on the base metal side of the steel plate 1 is particularly suppressed. Thus, the production | generation of the Fe-Al type intermetallic compound produced | generated from this Fe fusion | melting part 1a and Al fusion | melting part 2a is also suppressed by suppressing the production | generation of the Fe fusion | melting part 1a in the steel plate 1 side. And by suppressing the formation so that the thickness of the intermetallic compound layer 3 made of Fe-Al-based intermetallic compound is in the above range, the joint strength, in particular, the cross tensile strength that is the strength in the peeling direction is reduced. It is possible to improve the fatigue strength and corrosion resistance, and to form a highly reliable welded portion.

「鋼板」
以下に、本発明の異種金属接合方法における一方の被溶接材である、鋼板1の特性について詳述する。
"steel sheet"
Below, the characteristic of the steel plate 1 which is one to-be-welded material in the dissimilar metal joining method of this invention is explained in full detail.

(鋼種)
本発明では、被溶接材である鋼板の鋼種については特に限定されず、例えば、極低C型(フェライト主体組織)、Al−k型(フェライト中にパーライトを含む組織)、2相組織型(例えば、フェライト中にマルテンサイトを含む組織、フェライト中にベイナイトを含む組織)、加工誘起変態型(フェライト中に残留オーステナイトを含む組織)、微細結晶型(フェライト主体組織)等、何れの型の鋼板であっても良い。何れの鋼種からなる鋼板であっても、本発明の異種金属接合方法を適用することにより、鋼板の特性を損なうことなく、金属間化合物の生成を抑制しながら鋼板とアルミニウム合金板とを溶接することができ、信頼性の高い異種金属接合継手(溶接部)が得られる。
(Steel grade)
In the present invention, the steel type of the steel sheet to be welded is not particularly limited, and for example, extremely low C type (ferrite main structure), Al-k type (structure including pearlite in ferrite), two-phase structure type ( For example, steel sheets of any type such as a structure containing martensite in ferrite, a structure containing bainite in ferrite, a work-induced transformation type (structure containing residual austenite in ferrite), a fine crystal type (ferrite main structure), etc. It may be. By applying the dissimilar metal joining method of the present invention to any steel type, the steel plate and the aluminum alloy plate are welded while suppressing the formation of intermetallic compounds without impairing the properties of the steel plate. Therefore, a highly reliable dissimilar metal joint (welded part) can be obtained.

(引張強さ)
本発明では、鋼板の引張強さについても、特に限定されるものではなく、如何なる引張強さの鋼板であっても適用が可能である。例えば、自動車車体等において一般的に用いられる、270〜1470MPa級程度の引張強さとされた鋼板を何ら制限無く採用することができる。
(Tensile strength)
In the present invention, the tensile strength of the steel plate is not particularly limited, and any steel plate having any tensile strength can be applied. For example, a steel plate having a tensile strength of about 270 to 1470 MPa, which is generally used in an automobile body or the like, can be used without any limitation.

(めっき)
本発明では、表層にさらにめっき層が設けられた鋼板を採用することができるが、この際に施されるめっき層の種類についても、何ら制限されるものではない。例えば、めっき層の種類としては、Zn系(Zn、Zn−Fe、Zn−Ni、Zn−Al、Zn−Al−Mg、Zn−Al−Mg−Si等)、Al系(Al−Si等)等、何れのものであっても良い。また、これらのめっき層の目付量についても特に限定されないが、両面の目付け量で100g/100g/m以下とすることが好ましい。めっきの目付け量が片面あたりで100g/mを越えると、めっき層が溶接の際の障害となる場合がある。
(Plating)
In the present invention, it is possible to employ a steel plate in which a plating layer is further provided on the surface layer, but the type of the plating layer applied at this time is not limited at all. For example, as a kind of plating layer, Zn type (Zn, Zn-Fe, Zn-Ni, Zn-Al, Zn-Al-Mg, Zn-Al-Mg-Si, etc.), Al type (Al-Si, etc.) Any of these may be used. Further, the basis weight of these plating layers is not particularly limited, but the basis weight on both sides is preferably 100 g / 100 g / m 2 or less. If the plating weight per unit area exceeds 100 g / m 2 , the plating layer may become an obstacle during welding.

(板厚)
本発明では、鋼板の板厚についても特に限定されるものではなく、自動車車体等において一般的に用いられる、0.50〜2.3mm程度の厚さとされた鋼板を何ら制限無く採用することができる。
(Thickness)
In the present invention, the thickness of the steel plate is not particularly limited, and a steel plate having a thickness of about 0.50 to 2.3 mm, which is generally used in an automobile body or the like, can be employed without any limitation. it can.

「アルミニウム合金板」
以下、本発明の異種金属接合方法における他方の被溶接材である、アルミニウム合金板2の特性について詳述する。
"Aluminum alloy plate"
Hereinafter, the characteristic of the aluminum alloy plate 2 which is the other material to be welded in the dissimilar metal joining method of the present invention will be described in detail.

(合金種)
本発明では、アルミニウム合金板2の合金の種類についても特に限定されるものではない。例えば、自動車車体等において一般的に用いられる5000(Al−Mg)系、6000(Al−Mg−Si)系等、何れの型のアルミニウム合金であっても何ら制限無く採用することが可能である。
(Alloy type)
In the present invention, the type of alloy of the aluminum alloy plate 2 is not particularly limited. For example, any type of aluminum alloy such as 5000 (Al—Mg) or 6000 (Al—Mg—Si) commonly used in automobile bodies can be used without any limitation. .

(引張強さ)
本発明では、アルミニウム合金板2の合金の引張強さについても特に限定されるものではなく、例えば、自動車車体等において一般的に用いられる100〜400MPa級程度のものを何ら制限無く採用することができる。
(Tensile strength)
In the present invention, the tensile strength of the alloy of the aluminum alloy plate 2 is not particularly limited. For example, a material of about 100 to 400 MPa class generally used in an automobile body or the like can be used without any limitation. it can.

(板厚)
本発明では、アルミニウム合金板2の板厚についても特に限定されるものでは無く、例えば、自動車車体等において一般的に用いられる、0.55〜2.0mm程度の厚さとされたアルミニウム合金板を何ら制限無く採用することができる。
(Thickness)
In the present invention, the thickness of the aluminum alloy plate 2 is not particularly limited. For example, an aluminum alloy plate having a thickness of about 0.55 to 2.0 mm, which is generally used in an automobile body or the like, is used. It can be employed without any restrictions.

「鋼板とアルミニウム合金板との重ね合わせ」
本実施形態では、異種金属接合方法に関して、主として図2(図1も参照)に例示するような、鋼板1とアルミニウム合金板2とを各1枚の2枚重ねでスポット溶接する場合を説明しているが、本発明ではこれには限定されない。本発明では、被溶接材として一方に鋼板が、他方にアルミニウム合金板が存在する条件であれば、3枚重ね以上としてスポット溶接を行っても良く、適宜選択することが可能である。図5に示す、十字引張試験の試験条件を説明する模式図においては、鋼板1を2枚重ねとしたうえで、アルミニウム合金板2を1枚用い、合計3枚で重ね合わせて溶接した例を示している。 また、これら鋼板1およびアルミニウム合金板2は、各々2枚以上を重ね合わせた場合には、異厚、異種材であっても良い。
"Superposition of steel plate and aluminum alloy plate"
In this embodiment, regarding the dissimilar metal joining method, a case will be described in which spot welding is performed on two sheets of steel plates 1 and an aluminum alloy plate 2 as illustrated mainly in FIG. 2 (see also FIG. 1). However, the present invention is not limited to this. In the present invention, spot welding may be performed by stacking three or more sheets as long as a steel sheet is present on one side and an aluminum alloy sheet is present on the other side as a material to be welded. In the schematic diagram for explaining the test conditions of the cross tension test shown in FIG. 5, an example in which two steel plates 1 are overlapped and one aluminum alloy plate 2 is used, and a total of three are overlapped and welded. Show. The steel plate 1 and the aluminum alloy plate 2 may be made of different thickness or different materials when two or more of them are overlapped.

「溶接条件の限定理由」
以下に、本発明の異種金属接合方法で規定する溶接条件について、その限定理由を詳述する。
"Reasons for limiting welding conditions"
Below, the reason for limitation is explained in full detail about the welding conditions prescribed | regulated with the dissimilar-metal joining method of this invention.

まず、以下において説明する、鋼板1とアルミニウム合金板2とをスポット溶接する際の通電・加圧パターンを図3(a)、(b)のグラフに示す。図3(a)、(b)に示す通電・加圧パターンは、本発明の異種金属接合方法におけるスポット溶接に適用可能な通電パターンの一例であり、図3(a)に示す例では、大電流による短時間のパルセーション通電を行うとともに電極の加圧力(EF)を通常とし、通電終了後に直ちに加圧力(FF)を増加させるパターンとしている。なお、図3(a)、(b)に示すグラフ中において、縦軸は加圧力(kN)または電流(kA)であり、横軸は時間(ms)である。   First, the energization / pressurization pattern when spot welding the steel plate 1 and the aluminum alloy plate 2 described below is shown in the graphs of FIGS. The energization / pressurization patterns shown in FIGS. 3A and 3B are examples of energization patterns applicable to spot welding in the dissimilar metal joining method of the present invention. In the example shown in FIG. The pattern is such that the pulsation energization is performed for a short time with an electric current, the applied pressure (EF) of the electrode is normal, and the applied pressure (FF) is increased immediately after the energization is completed. In the graphs shown in FIGS. 3A and 3B, the vertical axis represents the applied pressure (kN) or current (kA), and the horizontal axis represents time (ms).

従来、一般のスポット溶接法で鋼板を溶接する場合には、詳細な図示を省略するが、一定の電流(I)にて所定の時間(t)溶接通電した後、電流を遮断する、概ね矩形状の電流波形を示す通電パターンとされており、また、電極の加圧力も同様の矩形状の加圧パターンとされている。これに対し、本発明においては、上述したように、まず、溶接通電に関し、通電(通電時間Bt)と休止(休止時間Rt)とを2〜8回の範囲で繰り返すパルセーション通電とし、この間の加圧力(パルセーション通電中の加圧力EF)を一定としている。そして、通電終了後に、直ちに加圧力(通電完了後の加圧力FF)を増加させるパターンとしている。   Conventionally, when a steel plate is welded by a general spot welding method, detailed illustration is omitted, but the current is cut off after a predetermined time (t) at a predetermined current (I) for a predetermined time (t). The energization pattern shows a current waveform having a shape, and the pressurizing force of the electrodes is also a rectangular pressurization pattern. On the other hand, in the present invention, as described above, first, regarding welding energization, pulsation energization is performed in which energization (energization time Bt) and pause (rest time Rt) are repeated in a range of 2 to 8 times. The applied pressure (applied pressure EF during pulsation energization) is constant. Then, immediately after the energization, the applied pressure (the applied pressure FF after completion of energization) is immediately increased.

なお、本発明においては、図3(b)に示す例のように、上記条件のパルセーション通電を行う前に、予め、パルセーション通電時よりも低い加圧力として通電ならびに加圧する前通電を行うことも可能である。   In the present invention, as in the example shown in FIG. 3 (b), before performing pulsation energization under the above conditions, pre-energization is performed in advance as energization and pressurization at a pressure lower than that during pulsation energization. It is also possible.

(パルセーション通電中の加圧力:EF)
本発明においては、パルセーション通電による溶接通電を行う際の、電極5A、5Bの鋼板1およびアルミニウム合金板2に対する加圧力EF(kN)については、特に限定されない。本発明では、パルセーション通電中の加圧力EFについては、従来から鋼板とアルミニウム合金板とをスポット溶接する際に用いられていた条件を何ら制限無く採用することが可能であり、例えば、1.47〜4.5(kN)程度の範囲の加圧力EFとすることができる。本発明では、加圧力EF(kN)を上記範囲とすることにより、例えば、自動車車体等に用いられる、板厚が1mm前後の軟鋼板やアルミニウム合金板を2枚重ね以上で重ねてスポット溶接する際に、高い溶接性や生産性を確保することが可能となる。
(Pressurizing force during pulsation energization: EF)
In the present invention, the pressure EF (kN) applied to the steel plate 1 and the aluminum alloy plate 2 of the electrodes 5A and 5B when performing welding energization by pulsation energization is not particularly limited. In the present invention, for the pressurizing force EF during pulsation energization, the conditions conventionally used when spot welding a steel plate and an aluminum alloy plate can be employed without any limitation. The applied pressure EF can be in the range of about 47 to 4.5 (kN). In the present invention, by setting the applied pressure EF (kN) within the above range, for example, spot welding is performed by stacking two or more mild steel plates or aluminum alloy plates having a plate thickness of about 1 mm, which are used for automobile bodies and the like. In this case, high weldability and productivity can be ensured.

ここで、電極5A、5Bのパルセーション通電中の加圧力EFは、溶接部の強度、特に剥離方向の強度等にも影響を及ぼす。このため、本発明においては、この加圧力EFを上記範囲とすることが、金属間化合物層3の生成を効果的に抑制する観点からも、より好ましい。パルセーション通電中の加圧力EFが上記範囲を超えると、溶接部の凹みが大きくなって、外観を損ねるだけでなく継手強度が低下する可能性が生じる。また、加圧力EFが上記範囲を下回る場合には、溶接金属内において欠陥が生じる可能性がある。   Here, the applied pressure EF during pulsation energization of the electrodes 5A and 5B also affects the strength of the welded portion, particularly the strength in the peeling direction. For this reason, in this invention, it is more preferable to make this pressurizing force EF into the said range also from a viewpoint of suppressing the production | generation of the intermetallic compound layer 3 effectively. If the applied pressure EF during pulsation energization exceeds the above range, the dent of the welded portion becomes large, which not only impairs the appearance but also may reduce the joint strength. Moreover, when the applied pressure EF is less than the above range, defects may occur in the weld metal.

なお、本発明の異種金属接合方法においては、例えば、図1に例示するような電極5(5A、5B)が備えられた従来公知の抵抗スポット溶接設備を何ら制限無く採用することが可能である。また、電極5A、5B等についても、従来から使用されている構成のものを用いれば良い。   In the dissimilar metal joining method of the present invention, for example, a conventionally known resistance spot welding equipment provided with electrodes 5 (5A, 5B) illustrated in FIG. 1 can be used without any limitation. . Moreover, what is necessary is just to use the thing of the structure currently used also about electrode 5A, 5B.

また、電極5A、5Bに電流を供給する溶接電源についても、交流電源または直流電源の何れであっても良く、具体的には、インバータ式直流電源、インバータ式交流電源、単相式交流電源等が挙げられるが、中でもインバータ式直流電源が好ましい。   Further, the welding power source for supplying current to the electrodes 5A and 5B may be either an AC power source or a DC power source. Specifically, an inverter type DC power source, an inverter type AC power source, a single phase AC power source, etc. Among them, an inverter type DC power supply is preferable.

(パルセーション通電電流:BC)
本発明では、パルセーション通電の際の電流BC(kA)についても、鋼板とアルミニウム合金板とを抵抗スポット溶接する際に従来から採用されている電流値と同程度とすることができ、例えば、20〜30(kA)程度の範囲の通電電流BCとすることができる。この通電電流BCが20kA未満の場合、十分な接合強度が得られない可能性があり、また、30kAを超えた場合、金属間化合物層が生成・成長し易くなる可能性がある。また、通電電流BCが30kAを超える条件とした場合には、電源装置において、大電流を発生させるための大きなトランスが必要となり、設備上のコストアップの要因となる。
(Pulsation energization current: BC)
In the present invention, the current BC (kA) at the time of pulsation energization can be set to the same level as the current value conventionally employed when resistance steel plate and aluminum alloy plate are subjected to resistance spot welding. An energization current BC in the range of about 20 to 30 (kA) can be obtained. If the energization current BC is less than 20 kA, sufficient bonding strength may not be obtained, and if it exceeds 30 kA, an intermetallic compound layer may be easily generated and grown. In addition, when the energization current BC exceeds 30 kA, a large transformer for generating a large current is required in the power supply device, which causes an increase in the cost of equipment.

(パルセーション通電における通電時間:Bt)
本発明では、パルセーション通電における通電時間Bt(ms)を、下記(1)式を満たす範囲に規定する。
2 ≦ Bt ≦ 10 ・・・・・(1)
但し、上記(1)式中において、Bt:通電時間(ms)を示す。
(Energization time for pulsation energization: Bt)
In the present invention, the energization time Bt (ms) in pulsation energization is defined within a range that satisfies the following expression (1).
2 ≦ Bt ≦ 10 (1)
However, in the above equation (1), Bt: energization time (ms) is shown.

パルセーション通電における通電時間Btが2ms未満だと、十分な接合強度が得られず、また、10msを超えると、金属間化合物層が生成・成長し易くなるとともに、工程における全体の接合時間も長くなるため、生産性が低下する。   If the energization time Bt in pulsation energization is less than 2 ms, sufficient bonding strength cannot be obtained. If the energization time exceeds 10 ms, the intermetallic compound layer is easily formed and grown, and the entire bonding time in the process is also long. Therefore, productivity is reduced.

(パルセーション通電における休止時間:Rt)
本発明では、パルセーション通電における休止時間Rt(ms)を、下記(2)式を満たす範囲に規定する。
1 ≦ Rt ≦ 5 ・・・・・(2)
但し、上記(2)式中において、Rt:休止時間(ms)を示す。
(Pause time during pulsation energization: Rt)
In the present invention, the rest time Rt (ms) in pulsation energization is defined within a range that satisfies the following equation (2).
1 ≦ Rt ≦ 5 (2)
However, in the above equation (2), Rt: pause time (ms) is shown.

パルセーション通電における休止時間Rtが1ms未満だと、十分な冷却効果が得られないために金属間化合物層が生成・成長し易くなり、また、3msを超えると、溶融金属の温度が低下しすぎて十分な接合強度が得られなくなるとともに、工程における全体の接合時間も長くなるため、生産性が低下する。   If the pause time Rt in pulsation energization is less than 1 ms, a sufficient cooling effect cannot be obtained, so that an intermetallic compound layer is easily formed and grows. If it exceeds 3 ms, the temperature of the molten metal is too low. In addition, sufficient bonding strength cannot be obtained, and the entire bonding time in the process becomes longer, resulting in lower productivity.

(パルセーション通電パターンの回数:2〜8回)
本発明では、上記通電時間Btおよび休止時間を繰り返すパルセーション通電パターンの繰り返し回数(パルス回数)を2〜8回の範囲に規定する。この通電パターン回数が2回未満だと、十分な接合強度が得られず、また、8回を超えると、金属間化合物層が生成・成長し易くなり、工程における全体の接合時間も長くなるため、生産性が低下する。
(Number of pulsation energization patterns: 2 to 8 times)
In the present invention, the number of repetitions (number of pulses) of the pulsation energization pattern that repeats the energization time Bt and the pause time is specified in the range of 2 to 8 times. If the number of energization patterns is less than 2, sufficient bonding strength cannot be obtained. If the number of energization patterns exceeds 8, the intermetallic compound layer is likely to be generated and grown, and the entire bonding time in the process becomes longer. , Productivity decreases.

(パルセーション通電パターン完了後の加圧力:FF)
本発明では、上記条件でのパルセーション通電パターンによる溶接通電が完了した後、即ち、上記休止時間Rt(ms)での最後の通電休止が完了した後、直ちに、鋼板1およびアルミニウム合金板2に対する電極5A、5Bの加圧力を、下記(3)式を満たす通電完了後の加圧力FF(kN)まで増加させる。
1.2×EF ≦ FF ≦ 2.0×EF ・・・・・(3)
但し、上記(3)式中において、FF:通電完了後の加圧力(kN)を示す。
(Pressure force after completion of pulsation energization pattern: FF)
In the present invention, after the welding energization by the pulsation energization pattern under the above conditions is completed, that is, after the last energization suspension at the above-described rest time Rt (ms) is completed, the steel plate 1 and the aluminum alloy plate 2 are immediately The applied pressure of the electrodes 5A and 5B is increased to the applied pressure FF (kN) after completion of energization satisfying the following expression (3).
1.2 x EF ≤ FF ≤ 2.0 x EF (3)
However, in the above equation (3), FF represents the applied pressure (kN) after completion of energization.

上記(3)式に示す通り、本発明では、パルセーション通電パターンの完了後、直ちに、パルセーション通電中の加圧力EFの1.2〜2.0倍の範囲の加圧力FF(kN)とする。このように、パルセーション通電による溶接通電パターンが完了した後、電極5A、5Bの鋼板1およびアルミニウム合金板2に対する加圧力を高めることにより、接合界面に生成される金属間化合物層3が溶接部から排出される。これにより、異種金属接合継手10に生成される金属間化合物層3の厚さを、0.5μm以下に薄く制御することができ、継手強度の向上、疲労強度ならびに耐食性の向上を図ることが可能となる。   As shown in the above equation (3), in the present invention, immediately after the completion of the pulsation energization pattern, immediately after the completion of the pulsation energization pattern, the applied pressure FF (kN) in the range of 1.2 to 2.0 times the applied pressure EF during pulsation energization To do. Thus, after the welding energization pattern by pulsation energization is completed, the intermetallic compound layer 3 produced | generated by the joining interface is raised by raising the applied pressure with respect to the steel plate 1 and the aluminum alloy plate 2 of electrode 5A, 5B. Discharged from. Thereby, the thickness of the intermetallic compound layer 3 produced | generated in the dissimilar metal joint joint 10 can be controlled thinly to 0.5 micrometer or less, and it can aim at the improvement of joint strength, fatigue strength, and corrosion resistance. It becomes.

パルセーション通電パターンの完了後の加圧力FF(kN)が上記範囲未満だと、接合界面の金属間化合物層の排出が不十分になり、また、上記範囲を超えると、アルミニウム合金板2側の窪みが大きくなり、継手の十字引張強さが低下する。   When the applied pressure FF (kN) after completion of the pulsation energization pattern is less than the above range, the intermetallic compound layer at the bonding interface is insufficiently discharged. The dent becomes larger and the cross tensile strength of the joint decreases.

(保持時間:Ht)
本発明では、電極5A、5Bの鋼板1およびアルミニウム合金板2に対する加圧力FF(kN)を上記範囲に高めた後、下記(4)式を満足する保持時間Ht(ms)で加圧保持し、その後、加圧力を除荷する。
50 ≦ Ht ≦ 300 ・・・・・(4)
但し、上記(4)式中において、Ht:保持時間(ms)を示す。
(Retention time: Ht)
In the present invention, the pressure FF (kN) applied to the steel plate 1 and the aluminum alloy plate 2 of the electrodes 5A and 5B is increased to the above range, and then the pressure is held for a holding time Ht (ms) that satisfies the following expression (4). Then, the applied pressure is unloaded.
50 ≦ Ht ≦ 300 (4)
In the above formula (4), Ht: holding time (ms) is shown.

本発明では、パルセーション通電パターンの完了後、直ちに上記範囲の加圧力FFとして、30〜300(ms)の範囲の保持時間Htで鋼板1およびアルミニウム合金板2を保持することにより、接合界面に生成される金属間化合物層3が溶接部から効果的に排出される。これにより、上述したように、金属間化合物層3の厚さを0.5μm以下に制御でき、継手強度の向上、疲労強度ならびに耐食性の向上を図ることが可能となる。   In the present invention, immediately after the completion of the pulsation energization pattern, the steel plate 1 and the aluminum alloy plate 2 are held at the joining interface by holding the steel plate 1 and the aluminum alloy plate 2 with the holding time Ht in the range of 30 to 300 (ms) as the pressure FF in the above range. The generated intermetallic compound layer 3 is effectively discharged from the weld. Thereby, as described above, the thickness of the intermetallic compound layer 3 can be controlled to 0.5 μm or less, and it is possible to improve joint strength, fatigue strength, and corrosion resistance.

パルセーション通電パターンの完了後、加圧力FFでの保持時間Htが50ms未満だと、接合界面の金属間化合物層の排出が不十分になり、また、300msを超えると、工程における全体の接合時間も長くなるため、生産性が低下する。
なお、上述した保持時間Htは、実際の保持時間を示しており、溶接装置にもよるが、通常は装置側で設定した時間よりも長くなる。
After the pulsation energization pattern is completed, if the holding time Ht at the pressure FF is less than 50 ms, the intermetallic compound layer at the bonding interface is insufficiently discharged, and if it exceeds 300 ms, the entire bonding time in the process As a result, the productivity decreases.
Note that the holding time Ht described above indicates an actual holding time and is usually longer than the time set on the apparatus side although it depends on the welding apparatus.

本実施形態によれば、上述したように、通電時間Btおよび休止時間Rtを最適化して大電流による短時間のパルセーション通電を行う溶接通電パターンを採用し、さらに、パルセーション通電終了後に直ちに、増加させた加圧力FFならびに最適化された保持時間Htで加圧保持する方法としている。これにより、特に、鋼板1の母材側におけるFe溶融部1aの生成を顕著に抑制することができる。そして、これに伴い、鋼板1とアルミニウム合金板2との接合界面において、金属間化合物層3の生成を抑制することができ、継手強度、疲労強度および耐食性に優れた異種金属接合継手10を得ることが可能となる。   According to the present embodiment, as described above, the welding energization pattern that optimizes the energization time Bt and the rest time Rt and performs short-time pulsation energization with a large current is adopted, and immediately after the pulsation energization ends, In this method, the pressure is maintained with the increased pressure FF and the optimized holding time Ht. Thereby, especially the production | generation of the Fe fusion | melting part 1a in the base material side of the steel plate 1 can be suppressed notably. And in connection with this, the production | generation of the intermetallic compound layer 3 can be suppressed in the joining interface of the steel plate 1 and the aluminum alloy plate 2, and the dissimilar metal joint joint 10 excellent in joint strength, fatigue strength, and corrosion resistance is obtained. It becomes possible.

なお、本実施形態においては、パルセーション通電パターンにおける、休止時間Rtでの最後の通電休止が完了した後に、上記条件の加圧保持を行う方法を説明しているが、本発明ではこのようなパターンには限定されない。例えば、パルセーション通電パターンにおける通電時間Btでの最後の通電が完了した後、休止時間をおかずに加圧保持を開始する方法としても良く、何れの方法においても、上述した本発明による効果が得られる。   In the present embodiment, the method of performing pressure holding under the above conditions after the last energization stop at the rest time Rt in the pulsation energization pattern has been described, but the present invention describes such a method. The pattern is not limited. For example, after completion of the last energization in the energization time Bt in the pulsation energization pattern, it may be a method of starting the pressure holding without taking a rest time, and in any method, the above-described effects of the present invention can be obtained. It is done.

以上説明した溶接条件が本発明の異種金属接合方法における必須条件であるが、本発明では、さらに、パルセーション通電を行う前に、予め、前通電を行う方法とすることがより好ましい。パルセーション通電に先だって前通電を行い、鋼板1とアルミニウム合金板2との接合界面間に微小な散りを発生させることにより、鋼板1とアルミニウム合金板2との間に介在する酸化物等の異物を除去する効果が得られる。
以下、本発明の異種金属接合方法において、パルセーション通電を行う前の前通電を行う場合の各条件について詳述する。
The welding conditions described above are indispensable conditions in the dissimilar metal joining method of the present invention. In the present invention, it is more preferable to perform a pre-energization in advance before performing pulsation energization. Prior to pulsation energization, pre-energization is performed to generate minute scattering between the joining interface between the steel plate 1 and the aluminum alloy plate 2, thereby allowing foreign matter such as oxide to intervene between the steel plate 1 and the aluminum alloy plate 2. The effect of removing is obtained.
Hereinafter, in the dissimilar-metal joining method of this invention, each condition in the case of performing pre-energization before performing pulsation energization is explained in full detail.

(前通電時間:Pt)
本発明において、パルセーション通電を行う前に前通電を行う場合には、前通電時間Pt(ms)を、下記(5)式を満たす範囲に規定する。
5 ≦ Pt ≦ 20 ・・・・・(5)
但し、上記(5)式において、Pt:前通電時間(ms)を示す。
(Pre-energization time: Pt)
In the present invention, when the pre-energization is performed before the pulsation energization, the pre-energization time Pt (ms) is defined in a range that satisfies the following equation (5).
5 ≦ Pt ≦ 20 (5)
However, in the above equation (5), Pt: pre-energization time (ms).

上記(5)式に示す通り、本発明において前通電を行う場合には、前通電時間Ptを5〜20(ms)の範囲とする。前通電時間Ptが5(ms)未満だと、接合界面において微小な散りが発生し難く、上記した清浄化の効果が得られない。また、前通電時間Ptが20msを超えると、アルミニウム合金板2側における接合界面の窪みが大きくなり、継手強度(十字引張強さ)が低下する。   As shown in the above equation (5), when pre-energization is performed in the present invention, the pre-energization time Pt is set to a range of 5 to 20 (ms). If the pre-energization time Pt is less than 5 (ms), minute scattering is unlikely to occur at the bonding interface, and the above-described cleaning effect cannot be obtained. Moreover, when the pre-energization time Pt exceeds 20 ms, the dent of the joint interface on the aluminum alloy plate 2 side becomes large, and the joint strength (cross tensile strength) decreases.

(前通電中の加圧力:PF)
本発明において、パルセーション通電を行う前に前通電を行う場合には、上述の前通電時間Ptで通電する際の加圧力PFを、下記(6)式を満たす範囲に規定する。
0.6×EF ≦ PF ≦ 0.8×EF ・・・・・(6)
但し、上記(6)式において、EF:パルセーション通電中の加圧力(kN)、PF:前通電中の加圧力(kN)を示す。
(Pressurizing force during pre-energization: PF)
In the present invention, when the pre-energization is performed before the pulsation energization, the pressure PF at the time of energization during the above-described pre-energization time Pt is defined within a range that satisfies the following expression (6).
0.6 × EF ≦ PF ≦ 0.8 × EF (6)
However, in the above equation (6), EF represents the pressure (kN) during pulsation energization, and PF: the pressure (kN) during pre-energization.

上記(6)式に示す通り、本発明において前通電を行う場合には、前通電時間Ptを上述した範囲としたうえで、前通電時の加圧力PFを、パルセーション通電中の加圧力EFの0.6〜0.8倍の範囲とし、溶接通電を行う際の加圧力EFよりも低めとする。このように、パルセーション通電に先だち、低い加圧力PFでの前通電を行うことにより、接合界面間に微小な散りを効果的に発生させて接合界面を清浄化することが可能となる。   As shown in the above equation (6), when pre-energization is performed in the present invention, the pre-energization time Pt is set to the above-described range, and the pressure PF at the time of pre-energization is changed to the pressure EF during pulsation energization. Of 0.6 to 0.8 times, and lower than the pressurizing force EF when welding energization is performed. Thus, prior to the pulsation energization, by performing the pre-energization with a low pressure PF, it is possible to effectively generate minute scattering between the bonding interfaces and to clean the bonding interface.

前通電中の加圧力PFが上記範囲未満だと、通電した際の電流集中が高くなり過ぎて爆飛現象が生じ、被接合材である鋼板やアルミニウム合金板に穴あき等の欠陥が生じるおそれがある。また、前通電中の加圧力PFが上記範囲を超えると、発熱不足となり、接合界面から微小な散りが発生し難いので、酸化物等を散りとして除去するのが困難となる。   If the applied pressure PF during pre-energization is less than the above range, the current concentration when energized becomes too high, and the explosion phenomenon may occur, which may cause defects such as perforations in the steel plate or aluminum alloy plate to be joined. There is. Further, if the pressure PF during pre-energization exceeds the above range, heat generation is insufficient, and it is difficult for fine scattering to occur from the bonding interface, so that it is difficult to remove oxides and the like as scattering.

本発明の異種金属接合方法では、パルセーション通電を行う前に、予め、上記各条件による前通電を行うことにより、鋼板1とアルミニウム合金板2との接合界面間を清浄化することができる。このように、接合界面間を清浄化した状態として、上述した条件のパルセーション通電を行うことにより、上述したような、鋼板1側におけるFe溶融部1aの生成が顕著に抑制され、これに伴って、金属間化合物層3の生成を効果的に抑制できる。従って、継手強度(十字引張強さ)、疲労強度および耐食性に優れた異種金属接合継手10を得ることが可能となる。   In the dissimilar metal joining method of the present invention, before conducting pulsation energization, pre-energization under the above-described conditions can be performed in advance to clean the bonding interface between the steel plate 1 and the aluminum alloy plate 2. As described above, by performing pulsation energization under the above-described conditions in a state where the bonding interface is cleaned, generation of the Fe melted portion 1a on the steel plate 1 side as described above is remarkably suppressed. Thus, the formation of the intermetallic compound layer 3 can be effectively suppressed. Therefore, the dissimilar metal joint 10 having excellent joint strength (cross tensile strength), fatigue strength, and corrosion resistance can be obtained.

なお、パルセーション通電に先立ち、予め、上述の前通電を行う場合の前通電電流PC(kA)は、パルセーション通電における通電電流BC(kA)と同程度とすることができる。
また、図3(b)に示すパターンにおいては、前通電電流PCを電極5A、5Bに供給するよりも前に、これら電極5A、5Bを、鋼板1およびアルミニウム合金板2に対して、加圧力PF(kN)で加圧しているが、これに限定されるものではない。例えば、前通電中の加圧を開始するタイミングは、前通電電流PCの供給と同時であっても良く、適宜決定すれば良い。
Prior to the pulsation energization, the pre-energization current PC (kA) in the case where the above-described pre-energization is performed in advance can be approximately the same as the energization current BC (kA) in the pulsation energization.
In the pattern shown in FIG. 3B, the electrodes 5A and 5B are pressed against the steel plate 1 and the aluminum alloy plate 2 before the pre-energization current PC is supplied to the electrodes 5A and 5B. Although it pressurizes with PF (kN), it is not limited to this. For example, the timing for starting pressurization during pre-energization may be simultaneous with the supply of the pre-energization current PC, and may be determined as appropriate.

[異種金属接合継手]
本発明の異種金属接合継手10は、上記したような本発明の異種金属接合方法により、鋼板1とアルミニウム合金板2とが抵抗スポット溶接で接合されて得られるものである。また、本発明の異種金属接合継手10は、図2に例示するように、鋼板1とアルミニウム合金板2との接合界面に、加圧通電時の電極5A、5Bの中心部51に対応する中心位置31における厚さt1が0.5μm以下の、Fe−Al系金属からなる金属間化合物層3が生成されている。
[Dissimilar metal joints]
The dissimilar metal joint 10 of the present invention is obtained by joining the steel plate 1 and the aluminum alloy plate 2 by resistance spot welding by the dissimilar metal joining method of the present invention as described above. Further, as illustrated in FIG. 2, the dissimilar metal joint 10 of the present invention has a center corresponding to the central portion 51 of the electrodes 5A and 5B at the time of applying pressure to the joint interface between the steel plate 1 and the aluminum alloy plate 2. The intermetallic compound layer 3 made of Fe—Al-based metal having a thickness t1 at the position 31 of 0.5 μm or less is generated.

「金属間化合物層の厚さ:t1」
図2に示すように、異種金属接合継手10は、接合界面におけるFe溶融部1aとAl溶融部2aとの間に、Fe−Al系金属からなる金属間化合物層3が生成されている。そして、本発明では、この金属間化合物層3の厚さが、上記した中心位置31における厚さt1で0.5μm以下に制限されている。このように、抵抗スポット溶接を用いた異種金属接合方法によって生成される金属間化合物層3に関し、その生成を可能な限り抑制して薄くすることにより、優れた継手強度、疲労強度および耐食性が得られる。
金属間化合物層3の厚さが、中心位置31における厚さt1で0.5μmを超えると、継手強度、特に剥離方向の強度(十字引張強さ)が低下する。
“Thickness of intermetallic compound layer: t1”
As shown in FIG. 2, in the dissimilar metal joint 10, an intermetallic compound layer 3 made of Fe—Al-based metal is generated between the Fe melt part 1 a and the Al melt part 2 a at the joint interface. And in this invention, the thickness of this intermetallic compound layer 3 is restrict | limited to 0.5 micrometer or less by thickness t1 in the above-mentioned center position 31. FIG. Thus, regarding the intermetallic compound layer 3 produced by the dissimilar metal joining method using resistance spot welding, excellent joint strength, fatigue strength and corrosion resistance can be obtained by reducing the production as much as possible and making it thin. It is done.
When the thickness of the intermetallic compound layer 3 exceeds 0.5 μm at the thickness t1 at the center position 31, the joint strength, particularly the strength in the peeling direction (cross tensile strength) decreases.

以上説明したような、本発明に係る鋼板1とアルミニウム合金板2との異種金属接合方法によれば、上記構成の如く、鋼板とアルミニウム合金板とをスポット溶接する際の溶接条件、即ち、通電ならびに加圧条件を最適化する方法を採用している。これにより、鋼板1とアルミニウム合金板2とを接合する際の良好な作業性を確保しつつ、溶接部の特性、即ち、継手強度、疲労強度および耐食性に優れた、信頼性の高い継手を形成させることが可能となる。   According to the dissimilar metal joining method of the steel plate 1 and the aluminum alloy plate 2 according to the present invention as described above, the welding conditions when the steel plate and the aluminum alloy plate are spot welded as described above, that is, energization In addition, a method of optimizing the pressurizing condition is adopted. Thereby, while ensuring good workability when joining the steel plate 1 and the aluminum alloy plate 2, a highly reliable joint excellent in the characteristics of the welded portion, that is, joint strength, fatigue strength and corrosion resistance is formed. It becomes possible to make it.

また、本発明に係る異種金属接合継手10によれば、上記の異種金属接合方法によって鋼板1とアルミニウム合金板2とを接合することで得られ、金属間化合物層3の厚さが所定以下に抑制されたものなので、継手強度、疲労強度および耐食性に優れた信頼性の高いものとなる。   Moreover, according to the dissimilar metal joint 10 according to the present invention, it is obtained by joining the steel plate 1 and the aluminum alloy plate 2 by the dissimilar metal joining method, and the thickness of the intermetallic compound layer 3 is less than a predetermined value. Since it is suppressed, it is highly reliable with excellent joint strength, fatigue strength, and corrosion resistance.

従って、例えば、自動車分野において、部分的なアルミニウム合金板の適用で軽量化された自動車用部品の製造や車体の組立等の工程に本発明を適用することにより、車体全体の軽量化による低燃費化や炭酸ガス(CO)の排出量削減等のメリットを十分に享受することができ、その社会的貢献は計り知れない。 Therefore, for example, in the automotive field, by applying the present invention to the process of manufacturing parts for automobiles that are lightened by applying a partial aluminum alloy plate, assembling the body, etc., low fuel consumption due to weight reduction of the entire body Benefits such as gasification and carbon dioxide (CO 2 ) emission reduction can be fully enjoyed, and its social contribution is immeasurable.

以下、本発明に係る鋼板とアルミニウム合金板との異種金属接合方法および異種金属接合継手の実施例を挙げ、本発明をより具体的に説明するが、本発明は、もとより下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, examples of the dissimilar metal joining method and dissimilar metal joining joint between the steel plate and the aluminum alloy plate according to the present invention will be given and described in more detail, but the present invention is originally limited to the following examples. However, the present invention can be carried out with appropriate modifications within a range that can meet the gist of the preceding and following descriptions, and these are all included in the technical scope of the present invention.

上述したように、本発明においては、パルセーション通電時の加圧力EF(kN)については特に限定していないが、本実施例では、板厚が1mm前後の軟鋼板やアルミニウム合金板の2枚重ね溶接時に用いられる、1.47〜4.5kNの範囲の中で代表的な加圧力を選定した。このような加圧力に選定することで、本発明における加圧力の設定変更によっても、一般的なロボット搭載型スポット溶接機の加圧力設定可能範囲を逸脱するものとはならないため、実施例データとして適正であるとともに、実工程においては生産性を阻害しないメリットがある。なお、本実施例では、母材強度と板厚から経験的に多用されている、次式{F=α×板厚×(TS/270)0.5}[kN]によって選定した。 As described above, in the present invention, the pressing force EF (kN) at the time of pulsation energization is not particularly limited, but in this embodiment, two sheets of a mild steel plate and an aluminum alloy plate having a plate thickness of about 1 mm are used. A representative pressurizing force was selected in the range of 1.47 to 4.5 kN used during lap welding. By selecting such a pressing force, even if the setting change of the pressing force in the present invention does not deviate from the setting range of a general robot-mounted spot welder, the example data In addition to being appropriate, the actual process has the advantage of not hindering productivity. In the present embodiment, the selection is made by the following formula {F = α × plate thickness × (TS / 270) 0.5 } [kN], which is frequently used from the base material strength and the plate thickness.

また、本発明においては、パルセーション通電時の溶接電流BC(kA)についても特に限定していないが、この溶接電流BCは、通常、電極形状や加圧力、通電時間等がそれぞれ相互に関連して決定されるものである。本実施例では、溶接電極として、Cr−Cu合金製で先端径が6.0mmとされたドームラジアス形のものを使用した。また、加圧力については、上述したパルセーション通電時の加圧力EFと同一とし、さらに、通電時間を100msecとして1回通電で溶接した際に、その溶接継手のせん断方向の引張強さが2.5kN以上となり、大きな散りの発生や欠陥が生じない溶接電流を選定した。   In the present invention, the welding current BC (kA) at the time of pulsation energization is not particularly limited, but the welding current BC is usually related to the electrode shape, the applied pressure, the energization time, and the like. Determined. In this example, a dome radius type electrode made of a Cr—Cu alloy and having a tip diameter of 6.0 mm was used as the welding electrode. Further, the applied pressure is the same as the applied pressure EF at the time of energizing the pulsation, and when the energized time is 100 msec and welding is performed once by energization, the tensile strength in the shear direction of the welded joint is 2. The welding current was selected so that it would be 5 kN or more and no large scattering or defects would occur.

[実施例1]
実施例1においては、まず、下記表1に示すような板厚とされた引張強さが270MPa級の鋼板と、同様に下記表1に示すような板厚とされたアルミニウム合金板(5000系ならびに6000系)を準備した。そして、これらの各鋼板およびアルミニウム合金板から、抵抗スポット溶接継手の十字引張試験方法(JIS Z3137)に基づいて、十字引張試験片に用いる50×150mmのサイズのサンプル片を切り出した。
[Example 1]
In Example 1, first, a steel plate having a tensile strength of 270 MPa as shown in Table 1 below and an aluminum alloy plate (5000 series) similarly shown in Table 1 below. As well as 6000 series). And based on the cross tension test method (JIS Z3137) of a resistance spot welded joint, the sample piece of the size of 50x150 mm used for a cross tension test piece was cut out from each of these steel plates and aluminum alloy plates.

Figure 2012152786
Figure 2012152786

次に、上記サンプル片を用いて、抵抗スポット溶接継手の十字引張試験方法(JIS Z3137)に基づき、図4に示すような十字状に各試験片を重ね合せ、下記表2〜7に示す条件で、インバータ式直流スポット溶接機を用いてスポット溶接を行い、溶接継手によって各サンプル片が接合されてなる十字引張試験片を作製した。この際、抵抗スポット溶接の溶接電極として、Cr−Cu合金製で先端径が6.0mmのドームラジアス型のものを使用した。ここで、パルセーション通電による溶接通電、ならびに、パルセーション通電パターンが完了した後の加圧保持条件については、下記表2〜6に示す範囲で変化させた。また、下記表4に示す試験No.81〜No.110の本発明例においては、パルセーション通電を行う前に、予め、下記表4に示す条件で前通電を行った。   Next, using the above sample pieces, based on the cross tension test method (JIS Z3137) for resistance spot welded joints, the test pieces were superposed in a cross shape as shown in FIG. Then, spot welding was performed using an inverter type DC spot welder, and cross-tension test pieces in which each sample piece was joined by a welded joint were produced. At this time, a dome radius type electrode made of a Cr—Cu alloy and having a tip diameter of 6.0 mm was used as a welding electrode for resistance spot welding. Here, the welding energization by pulsation energization and the pressure holding conditions after the completion of the pulsation energization pattern were changed within the ranges shown in Tables 2 to 6 below. In addition, test No. shown in Table 4 below. 81-No. In Example 110 of the present invention, pre-energization was performed in advance under the conditions shown in Table 4 below before performing pulsation energization.

次に、得られた十字引張試験片について、抵抗スポット溶接継手の十字引張試験方法(JIS Z3137)に基づき、十字引張試験を実施した。この際、剥離方向、即ち、図4中の符号6で示すように、上側の試験片を上方向に、下側の試験片を下方向に、相互に剥離する方向で荷重を付加することで十字引張試験を実施し、十字引張強さ(CTS)を測定した。そして、十字引張強さ(剥離荷重)について、アルミニウム合金板A6022同士のスポット溶接部における接合強度を参考にして、1.0(kN)以上を「○」、1.0(kN)未満を「×」として評価し、結果を下記表2〜6に示した。   Next, a cross tension test was performed on the obtained cross tension test piece based on a cross tension test method (JIS Z3137) of a resistance spot welded joint. At this time, by applying a load in the peeling direction, that is, as shown by reference numeral 6 in FIG. 4, the upper test piece is upward and the lower test piece is downward and peels from each other. A cross tensile test was performed and the cross tensile strength (CTS) was measured. Then, with respect to the cross tensile strength (peeling load), 1.0 (kN) or more is “◯” and less than 1.0 (kN) is “ The results are shown in Tables 2 to 6 below.

また、鋼板とアルミニウム合金板との接合界面に生成される金属間化合物層に関し、加圧通電時の電極中心部に対応する位置における厚さを測定した。この測定にあたっては、まず、上述の十字引張試験と同じサンプル片を用いて、同条件で抵抗スポット溶接を行うことで断面観察用スポット溶接サンプルを作製した。次いで、このサンプルの溶接部中央付近を切断し、樹脂に埋め込んで断面研磨した後、走査型電子顕微鏡によって断面を観察することで厚さを測定した。そして、金属間化合物層における、電極中心部に対応する位置の厚さが0.3μm以下の場合を「◎」、0.3μm超0.5μm以下を「○」、0.5μm超を「×」として評価し、結果を下記表2〜6に示した。
また、上記の金属間化合物層の厚さの測定と同時に、鋼板とアルミニウム合金板との接合界面におけるFe溶融部の生成の有無を断面観察によって確認し、結果を下記表2〜6に示した。
Moreover, regarding the intermetallic compound layer produced | generated in the joining interface of a steel plate and an aluminum alloy plate, the thickness in the position corresponding to the electrode center part at the time of pressurization energization was measured. In this measurement, first, a spot weld sample for cross-sectional observation was prepared by performing resistance spot welding under the same conditions using the same sample piece as that of the cross tension test described above. Next, the vicinity of the center of the welded portion of this sample was cut, embedded in a resin and subjected to cross-sectional polishing, and then the thickness was measured by observing the cross-section with a scanning electron microscope. In the intermetallic compound layer, the thickness corresponding to the electrode center portion is 0.3 μm or less, “」 ”, more than 0.3 μm to 0.5 μm or less“ ◯ ”, and more than 0.5 μm“ × ” The results are shown in Tables 2 to 6 below.
Simultaneously with the measurement of the thickness of the intermetallic compound layer, the presence or absence of the formation of an Fe melt at the bonding interface between the steel plate and the aluminum alloy plate was confirmed by cross-sectional observation, and the results are shown in Tables 2 to 6 below. .

そして、総合評価として、電極中心部の対応位置における金属間化合物層の厚さが0.5μm以下(◎または○)であって、十字引張強さ(剥離過重)が1.0kN以上(○)の場合を「○」とし、また、金属間化合物層の厚さが0.5μm超(×)もしくは十字引張強さが1.0kN未満の場合を「×」として評価し、結果を下記表2〜6に示した。   As a comprehensive evaluation, the thickness of the intermetallic compound layer at the corresponding position in the center of the electrode is 0.5 μm or less (◎ or ○), and the cross tensile strength (peeling excess) is 1.0 kN or more (◯). The case where the thickness of the intermetallic compound layer is more than 0.5 μm (x) or the cross tensile strength is less than 1.0 kN is evaluated as “x”, and the results are shown in Table 2 below. -6.

Figure 2012152786
Figure 2012152786

Figure 2012152786
Figure 2012152786

Figure 2012152786
Figure 2012152786

Figure 2012152786
Figure 2012152786

Figure 2012152786
Figure 2012152786

表2〜4に示す試験No.1〜No.110は本発明例であり、また、表5、6に示す条件No.111〜No.210は比較例である。
表2〜4の結果に示すように、本発明で規定するパルセーション通電パターンで溶接通電を行い、その後、本発明で規定する条件の加圧保持を行った試験No.1〜No.110の本発明例においては、何れも、鋼板とアルミニウム合金板との間においてFe溶融部の生成が見られず、接合界面間に生成された金属間化合物層が0.5μm以下の厚さに抑制されていた(◎または○の評価)。また、十字引張強さも全て1.0kN以上であり、接合強度が高いことが確認できた。そして、上記結果により、試験No.1〜No.110の本発明例は、全て、総合評価が「○」となった。
Test Nos. Shown in Tables 2-4. 1-No. 110 is an example of the present invention. 111-No. 210 is a comparative example.
As shown in the results of Tables 2 to 4, test No. 1 was conducted in which welding energization was performed with the pulsation energization pattern defined in the present invention, and then pressure holding was performed under the conditions defined in the present invention. 1-No. In 110 of the present invention examples, the formation of an Fe melt zone is not observed between the steel plate and the aluminum alloy plate, and the intermetallic compound layer generated between the joining interfaces has a thickness of 0.5 μm or less. It was suppressed (evaluation of ◎ or ○). Moreover, all the cross tensile strengths were also 1.0 kN or more, and it has confirmed that joining strength was high. Based on the above results, test No. 1-No. In all 110 inventive examples, the overall evaluation was “◯”.

一方、表5、6の結果に示すように、本発明で規定する範囲外のパルセーション通電パターンで溶接通電を行うか、あるいは、その後の加圧保持条件が本発明の規定範囲外である試験No.111〜No.210の比較例においては、鋼板とアルミニウム合金板との間においてFe溶融部の生成が見られた。これに伴い、接合界面間に生成された金属間化合物層の厚さに大きなばらつきがあり、ほとんどの比較例において金属間化合物層の厚さが0.5μmを超える結果となった。また、これら比較例のほとんどは、十字引張強さが1.0kN未満であり、結果として、金属間化合物層の厚さ、または、十字引張強さの少なくとも何れかが「×」の評価となり、継手強度に劣るものとなった。この結果、試験No.111〜No.210の比較例は、全て、総合評価が「×」となった。   On the other hand, as shown in the results of Tables 5 and 6, a test in which welding energization is performed with a pulsation energization pattern outside the range specified in the present invention, or the subsequent pressurizing and holding conditions are outside the specified range of the present invention. No. 111-No. In the comparative example of 210, the production | generation of the Fe fusion | melting part was seen between the steel plate and the aluminum alloy plate. Along with this, there was a large variation in the thickness of the intermetallic compound layer produced between the bonding interfaces, and in most of the comparative examples, the thickness of the intermetallic compound layer exceeded 0.5 μm. Most of these comparative examples have a cross tensile strength of less than 1.0 kN. As a result, at least one of the thickness of the intermetallic compound layer or the cross tensile strength is evaluated as “x”. The joint strength was inferior. As a result, test no. 111-No. In all of the 210 comparative examples, the overall evaluation was “x”.

[実施例2]
実施例2においては、実施例1と同様、まず、表1に示すような板厚とされた引張強さが270MPa級の鋼板と、表1に示すような板厚とされたアルミニウム合金板(5000系ならびに6000系)を準備した。そして、これらの各鋼板およびアルミニウム合金板から、抵抗スポット溶接継手の十字引張試験方法(JIS Z3137)に基づいて、十字引張試験片に用いる50×150mmのサイズのサンプル片を切り出した。
[Example 2]
In Example 2, similarly to Example 1, first, a steel plate having a tensile strength of 270 MPa as shown in Table 1 and an aluminum alloy plate (Table 1) having a thickness as shown in Table 1 ( 5000 series and 6000 series) were prepared. And based on the cross tension test method (JIS Z3137) of a resistance spot welded joint, the sample piece of the size of 50x150 mm used for a cross tension test piece was cut out from each of these steel plates and aluminum alloy plates.

次に、上記サンプル片を用いて、サンプル片を2枚重ねとして試験を行うJIS Z3137で規定された抵抗スポット溶接継手の十字引張試験方法を基本とし、さらに、図5に示すように、鋼板のサンプル片を2枚重ねとしたうえでアルミニウム合金板のサンプル片を1枚とし、合計3枚重ねとしてスポット溶接を行った。この際、上記実施例1と同様に、図5に示すような十字状に各試験片を重ね合せ、下記表7、8に示す条件で、インバータ式直流スポット溶接機を用いてスポット溶接を行い、溶接継手によって各サンプル片が接合されてなる十字引張試験片を作製した。   Next, based on the cross tension test method for resistance spot welded joints defined in JIS Z3137, in which the above sample pieces are used as a stack of two sample pieces, and as shown in FIG. After two sample pieces were stacked, one sample piece of the aluminum alloy plate was used, and spot welding was performed with a total of three stacked pieces. At this time, in the same manner as in Example 1, the test pieces were overlapped in a cross shape as shown in FIG. 5 and spot welding was performed using an inverter type DC spot welder under the conditions shown in Tables 7 and 8 below. A cross tensile test piece in which each sample piece was joined by a welded joint was prepared.

また、抵抗スポット溶接の溶接電極としては、実施例1と同様、Cr−Cu合金製で先端径が6.0mmのドームラジアス型のものを使用した。ここで、パルセーション通電による溶接通電、ならびに、パルセーション通電パターンが完了した後の加圧保持条件についても、実施例1と同様、下記表7、8に示す範囲で変化させた。また、下記表7に示す試験No.325〜No.334の本発明例においては、パルセーション通電を行う前に、予め、下記表7に示す条件で前通電を行った。   As a welding electrode for resistance spot welding, a dome radius type electrode made of a Cr—Cu alloy and having a tip diameter of 6.0 mm was used as in Example 1. Here, the welding energization by pulsation energization and the pressure holding conditions after the completion of the pulsation energization pattern were also changed within the ranges shown in Tables 7 and 8 below as in Example 1. In addition, test No. shown in Table 7 below. 325-No. In Example 334 of the present invention, pre-energization was performed in advance under the conditions shown in Table 7 below before performing pulsation energization.

次に、得られた十字引張試験片について、抵抗スポット溶接継手の十字引張試験方法(JIS Z3137)に基づき、十字引張試験を実施した。この際、剥離方向、即ち、図5中の符号6で示すように、上側の試験片、即ち、2枚重ねとされた鋼板側の試験片を上方向に、下側の試験片(アルミニウム合金板)を下方向に、相互に剥離する方向で荷重を付加することで十字引張試験を実施し、十字引張強さ(CTS)を測定した。そして、十字引張強さ(剥離荷重)について、アルミニウム合金板A6022同士のスポット溶接部における接合強度を参考にして、1.0(kN)以上を「○」、1.0(kN)未満を「×」として評価し、結果を下記表7、8に示した。   Next, a cross tension test was performed on the obtained cross tension test piece based on a cross tension test method (JIS Z3137) of a resistance spot welded joint. At this time, as shown by the reference numeral 6 in FIG. 5, the upper test piece, that is, the test piece on the steel sheet side which is two-layered is directed upward, and the lower test piece (aluminum alloy). A cross tension test was performed by applying a load in a direction in which the sheet was peeled downward and peeled from each other, and a cross tensile strength (CTS) was measured. Then, with respect to the cross tensile strength (peeling load), 1.0 (kN) or more is “◯” and less than 1.0 (kN) is “ The results are shown in Tables 7 and 8 below.

また、鋼板とアルミニウム合金板との接合界面に生成される金属間化合物層に関し、加圧通電時の電極中心部に対応する位置における厚さを測定した。この測定にあたっては、上記実施例1と同様の方法を用いるとともに、2枚重ねとされた鋼板のサンプル片の内、アルミニウム合金板のサンプル片と接する側のサンプル片と、アルミニウム合金板のサンプル片との接合界面に生成された金属間化合物層の厚さを測定した。そして、金属間化合物層における、電極中心部に対応する位置の厚さが0.3μm以下の場合を「◎」、0.3μm超0.5μm以下を「○」、0.5μm超を「×」として評価し、結果を下記表7、8に示した。
また、上記実施例1と同様に、鋼板とアルミニウム合金板との接合界面におけるFe溶融部の生成の有無を断面観察によって確認し、結果を下記表7、8に示した。
Moreover, regarding the intermetallic compound layer produced | generated in the joining interface of a steel plate and an aluminum alloy plate, the thickness in the position corresponding to the electrode center part at the time of pressurization energization was measured. In this measurement, the same method as in Example 1 was used, and among the two pieces of steel plate sample pieces stacked, the sample piece on the side in contact with the sample piece of the aluminum alloy plate, and the sample piece of the aluminum alloy plate The thickness of the intermetallic compound layer formed at the bonding interface with the substrate was measured. In the intermetallic compound layer, the thickness corresponding to the electrode center portion is 0.3 μm or less, “」 ”, more than 0.3 μm to 0.5 μm or less“ ◯ ”, and more than 0.5 μm“ × ” The results are shown in Tables 7 and 8 below.
In addition, as in Example 1, the presence or absence of the formation of an Fe melt at the joining interface between the steel plate and the aluminum alloy plate was confirmed by cross-sectional observation, and the results are shown in Tables 7 and 8 below.

そして、総合評価として、電極中心部の対応位置における金属間化合物層の厚さが0.5μm以下(◎または○)であって、十字引張強さ(剥離過重)が1.0kN以上(○)の場合を「○」とし、また、金属間化合物層の厚さが0.5μm超(×)もしくは十字引張強さが1.0kN未満の場合を「×」として評価し、結果を下記表7、8に示した。   As a comprehensive evaluation, the thickness of the intermetallic compound layer at the corresponding position in the center of the electrode is 0.5 μm or less (◎ or ○), and the cross tensile strength (peeling excess) is 1.0 kN or more (◯). The case where the thickness of the intermetallic compound layer is more than 0.5 μm (x) or the cross tensile strength is less than 1.0 kN is evaluated as “x”, and the results are shown in Table 7 below. , 8.

Figure 2012152786
Figure 2012152786

Figure 2012152786
Figure 2012152786

表7に示す試験No.301〜No.334は本発明例であり、また、表8に示す条件No.335〜No.364は比較例である。
表7の結果に示すように、鋼板のサンプル片を2枚重ねとし、アルミニウム合金板のサンプル片を1枚とした、合計で3枚重ねとしたうえで、本発明で規定するパルセーション通電パターンで溶接通電を行い、その後、本発明で規定する条件の加圧保持を行った試験No.301〜No.334の本発明例においては、何れも、鋼板とアルミニウム合金板との間においてFe溶融部の生成が見られず、接合界面間に生成された金属間化合物層が0.5μm以下の厚さに抑制されていた(◎または○の評価)。また、十字引張強さも全て1.0kN以上であり、接合強度が高いことが確認できた。そして、上記結果により、試験No.301〜No.334の本発明例は、全て、総合評価が「○」となった。
Test No. shown in Table 7 301-No. 334 is an example of the present invention, and condition No. 335-No. 364 is a comparative example.
As shown in the results of Table 7, the pulsation energization pattern defined in the present invention is made by superposing three sample pieces of steel sheets and one sample piece of aluminum alloy plate, and making a total of three pieces. The test No. 1 was conducted with welding energization and then held under pressure under the conditions specified in the present invention. 301-No. In all of the examples of the present invention of 334, the formation of an Fe melt zone was not observed between the steel plate and the aluminum alloy plate, and the intermetallic compound layer generated between the joining interfaces had a thickness of 0.5 μm or less. It was suppressed (evaluation of ◎ or ○). Moreover, all the cross tensile strengths were also 1.0 kN or more, and it has confirmed that joining strength was high. Based on the above results, test No. 301-No. In all of the 334 invention examples, the overall evaluation was “◯”.

一方、表8の結果に示すように、上述のような3枚重ねとしたうえで、本発明で規定する範囲外のパルセーション通電パターンで溶接通電を行うか、あるいは、その後の加圧保持条件が本発明の規定範囲外である試験No.335〜No.364の比較例においては、一部、鋼板とアルミニウム合金板との間においてFe溶融部の生成が見られた。これに伴い、接合界面間に生成された金属間化合物層の厚さに大きなばらつきがあり、ほとんどの比較例において金属間化合物層の厚さが0.5μmを超える結果となった。また、これら比較例のほとんどは、十字引張強さが1.0kN未満であり、結果として、金属間化合物層の厚さ、または、十字引張強さの少なくとも何れかが「×」の評価となり、継手強度に劣るものとなった。この結果、試験No.335〜No.364の比較例は、全て、総合評価が「×」となった。   On the other hand, as shown in the results of Table 8, after the three sheets are stacked as described above, welding energization is performed with a pulsation energization pattern outside the range defined by the present invention, or the subsequent pressurization holding condition Is outside the specified range of the present invention. 335-No. In the comparative example of 364, a part of the Fe melt part was observed between the steel plate and the aluminum alloy plate. Along with this, there was a large variation in the thickness of the intermetallic compound layer produced between the bonding interfaces, and in most of the comparative examples, the thickness of the intermetallic compound layer exceeded 0.5 μm. Most of these comparative examples have a cross tensile strength of less than 1.0 kN. As a result, at least one of the thickness of the intermetallic compound layer or the cross tensile strength is evaluated as “x”. The joint strength was inferior. As a result, test no. 335-No. In all of the 364 comparative examples, the overall evaluation was “x”.

なお、上記実施例1、2においては、板厚を変更して実験を行った場合も、また、めっき種や目付量等を変更して実験を行った場合も、結果は上記と同様であった。即ち、板厚やめっきの有無等にかかわらず、本発明の異種金属接合方法を採用することで、接合界面間における金属間化合物層の生成を抑制することができ、継手強度、疲労強度特性や耐食性が向上する効果が得られることが確認できた。   In Examples 1 and 2, the results were the same as above when the experiment was performed with the plate thickness changed or when the experiment was performed with the plating type, the basis weight, etc. changed. It was. That is, regardless of the thickness of the plate, the presence or absence of plating, etc., by adopting the dissimilar metal bonding method of the present invention, it is possible to suppress the formation of an intermetallic compound layer between the bonding interfaces, the joint strength, fatigue strength characteristics and It was confirmed that the effect of improving the corrosion resistance was obtained.

本発明によれば、部分的なアルミニウム合金板の適用で軽量化された自動車用部品の製造や車体の組立等の工程に本発明を適用することにより、良好な作業性を確保しつつ、継手特性を向上させることが可能となる。従って、自動車分野において、車体全体の軽量化による低燃費化や炭酸ガス(CO)の排出量削減等のメリットを十分に享受することができ、その社会的貢献は計り知れない。 According to the present invention, by applying the present invention to the manufacturing process of automobile parts and the assembly of a vehicle body that have been reduced in weight by applying a partial aluminum alloy plate, the joint can be secured while ensuring good workability. The characteristics can be improved. Therefore, in the automobile field, it is possible to fully enjoy merits such as fuel efficiency reduction by reducing the weight of the entire vehicle body and reduction of carbon dioxide (CO 2 ) emissions, and the social contribution is immeasurable.

1(1A、1B)…鋼板、
2…アルミニウム合金板、
3…金属間化合物層(金属間化合物)、
31…中心位置(電極中心部に対応する位置)、
5(5A、5B)…電極、
51…中心部(電極中心部)、
10…異種金属接合継手、
t1…金属間化合物層の電極中心部に対応する位置における厚さ、
1 (1A, 1B) ... steel plate,
2 ... Aluminum alloy plate,
3 ... intermetallic compound layer (intermetallic compound),
31 ... Center position (position corresponding to the electrode center),
5 (5A, 5B) ... electrode,
51 ... Center part (electrode center part),
10 ... Joint metal joint,
t1 ... the thickness of the intermetallic compound layer at the position corresponding to the center of the electrode,

Claims (3)

鋼板とアルミニウム合金板とを各1枚以上で合計2枚以上を重ね合わせた状態とし、前記鋼板およびアルミニウム合金板の上下に配置された電極で加圧しながら抵抗スポット溶接を行う、鋼板とアルミニウム合金板との異種金属接合方法であって、
前記抵抗スポット溶接を行う際、通電時間Bt(ms)、休止時間Rt(ms)を下記(1)、(2)式を満たす条件とし、加圧力EF(kN)でのパルセーション通電を2〜8回の範囲で行い、前記休止時間Rt(ms)での最後の通電休止が完了した後、直ちに、加圧力を、下記(3)式を満たす通電完了後の加圧力FF(kN)まで増加させ、その後、下記(4)式を満足する保持時間Ht(ms)で加圧保持した後、加圧力を除荷することを特徴とする、鋼板とアルミニウム合金板との異種金属接合方法。
2 ≦ Bt ≦ 10 ・・・・・(1)
1 ≦ Rt ≦ 5 ・・・・・(2)
1.2×EF ≦ FF ≦ 2.0×EF ・・・・・(3)
50 ≦ Ht ≦ 300 ・・・・・(4)
{但し、上記(1)〜(4)式において、Bt:通電時間(ms)、Rt:休止時間(ms)、EF:パルセーション通電中の加圧力(kN)、FF:通電完了後の加圧力(kN)、Ht:保持時間(ms)を示す。}
A steel plate and an aluminum alloy in which resistance steel is welded while pressing with electrodes arranged above and below the steel plate and the aluminum alloy plate in a state where one or more steel plates and one or more aluminum plates are overlapped. A dissimilar metal joining method with a plate,
When performing the resistance spot welding, the energization time Bt (ms) and the rest time Rt (ms) are set to satisfy the following formulas (1) and (2), and the pulsation energization with the applied pressure EF (kN) is 2 to 2. Immediately after the last energization stop at the rest time Rt (ms) is completed, the applied pressure is increased to the applied pressure FF (kN) after completion of energization satisfying the following expression (3). Then, after pressurizing and holding for a holding time Ht (ms) that satisfies the following formula (4), the applied pressure is unloaded, and the dissimilar metal joining method of the steel plate and the aluminum alloy plate is characterized by:
2 ≦ Bt ≦ 10 (1)
1 ≦ Rt ≦ 5 (2)
1.2 x EF ≤ FF ≤ 2.0 x EF (3)
50 ≦ Ht ≦ 300 (4)
{However, in the above formulas (1) to (4), Bt: energization time (ms), Rt: rest time (ms), EF: applied pressure during pulsation energization (kN), FF: applied after completion of energization Pressure (kN), Ht: holding time (ms). }
前記パルセーション通電を行う前に、予め、下記(5)、(6)を満たす前通電時間Pt(ms)および前通電中の加圧力PF(kN)の条件で前通電を行うことにより、前記鋼板とアルミニウム合金板との接合界面間に微小な散りを発生させ、その後、前記パルセーション通電を行うことを特徴とする、請求項1に記載の鋼板とアルミニウム合金板との異種金属接合方法。
5 ≦ Pt ≦ 20 ・・・・・(5)
0.6×EF ≦ PF ≦ 0.8×EF ・・・・・(6)
{但し、上記(5)、(6)式において、Pt:前通電時間(ms)、EF:パルセーション通電中の加圧力(kN)、PF:前通電中の加圧力(kN)を示す。}
Before conducting the pulsation energization, by performing pre-energization in advance under the conditions of the pre-energization time Pt (ms) and pre-energization pressure PF (kN) that satisfy the following (5) and (6), The dissimilar metal joining method of the steel plate and aluminum alloy plate of Claim 1 which produces | generates a fine scattering between the joining interfaces of a steel plate and an aluminum alloy plate, and performs the said pulsation electricity supply after that.
5 ≦ Pt ≦ 20 (5)
0.6 × EF ≦ PF ≦ 0.8 × EF (6)
{However, in the above formulas (5) and (6), Pt: pre-energization time (ms), EF: pressure applied during pulsation energization (kN), PF: pressure applied during pre-energization (kN). }
請求項1または請求項2に記載の異種金属接合方法により、鋼板とアルミニウム合金板とが接合されてなる異種金属接合継手であって、
前記鋼板とアルミニウム合金板との接合界面に、加圧通電時の電極中心部に対応する位置における厚さが0.5μm以下のFe−Al系金属間化合物層が生成されていることを特徴とする、鋼板とアルミニウム合金板との異種金属接合継手。
A dissimilar metal joint obtained by joining a steel plate and an aluminum alloy plate by the dissimilar metal joining method according to claim 1 or 2,
An Fe-Al intermetallic compound layer having a thickness of 0.5 μm or less at a position corresponding to an electrode center portion at the time of applying pressure is generated at a bonding interface between the steel plate and the aluminum alloy plate. Dissimilar metal joint between steel plate and aluminum alloy plate.
JP2011014081A 2011-01-26 2011-01-26 Dissimilar metal joining method between steel plate and aluminum alloy plate and manufacturing method of dissimilar metal joint Active JP5624901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011014081A JP5624901B2 (en) 2011-01-26 2011-01-26 Dissimilar metal joining method between steel plate and aluminum alloy plate and manufacturing method of dissimilar metal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011014081A JP5624901B2 (en) 2011-01-26 2011-01-26 Dissimilar metal joining method between steel plate and aluminum alloy plate and manufacturing method of dissimilar metal joint

Publications (2)

Publication Number Publication Date
JP2012152786A true JP2012152786A (en) 2012-08-16
JP5624901B2 JP5624901B2 (en) 2014-11-12

Family

ID=46835093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011014081A Active JP5624901B2 (en) 2011-01-26 2011-01-26 Dissimilar metal joining method between steel plate and aluminum alloy plate and manufacturing method of dissimilar metal joint

Country Status (1)

Country Link
JP (1) JP5624901B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103111741A (en) * 2012-12-21 2013-05-22 上海交通大学 Controllable electrode force method for lowering welding spatter of resistance spot welding of sandwich plate
JP2014113616A (en) * 2012-12-10 2014-06-26 Mazda Motor Corp Spot welding method, and dissimilar metal joined body
CN105269137A (en) * 2014-07-24 2016-01-27 吉林大学 Intermediate frequency spot welding method for aluminum alloy and zinc-plated high-strength steel dissimilar material
KR20160062820A (en) * 2014-11-25 2016-06-03 주식회사 포스코 METHOD FOR RESISTANCE SPOT WELDING FOR Zn PLATED STEEL SHEET
JP2019034313A (en) * 2017-08-10 2019-03-07 新日鐵住金株式会社 Bonded joint
DE102019100773A1 (en) 2018-01-24 2019-07-25 Toyota Jidosha Kabushiki Kaisha Method for joining dissimilar metal plates
DE102019102331A1 (en) 2018-02-09 2019-08-14 Toyota Jidosha Kabushiki Kaisha Method for joining dissimilar metal plates
CN111230275A (en) * 2020-01-19 2020-06-05 南京南方联成汽车零部件有限公司 Strip electrode spot welding process suitable for aluminum steel dissimilar metal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823579A (en) * 1981-08-04 1983-02-12 Toyota Motor Corp Lap resistance spot welding method for thin steel plate
JP2004017148A (en) * 2002-06-20 2004-01-22 Toyota Motor Corp Method for joining different kinds of metallic material
JP2005262259A (en) * 2004-03-17 2005-09-29 Jfe Steel Kk Method for manufacturing resistance spot welded joint
JP2006224150A (en) * 2005-02-17 2006-08-31 Kobe Steel Ltd Resistance spot welding method for different materials
JP2006336070A (en) * 2005-06-01 2006-12-14 Kobe Steel Ltd Steel sheet for welding joining as different material with aluminum material, and different material-joined body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823579A (en) * 1981-08-04 1983-02-12 Toyota Motor Corp Lap resistance spot welding method for thin steel plate
JP2004017148A (en) * 2002-06-20 2004-01-22 Toyota Motor Corp Method for joining different kinds of metallic material
JP2005262259A (en) * 2004-03-17 2005-09-29 Jfe Steel Kk Method for manufacturing resistance spot welded joint
JP2006224150A (en) * 2005-02-17 2006-08-31 Kobe Steel Ltd Resistance spot welding method for different materials
JP2006336070A (en) * 2005-06-01 2006-12-14 Kobe Steel Ltd Steel sheet for welding joining as different material with aluminum material, and different material-joined body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014113616A (en) * 2012-12-10 2014-06-26 Mazda Motor Corp Spot welding method, and dissimilar metal joined body
CN103111741A (en) * 2012-12-21 2013-05-22 上海交通大学 Controllable electrode force method for lowering welding spatter of resistance spot welding of sandwich plate
CN105269137A (en) * 2014-07-24 2016-01-27 吉林大学 Intermediate frequency spot welding method for aluminum alloy and zinc-plated high-strength steel dissimilar material
KR20160062820A (en) * 2014-11-25 2016-06-03 주식회사 포스코 METHOD FOR RESISTANCE SPOT WELDING FOR Zn PLATED STEEL SHEET
KR101657781B1 (en) * 2014-11-25 2016-09-20 주식회사 포스코 METHOD FOR RESISTANCE SPOT WELDING FOR Zn PLATED STEEL SHEET
JP2019034313A (en) * 2017-08-10 2019-03-07 新日鐵住金株式会社 Bonded joint
DE102019100773A1 (en) 2018-01-24 2019-07-25 Toyota Jidosha Kabushiki Kaisha Method for joining dissimilar metal plates
US11351624B2 (en) 2018-01-24 2022-06-07 Toyota Jidosha Kabushiki Kaisha Method for joining dissimtilar metal plates
DE102019102331A1 (en) 2018-02-09 2019-08-14 Toyota Jidosha Kabushiki Kaisha Method for joining dissimilar metal plates
US11351625B2 (en) 2018-02-09 2022-06-07 Toyota Jidosha Kabushiki Kaisha Method for joining dissimilar metal plates
CN111230275A (en) * 2020-01-19 2020-06-05 南京南方联成汽车零部件有限公司 Strip electrode spot welding process suitable for aluminum steel dissimilar metal

Also Published As

Publication number Publication date
JP5624901B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JP5624901B2 (en) Dissimilar metal joining method between steel plate and aluminum alloy plate and manufacturing method of dissimilar metal joint
KR101744427B1 (en) Spot welding method for high-strength steel sheet excellent in joint strength
JP3849539B2 (en) Spot welding method for high-tensile galvanized steel sheet
JP4555160B2 (en) Steel plate for dissimilar welding with aluminum material and dissimilar material joint
KR101785229B1 (en) Method for producing arc spot weld joint
JP5014833B2 (en) MIG welding method for aluminum and steel
KR101419191B1 (en) Method for joining differing materials
JP5842734B2 (en) Arc spot welded joint with excellent joint strength and manufacturing method thereof
JP4502873B2 (en) Resistance spot welding method for aluminum and iron materials
JP2011067853A (en) Spot welding method for high-strength steel sheet
US11772184B2 (en) Welding method for the manufacture of an assembly of at least 2 metallic substrates
US20210308784A1 (en) An assembly of at least 2 metallic substrates
JP3849508B2 (en) Spot welding method for high-tensile galvanized steel sheet
JP7003806B2 (en) Joined structure and its manufacturing method
KR102061470B1 (en) MIG brazing method, manufacturing method of overlap joint member, and overlap joint member
JP4859732B2 (en) Dissimilar material MIG joint and dissimilar material MIG joining method
JP7047543B2 (en) Joined structure and its manufacturing method
Viňáš et al. Optimization of resistance spot welding parameters for microalloyed steel sheets
JP2007277717A (en) Steel sheet for brazing bonding to aluminum based material, bonding material using the steel sheet, and bonding joint
US11919102B2 (en) Assembly of at least 2 metallic substrates
JP2008173666A (en) Lap resistance welding method and lap welded joint
JP2005152958A (en) Joint body of different material of steel material and aluminum material, and its joint method
Chen Refill friction stir spot welding of dissimilar alloys
JP7003805B2 (en) Joined structure and its manufacturing method
JP3849525B2 (en) Spot welding method for high-tensile galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140929

R150 Certificate of patent or registration of utility model

Ref document number: 5624901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250