JP2013071169A - Ceramic core for precision casting, and method for manufacturing the same - Google Patents

Ceramic core for precision casting, and method for manufacturing the same Download PDF

Info

Publication number
JP2013071169A
JP2013071169A JP2011213679A JP2011213679A JP2013071169A JP 2013071169 A JP2013071169 A JP 2013071169A JP 2011213679 A JP2011213679 A JP 2011213679A JP 2011213679 A JP2011213679 A JP 2011213679A JP 2013071169 A JP2013071169 A JP 2013071169A
Authority
JP
Japan
Prior art keywords
ceramic core
slurry
core
layer
precision casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011213679A
Other languages
Japanese (ja)
Inventor
Shigeru Tanaka
滋 田中
Akira Yoshinari
明 吉成
Hideyuki Arikawa
秀行 有川
Yoshiyuki Kojima
慶享 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011213679A priority Critical patent/JP2013071169A/en
Publication of JP2013071169A publication Critical patent/JP2013071169A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic core for precision casting, withstanding a strength load received in each process of casting and excelling in an elution property of the ceramic core after casting at the same time.SOLUTION: A sintered body structured to have high density at the outermost surface part of the ceramic core and to incline to low density toward the inside is used as the ceramic core. The outermost surface part is made high in density to have an effect of securing strength, and since the inside maintains a porous property, the elution property is excellent. The use of this ceramic core enables an improvement in the yield of a cast product.

Description

本発明は、精密鋳造法で作製されるガスタービン翼などの内部冷却通路を形成するために用いられる精密鋳造用セラミック中子と、その製造方法に関する。   The present invention relates to a ceramic core for precision casting used for forming an internal cooling passage such as a gas turbine blade manufactured by precision casting, and a method for manufacturing the same.

ガスタービンに代表されるエネルギー機器の発電効率を向上させるために、年々燃焼ガス温度は上昇してきている。現在タービン入り口温度は1300℃が主流であるが、1700℃級を狙った部材の研究開発が進められている。ガスタービン翼製造分野では、高温における強度信頼性低下の要因となる結晶粒界を極力低減させた一方向凝固プロセスや単結晶成長プロセスが重要になってきている。これら製造法の特徴は、従来の金属溶湯を鋳込む普通鋳造法に比べて高温で長時間プロセスという点である。ガスタービン翼は超高耐熱合金であるNi基合金が用いられる傾向にあるが、その内部には、表面温度低減のために冷却ガス流路が設けられている。このガス流路を形成するために用いられるのがセラミック中子である。   In order to improve the power generation efficiency of energy equipment typified by gas turbines, the combustion gas temperature has been increasing year by year. Currently, the turbine inlet temperature is mainly 1300 ° C, but research and development of members aiming at the 1700 ° C class is underway. In the gas turbine blade manufacturing field, a unidirectional solidification process and a single crystal growth process in which crystal grain boundaries, which cause a decrease in strength reliability at high temperatures, are reduced as much as possible. The feature of these manufacturing methods is that the process is performed at a high temperature for a long time as compared with the conventional casting method in which a conventional molten metal is cast. The gas turbine blade tends to use a Ni-based alloy, which is an ultra-high heat resistant alloy, and a cooling gas flow path is provided inside the gas turbine blade for reducing the surface temperature. A ceramic core is used to form this gas flow path.

セラミック中子によるガス流路形成工程を、図1を用いて簡単に説明する。タービン翼形状の金型内部にセラミック中子を配置、この金型にワックス注入しセラミック中子を含んだタービン翼ワックス模型を作製する。これに耐熱材料で作られた鋳型を形成、次に高温蒸気でワックスを消失させる(ロストワックス)。この状態の鋳型に普通鋳造や一方向凝固など様々なプロセスによりNi基合金を鋳造する。その後、タービン翼内部の中子は、化学的手法、具体的には強アルカリ溶液で溶出させる。   A gas flow path forming process using a ceramic core will be briefly described with reference to FIG. A ceramic core is placed inside a turbine blade-shaped mold, and wax is injected into this mold to produce a turbine blade wax model including the ceramic core. A mold made of a heat-resistant material is formed on this, and then the wax is lost with high-temperature steam (lost wax). A Ni-based alloy is cast on the mold in this state by various processes such as ordinary casting and unidirectional solidification. Thereafter, the core inside the turbine blade is eluted with a chemical method, specifically, a strong alkaline solution.

すなわち、精密鋳造用セラミック中子に要求される特性は、ワックス射出や金属溶湯と相互作用する際に変形などのトラブルがない、すなわち、ある程度強度が必要な点、タービン翼作製後には容易に翼内部から溶出可能な点、Ni基合金と反応しない材料から構成されている点などである。このような点から、当該分野の精密鋳造用セラミック中子は、実質的に溶融シリカ粉を主成分とし、それを成形・焼結することで相対密度約70%程度に制御したセラミックス部材であることが知られている。   In other words, the characteristics required for ceramic cores for precision casting are that there is no trouble such as deformation when interacting with wax injection or molten metal, that is, some strength is required. These include a point that can be eluted from the inside and a point that is made of a material that does not react with the Ni-based alloy. From this point, the ceramic core for precision casting in this field is a ceramic member that is substantially composed of fused silica powder and controlled to a relative density of about 70% by molding and sintering it. It is known.

上記のような精密鋳造用セラミック中子は、鋳造時のみ必要で、その後鋳造物から排除するという特殊な機能が要求されるため、溶出性に有利な多孔質で、ある程度強度も保証されていることが求められる。ある程度の強度とは、曲げ強度でおよそ10MPaを一つの目安としている。強度を発現させるためには、高温で熱処理し密度を向上させるのが有利であるが、密度が例えば90%を超えるような場合、強度の点では十分信頼性はあるが、後工程である溶出に多大な時間を要し、溶出に用いたアルカリ溶液の劣化などを招き、翼の生産性という点で問題がある。なお密度は、用いるセラミック材料で決定される理論密度に対する相対密度で表わす。逆に焼結体密度を低く抑えると、溶出性は改善されるが、強度信頼性が保証できず、ワックス模型作製時あるいは鋳型作製時、鋳造時いずれも中子の変形が起こりやすくなる、冷却通路形状が大きく変化し、甚だしくは冷却効率が大幅に低減するなどの問題が起こる。また製造工程で中子が折損する可能性も高くなる。すなわち精密鋳造用のセラミック中子では、溶出性を確保するために多孔質でありかつ中子自体の変形は起こさないという堅牢さ、換言すれば強度確保の2点が求められる。   The ceramic core for precision casting as described above is necessary only for casting, and after that it requires a special function to be excluded from the casting, so it is porous that is advantageous for elution and has a certain degree of strength. Is required. As a certain level of strength, the bending strength is approximately 10 MPa as one standard. In order to develop strength, it is advantageous to improve the density by heat treatment at a high temperature. However, when the density exceeds, for example, 90%, there is sufficient reliability in terms of strength, but elution is a subsequent process. It takes a lot of time to cause deterioration of the alkaline solution used for elution, and there is a problem in terms of blade productivity. The density is expressed as a relative density with respect to the theoretical density determined by the ceramic material used. Conversely, if the sintered compact density is kept low, elution is improved, but strength reliability cannot be guaranteed, and core deformation is likely to occur during wax model production, mold production, and casting. The shape of the passage changes greatly, and problems such as significant reduction in cooling efficiency occur. In addition, there is a high possibility that the core breaks during the manufacturing process. In other words, the ceramic core for precision casting requires two points of robustness that is porous and does not cause deformation of the core itself, in other words, strength, in order to ensure dissolution.

特開平9−67662号公報Japanese Patent Laid-Open No. 9-67662

このような課題に対して従来技術では、セラミック中子全体を均一にし、その焼結密度を制御することで、本課題に対応しているが、鋳造温度がより高温化されるなどセラミック中子に負荷される熱的環境が厳しくなると、このような従来技術では対応しにくい。   In order to deal with such a problem, the conventional technique addresses this problem by making the entire ceramic core uniform and controlling the sintering density. Such a conventional technique is difficult to cope with when the thermal environment loaded on the environment becomes severe.

そこで、本発明の目的は、中子としての強度を確保しつつ、後工程の溶出性にも優れた精密鋳造用セラミック中子を提供することにある。   Accordingly, an object of the present invention is to provide a ceramic core for precision casting that is excellent in elution in a subsequent process while ensuring strength as a core.

本発明の精密鋳造用セラミック中子は、溶融シリカを80重量%以上含む精密鋳造用セラミック中子であって、金属溶湯と接する中子表面部の焼結密度が該中子の理論密度の75〜80%の範囲にある表面層と、74〜68%の範囲にある少なくとも一層からなる中間層と、64〜67%の範囲にある内部層と、を備えることを特徴とする。   The ceramic core for precision casting of the present invention is a ceramic core for precision casting containing 80% by weight or more of fused silica, and the sintered density of the core surface portion in contact with the molten metal is 75 of the theoretical density of the core. It is characterized by comprising a surface layer in the range of -80%, an intermediate layer consisting of at least one layer in the range of 74-68%, and an inner layer in the range of 64-67%.

以上述べてきたように,精密鋳造用セラミック中子として、もっともストレスのかかる表面部を高密度に、内部にいくにしたがい低密度といった傾斜構造にすることで、精密鋳造各プロセスにおける強度に耐え、かつ鋳造が終了した後のセラミック中子の溶出性にも優れたセラミック中子となる。この特性を有しているセラミック中子を用いることで、鋳造品歩留まりは改善することができる。   As mentioned above, as the core for precision casting, the most stressed surface part has a high density and with a slant structure such as low density as it goes inside, it can withstand the strength in each precision casting process. And it becomes the ceramic core excellent also in the elution property of the ceramic core after completion | finish of casting. By using a ceramic core having this characteristic, the yield of cast products can be improved.

セラミック中子の役割を示す概要図(精密鋳造工程)。Schematic diagram showing the role of the ceramic core (precision casting process). 本発明を表わす傾斜構造を有するセラミック中子の断面図。Sectional drawing of the ceramic core which has the inclination structure showing this invention.

本発明者は上記目的を達成すべく、鋭意検討結果、1.溶融シリカ粉の粒度を適宜選択することで焼結体密度を制御できること、一般的には平均粒径の細かい粉末を用いれば焼結が進み密度が向上すること、2.中子表面すなわちワックスや金属溶湯と接触する部分が高強度を確保できていれば、中子内部は形状確保に支障のない程度の多孔質で十分であること、3.表面部も強度確保には相対密度で80%程度になっていれば良く、この程度の密度では後工程である溶出にも影響は少ないということを見出し、本発明に至ったものである。すなわちその内容は、(1)溶融シリカを80重量%以上含むセラミック中子であって、金属溶湯が直接触れる表面部の焼結密度が該中子の理論密度の75から80%の範囲にある表面層、68から74%の範囲にある中間層、64から67%の範囲にある内部層の少なくとも3層から構成されていることを特徴とする精密鋳造用セラミック中子であり、(2)その表面層では該溶融シリカ平均粒径が細かく、中間層、内部層に行くにしたがい大きくなっている、傾斜材料になっていることを特徴とするセラミック中子であり、また、(3)出発原料粉平均粒径の異なるスラリーを流し込む、すなわち表面部用のスラリーを中子形状にかたどった空間部に最初に流し込み、着肉後余分なスラリーを捨てる、この後、中間部用の第2のスラリーを第1のスラリー着肉層の上から流し込み、再び着肉後、第2のスラリーを捨てる、これを繰り返し最終的に、内部層であるスラリーを流し込み着肉させ、多層からなる成形体を取り出し、これを焼結する工程を含んでいることを特徴とする精密鋳造用セラミック中子の製造方法、である。   In order to achieve the above-mentioned object, the present inventor has made extensive studies. 1. The sintered body density can be controlled by appropriately selecting the particle size of the fused silica powder. 2. The density is increased as the setting progresses. 2. If the core surface, that is, the part in contact with the wax or the molten metal can secure a high strength, the inside of the core is sufficiently porous so as not to obstruct the shape. 3. It has been found that the relative density of the surface portion should be about 80% in order to ensure the strength, and it has been found that the density at this level has little influence on the elution which is a subsequent process, and the present invention has been achieved. Is. That is, the content is (1) a ceramic core containing 80% by weight or more of fused silica, and the sintered density of the surface portion in direct contact with the molten metal is in the range of 75 to 80% of the theoretical density of the core. (2) A ceramic core for precision casting characterized by comprising at least three layers: a surface layer, an intermediate layer in the range of 68 to 74%, and an inner layer in the range of 64 to 67%. A ceramic core characterized in that the average particle size of the fused silica is fine in the surface layer and becomes larger as it goes to the intermediate layer and the inner layer, and is a gradient core. (3) Starting Slurry with a different raw material average particle diameter is poured, that is, the slurry for the surface portion is first poured into the space shaped like a core, and after surfacing, the excess slurry is discarded, and then the second portion for the intermediate portion slurry Pour from the top of the first slurry inking layer, after the inking again, discard the second slurry, repeat this finally, pouring the slurry that is the inner layer and inking, take out the molded body consisting of multiple layers, A method for producing a ceramic core for precision casting, comprising a step of sintering this.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

一般にセラミックス強度は、焼結密度が進んだ状態で高くなる。本発明者らの実験によれば、溶融シリカの相対密度を63%から80%の範囲にすると、その強度(3点曲げ強度)で6から30MPa程度まで変化させることができる。中子の厚さは千差万別であるが、タービン翼形状に従うため、概ね1mmから20mm程度である。その強度が30MPaもあれば中子の厚さとしては50ミクロンから100ミクロンもあれば、ワックス射出や精鋳時の負荷には十分耐えられる。一方、相対密度で80%程度の焼結具合では、後工程である中子溶出に際してその反応に時間がかかる、同時にアルカリ溶液の劣化も招くため、さらに反応時間がかかることになる。セラミック中子の相対密度が65%程度であれば、アルカリ溶液は容易に溶融シリカと反応し、短時間で溶出が進む。短時間で反応するためアルカリ溶液の劣化は抑えられ、さらに反応が進みやすくなる。ただし65%程度の焼結体では強度信頼性には劣ることになる。すなわち焼結体として均一なタイプでは、セラミック中子としての必要最低限な強度確保と後工程の溶出性を保証することは難しい。そこで高強度部をできるだけ薄くし、最小の強度保証をとった後は、できるだけ多孔質な焼結体で形状確保すれば、セラミック中子としての要求に応えられる。   In general, the ceramic strength increases as the sintering density progresses. According to the experiments by the present inventors, when the relative density of fused silica is in the range of 63% to 80%, the strength (three-point bending strength) can be changed from about 6 to 30 MPa. The thickness of the core varies widely, but is approximately 1 mm to 20 mm in order to follow the turbine blade shape. If the strength is 30 MPa, the thickness of the core is 50 to 100 microns, and it can sufficiently withstand the load during wax injection and precision casting. On the other hand, when the relative density is about 80%, the reaction takes time when the core is eluted in the subsequent step, and at the same time, the alkaline solution is deteriorated. If the relative density of the ceramic core is about 65%, the alkaline solution easily reacts with the fused silica and elution proceeds in a short time. Since the reaction takes place in a short time, the deterioration of the alkaline solution is suppressed, and the reaction is more likely to proceed. However, strength reliability is inferior in a sintered body of about 65%. That is, with a uniform type as a sintered body, it is difficult to ensure the necessary minimum strength as a ceramic core and to ensure the elution properties in the subsequent process. Therefore, after making the high-strength portion as thin as possible and ensuring the minimum strength, if the shape is secured with a porous sintered body as much as possible, the demand as a ceramic core can be met.

セラミック中子として最も強度が必要な部位はワックスや金属溶湯が直接触れる表面部であり、ここの相対密度を上げて強度確保する。相対密度を上げるためには粒径の細かい原料粉末を用いて焼結を進ませれば良い。同じように密度を制御するには粒径の粗い粉末を使うことが良いが、必ずしも粒径にこだわる必要はない。例えば焼結温度・焼結時間を工夫することで所望の密度に制御しても本発明の効果に変わりはない。   The portion of the ceramic core that requires the most strength is the surface portion that is directly touched by the wax or molten metal. The relative density here is increased to ensure the strength. In order to increase the relative density, sintering may be performed using a raw material powder having a small particle diameter. Similarly, in order to control the density, it is preferable to use a powder having a coarse particle diameter, but it is not always necessary to stick to the particle diameter. For example, even if the sintering temperature and the sintering time are devised to control the desired density, the effect of the present invention remains unchanged.

しかし、後述するように本発明では、多層からなる成形体を焼結させるため、一つの焼結条件で密度に違いを与えるためには、出発原料粉粒径を制御してその焼結性を制御することが現実的である。表面部の密度を75−80%にしたのは、これ以上密度を上げると溶出が困難になることから好ましくない。また75%より低いと強度信頼性が失われる。内部密度を64−67%に規定したのは、67%より大きいと溶出性が損なわれるので好ましくない、一方64%より低いと部材として形状をたもつのが困難になるため好ましくない。中間部を68−74%に規定したのは、表面部と内部との中間にあることが必要で、このため表面部と内部の焼結程度の違いによる構造的歪等を緩和できるためである。   However, as will be described later, in the present invention, in order to sinter a molded body consisting of multiple layers, in order to give a difference in density under one sintering condition, the starting material powder particle size is controlled to reduce the sinterability. It is realistic to control. It is not preferable that the density of the surface portion is 75-80% because elution becomes difficult if the density is further increased. If it is lower than 75%, strength reliability is lost. It is not preferable that the internal density is defined as 64-67% because if it is larger than 67%, the elution property is impaired. On the other hand, if it is lower than 64%, it is difficult to form the member. The reason why the intermediate portion is defined as 68-74% is that it is necessary to be in the middle between the surface portion and the inside, so that structural distortion due to the difference in the degree of sintering between the surface portion and the inside can be alleviated. .

図2に、本発明によるセラミック中子の断面図を示す。なお、ここでは3層としたが、密度が本発明の範囲にあれば3層より多くても構わない。   FIG. 2 shows a cross-sectional view of a ceramic core according to the present invention. In addition, although it was set as three layers here, as long as a density is in the range of the present invention, it may be more than three layers.

このような密度を傾斜させた精密鋳造用セラミック中子を作製するには、セラミックス業界で知られた種々の方法を単独、あるいは組み合わせて用いることができる。しかし、実質的にはセラミックスラリーを型に流し込む「鋳込み成形法」が用いられる。鋳込み成形法のなかでも、スラリーを石膏等で作られた型(所望中子のメス型)にまず中子表面層に当たる微細粒からなるスラリーを注ぎ込む、一定時間が経つと着肉層が形成されるので、所望厚さになったところで型内に残っているスラリーを捨てる(排泥鋳込み)、次に中間層に当たる粒径の第2のセラミックスラリーを着肉層の上から注ぎ込む、先ほどと同じように一定時間経過後、所望肉厚に着肉されたら、余分なスラリーは捨てる、最後に中子内部層に対応する粗い粒径からなる第3のセラミックスラリーを注ぎ込む、この第3のスラリーは排出せずに中実とする。   Various methods known in the ceramics industry can be used singly or in combination to produce a ceramic core for precision casting having such a density gradient. However, in practice, a “casting method” is used in which ceramic slurry is poured into a mold. Among cast molding methods, a slurry made of fine particles hitting the core surface layer is first poured into a mold made of gypsum or the like (desired core female mold). Therefore, when the desired thickness is reached, the slurry remaining in the mold is thrown away (sludge casting), and then the second ceramic slurry having a particle size corresponding to the intermediate layer is poured from above the inking layer. After a certain period of time, when the desired thickness is reached, discard the excess slurry, and finally pour a third ceramic slurry having a coarse particle size corresponding to the core inner layer. It is solid without discharging.

この「鋳込み成形法」を繰り返す方法により、表面から粒径の異なる3層からなる中子成形体ができる。これを乾燥後、所望温度、保持時間、加熱速度等を調節して焼結させる。一般的には1150−1300℃、100℃/h、2時間程度の焼結条件で、本発明の密度を傾斜させた精密鋳造用セラミック中子を得ることができる。なお鋳込み用スラリーであるが、一般的には水を主成分に、界面活性剤等の分散剤を混ぜて作製するが、要は中子形状メス型に流し込めて、着肉し、余分なスラリーを捨てるということが可能であれば、スラリー作製法に限定はない。また例として石膏型を記述したが、多孔質のアルミナや耐火物、また樹脂型などでも、着肉−排泥プロセスが可能であれば、どのようなタイプの型を用いても構わない。製造方法としては複雑になるが、中子メス状金型に適当な「入れ子」をセットし、そこに有機樹脂をバインダーとするセラミックスラリーを射出成形する方法でも良い。この場合、表面層を形成した後、入れ子を抜き、中間層を形成する際には、別の入れ子を用いるなど煩雑になるが、製造法としては可能である。またゴム型等を用意し、粒径の調節された粉末を等方静水圧でプレス(CIP)も考えられる。射出成形と同じように、何度も「入れ子」が必要になるなど傾斜材料を作製するのは実際には困難だが、方法としては可能である。また一度試験管状に中子を焼結させておき(まず表面層)、そこに中間層を排泥法で形成させ再び焼成、最後に内部層を設け、再度焼成という多段積層−焼結法によっても構わない。   By repeating this “casting molding method”, a core molded body composed of three layers having different particle diameters from the surface can be obtained. After drying, this is sintered by adjusting the desired temperature, holding time, heating rate and the like. In general, a ceramic core for precision casting having a gradient of the present invention can be obtained under sintering conditions of 1150-1300 ° C., 100 ° C./h for about 2 hours. Although it is a slurry for casting, it is generally prepared by mixing water as a main component and a dispersing agent such as a surfactant. As long as it is possible to discard the slurry, there is no limitation on the slurry preparation method. In addition, a gypsum mold has been described as an example, but any type of porous alumina, refractory, resin mold, or the like may be used as long as the fleshing-discharging process is possible. Although it is complicated as a manufacturing method, an appropriate “nesting” may be set in a core female mold, and a ceramic slurry using an organic resin as a binder may be injection molded there. In this case, when the surface layer is formed and then the nest is removed to form the intermediate layer, another nest is used, but this is possible as a manufacturing method. In addition, a rubber mold or the like is prepared, and a powder whose particle size is adjusted is pressed (CIP) with isotropic hydrostatic pressure. As in the case of injection molding, it is actually difficult to produce a gradient material, such as requiring “nesting” many times, but it is possible as a method. Also, once the core is sintered in the test tube (first surface layer), the intermediate layer is formed there by the sludge method and fired again. Finally, the inner layer is provided and fired again. It doesn't matter.

以下、本発明を具体的形態により詳しく説明する。なお出発原料粉は市販工業粉末を用いたが、これに含まれる不可避的不純物、たとえば鉄酸化物等は、それらの合計が2重量%以下であれば、本発明の効果に変わりはない。   Hereinafter, the present invention will be described in detail with reference to specific embodiments. In addition, although the commercially available industrial powder was used for the starting raw material powder, the inevitable impurities contained therein, for example, iron oxides and the like, do not change the effect of the present invention as long as their total is 2% by weight or less.

平均粒径の異なる溶融シリカ粉末を用意した。これらの粉末を用いて、粒径を制御するために適当量混合し、さらにアルミナ粉末、ケイ酸ジルコニウム粉末を所定量混ぜ、セラミック中子組成とした。セラミック中子組成に占める溶融シリカ粉末量は、85重量%、アルミナは3重量%、ケイ酸ジルコニウムは12重量%で一定とした。平均粒径はレーザー回折方式やふるい分け方式など、一般に良く知られた粒度分布測定法に則り、その50%値(d50)で求めた。その結果、組成1の平均粒径は2ミクロン、組成2では15ミクロン、組成3では30ミクロンであった。 Fused silica powders having different average particle diameters were prepared. Using these powders, an appropriate amount was mixed in order to control the particle size, and a predetermined amount of alumina powder and zirconium silicate powder was mixed to obtain a ceramic core composition. The amount of fused silica powder in the ceramic core composition was fixed at 85% by weight, alumina at 3% by weight, and zirconium silicate at 12% by weight. The average particle size was determined by the 50% value (d 50 ) in accordance with a generally well-known particle size distribution measurement method such as a laser diffraction method or a sieving method. As a result, the average particle size of composition 1 was 2 microns, composition 2 was 15 microns, and composition 3 was 30 microns.

はじめにセラミックの基礎的物性評価として、板状試料を作製し、その密度および3点曲げ強度を検討した。また溶出性の基礎検討として、板状試料を70℃の水酸化カリウム溶液(濃度30%)に浸けて、30分後の残存重量割合(0%で完全溶出、100%で溶出不可)で評価した。試料形状は、10mm×50mm×3mmの金型にセラミック粉末を充填し加圧成形法で成形体を作製、これを1200℃、2時間保持の条件で大気中熱処理した。密度は焼結体の水中置換法で求めた。3点曲げ強度は簡便な方法としてデジタルフォースゲージによる加重試験で求めた。その結果を表1に示す。   First, as a basic physical property evaluation of a ceramic, a plate-like sample was prepared, and its density and three-point bending strength were examined. In addition, as a basic study of dissolution, a plate sample was immersed in a 70 ° C. potassium hydroxide solution (concentration 30%) and evaluated by the remaining weight ratio after 30 minutes (complete dissolution at 0%, but not at 100%). did. As for the sample shape, a 10 mm × 50 mm × 3 mm mold was filled with ceramic powder, a molded body was prepared by a pressure molding method, and this was heat-treated in the atmosphere at 1200 ° C. for 2 hours. The density was determined by an underwater replacement method for the sintered body. The three-point bending strength was determined by a weight test using a digital force gauge as a simple method. The results are shown in Table 1.

表1から分かるように、平均粒径の小さな組成1では、焼結密度が向上し、その結果十分な強度が発現している。ただし30分溶出試験では、完全溶出はできなかった。一方、平均粒径が30ミクロンと大きな組成3では、この熱処理条件では焼結はほとんど進行せず、多孔質をキープしている(強度は弱い)。逆に溶出性は全く問題なかった。組成2ではその中間的な性質となっている。なお各試料の焼結後の粒径は出発原料粉の平均粒径とほとんど変わらなかった。このように粒径を制御することで、セラミック中子の密度を制御でき、それは曲げ強度やアルカリ溶液に対する溶出性といった特性にも反映されることが分かった。   As can be seen from Table 1, with the composition 1 having a small average particle size, the sintered density is improved, and as a result, sufficient strength is developed. However, complete dissolution was not possible in the 30 minute dissolution test. On the other hand, with composition 3 having a large average particle size of 30 microns, sintering hardly proceeds under this heat treatment condition, and the porosity is kept (the strength is weak). On the contrary, there was no problem with the dissolution property. Composition 2 has an intermediate property. The particle size after sintering of each sample was almost the same as the average particle size of the starting raw material powder. By controlling the particle size in this way, it was found that the density of the ceramic core can be controlled, which is also reflected in characteristics such as bending strength and elution with respect to an alkaline solution.

実施例1で用いた組成1−3を使って、セラミック中子を作製した。はじめに図2のメス形状を石膏型で作製した。組成1に調整したセラミック粉末300gに対して純水60−120g、ポリアクリル酸系分散剤0.1−1.0gを加え、良く混合しスラリーとした。組成1のスラリーを石膏型に流し込み、20秒ほど放置した後、そのスラリーを排出した。この処理によって0.1mm厚の着肉層が石膏型内部に形成された。組成1の着肉層が乾いた時点で、組成2のスラリーをその上から流し込み、1分ほど放置した後、上記同様、余分なスラリーを排出した。組成2の着肉層は1.2mmとなった。組成2の着肉層が乾いた時点で、組成3のスラリーを流し込み、中実となるようにスラリーを補給した。組成3のスラリーが乾いた時点で、石膏型を分離し、組成1から組成3を有する3層からなる成形体を取り出した。この成形体を十分に乾燥させ、その後、実施例1と同じ熱処理条件で、焼結させ、表面層では高密度、内部に行くにしたがい低密度の傾斜性を有するセラミック中子を得た。   A ceramic core was produced using the composition 1-3 used in Example 1. First, the female shape of FIG. 2 was produced with a plaster mold. 60-120 g of pure water and 0.1-1.0 g of a polyacrylic acid dispersant were added to 300 g of the ceramic powder adjusted to composition 1, and mixed well to obtain a slurry. The slurry of composition 1 was poured into a gypsum mold and allowed to stand for about 20 seconds, and then the slurry was discharged. By this treatment, a 0.1 mm thick inking layer was formed inside the gypsum mold. When the inking layer of composition 1 was dried, the slurry of composition 2 was poured from above and allowed to stand for about 1 minute, and then the excess slurry was discharged as described above. The thickness of composition 2 was 1.2 mm. When the inking layer of composition 2 was dried, the slurry of composition 3 was poured and the slurry was replenished so as to be solid. When the slurry of composition 3 was dried, the gypsum mold was separated, and a molded body composed of 3 layers having composition 1 to composition 3 was taken out. The molded body was sufficiently dried and then sintered under the same heat treatment conditions as in Example 1 to obtain a ceramic core having a high density in the surface layer and a low density gradient as going to the inside.

このセラミック中子をタービン翼用金型に配置し、精密鋳造用ワックスを注入、このときの射出圧力は3MPaにした。このワックス模型を取り出し、X線CT検査で内部透過像を確認したところ、セラミック中子に折損、変形は見られなかった。次にこのワックス模型に対して、コロイダルシリカと骨材(アルミナ、ジルコン砂)とで鋳型粉末を塗布した。高温蒸気でワックスを流し出した後に、1100℃で鋳型を焼成した。次にNi基合金(Rene80)溶湯を鋳型に注ぎ込み、タービン翼を作製した。この時点では翼内部にセラミック中子は入っているので、先ほどと同じくX線CTにより内部透過像を観察した。その結果、セラミック中子に折損、変形は観測されなかった。次に実施例1と同じ条件(時間は10時間)で、セラミック中子を溶出した。再びX線CTにより内部透過像を観察した結果、中子残存は見られなかった。   This ceramic core was placed in a turbine blade mold, and precision casting wax was injected. The injection pressure at this time was 3 MPa. When this wax model was taken out and an internal transmission image was confirmed by X-ray CT examination, no breakage or deformation was observed in the ceramic core. Next, mold powder was applied to the wax model with colloidal silica and aggregate (alumina, zircon sand). After casting the wax with high temperature steam, the mold was fired at 1100 ° C. Next, a Ni-based alloy (Rene 80) melt was poured into the mold to produce a turbine blade. At this point, since the ceramic core is inside the blade, the internal transmission image was observed by X-ray CT as before. As a result, no breakage or deformation was observed in the ceramic core. Next, the ceramic core was eluted under the same conditions as in Example 1 (time was 10 hours). As a result of observing the internal transmission image again by X-ray CT, no core remained.

スラリーに用いた溶融シリカ粉量を制御して、中子表面部に当たる組成1の平均粒径を7ミクロンにした。実施例2と同様のプロセスを経て、セラミック中子を作製したが、Ni基合金溶湯を注ぎ込んだ段階で、セラミック中子にクラックが入り、鋳造欠陥となった。このように表面部の強度が足りないと、セラミック中子として信頼性が確保できない。   The amount of fused silica powder used in the slurry was controlled so that the average particle size of composition 1 corresponding to the core surface was 7 microns. A ceramic core was manufactured through the same process as in Example 2. However, when the Ni-based alloy molten metal was poured, the ceramic core cracked and became a casting defect. Thus, if the strength of the surface portion is insufficient, reliability as a ceramic core cannot be ensured.

実施例3と同様のプロセスで、表面層に当たる組成1の平均粒径を1.5ミクロンにしたスラリーを作製し、セラミック中子の作製を試みたが、成形体を焼結した段階で、中子全体にクラックが走り、焼結体とならなかった。このように表面層の粒径が余り小さくても目的とするセラミック中子はできない。   In the same process as in Example 3, a slurry was prepared in which the average particle size of composition 1 corresponding to the surface layer was 1.5 microns, and an attempt was made to produce a ceramic core. Cracks ran through the entire child and did not become a sintered body. Thus, even if the particle size of the surface layer is too small, the intended ceramic core cannot be obtained.

スラリーに用いた溶融シリカ粉量を制御して、中子内部に当たる組成3の平均粒径を17ミクロンにした。実施例2と同様のプロセスでセラミック中子を作製し、Ni基合金の鋳造を行った。セラミック中子を溶出しようとしたが、10時間程度では、セラミック中子を完全に溶出することができず、所定の冷却試験で規定量(風量)を満たすことができなかった。このようにセラミック中子として、その焼結程度が進みすぎると、結局それを用いた鋳造品の特性は保証できない。   The amount of fused silica powder used in the slurry was controlled so that the average particle size of composition 3 falling inside the core was 17 microns. A ceramic core was produced by the same process as in Example 2, and a Ni-based alloy was cast. An attempt was made to elute the ceramic core, but in about 10 hours, the ceramic core could not be completely eluted, and the prescribed amount (air volume) could not be satisfied in a predetermined cooling test. As described above, if the degree of sintering of the ceramic core is excessively advanced, the properties of a cast product using the ceramic core cannot be guaranteed.

1 ワックス模型
2 鋳型
3 セラミック中子
4 金属溶湯
5 精密鋳造品(完成品)
6 最表面層
7 中間層
8 内部層
1 Wax model 2 Mold 3 Ceramic core 4 Molten metal 5 Precision casting (finished product)
6 Outermost surface layer 7 Intermediate layer 8 Inner layer

Claims (4)

溶融シリカを80重量%以上含む精密鋳造用セラミック中子であって、
金属溶湯と接する中子表面部の焼結密度が該中子の理論密度の75〜80%の範囲にある表面層と、68〜74%の範囲にある少なくとも一層からなる中間層と、64〜67%の範囲にある内部層と、を備えることを特徴とする精密鋳造用セラミック中子。
A ceramic core for precision casting containing 80% by weight or more of fused silica,
A surface layer in which the sintered density of the core surface portion in contact with the molten metal is in the range of 75 to 80% of the theoretical density of the core, an intermediate layer comprising at least one layer in the range of 68 to 74%, and 64 to A ceramic core for precision casting, comprising an inner layer in a range of 67%.
請求項1において、溶融シリカの平均粒径が、前記表面層、中間層、内部層の順に大きくなることを特徴とする精密鋳造用セラミック中子。   2. The precision casting ceramic core according to claim 1, wherein the average particle size of the fused silica increases in the order of the surface layer, the intermediate layer, and the inner layer. 請求項1において、出発原料の溶融シリカ粉の平均粒径が、表面層で粒度分布の50%平均値(d50)で1〜5ミクロン、中間層で6〜18ミクロン、内部層では19〜40ミクロンであることを特徴とする精密鋳造用セラミック中子。 In claim 1, the average particle size of the fused silica powder of the starting material, 1-5 microns at 50% average value of the particle size distribution (d 50) in the surface layer, 6-18 microns in intermediate layer, 19 is an internal layer A ceramic core for precision casting characterized by being 40 microns. 中子形状にかたどった空間部に、溶融シリカを含む表面部用スラリーを流し込み、着肉後、余分なスラリーを捨てる、第1の工程と、
前記表面部用スラリー着肉層の上から、前記表面部用スラリーの溶融シリカの平均粒径よりも大きい、中間部用スラリーを流し込み、着肉後、余分なスラリーを捨てる、第2の工程と、
前記第1の工程と第2の工程を繰り返す、第3の工程と、
前記中間部用スラリーの溶融シリカの平均粒径よりも大きい、内部層用スラリーを流し込み、着肉後、多層からなる成形体を取り出し、これを焼結する、第4の工程と、
を有することを特徴とする精密鋳造用セラミック中子の製造方法。
The first step of pouring the slurry for the surface portion containing the fused silica into the space shaped like the core shape, throwing away the excess slurry after the fleshing,
A second step of pouring a slurry for the intermediate part larger than the average particle diameter of the fused silica of the slurry for the surface part from above the slurry parting layer for the surface part; ,
Repeating the first step and the second step, a third step;
A fourth step of pouring a slurry for an inner layer larger than the average particle diameter of the fused silica of the slurry for the intermediate portion, and after taking out the meat, taking out a molded body consisting of multiple layers, and sintering this;
A method for producing a ceramic core for precision casting, comprising:
JP2011213679A 2011-09-29 2011-09-29 Ceramic core for precision casting, and method for manufacturing the same Withdrawn JP2013071169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011213679A JP2013071169A (en) 2011-09-29 2011-09-29 Ceramic core for precision casting, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011213679A JP2013071169A (en) 2011-09-29 2011-09-29 Ceramic core for precision casting, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013071169A true JP2013071169A (en) 2013-04-22

Family

ID=48476094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011213679A Withdrawn JP2013071169A (en) 2011-09-29 2011-09-29 Ceramic core for precision casting, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013071169A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015054327A (en) * 2013-09-10 2015-03-23 日立金属株式会社 Ceramic core and its manufacturing method, casting manufacturing method using ceramic core, and casting
JP2015226935A (en) * 2014-04-24 2015-12-17 ハウメット コーポレイションHowmet Corporation Ceramic casting core made by additive manufacturing
CN110328359A (en) * 2019-05-29 2019-10-15 西安航天发动机有限公司 Narrow interval, distortion, multiple-blade dense distribution leaf grating class part manufacturing process
WO2020058402A1 (en) * 2018-09-19 2020-03-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Casting core for casting moulds, and method for the production thereof
CN114804842A (en) * 2022-05-11 2022-07-29 西安交通大学 Preparation method of ceramic core with controllable pore distribution and atmosphere

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015054327A (en) * 2013-09-10 2015-03-23 日立金属株式会社 Ceramic core and its manufacturing method, casting manufacturing method using ceramic core, and casting
US9839957B2 (en) 2013-09-10 2017-12-12 Hitachi Metals, Ltd. Ceramic core, manufacturing method for the same, manufacturing method for casting using the ceramic core, and casting manufactured by the method
JP2015226935A (en) * 2014-04-24 2015-12-17 ハウメット コーポレイションHowmet Corporation Ceramic casting core made by additive manufacturing
WO2020058402A1 (en) * 2018-09-19 2020-03-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Casting core for casting moulds, and method for the production thereof
US11590564B2 (en) 2018-09-19 2023-02-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Casting core for casting moulds, and method for the production thereof
CN110328359A (en) * 2019-05-29 2019-10-15 西安航天发动机有限公司 Narrow interval, distortion, multiple-blade dense distribution leaf grating class part manufacturing process
CN114804842A (en) * 2022-05-11 2022-07-29 西安交通大学 Preparation method of ceramic core with controllable pore distribution and atmosphere
CN114804842B (en) * 2022-05-11 2022-12-09 西安交通大学 Preparation method of ceramic core with controllable pore distribution and atmosphere

Similar Documents

Publication Publication Date Title
US10589344B2 (en) Mold compositions and methods for casting titanium and titanium aluminide alloys
US9381566B2 (en) Ceramic core compositions, methods for making cores, methods for casting hollow titanium-containing articles, and hollow titanium-containing articles
JP6106751B2 (en) Calcium titanate-containing mold composition and method for casting titanium and titanium aluminide alloy
US8858697B2 (en) Mold compositions
US9592548B2 (en) Calcium hexaluminate-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
JP2016532566A (en) Ceramic core composition, method for making a core, method for casting a hollow titanium-containing article, and hollow titanium-containing article
JP2013071169A (en) Ceramic core for precision casting, and method for manufacturing the same
US9718121B2 (en) Casting investment composition and casting process using same
CN105745040B (en) The method of the mold and surface coating composition and cast titanium and titanium aluminide alloy of silicon carbide-containing
CN105268906B (en) Casting mold with silicon carbide classification
CN105960296B (en) The method of mold and surface coating composition and cast titanium and titanium aluminide alloy containing silicon carbide
US8906292B2 (en) Crucible and facecoat compositions
JP2010188360A (en) Precision casting mold, method of manufacturing the same, and precision casting product
Kong et al. Alumina-based ceramic cores prepared by vat photopolymerization and buried combustion method
JP5891110B2 (en) Manufacturing method of alumina core for forming cooling passage of gas turbine blade

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140513

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202