JP2006224127A - Method for manufacturing steel/aluminum joined structure - Google Patents
Method for manufacturing steel/aluminum joined structure Download PDFInfo
- Publication number
- JP2006224127A JP2006224127A JP2005039412A JP2005039412A JP2006224127A JP 2006224127 A JP2006224127 A JP 2006224127A JP 2005039412 A JP2005039412 A JP 2005039412A JP 2005039412 A JP2005039412 A JP 2005039412A JP 2006224127 A JP2006224127 A JP 2006224127A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- current
- aluminum
- period
- nugget
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Resistance Welding (AREA)
Abstract
Description
本発明は、アルミニウム材料の優れた軽量性,耐食性と鋼材の優れた機械強度とを兼ね備え、軽量で高強度が要求される車両用部材,熱交換器等、各種構造材として好適な鋼/アルミニウム接合構造体を製造する方法に関する。 The present invention is a steel / aluminum suitable for various structural materials, such as a vehicle member and a heat exchanger, which have both light weight and corrosion resistance of an aluminum material and excellent mechanical strength of a steel material, and are required to be light and have high strength. The present invention relates to a method for manufacturing a bonded structure.
アルミニウム,アルミニウム合金等のアルミニウム材料は、軽量で耐食性に優れていることを活用し種々の分野で使用されているが、強度が重視される用途では厚肉化により要求強度を満足させている。しかし、厚肉化はアルミニウム材料の長所である軽量性を損ない、コンパクトな設計に対応する構造部材としても適当でない。機械強度の高い鋼材をアルミニウム材料と積層するとき、厚肉化の要なく必要強度が得られる。 Aluminum materials such as aluminum and aluminum alloys are used in various fields by utilizing their light weight and excellent corrosion resistance. However, in applications where strength is important, the required strength is satisfied by increasing the thickness. However, the thickening impairs the lightness that is an advantage of the aluminum material and is not suitable as a structural member corresponding to a compact design. When a steel material with high mechanical strength is laminated with an aluminum material, the required strength can be obtained without the need for thickening.
アルミニウム材料と鋼材との積層には、ボルトナット,リベット,嵌め合せ等の機械的結合法が採用されてきたが、機械的結合法では優れた継手が得られ難く、生産性も低い。アルミニウム材料/鋼材の溶接接合が可能になると、機械的結合法に比較して生産性が格段に高く、特性の良好な鋼/アルミニウム接合構造体が得られる。ところが、通常の溶融接合法で鋼材,アルミニウム材料を接合すると、非常に脆弱な金属間化合物が接合界面に多量生成し、接合強度が著しく低下する。 For the lamination of the aluminum material and the steel material, a mechanical coupling method such as bolts, nuts, rivets, and fitting has been adopted. However, an excellent joint is difficult to obtain by the mechanical coupling method, and the productivity is low. When the aluminum material / steel material can be welded together, a steel / aluminum joint structure having significantly higher productivity and better characteristics than the mechanical joining method can be obtained. However, when steel materials and aluminum materials are joined by a normal melt joining method, a large amount of very fragile intermetallic compounds are generated at the joining interface, and the joining strength is significantly reduced.
金属間化合物は、鋼材,アルミニウム材料の原子が界面で相互拡散反応することにより生成する。拡散反応を律速する反応温度,時間等を摩擦溶接時に適正管理することにより金属間化合物の生成を抑制する方法(特許文献1)が知られているが、摩擦溶接による接合であるため継手設計に工夫を要し、接合工程を簡略化する上では改善の余地がある。溶融アルミニウムめっき鋼板をアルミニウム材料に抵抗溶接する方法(特許文献2)にみられるように、スポット溶接の適用も検討されている。
溶融アルミニウムめっき鋼板は、表層に溶融アルミニウムめっき層があることから、接合時にアルミニウム材料と同様な挙動を示すと考えられがちである。しかし、接合界面がスポット溶接時にAlの融点(660℃)を超える高温に加熱されるため、高温加熱で生成した溶融Alに下地鋼/めっき層界面のAl-Fe-Si三元合金層からFe,Si等が拡散する。拡散したFeは溶接時の冷却過程で再析出し、拡散係数の大きなSiはナゲット全体に分散する。その結果、冷却後の接合界面を観察すると、接合界面全域に脆弱なAl-Fe二元合金層が生成したナゲットが検出され、接合強度も著しく低い。 Since a hot-dip aluminum-plated steel sheet has a hot-dip aluminum plating layer as a surface layer, it tends to be considered that the hot-dip aluminum-plated steel sheet exhibits the same behavior as an aluminum material at the time of joining. However, since the joining interface is heated to a high temperature exceeding the melting point (660 ° C.) of Al during spot welding, the molten Al produced by the high temperature heating is changed from the Al—Fe—Si ternary alloy layer at the base steel / plating layer interface to Fe. , Si, etc. diffuse. The diffused Fe reprecipitates during the cooling process during welding, and Si having a large diffusion coefficient is dispersed throughout the nugget. As a result, when the bonded interface after cooling is observed, a nugget in which a fragile Al—Fe binary alloy layer is formed in the entire bonded interface is detected, and the bonding strength is extremely low.
接合界面に占める金属間化合物の割合を規制することにより、接合強度に及ぼすAl-Fe二元合金層の悪影響を抑制できる(特許文献3)。金属間化合物の生成を抑制するため、溶融アルミニウムめっき鋼板を正極側,アルミニウム材料を負極側にしてスポット溶接時の発熱を溶融アルミニウムめっき鋼板に偏らせているが、依然として金属間化合物の多量生成が避けられない。
本発明者等は、スポット溶接時の高温加熱で溶融したAlに拡散し再析出するFe,Siの挙動を調査・検討した結果、溶融アルミニウムめっき鋼板のFe,Si濃度を適正管理することによりAl-Fe二元合金層の悪影響を抑え、接合強度の高い鋼/アルミニウム接合構造体が作製されることを見出し先に出願した(特許文献4)。先願では、それぞれ3〜12質量%,0.5〜5質量%の範囲にFe,Si濃度を調整し、接合界面に占めるAl-Fe二元合金層の面積比を下げることにより接合強度を向上させている。
鋼/アルミニウム接合構造体の接合界面に形成されるナゲットと接合強度との関係について更に調査・検討を進めた。その結果、ナゲット径が大きくなるほど接合強度が高くなるが、接合強度の向上に有効なナゲット径はスポット溶接時の通電パターンで制御可能なことを見出した。
本発明は、ナゲット径と通電パターンとの関係に関する知見をベースとし、通電開始時のアップスロープが緩やかな通電パターンを採用することにより、過度に深くなく適度な径をもつ形状のナゲットを生成させ、接合強度の高い鋼/アルミニウム接合構造体を提供することを目的とする。
We further investigated and investigated the relationship between the nugget formed at the joint interface of the steel / aluminum joint structure and the joint strength. As a result, it was found that the nugget diameter increases as the nugget diameter increases, but the nugget diameter effective for improving the joint strength can be controlled by the energization pattern during spot welding.
The present invention is based on knowledge about the relationship between the nugget diameter and the energization pattern, and adopts an energization pattern with a gentle upslope at the start of energization, thereby generating a nugget with an appropriate diameter that is not excessively deep. An object of the present invention is to provide a steel / aluminum bonded structure having high bonding strength.
本発明は、アルミニウム材料と溶融アルミニウムめっき鋼板とを重ね合わせ、スポット溶接で一体化した鋼/アルミニウム接合構造体を製造する際、定電流溶接期間の積算電流Q2に対して通電開始から溶接電流が設定値Wに達するまでのアップスロープ期間の積算電流Q1の比Q1/Q2を0.05〜3.0,和Q1+Q2を1〜5kA・秒とした通電パターンで溶接電流を被溶接材に供給することを特徴とする。好ましくは、溶接電流の設定値Wを8〜14kA,アップスロープ期間を0.01〜0.5秒に設定する。 The present invention superimposes an aluminum material and the molten aluminum-plated steel sheet, making the steel / aluminum joined structure was integrated by spot welding, the welding current from the energization start relative integrated current Q 2 of the constant current welding period Welding current with an energization pattern in which the ratio Q 1 / Q 2 of the integrated current Q 1 during the up slope period until the value reaches the set value W is 0.05 to 3.0 and the sum Q 1 + Q 2 is 1 to 5 kA · sec. Is supplied to the material to be welded. Preferably, the set value W of the welding current is set to 8 to 14 kA, and the up slope period is set to 0.01 to 0.5 seconds.
溶融アルミニウムめっき鋼板には純Al,Al-Si等のめっき層を形成した鋼板があるが、何れの溶融アルミニウムめっき鋼板でも下地鋼/めっき層界面にN:3.0原子%以上のN濃縮層を形成したものが好ましい。N濃縮層は、N,Al含有量を調整した下地鋼をアルミニウムめっき後に熱処理することにより形成できる。溶融アルミニウムめっき鋼板と接合される相手材にはアルミニウムや種々のアルミニウム合金を使用可能であるが、強度付与に寄与するMg-Si金属間化合物を析出させるためMg:0.1〜6.0質量%,Si:3.0質量%以下を含むアルミニウム合金が好ましい。 Hot-dip aluminum-plated steel sheets include steel sheets with plated layers of pure Al, Al-Si, etc., but any hot-dip aluminum-plated steel sheet has an N enriched layer of N: 3.0 atomic% or more at the base steel / plated layer interface. What formed is preferable. The N enriched layer can be formed by heat-treating the base steel with adjusted N and Al contents after aluminum plating. Aluminum or various aluminum alloys can be used as the mating material to be joined to the hot-dip aluminum-plated steel sheet, but Mg: 0.1 to 6.0 mass is used for precipitating Mg-Si intermetallic compounds that contribute to strength. %, Si: An aluminum alloy containing 3.0% by mass or less is preferable.
交流電源を用いたスポット溶接では、アップスロープを経て設定値まで高められ、ダウンスロープを経て定常状態に戻る通電パターン(図1)で溶接電流が被溶接材に供給される。被溶接材は、通電開始前の所定時間(スクイズ時間)から通電終了後の所定時間(保持時間,オフ時間)まで加圧される。被溶接材は通電によるジュール熱で昇温し、溶融状態となって相手材と溶融接合する。 In spot welding using an AC power supply, the welding current is supplied to the workpiece by an energization pattern (FIG. 1) that is increased to a set value through an up slope and returns to a steady state through a down slope. The material to be welded is pressurized from a predetermined time (squeeze time) before the start of energization to a predetermined time (holding time, off time) after the end of energization. The material to be welded is heated by Joule heat by energization, becomes a molten state, and is melt-joined with the counterpart material.
相手材との溶融接合部にナゲットが形成されるが、ナゲット形状は通電パターンに影響される。なかでも、アップスロープの影響が大きく、緩やかなアップスロープほど浅く広いナゲットとなり、急峻なアップスロープほど深く狭いナゲットとなる。ナゲット形状がアップスロープの勾配に応じて変わることは、溶接開始直後の被溶接材に加えられる熱の伝播形態に拠るものと考えられ、次のように説明できる。 Nuggets are formed at the melt-bonded portion with the counterpart material, but the nugget shape is affected by the energization pattern. Among them, the influence of the up slope is large, and the gentle up slope becomes a shallow and wide nugget, and the steep up slope becomes a deep and narrow nugget. The change of the nugget shape according to the slope of the upslope is considered to depend on the form of propagation of heat applied to the material to be welded immediately after the start of welding, and can be explained as follows.
急峻なアップスロープで溶接電流を増加させるとき、溶接電極が被溶接材に接触している部分(溶接点)及び溶接点近傍の極狭い範囲に入熱の伝播が限られる。そのため、被溶接材が板厚方向に昇温する傾向が強く現れ、深くて狭いナゲットが形成される。他方、緩やかなアップスロープで溶接電流を増加させると、溶接点を中心とする比較的広い範囲に入熱が伝播し、比較的浅くて広いナゲットが形成される。 When the welding current is increased with a steep upslope, the propagation of heat input is limited to the portion where the welding electrode is in contact with the workpiece (welding point) and the very narrow range near the welding point. Therefore, the tendency for the material to be welded to increase in temperature in the plate thickness direction appears strongly, and a deep and narrow nugget is formed. On the other hand, when the welding current is increased with a gentle upslope, the heat input is propagated over a relatively wide range centering on the welding point, and a relatively shallow and wide nugget is formed.
ナゲット形状は、アルミニウム材料/溶融アルミニウムめっき鋼板の異材溶接で形成される接合界面の物性,ひいては接合強度に大きな影響を及ぼす。急峻なアップスロープの溶接電流では、被溶接材の板厚方向に沿った深部まで溶融が進行し、下地鋼/めっき層界面から溶融AlへのFe,Siの拡散が促進される。拡散の促進は、接合強度に有効なAl-Fe-Si三元合金層に必要なSiの不足をもたらし、脆弱なAl-Fe二元合金層が接合界面に占める割合を増加させる。逆に緩やかなアップスロープの溶接電流では、板厚方向(ナゲットの深さ方向)に沿ったFe,Siの拡散が抑えられ、接合界面に占めるAl-Fe-Si三元合金層の割合が多く、Al-Fe二元合金層も比較的少なくなる。 The nugget shape has a great influence on the physical properties of the joint interface formed by the dissimilar welding of the aluminum material / hot-dipped galvanized steel sheet, and thus the joint strength. With a steep up-slope welding current, melting proceeds to a deep portion along the plate thickness direction of the material to be welded, and diffusion of Fe and Si from the base steel / plated layer interface to the molten Al is promoted. The promotion of diffusion causes a shortage of Si necessary for the Al—Fe—Si ternary alloy layer effective for bonding strength, and increases the ratio of the fragile Al—Fe binary alloy layer to the bonding interface. Conversely, with a gentle upslope welding current, the diffusion of Fe and Si along the thickness direction (depth direction of the nugget) is suppressed, and the proportion of the Al—Fe—Si ternary alloy layer occupying the bonding interface is large. The Al—Fe binary alloy layer is also relatively small.
次いで、ナゲット形状と通電パターンとの関係を調査し、接合強度の向上に有効なナゲット形状が形成される通電パターンを定量的に究明した。後述の実施例からも明らかなように、通電開始時点t0から溶接電流が設定値Wに達する時点t1までのアップスロープ期間(t0→t1)の積算電流をQ1,定電流溶接期間(t1→t2)の積算電流をQ2とするとき、積算電流比Q1/Q2を0.05〜3.0,積算電流和Q1+Q2を1〜5kA・秒とした通電パターンで溶接電流を被溶接材に供給することが目標形状のナゲットを形成する上で有効である(図2)。
また、積算電流比Q1/Q2:0.05〜3.0は、従来のスポット溶接時に比べ長時間かけて溶接電流をゼロから設定値Wに立ち上げることを意味する。アップスロープ期間を長くしているので溶接電流の設定値Wを下げても十分な接合強度が得られ、能力の大きなスポット溶接機を使用する必要がなくなる。
Next, the relationship between the nugget shape and the energization pattern was investigated, and the energization pattern in which the nugget shape effective for improving the bonding strength was formed was quantitatively investigated. As will be apparent from the examples described later, the integrated current during the up slope period (t 0 → t 1 ) from the energization start time t 0 to the time t 1 when the welding current reaches the set value W is Q 1 , constant current welding. When the integrated current in the period (t 1 → t 2 ) is Q 2 , the integrated current ratio Q 1 / Q 2 is set to 0.05 to 3.0, and the integrated current sum Q 1 + Q 2 is set to 1 to 5 kA · sec. It is effective to supply a welding current to a material to be welded in an energization pattern in forming a nugget having a target shape (FIG. 2).
Further, the integrated current ratio Q 1 / Q 2 : 0.05 to 3.0 means that the welding current is raised from zero to the set value W over a long time as compared with the conventional spot welding. Since the up-slope period is lengthened, a sufficient joint strength can be obtained even if the welding current set value W is lowered, and there is no need to use a spot welding machine having a large capacity.
溶融アルミニウムめっき鋼板は、連続溶融めっきラインで製造され、Al,Al-Si等の溶融めっき層を原板表面に設けている。
めっき原板には低炭素鋼,中炭素鋼,低合金鋼等があり、用途に応じてSi,Mn,Cr,Ni,Al等を添加した鋼種が使用される。なかでも、Al-Feの相互拡散反応を抑制するNを0.002〜0.020質量%添加した鋼が好ましい。N添加鋼をめっき原板に使用する場合、Al-Feの拡散抑制に有効なN量を確保するためAl含有量を0.03質量%以下に規制する。
The hot dip galvanized steel sheet is manufactured by a continuous hot dip plating line, and a hot dip plated layer of Al, Al-Si or the like is provided on the surface of the original plate.
There are low carbon steel, medium carbon steel, low alloy steel, etc. as the plating base plate, and steel types to which Si, Mn, Cr, Ni, Al, etc. are added depending on the application are used. Among these, steel added with 0.002 to 0.020 mass% of N for suppressing the Al—Fe interdiffusion reaction is preferable. When N-added steel is used for the plating base plate, the Al content is restricted to 0.03 mass% or less in order to ensure an effective N amount for suppressing the diffusion of Al—Fe.
溶融アルミニウムめっき層が厚膜になるほど脆弱なAl-Fe二元合金層の成長が遅延されるが、厚すぎると溶融アルミニウムめっき鋼板の加工性が低下するので、5〜50μmの膜厚が好ましい。また、Al-Fe二元合金層の成長を抑えて接合強度に有効なAl-Fe-Si三元合金層を下地鋼/めっき層界面に形成させる上で、溶融アルミニウムめっき層に含まれるFe,Siの含有量を好ましくはそれぞれFe:0.5〜5質量%,Si:3〜12質量%の範囲に規制する。Fe,Si以外に、Ti,Sr,B,Cr,Mn,Zn等の元素を必要に応じて溶融アルミニウムめっき層に含ませることもできる。 Although the growth of the fragile Al—Fe binary alloy layer is delayed as the hot-dip aluminum plating layer becomes thicker, the workability of the hot-dip aluminum-plated steel sheet is lowered if it is too thick, so a film thickness of 5 to 50 μm is preferable. Further, in forming an Al—Fe—Si ternary alloy layer effective in bonding strength by suppressing the growth of the Al—Fe binary alloy layer at the base steel / plating layer interface, Fe, The Si content is preferably regulated in the range of Fe: 0.5 to 5% by mass and Si: 3 to 12% by mass, respectively. In addition to Fe and Si, elements such as Ti, Sr, B, Cr, Mn, and Zn can be included in the molten aluminum plating layer as necessary.
相手材のアルミニウム材料は、材質に特段の制約が加わるものではないが、展伸材である限り大半のアルミニウム又はアルミニウム合金を使用できる。強度が要求される用途では、Mg:0.1〜6.0質量%、Si:3.0質量%以下を含むアルミニウム合金の使用が好ましい。合金中のMg,Siは、マトリックスを固溶強化すると共に、時効処理等の熱処理で微細なMg2Siとなって析出し、アルミニウム合金に強度を付与する。 The aluminum material of the mating member does not impose any particular restrictions on the material, but most aluminum or aluminum alloy can be used as long as it is a wrought material. In applications where strength is required, it is preferable to use an aluminum alloy containing Mg: 0.1 to 6.0 mass% and Si: 3.0 mass% or less. Mg and Si in the alloy solidify and strengthen the matrix and precipitate as fine Mg 2 Si by heat treatment such as aging treatment, thereby imparting strength to the aluminum alloy.
溶融アルミニウムめっき鋼板,アルミニウム材料から採取された被溶接材は、脱脂・洗浄後に相互に重ね合わされ、スポット溶接用電極間に挟み込まれる。次いで、被溶接材を加圧した状態で通電し、両者を一体的に接合する。被溶接材に供給される溶接電流は、一般的に図2の通電パターンで増減される。通電パターンは、通電開始から溶接電流の設定値Wに達するまでのアップスロープ期間(t0→t1),設定値Wの溶接電流が供給される定電流溶接期間(t1→t2),設定値Wからゼロまで溶接電流を下げるダウンスロープ期間(t2→t3)に区分される。 The welded materials collected from the hot-dip aluminized steel sheet and aluminum material are superposed on each other after degreasing and cleaning, and are sandwiched between the electrodes for spot welding. Next, electricity is applied in a state where the material to be welded is pressurized, and both are integrally joined. The welding current supplied to the material to be welded is generally increased or decreased according to the energization pattern shown in FIG. The energization pattern includes an up-slope period (t 0 → t 1 ) from the start of energization until reaching the set value W of the welding current, a constant current welding period (t 1 → t 2 ) in which the welding current of the set value W is supplied, It is divided into a down slope period (t 2 → t 3 ) in which the welding current is lowered from the set value W to zero.
溶接電流の設定値Wは、被溶接材の板厚や材質に応じ好ましくは8〜14kAの範囲で定められる。8〜14kAの溶接電流は従来の溶接電流に比較して若干低く、低電流で溶接可能なことは本発明の長所でもある。設定値W:8〜14kAの条件下で、アップスロープ期間の積算電流Q1と定電流溶接期間の積算電流Q2との比Q1/Q2を0.05〜3.0,和Q1+Q2を1〜5kA・秒の範囲に制御する。
積算電流Q1は、アップスロープ期間(t0→t1)に溶接電流が直線的に設定値Wまで増加する通電パターンでは、W×(t1−t0)/2と計算される。積算電流Q2は、期間(t2−t1)にわたり設定値Wの溶接電流が供給されているので、W×(t2−t1)と計算される。
The set value W of the welding current is preferably determined in the range of 8 to 14 kA depending on the thickness and material of the material to be welded. The welding current of 8 to 14 kA is slightly lower than the conventional welding current, and it is an advantage of the present invention that welding is possible at a low current. Setting value W: Under the condition of 8 to 14 kA, the ratio Q 1 / Q 2 of the integrated current Q 1 during the upslope period and the integrated current Q 2 during the constant current welding period is 0.05 to 3.0, and the sum Q 1 + Q2 is controlled within the range of 1 to 5 kA · sec.
The integrated current Q 1 is calculated as W × (t 1 −t 0 ) / 2 in the energization pattern in which the welding current increases linearly to the set value W during the up slope period (t 0 → t 1 ). The integrated current Q 2 is calculated as W × (t 2 −t 1 ) because the welding current having the set value W is supplied over the period (t 2 −t 1 ).
積算電流比Q1/Q2が0.05未満の場合、12kA以下の比較的低い溶接電流設定値Wでは良好な接合強度が得られない。逆に3.0を超える積算電流比Q1/Q2では却って多量のAl-Fe二元合金層が接合界面に生成し、安定した接合強度が得られなくなるばかりでなく、溶接に時間がかかりすぎ製造コストの上昇を招く。1kA・秒未満の積算電流和Q1+Q2では溶接時の入熱が不足して良好な接合強度が得られないが、積算電流和Q1+Q2が5kA・秒を超えると接合界面に占めるAl-Fe二元合金層の比率が90%以上となり、十字引張後の破断形態も接合強度が不安定となる界面破断を呈する。 When the integrated current ratio Q 1 / Q 2 is less than 0.05, good bonding strength cannot be obtained with a relatively low welding current setting value W of 12 kA or less. On the other hand, when the cumulative current ratio Q 1 / Q 2 exceeds 3.0, a large amount of Al—Fe binary alloy layer is formed at the joint interface, so that stable joint strength cannot be obtained and welding takes time. This causes an increase in manufacturing costs. With the integrated current sum Q 1 + Q 2 of less than 1 kA · sec, heat input during welding is insufficient and good bonding strength cannot be obtained. However, when the accumulated current sum Q 1 + Q 2 exceeds 5 kA · sec, it occupies the bonding interface. The ratio of the Al—Fe binary alloy layer becomes 90% or more, and the fracture form after cross tension also exhibits interface fracture that makes the bonding strength unstable.
積算電流比Q1/Q2の増加に従い、接合界面に形成されるナゲットが深くて狭い形状から浅くて広い形状に変わり、鋼/アルミニウム接合構造体の接合強度が高くなる。アップスロープ期間がナゲット形状に及ぼす影響は具体的には0.01秒以上でみられ、特に10kA前後の低い溶接電流でスポット溶接した接合構造体で顕著になる。低い溶接電流で高い接合強度が得られることは、能力の大きなスポット溶接機を必要としない点でも有利である。 As the integrated current ratio Q 1 / Q 2 increases, the nugget formed at the bonding interface changes from a deep and narrow shape to a shallow and wide shape, and the bonding strength of the steel / aluminum bonding structure increases. Specifically, the effect of the upslope period on the nugget shape is observed at 0.01 seconds or more, and is particularly noticeable in a joint structure spot-welded with a low welding current of around 10 kA. Obtaining a high joint strength with a low welding current is advantageous in that a spot welder having a large capacity is not required.
次の溶融アルミニウムめっき鋼板,アルミニウム材料を被溶接材に用い、アップスロープ期間(t0→t1)及び溶接電流設定値Wが鋼/アルミニウム接合構造体の接合強度,ナゲット形状,接合界面の合金層に及ぼす影響を調査した。 The following hot-dip galvanized steel sheet, aluminum material is used as the material to be welded, and the upslope period (t 0 → t 1 ) and welding current set value W are the steel / aluminum joint structure joint strength, nugget shape, alloy at the joint interface The effect on strata was investigated.
〔溶融アルミニウムめっき鋼板〕
N:0.01質量%,板厚:1.0mmのめっき原板にAl-9.0質量%Siめっき層を膜厚:20μmで設けた溶融アルミニウムめっき鋼板
〔アルミニウム材料〕
Si:1.2質量%,Mg:0.6質量%を含む板厚:1.0mmのアルミニウム合金(JIS A6022)
[Hot-aluminized steel sheet]
N: Hot-dip galvanized steel sheet in which an Al-9.0 mass% Si plating layer is provided at a thickness of 20 μm on a plating original sheet of 0.01 mass% and plate thickness: 1.0 mm [aluminum material]
Thickness including Si: 1.2 mass%, Mg: 0.6 mass%: Aluminum alloy of 1.0 mm (JIS A6022)
溶融アルミニウムめっき鋼板,アルミニウム材料から切り出した50mm×150mmの試験片を脱脂・洗浄した後,重ね合わせてスポット溶接機の電極間に挟み込み、荷重:3kNを加えた。電極には先端径:6mm,先端アール:40mm,肩アール:8mmの銅合金チップを用い、設定値Wの溶接電流が供給される定電流溶接期間(t1→t2)を0.10秒とし、溶接電流が設定値Wに立ち上がるアップスロープ期間(t0→t1)を0.008秒,0.017秒,0.167秒の三様とした。 A 50 mm × 150 mm test piece cut out from a hot-dip aluminum-plated steel sheet and aluminum material was degreased and washed, and then overlapped and sandwiched between electrodes of a spot welder, and a load of 3 kN was applied. The electrode uses a copper alloy tip having a tip diameter of 6 mm, a tip radius of 40 mm, and a shoulder radius of 8 mm, and a constant current welding period (t 1 → t 2 ) in which a welding current of a set value W is supplied is 0.10 seconds. The up-slope period (t 0 → t 1 ) during which the welding current rises to the set value W was set to three modes of 0.008 seconds, 0.017 seconds, and 0.167 seconds.
スポット溶接された接合構造体を十字引張試験(JIS Z2317)に供し、剥離方向に沿った接合強度を測定した。測定結果(図3)は、アップスロープ期間:0.008秒でスポット溶接したときの接合強度N0.5に比較し、アップスロープ期間:0.017秒,0.167秒でスポット溶接したときの接合強度N1,N10が高くなっていることを示す。接合強度差ΔNは、溶接電流の設定値Wが低くなるほど大きくなる傾向にあった。 The spot welded joint structure was subjected to a cross tension test (JIS Z2317), and the joint strength along the peeling direction was measured. The measurement result (FIG. 3) shows that when the upslope period is 0.008 seconds and compared with the joint strength N 0.5 when the spot welding is performed, the upslope period is 0.017 seconds and 0.1167 seconds when the spot welding is performed. It shows that the strengths N 1 and N 10 are high. The bonding strength difference ΔN tended to increase as the welding current set value W decreased.
設定値W:10kAでスポット溶接された接合構造体の接合部断面を観察し、ナゲット形状,接合界面に生じた合金層を調査した。接合部断面には、打点部でアルミニウム合金板の厚み方向に溶け込んだナゲットが生成している(図4)。打点部のアルミニウム合金の板厚をB2,溶融厚さをB1とし、板厚B2に対する溶融厚さB1の比を溶込み厚み比:B1/B2として算出した。溶込み厚み比:B1/B2及びナゲット径L1からナゲット形状を評価した。また、SEM・EDX (840A,日本電子株式会社製)で接合界面の合金層を観察してAl-Fe-Si三元合金層又はAl-Fe二元合金層を判定し、判定結果からナゲット径に対するAl-Fe二元合金層の生成長さの比として接合界面に占めるAl-Fe二元合金層の占有率を算出した。 A cross-section of the bonded portion of the bonded structure spot-welded at a set value W of 10 kA was observed, and the nugget shape and the alloy layer generated at the bonded interface were investigated. In the joint section, a nugget melted in the thickness direction of the aluminum alloy plate at the hitting point is generated (FIG. 4). The thickness of the aluminum alloy of the RBI portion B 2, and the melt thickness as B 1, penetration thickness ratio the ratio of the melt thickness B 1 with respect to the thickness B 2: calculated as B 1 / B 2. Penetration thickness ratio: The nugget shape was evaluated from B 1 / B 2 and the nugget diameter L 1 . Also, SEM • EDX (840A, manufactured by JEOL Ltd.) observes the alloy layer at the bonding interface to determine the Al—Fe—Si ternary alloy layer or Al—Fe binary alloy layer, and determines the nugget diameter from the determination result. As a ratio of the generation length of the Al—Fe binary alloy layer to the Al—Fe binary alloy layer, the occupation ratio of the Al—Fe binary alloy layer in the bonding interface was calculated.
表1の調査結果にみられるように、アップスロープ期間が長くなるほど浅くて広い形状のナゲットが形成され、接合界面に占めるAl-Fe二元合金層の占有率が小さくなっていた。
他方、アップスロープ期間:0.008秒のスポット溶接で製造された接合構造体では、ナゲットが深くて狭い形状になっており、専ら板厚方向に入熱が伝播したことを示している。接合界面に占めるAl-Fe二元合金層の割合も多くなっていた。
As can be seen from the investigation results in Table 1, the longer the upslope period, the shallower and wider the nugget is formed, and the Al—Fe binary alloy layer occupying the bonding interface becomes smaller.
On the other hand, in the joint structure manufactured by spot welding with an up slope period of 0.008 seconds, the nugget has a deep and narrow shape, indicating that heat input has propagated exclusively in the plate thickness direction. The proportion of the Al—Fe binary alloy layer in the joint interface was also increased.
溶接電流設定値Wが10kA,14kAの条件下で、ナゲット径,溶込み厚み比,Al-Fe二元合金層の占有率に及ぼすアップスロープ期間の影響を調査した結果を図5〜7に示す。
以上の結果から、アップスロープ期間を長くすることにより、接合界面のAl-Fe二元合金層が少なく適正形状のナゲットが形成され、接合構造体の接合強度が上昇したと推察される。
The results of investigating the influence of the upslope period on the nugget diameter, penetration thickness ratio, and Al-Fe binary alloy layer occupancy under the conditions where the welding current set value W is 10 kA and 14 kA are shown in FIGS. .
From the above results, it can be inferred that by increasing the upslope period, an appropriately shaped nugget is formed with less Al—Fe binary alloy layers at the bonding interface, and the bonding strength of the bonded structure is increased.
次の溶融アルミニウムめっき鋼板,アルミニウム材料を被溶接材に用い、アップスロープ期間(t0→t1)の積算電流Q1及び定電流溶接期間(t1→t2)の積算電流Q2の比Q1/Q2,和Q1+Q2が鋼/アルミニウム接合構造体の接合強度,ナゲット形状,接合界面の合金層,十字引張試験後の破断形態に及ぼす影響を調査した。 Next molten aluminum-plated steel sheet, an aluminum material to be welded material, the ratio of the integrated current Q 2 of the integrated current Q 1 and the constant current welding period up slope period (t 0 → t 1) ( t 1 → t 2) The effects of Q 1 / Q 2 and the sum Q 1 + Q 2 on the joint strength, nugget shape, alloy layer at the joint interface, and fracture morphology after the cross tension test were investigated.
〔溶融アルミニウムめっき鋼板〕
N:0.0085質量%,板厚:1.0mmのめっき原板にAl-9.5質量%Siめっき層を膜厚:30μmで設けた溶融アルミニウムめっき鋼板
〔アルミニウム材料〕
Si:1.2質量%,Mg:0.6質量%を含む板厚:1.0mmのアルミニウム合金(JIS A6022)
[Hot-aluminized steel sheet]
N: Hot-dip galvanized steel sheet in which an Al-9.5 mass% Si plating layer is provided at a thickness of 30 μm on a plating original sheet of 0.0076 mass% and plate thickness: 1.0 mm [aluminum material]
Thickness including Si: 1.2 mass%, Mg: 0.6 mass%: Aluminum alloy of 1.0 mm (JIS A6022)
溶融アルミニウムめっき鋼板,アルミニウム材料から切り出した50mm×150mmの試験片を脱脂・洗浄した後,重ね合わせて交流スポット溶接機の電極間に挟み込み、荷重:3kNを加えた。。電極には実施例1と同じ銅合金チップを用い、アップスロープ期間(t0→t1),定電流溶接期間(t1→t2),溶接電流設定値Wを表2に示すように種々変更しスポット溶接した。 A 50 mm × 150 mm test piece cut out from a hot-dip aluminum-plated steel sheet and aluminum material was degreased and washed, and then superimposed and sandwiched between electrodes of an AC spot welder, and a load of 3 kN was applied. . The same copper alloy tip as in Example 1 was used for the electrodes, and various up-slope periods (t 0 → t 1 ), constant current welding periods (t 1 → t 2 ), and welding current set values W as shown in Table 2. Changed and spot welded.
スポット溶接された接合構造体の接合強度を十字引張試験(JIS Z2317)で測定し、接合部断面の観察結果からナゲット形状(ナゲット径,溶込み厚み比),接合界面に占めるAl-Fe二元合金層の割合を求めた。
その結果、積算電流比Q1/Q2:0.05〜3.0,積算電流和Q1+Q2:1〜5kA・秒の条件が満足されるようにアップスロープ期間の積算電流Q1,定電流溶接期間の積算電流Q2を制御するとき、良好な接合強度,ナゲット形状,接合界面の合金層形態が得られることが判った(表3)。十字引張試験後の破断形態も母材破断となり、安定した接合強度が得られることを確認できた。
The joint strength of the spot welded joint structure is measured by cross tension test (JIS Z2317), and the nugget shape (nugget diameter, penetration thickness ratio) and Al-Fe binary occupying the joint interface are observed from the cross-section observation results The ratio of the alloy layer was determined.
As a result, the integrated current ratio Q 1 / Q 2: 0.05~3.0, integrated current sum Q 1 + Q 2: integrated current to Q 1 up slope period as 1~5kA of-seconds condition is satisfied, when controlling integrated current Q 2 of the constant current welding period, good joint strength, nugget shape, alloy layer forms a bonding interface that obtained was found (Table 3). The fracture form after the cross tensile test was also the base metal fracture, and it was confirmed that stable joint strength was obtained.
以上に説明したように、溶融アルミニウムめっき鋼板,アルミニウム材料を重ね合わせてスポット溶接する際、通電開始から設定値Wに溶接電流が立ち上がるアップスロープ期間(t0→t1)の積算電流Q1及び定電流溶接期間(t1→t2)の積算電流Q2を管理することにより、脆弱なAl-Fe二元合金層が接合界面に生成することを抑え、接合強度の向上に有効な形状のナゲットを形成している。そのため、作製された鋼/アルミニウム接合構造体は、従来のスポット溶接接合構造体に比較して接合強度が高く、アルミニウム材料,鋼材の長所を兼ね備え、種々の構造部材として使用される。 As described above, when spot welding is performed by overlapping hot-dip galvanized steel sheets and aluminum materials, the accumulated current Q 1 during the up slope period (t 0 → t 1 ) in which the welding current rises to the set value W from the start of energization and By managing the integrated current Q 2 during the constant current welding period (t 1 → t 2 ), it is possible to suppress the formation of a fragile Al—Fe binary alloy layer at the joint interface and to improve the joint strength. Forming a nugget. Therefore, the produced steel / aluminum joint structure has higher joint strength than the conventional spot welded joint structure, has the advantages of aluminum material and steel material, and is used as various structural members.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005039412A JP2006224127A (en) | 2005-02-16 | 2005-02-16 | Method for manufacturing steel/aluminum joined structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005039412A JP2006224127A (en) | 2005-02-16 | 2005-02-16 | Method for manufacturing steel/aluminum joined structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006224127A true JP2006224127A (en) | 2006-08-31 |
Family
ID=36985935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005039412A Withdrawn JP2006224127A (en) | 2005-02-16 | 2005-02-16 | Method for manufacturing steel/aluminum joined structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006224127A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011167742A (en) * | 2010-02-22 | 2011-09-01 | Nippon Steel Corp | Spot welding method for alloyed aluminum plated steel sheet or press component having aluminum alloy layer |
WO2012036070A1 (en) | 2010-09-13 | 2012-03-22 | 株式会社神戸製鋼所 | Method for joining differing materials |
JP2019177406A (en) * | 2018-03-30 | 2019-10-17 | 日鉄日新製鋼株式会社 | Welded structure and method for manufacturing the same |
JP2019177408A (en) * | 2018-03-30 | 2019-10-17 | 日鉄日新製鋼株式会社 | Welded structure and method for manufacturing the same |
JP2019177407A (en) * | 2018-03-30 | 2019-10-17 | 日鉄日新製鋼株式会社 | Joint structure and method for manufacturing the same |
JP2020062655A (en) * | 2018-10-16 | 2020-04-23 | 株式会社豊田中央研究所 | Spot weldment |
CN112548295A (en) * | 2020-12-05 | 2021-03-26 | 钟丽慧 | Resistance spot welding method for automobile aluminum alloy |
-
2005
- 2005-02-16 JP JP2005039412A patent/JP2006224127A/en not_active Withdrawn
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011167742A (en) * | 2010-02-22 | 2011-09-01 | Nippon Steel Corp | Spot welding method for alloyed aluminum plated steel sheet or press component having aluminum alloy layer |
WO2012036070A1 (en) | 2010-09-13 | 2012-03-22 | 株式会社神戸製鋼所 | Method for joining differing materials |
JP2019177406A (en) * | 2018-03-30 | 2019-10-17 | 日鉄日新製鋼株式会社 | Welded structure and method for manufacturing the same |
JP2019177408A (en) * | 2018-03-30 | 2019-10-17 | 日鉄日新製鋼株式会社 | Welded structure and method for manufacturing the same |
JP2019177407A (en) * | 2018-03-30 | 2019-10-17 | 日鉄日新製鋼株式会社 | Joint structure and method for manufacturing the same |
JP7003805B2 (en) | 2018-03-30 | 2022-01-21 | 日本製鉄株式会社 | Joined structure and its manufacturing method |
JP7003806B2 (en) | 2018-03-30 | 2022-01-21 | 日本製鉄株式会社 | Joined structure and its manufacturing method |
JP7047543B2 (en) | 2018-03-30 | 2022-04-05 | 日本製鉄株式会社 | Joined structure and its manufacturing method |
JP2020062655A (en) * | 2018-10-16 | 2020-04-23 | 株式会社豊田中央研究所 | Spot weldment |
US11247293B2 (en) | 2018-10-16 | 2022-02-15 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Spot weldment |
CN112548295A (en) * | 2020-12-05 | 2021-03-26 | 钟丽慧 | Resistance spot welding method for automobile aluminum alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qi et al. | Interfacial structure of the joints between magnesium alloy and mild steel with nickel as interlayer by hybrid laser-TIG welding | |
US8492005B2 (en) | Joining method and joint structure of dissimilar metal | |
JP2006224127A (en) | Method for manufacturing steel/aluminum joined structure | |
JP5198528B2 (en) | Dissimilar material joining material and dissimilar material joining method | |
JP4425159B2 (en) | Resistance spot welding method for dissimilar materials | |
JP5392142B2 (en) | Spot welding method for alloyed aluminized steel sheet or press part having aluminum alloy layer | |
JP4911977B2 (en) | Steel / aluminum joint structure | |
JP2012152789A (en) | Method for joining dissimilar metal plates by overlapping and electric resistance brazing, and brazing joint formed by the same | |
JP2008207245A (en) | Joined product of dissimilar materials of steel and aluminum material | |
JP2006224147A (en) | Method for joining different materials and filler metal therefor | |
JP2010201448A (en) | Filler metal for joining different materials and joining method for different materials | |
JP6399266B1 (en) | Method of manufacturing resistance spot welded joint | |
JP6153744B2 (en) | Manufacturing method of welded joint | |
JP2006224145A (en) | Method for joining different materials and filler metal therefor | |
JP7003806B2 (en) | Joined structure and its manufacturing method | |
JP4476016B2 (en) | Manufacturing method of steel / aluminum joint structure | |
TW201833345A (en) | Method of mig brazing, method of producing lap joint member, and lap joint member | |
JP5215986B2 (en) | Dissimilar material joint and dissimilar material joining method | |
JP7021591B2 (en) | Joined structure and its manufacturing method | |
JP7047543B2 (en) | Joined structure and its manufacturing method | |
CN110280880B (en) | Resistance spot welding method for 6061-T6 aluminum alloy and TRIP980 high-strength steel dissimilar alloy | |
JP4280670B2 (en) | Steel / aluminum joint structure | |
JP7003805B2 (en) | Joined structure and its manufacturing method | |
JP7570998B2 (en) | Method for manufacturing metal joint | |
US20230139132A1 (en) | Metal joined body and production method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070308 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080116 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080513 |