JP2006224114A - Member for molten metal and producing method therefor - Google Patents

Member for molten metal and producing method therefor Download PDF

Info

Publication number
JP2006224114A
JP2006224114A JP2005037609A JP2005037609A JP2006224114A JP 2006224114 A JP2006224114 A JP 2006224114A JP 2005037609 A JP2005037609 A JP 2005037609A JP 2005037609 A JP2005037609 A JP 2005037609A JP 2006224114 A JP2006224114 A JP 2006224114A
Authority
JP
Japan
Prior art keywords
molten metal
material layer
base material
layer
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005037609A
Other languages
Japanese (ja)
Inventor
Naoki Kondo
直樹 近藤
Hidenori Kita
英紀 北
Keiji Tamanoi
啓二 玉乃井
Masanao Kondo
正直 近藤
Masaya Kato
雅也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZIKUSU KOGYO KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
ZIKUSU KOGYO KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZIKUSU KOGYO KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical ZIKUSU KOGYO KK
Priority to JP2005037609A priority Critical patent/JP2006224114A/en
Publication of JP2006224114A publication Critical patent/JP2006224114A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Ceramic Products (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic-made member for molten metal which has excellent strength, wear resistance, corrosion resistance, heat-shocking resistance and is drastically hard to be wet with the molten metal, and has profitability, durability and stable quality. <P>SOLUTION: A producing method for ceramic-made member for molten metal has: a first process, in which the slurry containing no component having wetness difficulty is poured into a porous mold having water-absorbability, and after sticking and solidifying by absorbing moisture into pores in the porous mold, a basic material layer is formed by removing the mud after elapse of a predetermined time; a second process, in which after the slurry containing component having wetness difficulty is made to flow into the basic material layer, an inner layer is formed on the inner surface of the basic material layer by discharging this slurry after elapse of a predetermined time; and a third process, in which after drying, the basic material layer is burned and sintered at a predetermined temperature to be made compact and simultaneously, integrated with the basic material layer and the inner layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、強度、耐腐食性、耐摩耗性、耐熱衝撃性に優れ、且、アルミニウムや銅、鋳鉄等の高温溶湯に濡れ難く、又、金属溶湯の付着が少ない、セラミックス製の金属溶湯用部材とその製造方法に関する。   The present invention is excellent for strength, corrosion resistance, wear resistance, thermal shock resistance, is difficult to get wet with high-temperature molten metal such as aluminum, copper, cast iron, etc., and has little adhesion to molten metal. It is related with a member and its manufacturing method.

窒化ケイ素セラミックスは、高強度、高硬度、耐熱衝撃性、耐腐食性に優れるため、多くの工業分野で応用されている。例えばケイ素とホウ素を主原料として反応焼結法でブレークリング等の部材を製造する方法が知られている(特開昭60−22676号公報、特開昭59−107979号公報)。しかしながら、この方法にあっては、強度が低いため、熱衝撃で破損しやすいという問題点がある。そこで、材料開発的な手法、例えば窒化ホウ素を添加することにより、金属溶湯に対する濡れ難さ、加工性、耐腐食性、耐熱衝撃性と耐熱衝撃性を改善することができるが、強度が低下することは避けられないという問題がある。このため、高温溶湯を計量又は搬送する際にラドルが破損し、重大事故に繋がるおそれがある。また、難濡れ性の高い原料は高価であり、経済的にその使用量を最小限にする必要がある。   Silicon nitride ceramics are applied in many industrial fields because of their high strength, high hardness, thermal shock resistance, and corrosion resistance. For example, a method of manufacturing a member such as break ring by reactive sintering using silicon and boron as main raw materials is known (Japanese Patent Laid-Open Nos. 60-22676 and 59-107799). However, this method has a problem that it is easily damaged by thermal shock because of its low strength. Therefore, material development methods such as boron nitride can improve the wettability to metal melt, workability, corrosion resistance, thermal shock resistance and thermal shock resistance, but the strength is reduced. There is a problem that this is inevitable. For this reason, when measuring or conveying the high-temperature molten metal, the ladle may be damaged, leading to a serious accident. In addition, raw materials with high wettability are expensive, and it is necessary to minimize the amount used economically.

難濡れ性を向上させるため、従来、窒化ケイ素表面に難濡れ性を有する成分を含有する層を形成することが行われてきた。もっとも単純な方法としては、金属溶湯に対して濡れ性の低いホウ素化合物粉末を窒化ケイ素表面上に、はけ塗りあるいはスプレーする方法がある。この方法では、基材層とホウ素化合物粉末は一体化されていないため、繰り返しの使用で簡単に剥離が生じる。より耐久性をもたせる方法として難濡れ性を有する成分を窒化ケイ素基材層上に溶射する方法がある。特開平8−141718号では、遠心鋳造装置のシュート・トラフへ溶湯との難濡れ性を有する素材の溶射をおこない多孔質な層を形成し、この多孔質層に塗型を含浸させている。この際形成される層は多孔質であるため、耐久性に問題が残っている。   In order to improve the hard wettability, conventionally, a layer containing a hard wettable component has been formed on the silicon nitride surface. As the simplest method, there is a method in which a boron compound powder having low wettability with respect to a molten metal is brushed or sprayed on a silicon nitride surface. In this method, since the base material layer and the boron compound powder are not integrated, peeling is easily caused by repeated use. As a method for imparting more durability, there is a method in which a component having poor wettability is sprayed onto the silicon nitride substrate layer. In Japanese Patent Application Laid-Open No. 8-141718, a porous layer is formed by spraying a material having poor wettability with molten metal onto a chute / trough of a centrifugal casting apparatus, and this porous layer is impregnated with a coating mold. Since the layer formed at this time is porous, a problem remains in durability.

又、特許第3054978号のように母材セラミックスに窒化ホウ素粒子が分散混在した複合組織からなる表面層を形成する方法がある。この方法では、冷間静水等方圧プレスによる製造方法をとるため、ストーク等の円管の形状化には適するが、ラドル等の内面が複曲面からなる曲面を有するような部材の製造には適していない。加えて、難濡れ性成分が分散した表面層の凸部と基材層の凹部がおおむねかみ合った構造、いわゆるアンカー構造の実現により、表面層と基材層の剥離を防ぐ構造の形成が不可能である。   Further, there is a method of forming a surface layer composed of a composite structure in which boron nitride particles are dispersed and mixed in a base material ceramic as disclosed in Japanese Patent No. 3054978. In this method, a cold hydrostatic isostatic press is used, so it is suitable for shaping a circular tube such as stalk. Not suitable. In addition, it is impossible to form a structure that prevents the separation of the surface layer and the base material layer by realizing a structure in which the convex portions of the surface layer and the concave portions of the base material layer in which the hardly wettable component is dispersed are generally meshed. It is.

特開昭60−022676号公報Japanese Patent Laid-Open No. 60-022676 特開昭59−107979号公報JP 59-109779 A 特開平08−141718号公報Japanese Patent Laid-Open No. 08-141718 特許第3054978号公報Japanese Patent No. 3054978

金属溶湯を使用する溶解・鋳造ラインで使用されるラドル、ヒーターチューブ、ストークといった金属溶湯用部材は、金属溶湯に濡れ難いことが必要である。例えば、金属溶湯を搬送、軽量することの出来るラドルにあっては、金属溶湯が付着すると、計量精度が低下するといった問題が生じる。また金属溶湯が付着し、冷却固化した場合、該固化部分をハンマー等を使って除去することが多々あり、その衝撃によってはラドル自体の破損を招くおそれがある。本発明はこうした溶解・鋳造ラインでの現実的な課題を解決できるよう、強度、耐腐食性、耐摩耗性、耐熱衝撃性に優れ、金属溶湯に対して飛躍的に濡れ難く、かつその経済性、耐久性、品質の安定したセラミック製の金属溶湯用部材を提供せんとするものである。   Metal melt members such as ladles, heater tubes, and stalks used in melting / casting lines that use molten metal must be resistant to getting wet with molten metal. For example, in the case of a ladle capable of transporting and reducing the weight of the molten metal, there is a problem that the measurement accuracy is reduced when the molten metal adheres. Further, when the molten metal adheres and solidifies by cooling, the solidified part is often removed using a hammer or the like, and depending on the impact, the ladle itself may be damaged. The present invention is excellent in strength, corrosion resistance, wear resistance, and thermal shock resistance so that it can solve these practical problems in the melting and casting line, and it is difficult to drastically wet the molten metal, and its economic efficiency. It is intended to provide a member for molten metal made of ceramic with stable durability and quality.

上記課題を解決するためにこの発明が採った手段は、基材層と内層からなる積層物を焼成して製造される金属溶湯用の耐熱部材であって、基材層の外面の大部分は機械加工を施していない焼成面であり、該基材層の内面には、該基材層と異なり金属溶湯に対して難濡れ性を有する成分を分散した内層が積層されており、該基材層と該内層は一体化されていることを特徴とする。更に難濡れ性を有する成分を分散した外層を積層するようにしてもよい。   The means taken by the present invention to solve the above problems is a heat-resistant member for molten metal produced by firing a laminate comprising a base material layer and an inner layer, and most of the outer surface of the base material layer is It is a fired surface that has not been machined, and an inner layer in which a component having difficulty in wettability with respect to the molten metal is dispersed is laminated on the inner surface of the base material layer. The layer and the inner layer are integrated. Further, an outer layer in which a component having poor wettability is dispersed may be laminated.

更に、難濡れ性を有する成分を分散した層は、基材層に対しアンカー構造により一体化されていることを特徴としており、又、耐熱部材が窒化ケイ素、サイアロンあるいはそれらを主成分とする複合材料、難濡れ性を有する成分がホウ素化合物がTi,Zr,C,Nの元素群より選ばれる元素とBとの化合物であることを特徴とする。   Further, the layer in which the component having difficulty wettability is dispersed is integrated with the base material layer by an anchor structure, and the heat-resistant member is silicon nitride, sialon or a composite containing them as a main component. The material and the component having poor wettability are characterized in that the boron compound is a compound of B and an element selected from the element group of Ti, Zr, C, and N.

更に、吸水性を有する多孔質型に、難濡れ性を有する成分を含有しないスラリーを注入し、該多孔質型の気孔に水分を吸収させることにより着肉固化させた後、所定時間経過後に排泥して基材層を形成する第1の工程と、該基材層内に難濡れ性を有する成分を含有するスラリーを流し入れた後、所定時間経過後に排出して基材層内面に内層を形成する第2の工程と、乾燥後、所定の温度にて焼成し焼結・緻密化と同時に基材層と内層を一体化せしめる第3の工程からなることを特徴とする。   Furthermore, a slurry that does not contain a component having poor wettability is poured into a porous mold having water absorption properties, and the porous mold is allowed to absorb moisture to solidify and solidify after a predetermined time. A first step of forming a base material layer by mud and after pouring a slurry containing a component having poor wettability into the base material layer, the slurry is discharged after a predetermined time and the inner layer is formed on the inner surface of the base material layer. It is characterized by comprising the second step of forming and the third step of integrating the base material layer and the inner layer simultaneously with sintering and densification after baking and sintering at a predetermined temperature.

前記、難濡れ性成分を含有するスラリーの注入、排出をする第2の工程に換えて、難濡れ性成分を含有するスラリーの塗布あるいは吹き付けを行う工程としても、焼結過程で緻密化し基材層と内層を一体化せしめることができれば、目的は達成される。又、第1の工程の後に、更に基材層内面にアンカー構造を形成する工程を含むことも可能である。   In place of the second step of injecting and discharging the slurry containing the hardly wettable component, the step of applying or spraying the slurry containing the hardly wettable component can be made dense in the sintering process. If the layer and the inner layer can be integrated, the object is achieved. Further, it is possible to further include a step of forming an anchor structure on the inner surface of the base material layer after the first step.

前記第1〜第3の工程によって、例えばラドルの内面に難濡れ性成分が分散され、金属溶湯との濡れ性を低下させることにより、金属溶湯の付着量を低減させ、計量精度を高めることと同時に、基材層は難濡れ性を有する成分を含まず、基材層の強度のみで部材の信頼性を維持することが出来ることを特徴とする。   By the first to third steps, for example, a hardly wettable component is dispersed on the inner surface of the ladle, and the wettability with the molten metal is reduced, thereby reducing the adhesion amount of the molten metal and increasing the measurement accuracy; At the same time, the base material layer does not contain a component having poor wettability, and the reliability of the member can be maintained only by the strength of the base material layer.

この発明によれば、強度、耐腐食性、耐摩耗性、耐熱衝撃性に優れ、且、アルミニウムや銅、鋳鉄等の金属溶湯に濡れ難く、部材内面又は外面に溶湯の付着が少ないセラミックス製の金属溶湯用部材およびその製造方法を提供することができる。   According to this invention, it is excellent in strength, corrosion resistance, wear resistance, and thermal shock resistance, is not easily wetted by molten metal such as aluminum, copper, cast iron, etc., and is made of ceramics with little adhesion of molten metal to the inner or outer surface of the member. A member for molten metal and a method for producing the member can be provided.

前記、セラミック製の金属溶湯用部材は、内面又は外面への溶湯の付着量を低減させ、特にラドル等の金属溶湯用部材にあっては、計量精度を高めることができ、且、基材層の強度のみで部材の信頼性を維持することができるため、経済性、耐久性、品質の安定した金属溶湯用部材として、溶解・鋳造ラインでの使用に供することができる。   The ceramic metal melt member reduces the amount of molten metal adhering to the inner surface or the outer surface, and in particular for a metal melt member such as a ladle, the measurement accuracy can be increased, and the base material layer Since the reliability of the member can be maintained only by the strength of the metal, it can be used in a melting / casting line as a member for molten metal having stable economy, durability and quality.

以下にこの発明の好ましい実施の形態を詳細に説明する。本願発明の金属溶湯用部材は、強度、耐腐食性、耐摩耗性、耐熱衝撃性に優れ、且、アルミニウムや銅、鋳鉄等の金属溶湯に濡れ難く、部材内面に溶湯の付着が少ないセラミックス製の金属溶湯用部材とその製造方法を提供するものである。   Hereinafter, preferred embodiments of the present invention will be described in detail. The molten metal member of the present invention is excellent in strength, corrosion resistance, wear resistance, and thermal shock resistance, and is difficult to get wet with molten metal such as aluminum, copper, cast iron, etc., and the adhesion of molten metal to the inner surface of the member is small. The member for molten metal and its manufacturing method are provided.

まず、基材層となる耐熱部材の原料粉末をスラリー化する。該耐熱部材はセラミックスを主成分とすることが好ましいが、窒化ケイ素、サイアロン、あるいはそれらを主成分とする複合材料とするのがより好適である。窒化ケイ素あるいはサイアロンの耐熱部材を作成する場合、原料粉末として金属ケイ素、窒化ケイ素、サイアロン、酸化ケイ素、金属アルミニウム、窒化アルミニウム及び酸化アルミニウムの少なくとも一部を含む混合粉末を用いる。金属ケイ素および金属アルミニウムは平均粒径30μm以下の粉末が好適である。窒化ケイ素粉末はα型結晶構造をもち平均粒径10μm以下のものが好適である。サイアロンはβ型結晶構造をもち平均粒径1μm以下のものが好適である。酸化ケイ素、窒化アルミニウム及び酸化アルミニウム粉末は平均粒径10μm以下のものが好適である。   First, the raw material powder of the heat-resistant member to be the base material layer is slurried. The heat-resistant member is preferably composed mainly of ceramics, but more preferably silicon nitride, sialon, or a composite material composed mainly of them. When preparing a heat resistant member of silicon nitride or sialon, a mixed powder containing at least a part of metal silicon, silicon nitride, sialon, silicon oxide, metal aluminum, aluminum nitride, and aluminum oxide is used as a raw material powder. Metallic silicon and metallic aluminum are preferably powders having an average particle size of 30 μm or less. The silicon nitride powder preferably has an α-type crystal structure and an average particle size of 10 μm or less. Sialons having a β-type crystal structure and an average particle size of 1 μm or less are suitable. The silicon oxide, aluminum nitride and aluminum oxide powders preferably have an average particle size of 10 μm or less.

尚、前記原料粉末中に焼結助剤として金属酸化物を添加することが好ましい。添加する焼結助剤としては、イットリア、イッテルビア、アルミナ、マグネシアなどの酸化物が好適であり、その添加量は原料粉末に対し3〜10質量%の範囲とすることが望ましい。添加する焼結助剤が少なすぎる場合、緻密化が進行せず強度不足となる。又、焼結助剤が多すぎる場合、高温における耐熱衝撃性が低下する。尚、原料粉末の混合方法は任意の方法が採用できる。例えばボールミル混合を採用する場合、該混合粉末に溶媒および分散剤を加えてスラリー化する。尚、必要に応じて結合剤、消泡剤を加えることも可能である。   In addition, it is preferable to add a metal oxide as a sintering aid in the raw material powder. As the sintering aid to be added, oxides such as yttria, ytterbia, alumina and magnesia are suitable, and the amount added is preferably in the range of 3 to 10% by mass with respect to the raw material powder. When the sintering aid to be added is too small, densification does not proceed and the strength becomes insufficient. Moreover, when there are too many sintering aids, the thermal shock resistance in high temperature falls. In addition, arbitrary methods are employable as a mixing method of raw material powder. For example, when adopting ball mill mixing, a solvent and a dispersant are added to the mixed powder to form a slurry. In addition, it is also possible to add a binder and an antifoaming agent as needed.

次に、吸水性を有する多孔質の型、好適には石膏型あるいは樹脂型に前記スラリーを注入し、多孔質の気孔に水分を吸収させて着肉固化させ、所定時間後に排泥を行う。これにより粉末形成体からなる基材層を得る。着肉厚み、すなわち基材層となる耐熱部材の厚みは、多孔質型の気孔率、スラリーの濃度、着肉時間により調整することができる。尚、必要に応じて粉末成型体の加工、いわゆる生加工をおこない形を整える。   Next, the slurry is poured into a porous mold having water absorption, preferably a gypsum mold or a resin mold, and the porous pores are allowed to absorb moisture to solidify, and after a predetermined time, the mud is discharged. Thereby, the base material layer which consists of a powder formation body is obtained. The thickness of the wall, that is, the thickness of the heat-resistant member serving as the base material layer can be adjusted by the porosity of the porous mold, the concentration of the slurry, and the time of the wall. If necessary, processing of the powder molded body, so-called raw processing, is performed to prepare the shape.

この時、必要に応じて内面にアンカー構造を形成する工程をとる。該アンカー構造は基材層内面に、溝あるいはディンプルを形成することにより実現できる。該アンカー構造の形成方法としては、機械加工やマスクを使用したブラスト加工が挙げられるが、これに限定されるものではない。   At this time, a step of forming an anchor structure on the inner surface is taken if necessary. The anchor structure can be realized by forming grooves or dimples on the inner surface of the base material layer. Examples of the method for forming the anchor structure include machining and blasting using a mask, but are not limited thereto.

次に、難濡れ性を有する成分(以下単に、難濡れ成分という)を含有するスラリーを作成する。該スラリーは前記基材層のスラリーに難濡れ成分であるホウ素化合物を追加し作成する。ホウ素化合物の含有量は5〜50質量%とすることが望ましい。含有量が少ない場合、金属溶湯に対する難濡れ性が充分に発揮できず、又、含有量が多い場合、基材層との一体性が不足する。得られたスラリーを前記基材層に流し込み所定時間後排泥を行うか、あるいは、スラリーを塗布あるいは吹き付けをおこなうことにより、基材層内面に難濡れ性の成分が分散され、且、基材層と一体となった内層が形成される。尚、アンカー構造を採用する場合には、基材層に形成した凹部に難濡れ成分を含有したスラリーがいきわたるようにすることで、図3に示すようなアンカー構造が形成される。   Next, a slurry containing a component having hardly wettability (hereinafter simply referred to as “hardly wettable component”) is prepared. The slurry is prepared by adding a boron compound that is a hardly wettable component to the slurry of the base material layer. The boron compound content is desirably 5 to 50 mass%. When the content is small, the poor wettability with respect to the molten metal cannot be sufficiently exhibited, and when the content is large, the integrity with the base material layer is insufficient. The obtained slurry is poured into the base material layer and then drained after a predetermined time, or the slurry is coated or sprayed to disperse the hardly wettable component on the inner surface of the base material layer, and the base material An inner layer integrated with the layer is formed. In addition, when employ | adopting an anchor structure, the anchor structure as shown in FIG. 3 is formed by making the slurry containing a hardly wettable component spread in the recessed part formed in the base material layer.

以上の工程を経て得られた基材層と内層の2層からなる粉末成型体を乾燥し、所定の温度で焼成することにより、焼結・緻密化と同時に基材層と難濡れ成分を分散した内層を一体化し、金属溶湯用の耐熱部材を得ることができる。尚、基材層を窒化ケイ素あるいはサイアロンとし、難濡れ成分を窒化ホウ素とする場合には、分解を防ぐために加圧窒素雰囲気での焼成が望ましい。この場合、焼成温度は1400℃以上、より好ましくは1500℃〜1900℃の範囲が好ましく、又、焼成時間は30分〜10時間とするのが望ましい。焼成温度が低すぎる場合、緻密化が充分におこらず、又、基材層と内層の一体化が充分になされない。焼成温度が高すぎる場合、基材層や難濡れ成分の分解が生じる。尚、他のセラミックス、あるいは、難濡れ成分を選択した場合には、材質、成分に応じて、焼成温度、焼成時間、雰囲気を選択する必要がある。以下に実施例に基づいて本発明を具体的に説明するが、本発明は当該実施例によって何ら限定されるものではない。   The powder molded body consisting of the base material layer and the inner layer obtained through the above steps is dried and fired at a predetermined temperature to disperse the base material layer and difficult-to-wet components simultaneously with sintering and densification. The heat-resistant member for molten metal can be obtained by integrating the inner layers. When the base material layer is silicon nitride or sialon and the hardly wettable component is boron nitride, firing in a pressurized nitrogen atmosphere is desirable to prevent decomposition. In this case, the firing temperature is preferably 1400 ° C. or higher, more preferably 1500 ° C. to 1900 ° C., and the firing time is desirably 30 minutes to 10 hours. When the firing temperature is too low, densification does not occur sufficiently, and the base material layer and the inner layer are not sufficiently integrated. When the firing temperature is too high, decomposition of the base material layer and difficult-to-wet components occurs. In addition, when other ceramics or a difficult-to-wet component is selected, it is necessary to select a firing temperature, a firing time, and an atmosphere according to the material and the component. EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited to the examples.

窒化ケイ素粉末に焼結助剤として3質量%のアルミナと5質量%のイットリアを加え、粉末重量に対し40質量%の水と1質量%の分散剤と1質量%の結合剤を加えて、ボールミルにて混合し、基材層作製のためのスラリーを得た。このスラリーを混水率60%の石膏型に流し込み15分間吸水させて着肉固化した後排泥を行い、基材層の粉末成型体を得た。次に窒化ケイ素粉末に焼結助剤として3質量%のアルミナと5質量%のイットリアを加えた粉末に対し、窒化ホウ素粉末を質量比で3:1となるよう加え、この粉末質量に対し50質量%の水と1.5質量%の分散剤と1質量%の結合剤を加えて、ボールミルにて混合し、内層作製のためのスラリーを得た。このスラリーを前記基材層の粉末成型体中に流し込み、1分間吸水させて着肉固化したのち排泥を行い、基材層と難濡れ成分が分散した内層が一体化した粉末成型体を得た。この粉末成型体を乾燥後、脱脂処理を行い、次いで9気圧窒素ガス加圧雰囲気において、焼成温度1850℃で2時間焼成を行った。以上の工程により、金属溶湯に対する難濡れ性成分が分散された内層が基材層と一体化されているアルミニウム等の金属溶湯用部材を得た。   Add 3% alumina and 5% yttria as sintering aids to silicon nitride powder, add 40% water, 1% dispersant and 1% binder by weight with respect to the powder weight, The mixture was mixed with a ball mill to obtain a slurry for preparing the base material layer. This slurry was poured into a gypsum mold having a water content ratio of 60%, absorbed for 15 minutes to solidify, and then drained to obtain a powder molded body of the base material layer. Next, to the powder obtained by adding 3% by mass of alumina and 5% by mass of yttria as a sintering aid to the silicon nitride powder, boron nitride powder was added at a mass ratio of 3: 1. Mass% water, 1.5 mass% dispersant and 1 mass% binder were added and mixed in a ball mill to obtain a slurry for producing an inner layer. The slurry is poured into the powder molded body of the base material layer, water absorbed for 1 minute, solidified, and then drained to obtain a powder molded body in which the base material layer and the inner layer in which difficultly wet components are dispersed are integrated. It was. This powder molded body was dried, degreased, and then fired for 2 hours at a firing temperature of 1850 ° C. in an atmosphere of 9 atm nitrogen gas. Through the above steps, a member for molten metal such as aluminum in which the inner layer in which the component having poor wettability to the molten metal was dispersed was integrated with the base material layer was obtained.

前記得られた金属溶湯用部材の難濡れ性を確認するために、AC4Cアルミニウム合金との接触角を、750℃にて測定した結果154度であった。比較のために基材層外面で測定をおこなった際の接触角は121度であった。また、該部材を使用してAC4Cアルミニウム合金の計量をおこなったところ、内層表面へのアルミニウム合金の付着は見られなかった。一方、市販品の窒化ケイ素製アルミニウム溶湯用部材にて計量をおこなったところ、部材内面へわずかにアルミニウム合金が付着した。又、実施例1と同様の方法にてラドルを作成し、該ラドルについて前記同様にAC4Cアルミニウム合金の計量をおこなったところ、実施例2と同様の効果が得られることを確認した。   In order to confirm the wettability of the obtained member for molten metal, the contact angle with the AC4C aluminum alloy was measured at 750 ° C. and found to be 154 degrees. For comparison, the contact angle when measured on the outer surface of the base material layer was 121 degrees. Further, when the AC4C aluminum alloy was weighed using the member, the aluminum alloy did not adhere to the inner layer surface. On the other hand, when a measurement was performed using a commercially available silicon nitride aluminum melt member, an aluminum alloy slightly adhered to the inner surface of the member. Further, a ladle was prepared by the same method as in Example 1, and the AC4C aluminum alloy was weighed in the same manner as described above. As a result, it was confirmed that the same effect as in Example 2 was obtained.

基材層の粉末成型体の作成と内層作製のためのスラリー作成方法は前記実施例1と共通である。内層作成のスラリーをエアスプレーガンにて基材層の粉末成型体の内面側に吹き付けをおこない、基材層と難濡れ成分が分散した内層が一体化した粉末成型体を得た。この粉末成型体を前記実施例1と同様の条件にて乾燥、脱脂、焼成をおこなった。吹き付けによる方法にあっても、前記実施例1と同じく、部材内面に、難濡れ性成分が分散された内層が形成され基材層と一体化されているアルミニウム等の金属溶湯用部材を得た。   The slurry forming method for preparing the powder molded body of the base material layer and the inner layer is the same as in Example 1. The slurry for forming the inner layer was sprayed on the inner surface side of the powder molded body of the base material layer with an air spray gun to obtain a powder molded body in which the base material layer and the inner layer in which the hardly wettable component was dispersed were integrated. This powder molded body was dried, degreased and fired under the same conditions as in Example 1. Even in the method by spraying, a member for a molten metal such as aluminum in which an inner layer in which a hardly wettable component is dispersed is formed on the inner surface of the member and integrated with the base material layer is obtained as in Example 1. .

前記実施例2において、基材層内面にマスクを利用したブラスト加工にて幅1mm深さ0.7mmの溝を間隔2mmの格子状にアンカー加工をおこなった後、内層作成のスラリーの吹き付けをおこなった。この粉末成型体を前記実施例1と同様の条件にて乾燥、脱脂、焼成をおこなうことにより、基材層と難濡れ成分が分散した内層がアンカー構造を有し、且、基材層と内層が一体化したアルミニウム等の金属溶湯用部材を得た。   In Example 2, after anchoring a groove having a width of 1 mm and a depth of 0.7 mm in a lattice shape with an interval of 2 mm by blasting using a mask on the inner surface of the base material layer, the slurry for creating the inner layer was sprayed. It was. The powder molded body is dried, degreased and fired under the same conditions as in Example 1, whereby the base layer and the inner layer in which the hardly wettable component is dispersed have an anchor structure, and the base layer and the inner layer Obtained a member for molten metal such as aluminum.

前記実施例2又は3で得られた金属溶湯用部材の耐久性を検証するために、該部材から試験片を切り出しAC4Cアルミニウム合金溶湯への浸漬を繰り返した。また、比較のため、同組成を有する難濡れ成分含有層と基材層を冷間等方圧加圧装置による成形(以下単にCIP成形という)により積層した平板を作成し、同時に試験を行なった。結果、CIP成形による試験片には浸漬400回超で難濡れ成分含有層にはがれが生じたのに対し、前記実施例2から切り出した試験片では浸漬520回超で、又、前記実施例3から切り出した試験片は590回超で各々内層のはがれが生じた。また、CIP成形による試験片と実施例2から切り出した試験片では、はがれた内層が直ちに脱落したのに対し、実施例3から切り出した試験片では、はがれた内層がアンカー部の効果により直ちに脱落することはなかった。   In order to verify the durability of the member for molten metal obtained in Example 2 or 3, a test piece was cut out from the member and immersed in the molten AC4C aluminum alloy. For comparison, a flat plate was prepared by laminating a hard-wetting component-containing layer having the same composition and a base material layer by molding with a cold isostatic pressing device (hereinafter simply referred to as CIP molding), and simultaneously tested. . As a result, the test piece obtained by CIP molding was peeled over 400 times by immersion and the layer containing the hardly wettable component was peeled off, whereas the test piece cut out from Example 2 was immersed by more than 520 times, and Example 3 The test pieces cut out from the sample were peeled from the inner layer after 590 times. Further, in the test piece obtained by CIP molding and the test piece cut out from Example 2, the peeled inner layer was immediately dropped, whereas in the test piece cut out from Example 3, the peeled inner layer was immediately dropped due to the effect of the anchor portion. I never did.

さて、上記の金属溶湯用部材は、基材層内面のみに難濡れ成分が分散された層が形成されたものであるが、勿論これに限定されるものではない。すなわち、図4、図5に示されるように基材層内面に加え、外面にも難濡れ成分が分散された層を形成するようにしても良い。この場合、製造方法については上記実施例のものと基本的に同一であるが、基材層外面に難濡れ成分が分散された層を形成するために、上記第2の工程において、粉末成型体からなる基材層を、難濡れ成分が分散されたスラリー中に浸漬させる、あるいは、該スラリーを基材層内面に加え外面にも塗布あるいは吹き付けをおこなうようにし、基材層の内面及び外面に、難濡れ性の成分が分散され、且、基材層と一体となった層を形成させる。このとき、上記実施例と同様に、内層及び/又は外層をアンカー構造とすることもできる。尚、焼成等その他の工程については上記工程と同一である。
The molten metal member is formed by forming a layer in which a hardly wettable component is dispersed only on the inner surface of the base material layer. However, the present invention is not limited to this. That is, as shown in FIGS. 4 and 5, in addition to the inner surface of the base material layer, a layer in which a hardly wettable component is dispersed may be formed on the outer surface. In this case, the manufacturing method is basically the same as that of the above embodiment, but in order to form a layer in which the hardly wettable component is dispersed on the outer surface of the base material layer, The base material layer is immersed in a slurry in which a hardly wettable component is dispersed, or the slurry is applied to or sprayed on the outer surface in addition to the inner surface of the base material layer. The hard-wetting component is dispersed, and a layer integrated with the base material layer is formed. At this time, as in the above embodiment, the inner layer and / or the outer layer may have an anchor structure. The other steps such as firing are the same as the above steps.

金属溶湯用部材の外観図External view of molten metal parts 金属溶湯用部材の断面拡大図Cross-sectional enlarged view of a member for molten metal アンカー構造を有する金属溶湯用部材の断面拡大図Cross-sectional enlarged view of a member for molten metal having an anchor structure 内層及び外層を有する金属溶湯用部材の断面拡大図Cross-sectional enlarged view of a member for molten metal having an inner layer and an outer layer 内層及び外層がアンカー構造を有する金属溶湯用部材の断面拡大図Cross-sectional enlarged view of a member for a molten metal in which the inner layer and the outer layer have an anchor structure

符号の説明Explanation of symbols

(1)溶湯用部材
(2)基材層
(3)内層
(4)アンカー構造部
(5)外層
(1) Molten metal parts
(2) Base material layer
(3) Inner layer
(4) Anchor structure
(5) Outer layer

Claims (14)

基材層と内層からなる積層物を焼成して製造される金属溶湯用の耐熱部材であって、基材層外面の大部分は機械加工を施していない焼成面であり、該基材層内面には、該基材層と異なり金属溶湯に対して難濡れ性を有する成分を分散した内層が積層されており、該基材層と該内層は一体化されていることを特徴とする金属溶湯用部材。   A heat-resistant member for molten metal produced by firing a laminate composed of a base material layer and an inner layer, and most of the outer surface of the base material layer is a fired surface not subjected to machining, and the inner surface of the base material layer Unlike the base material layer, an inner layer in which a component having a wettability with respect to the molten metal is dispersed is laminated, and the base material layer and the inner layer are integrated. Materials. 前記基材層外面に、更に難濡れ性を有する成分を分散した外層を積層するようにしたことを特徴とする請求項1記載の金属溶湯用部材。   The member for molten metal according to claim 1, wherein an outer layer in which a component having poor wettability is further dispersed is laminated on the outer surface of the base material layer. 前記難濡れ性を有する成分を分散した層は、基材層に対しアンカー構造により一体化されていることを特徴とする請求項1又は2記載の金属溶湯用部材。   The member for molten metal according to claim 1 or 2, wherein the layer in which the component having hardly wettability is dispersed is integrated with the base material layer by an anchor structure. 前記耐熱部材が、窒化ケイ素、サイアロンあるいはそれらを主成分とする複合材料からなることを特徴とする請求項1乃至3のいずれかに記載の金属溶湯用部材   4. The molten metal member according to claim 1, wherein the heat-resistant member is made of silicon nitride, sialon, or a composite material containing them as a main component. 前記基材層は、難濡れ性を有する成分を含まず、基材層の強度のみで前記部材の信頼性を維持することを特徴とする請求項1乃至4のいずれかに記載の金属溶湯用部材。   5. The molten metal according to claim 1, wherein the base material layer does not include a component having poor wettability and maintains the reliability of the member only by the strength of the base material layer. Element. 前記難濡れ性を有する成分は、ホウ素化合物であることを特徴とする請求項1乃至5のいずれかに記載の記載の金属溶湯用部材   The member for molten metal according to any one of claims 1 to 5, wherein the component having poor wettability is a boron compound. 前記ホウ素化合物は、Ti,Zr,C,Nの元素群より選ばれる元素と、Bとの化合物であることを特徴とする請求項6記載の金属溶湯用部材   7. The member for molten metal according to claim 6, wherein the boron compound is a compound of B and an element selected from the element group of Ti, Zr, C, and N. 前記金属溶湯用部材が、ラドルであることを特徴とする請求項1乃至7のいずれかに記載の金属溶湯用部材。   The member for molten metal according to any one of claims 1 to 7, wherein the member for molten metal is a ladle. 前記金属溶湯用部材が、ヒーターチューブであることを特徴とする請求項1乃至7のいずれかに記載の金属溶湯用部材。   The member for molten metal according to any one of claims 1 to 7, wherein the member for molten metal is a heater tube. 前記金属溶湯用部材が、ストークであることを特徴とする請求項1乃至7のいずれかに記載の金属溶湯用部材。   The member for molten metal according to claim 1, wherein the member for molten metal is stalk. 吸水性を有する多孔質型に、難濡れ性を有する成分を含有しないスラリーを注入し、該多孔質型の気孔に水分を吸収させることにより着肉固化させた後、所定時間経過後に排泥して基材層を形成する第1の工程と、該基材層内に難濡れ性を有する成分を含有するスラリーを流し入れた後、所定時間経過後に排出して基材層内面に内層を形成する第2の工程と、乾燥後、所定の温度にて焼成し焼結・緻密化と同時に基材層と内層を一体化せしめる第3の工程からなることを特徴とする金属溶湯用部材の製造方法。   After pouring a slurry that does not contain a component having poor wettability into a porous mold having water absorbency, and allowing the porous mold to absorb moisture into the porous mold, the slurry is drained after a predetermined time has elapsed. The first step of forming the base material layer and the slurry containing the component having poor wettability are poured into the base material layer, and then discharged after a predetermined time to form the inner layer on the inner surface of the base material layer. A method for producing a member for molten metal, comprising a second step and a third step in which, after drying, firing at a predetermined temperature to sinter and densify the base layer and the inner layer together. . 吸水性を有する多孔質型に、難濡れ性を有する成分を含有しないスラリーを注入し、該多孔質型の気孔に水分を吸収させることにより着肉固化させた後、所定時間経過後に排泥して基材層を形成する第1の工程と、該基材層内に難濡れ性を有する成分を含有するスラリーを塗布あるいは吹き付け基材層内面に内層を形成する第2の工程と、乾燥後、所定の温度にて焼成し焼結・緻密化と同時に基材層と内層を一体化せしめる第3の工程からなることを特徴とする金属溶湯用部材の製造方法。   After pouring a slurry that does not contain a component having poor wettability into a porous mold having water absorbency, and allowing the porous mold to absorb moisture into the porous mold, the slurry is drained after a predetermined time has elapsed. A first step of forming a base material layer, a second step of applying or spraying a slurry containing a component having poor wettability in the base material layer to form an inner layer on the inner surface of the base material layer, and after drying A method for producing a member for molten metal, comprising a third step of firing at a predetermined temperature and integrating the base material layer and the inner layer simultaneously with sintering and densification. 前記第1の工程後に、更に基材層の少なくとも内面にアンカー構造を形成する工程を含むことを特徴とする請求項11又は12記載の金属溶湯部材の製造方法。   The method for producing a molten metal member according to claim 11 or 12, further comprising a step of forming an anchor structure on at least an inner surface of the base material layer after the first step. 前記第2の工程において、更に基材層の外面にも難濡れ性を有する成分を含有するスラリーを積層して外層を形成するようにしたことを特徴とする請求項11乃至13のいずれかに記載の金属溶湯用部材の製造方法。
14. In the second step, the outer layer is formed by further laminating a slurry containing a component having poor wettability on the outer surface of the base material layer. The manufacturing method of the member for molten metal of description.
JP2005037609A 2005-02-15 2005-02-15 Member for molten metal and producing method therefor Pending JP2006224114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005037609A JP2006224114A (en) 2005-02-15 2005-02-15 Member for molten metal and producing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005037609A JP2006224114A (en) 2005-02-15 2005-02-15 Member for molten metal and producing method therefor

Publications (1)

Publication Number Publication Date
JP2006224114A true JP2006224114A (en) 2006-08-31

Family

ID=36985922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037609A Pending JP2006224114A (en) 2005-02-15 2005-02-15 Member for molten metal and producing method therefor

Country Status (1)

Country Link
JP (1) JP2006224114A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168424A (en) * 2010-02-17 2011-09-01 Kubota Corp Ceramic member for molten metal, and method for producing the same
CN113146811A (en) * 2021-04-12 2021-07-23 谢斌 Ceramic tablespoon production is with tablespoon glazing equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168424A (en) * 2010-02-17 2011-09-01 Kubota Corp Ceramic member for molten metal, and method for producing the same
CN113146811A (en) * 2021-04-12 2021-07-23 谢斌 Ceramic tablespoon production is with tablespoon glazing equipment

Similar Documents

Publication Publication Date Title
EP0833698B1 (en) Method of coating, method for making ceramic-metal structures, method for bonding, and structures formed thereby
CN107074663A (en) Sintered body
JP2006225186A (en) Firing setter and method of manufacturing the same
CN110252156A (en) A kind of metal composite ceramal film and preparation method thereof
JP2006224114A (en) Member for molten metal and producing method therefor
JP4071843B2 (en) Method for producing composite alloy member
JP2013071169A (en) Ceramic core for precision casting, and method for manufacturing the same
JP5969353B2 (en) Ceramic sintered body, corrosion resistant member and filter using the same, and antihalation member
JP2005289744A (en) Method for manufacturing reaction sintered silicon carbide structure
JP2001270792A (en) Method for producing metal/ceramic complex and method for producing ceramic porous body
JP2005213081A (en) Silicon nitride sintered body and member for molten metal using the same
JP2698186B2 (en) Manufacturing method of casting nozzle member
JP5085575B2 (en) Process for producing reaction sintered silicon carbide structure
JP4667611B2 (en) Aluminum titanate ceramic member with improved non-wetting property against molten aluminum alloy and method for producing the same
JP4118058B2 (en) Immersion nozzle for casting
JP2006321698A (en) Ceramic structure and method of manufacturing the same
JP4701380B2 (en) Aluminum melt member and method for producing the same
JP6113100B2 (en) Graphite mold for aluminum casting
KR100549030B1 (en) materials and jig for baking electronic parts
JP2011073942A (en) Silicon nitride sintered compact and method for production thereof
KR100216333B1 (en) Thin metal matrix composites and production method
JP3643022B2 (en) Electronic component firing jig
JP4020224B2 (en) Molten metal processing parts
JP3090873B2 (en) Mold and its manufacturing method
JP2004010381A (en) Surface-coated silicon nitride sintered compact