JP2006223937A - Decomposing catalyst for urea, and exhaust gas denitrification method and apparatus using the catalyst - Google Patents

Decomposing catalyst for urea, and exhaust gas denitrification method and apparatus using the catalyst Download PDF

Info

Publication number
JP2006223937A
JP2006223937A JP2005037658A JP2005037658A JP2006223937A JP 2006223937 A JP2006223937 A JP 2006223937A JP 2005037658 A JP2005037658 A JP 2005037658A JP 2005037658 A JP2005037658 A JP 2005037658A JP 2006223937 A JP2006223937 A JP 2006223937A
Authority
JP
Japan
Prior art keywords
urea
exhaust gas
catalyst
decomposition
urea water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005037658A
Other languages
Japanese (ja)
Other versions
JP4646063B2 (en
Inventor
Yasuyoshi Kato
泰良 加藤
Naomi Imada
尚美 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2005037658A priority Critical patent/JP4646063B2/en
Publication of JP2006223937A publication Critical patent/JP2006223937A/en
Application granted granted Critical
Publication of JP4646063B2 publication Critical patent/JP4646063B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst capable of efficiently decomposing ureal water into a gas at low temperature and at normal pressure, and to provide an exhaust gas denitrification method and apparatus using the catalyst by which the possibility of producing precipitates such as cyanuric acid even at low temperature. <P>SOLUTION: This decomposing catalyst for urea is the catalyst (1), which mainly consists of an oxide or oxo acid salt of vanadium (V), which reacts with NH<SB>4</SB>VO<SB>3</SB>or NH<SB>3</SB>to produce NH<SB>4</SB>VO<SB>3</SB>, and decomposes the urea in a urea aqueous solution into ammonia (NH<SB>3</SB>) or isocyanic acid (HCNO), or the catalyst (2), which is obtained by adsorbing/depositing NH<SB>4</SB>VO<SB>3</SB>or V<SB>2</SB>O<SB>5</SB>on a porous carrier containing TiO<SB>2</SB>or Al<SB>2</SB>O<SB>3</SB>. In the urea decomposing method, the urea is decomposed by suspending particles of the catalyst (1) or (2) in ureal water and heating catalyst them to the temperature of >100°C to the boiling point of urea. In the exhaust gas denitrification method, NOx in exhaust gas is reduced and removed by supplying the gas containing steam and the substances obtained by decomposing/gasifying urea by the method for decomposing urea to NOx-containing exhaust gas, and bringing the gas-supplied exhaust gas into contact with a catalytic reduction/denitrification catalyst. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は尿素の加水分解反応を促進する触媒と、その加水分解生成物を還元剤とする方法と装置に関し、特に尿素水中の尿素を低い温度で高い効率で加水分解させる触媒とそれを用いた排ガス脱硝方法と装置に関する。   TECHNICAL FIELD The present invention relates to a catalyst for promoting a hydrolysis reaction of urea, and a method and apparatus using the hydrolysis product as a reducing agent, and in particular, a catalyst for highly efficiently hydrolyzing urea in urea water at a low temperature and the same. The present invention relates to an exhaust gas denitration method and apparatus.

発電所、各種工場及び自動車などから排出される排煙中のNOxは、光化学スモッグの原因物質であり、その効果的な除去方法として、アンモニア(NH3)を還元剤とした選択的接触還元による排煙脱硝法が火力発電所を中心に幅広く用いられている。 NOx in flue gas discharged from power plants, various factories and automobiles is a causative substance of photochemical smog, and as an effective removal method, selective catalytic reduction using ammonia (NH 3 ) as a reducing agent is used. The flue gas denitration method is widely used mainly in thermal power plants.

最近は、ディーゼルエンジン又はガスタービン等を利用したコージェネレーションシステムが大都市の都心部を中心として増加しており、このシステムに対してもNOxの排出規制が適用され、かつ地域によってはNOxの排出規制が強化されるため、大型プラント同様に排ガス脱硝装置の設置が急務となっている。このような小規模施設用脱硝装置はビル等人口密集地で使用されるため、液化アンモニアの適用は困難である。そこで、液化アンモニアの代わりに取扱いが容易で、かつ安全な尿素水をスプレーすることで排ガス中に注入する方法などが実用化されている(特開昭53−62772号公報、特開昭53−64102号公報、特開昭53−112273号公報、特開昭53−115658号公報等)。また、近年ではディーゼルエンジン車の窒素酸化物の除去に無害な尿素水を用いる試みが多数行われている。   Recently, cogeneration systems using diesel engines or gas turbines are increasing mainly in the city center of large cities, and NOx emission regulations are also applied to these systems. Due to stricter regulations, installation of exhaust gas denitration equipment is urgently required as in large plants. Since such denitration equipment for small-scale facilities is used in densely populated areas such as buildings, it is difficult to apply liquefied ammonia. Therefore, a method of injecting into the exhaust gas by spraying a safe and easy urea water instead of liquefied ammonia has been put into practical use (Japanese Patent Laid-Open Nos. 53-62772 and 53-). No. 64102, JP-A 53-112273, JP-A 53-115658, etc.). In recent years, many attempts have been made to use harmless urea water for removing nitrogen oxides from diesel engine vehicles.

尿素水を直接排ガス中に噴霧して脱硝触媒による窒素酸化物の接触還元に用いる方法では、尿素の気化および分解が十分でなく、尿素、メラミン及びシアヌル酸などが固体として析出し、尿素水の注入ノズルの閉塞又は脱硝触媒のガス通路の閉塞、さらには排ガス配管までも閉塞させるトラブルが発生することがある。このため、炭酸アルカリ等を触媒に用いて尿素水を加熱加水分解し、アンモニアと炭酸ガスに変換してガス状にして使用する方法(特開平6−165814号公報等)、尿素水を触媒の存在下で加圧加熱してアンモニアに加水分して得た溶液を噴霧する方法(特開2004−202450号公報等)などの発明がある。
特開平6−165814号公報 特開2004−202450号公報
In a method in which urea water is sprayed directly into exhaust gas and used for catalytic reduction of nitrogen oxides by a denitration catalyst, urea is not sufficiently vaporized and decomposed, and urea, melamine, cyanuric acid, etc. are precipitated as solids, There may be a problem that the injection nozzle is blocked, the gas passage of the denitration catalyst is blocked, or even the exhaust gas pipe is blocked. For this reason, a method of hydrolyzing urea water using an alkali carbonate or the like as a catalyst, converting it into ammonia and carbon dioxide gas and using it in a gaseous state (JP-A-6-165814, etc.), urea water as a catalyst There are inventions such as a method of spraying a solution obtained by hydrolyzing ammonia by pressure heating in the presence (JP 2004-202450 A, etc.).
JP-A-6-165814 JP 2004-202450 A

これらの従来技術は何れも優れた方法であるが、直接尿素水を排ガス中に噴霧する方法は、排ガス温度が200℃以下では尿素の気化が不十分なため、シアヌル酸などが析出するトラブルを生じ易い。一方、触媒を用いて尿素を加水分解する方法は、低温で尿素を加水分解できる触媒が無いため、高濃度の炭酸アルカリ触媒を高濃度の粘稠な溶液状にして高温で用いたり、加圧下・高温で実施する必要があるなど改善すべき点もあった。   All of these conventional techniques are excellent methods, but the method of directly spraying urea water into the exhaust gas has a problem that cyanuric acid and the like are precipitated because urea is insufficiently vaporized at an exhaust gas temperature of 200 ° C. or lower. It is likely to occur. On the other hand, there is no catalyst that can hydrolyze urea at a low temperature in the method of hydrolyzing urea using a catalyst. Therefore, a high-concentration alkali carbonate catalyst is used in the form of a high-concentration viscous solution at high temperatures or under pressure. -There were also points to be improved, such as the need to carry out at high temperatures.

本発明の課題は、尿素水を低温かつ常圧でも効率良くガスに分解できる触媒を提供し、また当該尿素分解触媒を用いて、低温でもシアヌル酸などの析出物を生じる心配のない排ガス脱硝方法と装置を提供することにある。   An object of the present invention is to provide a catalyst capable of efficiently decomposing urea water into gas even at a low temperature and normal pressure, and using the urea decomposition catalyst, an exhaust gas denitration method that does not cause a precipitate such as cyanuric acid even at a low temperature And to provide a device.

上記課題は次の解決手段により達成される。
請求項1記載の発明は、メタバナジン酸アンモニウム又はアンモニアと反応してメタバナジン酸アンモニウムを生成するバナジウムの酸化物、例えば五酸化バナジウム(V25)、またはバナジウムのオキソ酸塩、例えばメタバナジン酸アンモニウム(NH4VO3)を主成分とする尿素水溶液中の尿素をアンモニア(NH3)又はイソシアン酸(HCNO)に分解する尿素分解触媒である。
The above-mentioned subject is achieved by the following solution means.
The invention described in claim 1 relates to an oxide of vanadium that reacts with ammonium metavanadate or ammonia to produce ammonium metavanadate, such as vanadium pentoxide (V 2 O 5 ), or an oxo acid salt of vanadium, such as ammonium metavanadate. It is a urea decomposition catalyst that decomposes urea in an aqueous urea solution mainly composed of (NH 4 VO 3 ) into ammonia (NH 3 ) or isocyanic acid (HCNO).

請求項2記載の発明は、酸化チタン又は酸化アルミニウムを含む多孔質担体にメタバナジン酸アンモニウム又は五酸化バナジウムを吸着担持させたものである請求項1記載の尿素分解触媒である。   The invention according to claim 2 is the urea decomposition catalyst according to claim 1, wherein ammonium metavanadate or vanadium pentoxide is adsorbed and supported on a porous carrier containing titanium oxide or aluminum oxide.

請求項3記載の発明は、請求項1又は2記載の尿素分解触媒の粒子を尿素水に懸濁させ、100℃を超えて尿素の沸点までの間の温度に加熱することにより尿素を分解する尿素の分解方法である。   The invention according to claim 3 decomposes urea by suspending the particles of the urea decomposition catalyst according to claim 1 or 2 in urea water and heating to a temperature between 100 ° C. and the boiling point of urea. This is a method for decomposing urea.

請求項4記載の発明は、請求項3記載の尿素の分解方法で得られる尿素の分解気化物と水蒸気とを含むガスを窒素酸化物を含有する排ガス中に供給した後、アンモニア接触還元脱硝触媒と接触させることにより排ガス中の窒素酸化物を還元除去する排ガス脱硝方法である。   According to a fourth aspect of the present invention, an ammonia catalytic reduction denitration catalyst is provided after supplying a gas containing urea decomposition vaporized by the urea decomposition method according to the third aspect and water vapor into the exhaust gas containing nitrogen oxides. It is an exhaust gas denitration method in which nitrogen oxides in exhaust gas are reduced and removed by contacting with NO.

請求項5記載の発明は、請求項3記載の尿素の分解方法で得られる尿素の分解気化物と水蒸気とを含むガス中の尿素の分解気化物と水蒸気を一旦凝縮して液体とした後、該液体を窒素酸化物を含有する排ガス中に供給して気化させ、得られた気化物をアンモニア接触還元脱硝触媒と接触させて排ガス中の窒素酸化物を還元除去する排ガス脱硝方法である。   The invention according to claim 5 is a method in which the urea decomposition vaporized product obtained by the urea decomposition method according to claim 3 and water vapor in the gas containing water vapor are once condensed to form a liquid, This is an exhaust gas denitration method in which the liquid is supplied into an exhaust gas containing nitrogen oxides and vaporized, and the resulting vaporized product is brought into contact with an ammonia catalytic reduction denitration catalyst to reduce and remove nitrogen oxides in the exhaust gas.

請求項6記載の発明は、請求項1又は2記載の尿素分解触媒の成型体を充填した反応器に尿素水を100〜250℃と1〜20気圧の雰囲気下で通過させることにより尿素の加水分解生成物を含む液体を得る尿素の分解方法である。   According to the sixth aspect of the present invention, urea water is passed through a reactor filled with the molded article of the urea decomposition catalyst according to the first or second aspect in an atmosphere of 100 to 250 ° C. and 1 to 20 atm. This is a method for decomposing urea to obtain a liquid containing decomposition products.

請求項7記載の発明は、請求項6記載の尿素の分解方法で得られる尿素の加水分解生成物を含む溶液を窒素酸化物を含有する排ガス中に噴霧して気化させ、該気化物をアンモニア接触還元脱硝触媒と接触させる排ガス脱硝方法である。   According to a seventh aspect of the invention, a solution containing the hydrolysis product of urea obtained by the urea decomposition method according to the sixth aspect is vaporized by spraying it into an exhaust gas containing nitrogen oxides, and the vaporized product is ammonia. This is an exhaust gas denitration method for contacting with a catalytic reduction denitration catalyst.

請求項8記載の発明は、請求項1又は2記載の尿素分解触媒の粒子を尿素水に懸濁させた尿素水スラリタンクと、該尿素水スラリタンク内の尿素水スラリの加熱手段と、該尿素水スラリタンク内の尿素が100℃を超えて尿素の沸点までの間の温度に加熱されることにより分解して生成する尿素水分解ガスを窒素酸化物を含有する排ガス流路に供給する尿素水分解ガス供給手段と、該尿素水分解ガス供給手段の下流側の排ガス流路内に脱硝触媒層とを備えた排ガス脱硝装置である。   The invention according to claim 8 is a urea water slurry tank in which the particles of the urea decomposition catalyst according to claim 1 or 2 are suspended in urea water, a heating means for the urea water slurry in the urea water slurry tank, Urea supplying urea water decomposition gas generated by decomposition when urea in the urea water slurry tank is heated to a temperature between 100 ° C. and the boiling point of urea to an exhaust gas passage containing nitrogen oxides An exhaust gas denitration apparatus comprising a water decomposition gas supply means and a denitration catalyst layer in an exhaust gas flow path downstream of the urea water decomposition gas supply means.

請求項9記載の発明は、請求項1又は2記載の尿素分解触媒の粒子を尿素水に懸濁させた尿素水スラリタンクと、 該尿素水スラリタンク内の尿素水スラリの加熱手段と、該尿素水スラリタンク内の尿素が100℃を超えて尿素の沸点までの間の温度に加熱されることにより分解して生成する尿素水分解ガスを冷却させて前記ガス中の尿素の分解気化物と水蒸気と一旦凝縮して液体として貯留する冷却兼凝縮液体貯留手段と、該冷却兼凝縮液体貯留手段中の液体を窒素酸化物を含有する排ガス流路に供給する凝縮液体供給手段と、該凝縮液体供給手段の下流側の排ガス流路内にアンモニア接触還元脱硝触媒層とを備えた排ガス脱硝装置である。   The invention according to claim 9 is a urea water slurry tank in which the particles of the urea decomposition catalyst according to claim 1 or 2 are suspended in urea water, a heating means for the urea water slurry in the urea water slurry tank, The urea water decomposition gas produced by decomposition when the urea in the urea water slurry tank is heated to a temperature between 100 ° C. and the boiling point of urea is cooled to decompose urea vaporized in the gas, Cooling / condensed liquid storage means for once condensing with water vapor and storing the liquid, condensed liquid supply means for supplying the liquid in the cooling / condensed liquid storage means to the exhaust gas flow path containing nitrogen oxide, and the condensed liquid An exhaust gas denitration apparatus including an ammonia catalytic reduction denitration catalyst layer in an exhaust gas flow channel on the downstream side of a supply unit.

請求項10記載の発明は、尿素水タンクと、請求項1又は2記載の尿素分解触媒の成型体を充填し、100〜250℃と1〜20気圧の雰囲気下にある反応器と、前記尿素水タンクから前記反応器に尿素水を通過させることにより得られる尿素の加水分解生成物を含む液体を貯留する液体貯留タンクと、該液体貯留タンク中の液体を窒素酸化物を含有する排ガス流路に供給する凝縮液体供給手段と、該凝縮液体供給手段の下流側の排ガス流路内にアンモニア接触還元脱硝触媒層とを備えた排ガス脱硝装置である。   Invention of Claim 10 is filled with the urea water tank, the molded object of the urea decomposition catalyst of Claim 1 or 2, and is 100-250 degreeC and the reactor in the atmosphere of 1-20 atmospheres, The said urea A liquid storage tank for storing a liquid containing urea hydrolysis products obtained by passing urea water from the water tank to the reactor, and an exhaust gas flow path containing nitrogen oxide for the liquid in the liquid storage tank An exhaust gas denitration apparatus comprising: a condensed liquid supply means for supplying to the catalyst; and an ammonia catalytic reduction denitration catalyst layer in an exhaust gas flow path downstream of the condensed liquid supply means.

上記尿素または尿素水の加熱温度は尿素の沸点(尿素の濃度にもよるが、通常130℃前後)以上には上昇しないが、加熱しすぎると水の蒸発速度が速くなりすぎるため好ましくない。また、加圧圧力は常圧でもよいが、20気圧以下に加圧して、沸点を上げて沸騰を防ぎながら反応温度を上昇させることにより、反応速度を速くすることができる。加圧圧力は高すぎると装置が大型化するため好ましくない。   The heating temperature of the urea or urea water does not rise above the boiling point of urea (normally around 130 ° C., depending on the urea concentration), but is not preferable because the water evaporation rate becomes too fast if heated too much. The pressure may be normal, but the reaction rate can be increased by increasing the reaction temperature while increasing the boiling point to prevent boiling by increasing the pressure to 20 atmospheres or less. If the pressurizing pressure is too high, the apparatus becomes undesirably large.

(作用)
本発明者は尿素水中の尿素(CO(NH22)を低温で効率良く分解できる触媒を長期にわたり探索し続けた結果、請求項1、2記載の発明をするに至った。
(Function)
The inventor of the present invention has continued to search for a catalyst capable of efficiently decomposing urea (CO (NH 2 ) 2 ) in urea water at a low temperature, and as a result, has reached the inventions of claims 1 and 2.

本発明の触媒の特徴は、メタバナジン酸アンモニウムあるいはNH3と反応してメタバナジン酸アンモニウムを生成するバナジウム化合物を主成分とする点にあり、メタバナジン酸アンモニウムは次のように作用して水溶液中で熱分解反応類似の反応を促進しているものと推定される。 The feature of the catalyst of the present invention is that the main component is a vanadium compound that reacts with ammonium metavanadate or NH 3 to produce ammonium metavanadate, and the ammonium metavanadate acts as follows in the aqueous solution. It is presumed that the reaction similar to the decomposition reaction is promoted.

メタバナジン酸アンモニウム(NH4VO3)が分解してNH3を発生する下記(2)式の反応は、100℃以下で進行することが知られている。その生成物であるバナジン酸(HVO3)が下記(3)式の反応に従って尿素からNH3を効率よく引き抜き、揮発性の高いイソシアン酸(HCNO)を生成する。総括的には、下記(4)式のような熱分解反応を促進することになる。さらにイソシアン酸の一部は下記(5)式の反応のように加水分解されてNH3とCO2を生成するものと考えられる。 It is known that the reaction of the following formula (2) in which ammonium metavanadate (NH 4 VO 3 ) decomposes to generate NH 3 proceeds at 100 ° C. or lower. The product vanadic acid (HVO 3 ) efficiently extracts NH 3 from urea according to the reaction of the following formula (3) to produce highly volatile isocyanate (HCNO). In general, the thermal decomposition reaction represented by the following formula (4) is promoted. Further, it is considered that a part of the isocyanic acid is hydrolyzed as in the reaction of the following formula (5) to generate NH 3 and CO 2 .

NH4VO3 →NH3+HVO3 (2)
CO(NH22+HVO3→NH4VO3+HCNO (3)
CO(NH22 →NH3+HCNO (4)
HCNO+H2O →NH3+CO2 (5)
この反応に用いられる触媒は、メタバナジン酸アンモニアの形態である必要はなく、チタニアなどの多孔質担体に吸着されたバナジン酸や五酸化バナジウムの状態であっても進行する。この発見に基づく触媒が請求項2記載の発明である。
NH 4 VO 3 → NH 3 + HVO 3 (2)
CO (NH 2 ) 2 + HVO 3 → NH 4 VO 3 + HCNO (3)
CO (NH 2 ) 2 → NH 3 + HCNO (4)
HCNO + H 2 O → NH 3 + CO 2 (5)
The catalyst used for this reaction does not need to be in the form of ammonia metavanadate, and proceeds even in the state of vanadic acid or vanadium pentoxide adsorbed on a porous carrier such as titania. The catalyst based on this discovery is the invention described in claim 2.

これらの触媒を請求項3記載の発明のように尿素水に懸濁させて、尿素水を加熱すると尿素が低温で分解する。   When these catalysts are suspended in urea water as in the invention described in claim 3 and the urea water is heated, urea decomposes at a low temperature.

請求項4記載の発明のように、前記分解触媒の存在下に尿素水を加熱して得られた尿素の分解生成物(総括反応式である前記(4)式で得られた尿素分解生成物)を水蒸気を含むガスを窒素酸化物含有排ガス中に吹き込んで、接触還元脱硝触媒と接触させることで、NH3もイソシアン酸も共に還元剤として作用して排ガス中の窒素酸化物の還元(脱硝)ができる。 The urea decomposition product obtained by heating urea water in the presence of the decomposition catalyst as in the invention according to claim 4 (the urea decomposition product obtained by the above equation (4) which is a general reaction formula) ) Is introduced into the exhaust gas containing nitrogen oxide and brought into contact with the catalytic reduction denitration catalyst, so that both NH 3 and isocyanic acid act as a reducing agent to reduce nitrogen oxide in the exhaust gas (denitration). ) Is possible.

前記尿素分解触媒を溶解状態で用いる塩類を触媒とする場合には、溶液の粘度の上昇を招いたり、触媒の塩類の溶解度以上に濃度を高くできないのに対し、前記尿素分解触媒を尿素水中に懸濁状態で使用すると、触媒/尿素水比を高くして反応速度を向上させることが可能である。さらに、冷却時に反応液が固化するなどの問題も生じない。   When the salt using the urea decomposition catalyst in a dissolved state is used as a catalyst, the viscosity of the solution is increased or the concentration cannot be increased beyond the solubility of the catalyst salt. When used in a suspended state, the reaction rate can be improved by increasing the catalyst / urea water ratio. Furthermore, problems such as solidification of the reaction solution during cooling do not occur.

さらに請求項5〜10記載の発明のように、本発明の触媒により尿素を分解した分解生成物であるガスを水蒸気と共に一旦凝縮させ、しかる後にノズルなどにより排ガス中に吹き込む方法によると、排ガス中の窒素酸化物の濃度やガス量の急な変化に追従して還元剤を注入できることになり、脱硝率の応答特性を改善できる。   Further, according to the method of the invention described in claims 5 to 10, according to the method of once condensing the gas, which is a decomposition product obtained by decomposing urea by the catalyst of the present invention, together with water vapor, and then blowing it into the exhaust gas with a nozzle or the like, The reducing agent can be injected following a sudden change in the concentration of nitrogen oxide and the amount of gas, and the response characteristics of the denitration rate can be improved.

請求項1、2記載の発明の触媒を用いると、約100℃という低い温度でアンモニアガスと同様に扱い易い脱硝用還元ガスを得ることができる。このため、尿素を排ガス中に直接噴霧して尿素を分解させる場合に生じるメラミンやシアヌル酸などの析出物の生成のおそれがない。   When the catalyst according to the first and second aspects of the invention is used, it is possible to obtain a denitration reducing gas that is as easy to handle as ammonia gas at a temperature as low as about 100 ° C. For this reason, there is no fear of generation | occurrence | production of deposits, such as a melamine and cyanuric acid which arise when urea is directly sprayed in waste gas and urea is decomposed | disassembled.

また、請求項3記載の発明によれば、尿素水から容易に脱硝用還元ガスを得ることができる。
NH3は常温で気体であり、イソシアン酸は沸点が23℃と低い上にNH3と炭酸ガスに加水分解されやすい。このため請求項4〜10記載の発明によれば、200℃以下でも析出物を生じることがなく、脱硝用還元剤が得られ、高い排ガス脱硝性能を実現できる。
According to the invention of claim 3, denitration reducing gas can be easily obtained from urea water.
NH 3 is a gas at room temperature, and isocyanic acid has a boiling point as low as 23 ° C. and is easily hydrolyzed to NH 3 and carbon dioxide. For this reason, according to invention of Claims 4-10, a precipitate is not produced even at 200 degrees C or less, the reducing agent for denitration is obtained, and high exhaust gas denitration performance is realizable.

また、請求項1、2記載の発明の触媒を請求項6記載の発明のように、特開2004−202450号公報に記載された加圧加水分解用触媒として使用し、これを請求項7記載の発明のように還元剤にして排ガス脱硝を行わせることも可能である。   Further, the catalyst according to the first or second aspect of the invention is used as the catalyst for hydrolytic hydrolysis described in Japanese Patent Application Laid-Open No. 2004-202450 as in the case of the sixth aspect of the invention. It is also possible to perform exhaust gas denitration by using a reducing agent as in the present invention.

本発明の実施例を図面と共に説明する。
本発明におけるメタバナジン酸アンモニウムもしくはNH3により、それを生成するバナジウム化合物を主成分にする触媒には、メタバナジン酸アンモニウムの粉末、その成型体、あるいはそれらをシリカやアルミナなど多孔質担体に担持したものが使用できる。その使用方法は、微粉末にして尿素水溶液に分散させてスラリ状にして使用する方法、成型体を充填した容器に尿素水を満たして用いる方法、加熱して触媒に尿素水を吹き付ける方法などが用いられる。本発明の触媒は、尿素水中の尿素を分解するものであるが、触媒の全てを水溶液に浸漬する必要はなく、触媒の一部が尿素水と接して分解する場合も含まれる。また、分解温度は通常尿素水の沸点であり、沸騰させながら分解させると水蒸気と共に分解生成物が輸送されるので好都合であるが、沸騰状態で反応させる必要はない。さらに、分解生成物を系外に運び出すために空気などの気体をバブリングなどにより吹き込んでも良い。また、尿素水に対する触媒の使用量は大きければ大きいほど好結果を与えるため、触媒成型体と尿素水を接触させ、毛管現象で尿素水を触媒内に吸い上げさせる方法により実効の触媒/尿素溶液比を向上させることができる。
Embodiments of the present invention will be described with reference to the drawings.
In the present invention, the catalyst mainly composed of vanadium compound that produces ammonium metavanadate or NH 3 in the present invention is an ammonium metavanadate powder, a molded product thereof, or a porous carrier such as silica or alumina. Can be used. The method of use includes a method in which fine powder is dispersed in a urea aqueous solution and used in a slurry state, a method in which a container filled with a molded body is filled with urea water, a method in which urea water is heated and sprayed onto the catalyst, etc. Used. The catalyst of the present invention decomposes urea in urea water, but it is not necessary to immerse all of the catalyst in an aqueous solution, and includes a case where part of the catalyst decomposes in contact with urea water. The decomposition temperature is usually the boiling point of urea water, and it is convenient to decompose while boiling because the decomposition product is transported together with water vapor, but it is not necessary to react in the boiling state. Further, a gas such as air may be blown by bubbling or the like in order to carry the decomposition product out of the system. In addition, since the larger the amount of catalyst used relative to urea water, the better results are obtained, the effective catalyst / urea solution ratio is obtained by contacting the catalyst molded body with urea water and sucking the urea water into the catalyst by capillary action. Can be improved.

チタニア担体などにメタバナジン酸アンモニウムなどを吸着担持する方法は、酸化チタンとメタバナジン酸アンモンとを水の存在下で混練する方法、メタバナジン酸アンモニウムを錯化剤で溶解後担持する方法などが採用可能である。   As a method of adsorbing and supporting ammonium metavanadate on a titania carrier, a method of kneading titanium oxide and ammonium metavanadate in the presence of water, a method of supporting ammonium metavanadate after dissolving it with a complexing agent, etc. can be adopted. is there.

平底フラスコに尿素(CO(NH22)40g、水60gを入れて溶解した中に、メタバナジン酸アンモニウム(NH4VO3)の粉末25gを懸濁させ、砂浴上で加熱し沸騰させた。沸騰して10分後にフラスコの口から排出される蒸気と分解生成物の混合ガスを、ガスサンプリング器で50cc採取後、0.1N硫酸10mlを加え良く振とうして、NH3およびイソシアン酸ガスを吸収させた。得られた液中のNH3をイオンクロトグラフフィー法で測定した。
イソシアン酸は硫酸に溶解されると加水分解されNH3として計測される。
In a flat bottom flask, 40 g of urea (CO (NH 2 ) 2 ) and 60 g of water were dissolved, and 25 g of ammonium metavanadate (NH 4 VO 3 ) powder was suspended and heated on a sand bath and boiled. . 10 minutes after boiling, 50 cc of the mixed gas of steam and decomposition products discharged from the mouth of the flask is sampled with a gas sampler, and 10 ml of 0.1 N sulfuric acid is added and shaken well. NH 3 and isocyanate gas Was absorbed. NH 3 in the obtained liquid was measured by an ion chromatography method.
When isocyanic acid is dissolved in sulfuric acid, it is hydrolyzed and measured as NH 3 .

蒸発皿に酸化チタン(比表面積330m/g)50gとメタバナジン酸アンモニウム4g、200mlを入れ、砂浴上で攪拌しながら加熱した。前記加熱に伴いメタバナジン酸アンモニウムの一部が酸化チタンに吸着して黄色に変化し、一部はNH3を失って褐色に変化する。その状態で攪拌を続けると褐色に変化したバナジウム化合物も徐々に溶解して酸化チタンに吸着され均一な黄色物が得られる。そのまま蒸発乾固した後、500℃で2時間焼成し、その冷却物を粉砕して触媒に用いた。
平底フラスコに尿素(CO(NH22)40g、水60g入れて溶解した中に、先に調製した触媒粉を25g懸濁させ、実施例1と同様、沸騰蒸気中に含まれる、NH3及びイソシアン酸の総量を測定した。
In an evaporating dish, 50 g of titanium oxide (specific surface area 330 m 2 / g) and 4 g of ammonium metavanadate, 200 ml were placed and heated on a sand bath with stirring. With the heating, a part of ammonium metavanadate is adsorbed on titanium oxide and turns yellow, and a part loses NH 3 and turns brown. When stirring is continued in this state, the vanadium compound turned brown is gradually dissolved and adsorbed on titanium oxide to obtain a uniform yellow product. After evaporating and drying as it was, it was calcined at 500 ° C. for 2 hours, and the cooled product was pulverized and used as a catalyst.
In a flat bottom flask, 40 g of urea (CO (NH 2 ) 2 ) and 60 g of water were dissolved and 25 g of the previously prepared catalyst powder was suspended, and the NH 3 contained in the boiling steam was suspended as in Example 1. And the total amount of isocyanic acid was measured.

実施例1のメタバナジン酸アンモニウム粉末の添加量を25gから75gに変更し、他は同様にしてNH3及びイソシアン酸の総量を測定した。 The addition amount of the ammonium metavanadate powder of Example 1 was changed from 25 g to 75 g, and the total amount of NH 3 and isocyanic acid was measured in the same manner except that.

比較例1Comparative Example 1

実施例1におけるメタバナジン酸アンモニウムを添加しないで、他は同様にしてNH3及びイソシアン酸の総量を測定した。 The total amount of NH 3 and isocyanic acid was measured in the same manner except that ammonium metavanadate in Example 1 was not added.

比較例2Comparative Example 2

実施例2に用いた酸化チタン粉末のみを500℃で二時間焼成したものを触媒に用い、他は同様にしてNH3及びイソシアン酸の総量を測定した。
得られた結果を表1にまとめて示した。本表から明らかなように、本発明になるメタバナジン酸アンモニウム主成分とする触媒により、尿素水の沸騰条件である約110℃において高濃度のNH3およびイソシアン酸のガスを含む水蒸気との混合ガスが得られる。また実施例1と実施例3とを比較すると、懸濁させる触媒量の増加に比例して分解ガスの濃度が増大し、更に高濃度の分解ガスを容易に得られる優れた方法であることが判る。
Only the titanium oxide powder used in Example 2 was calcined at 500 ° C. for 2 hours was used as a catalyst, and the total amount of NH 3 and isocyanic acid was measured in the same manner except that.
The obtained results are summarized in Table 1. As is clear from this table, the mixed gas of high concentration NH 3 and water vapor containing isocyanic acid gas at about 110 ° C., which is the boiling condition of urea water, by the catalyst based on ammonium metavanadate according to the present invention. Is obtained. Further, comparing Example 1 and Example 3, the concentration of cracked gas increases in proportion to the increase in the amount of catalyst to be suspended, and it is an excellent method that can easily obtain a higher concentration of cracked gas. I understand.

Figure 2006223937
Figure 2006223937

本発明の触媒を用いて尿素水を分解して得たガス状物を排ガス脱硝用の還元剤に用いる場合の例を図1に示した。タンク2中の尿素水1はポンプ3により本発明の触媒を水に懸濁した触媒液5を入れた反応器4に送られ、反応器4内に設置されたヒータ6で加熱され分解される。反応器4内で生成した分解ガスと水蒸気は、必要に応じてガス供給ライン7から送られる空気や窒素などのキャリアーガスと共に排ガスダクト13中に設けられたノズル8に向けて送られ、ノズル8から窒素酸化物を含む排ガス中に注入される。排ガス中に注入された分解ガスと水蒸気は排ガスダクト13内に設けられた脱硝触媒層9に導かれ、脱硝触媒作用により窒素酸化物を無害な窒素に還元する。
ここで使用される脱硝触媒9は、酸化チタンを主成分とするTi−W−V系触媒やTi−Mo−V系触媒などの公知の触媒が用いられる。
FIG. 1 shows an example in which a gaseous substance obtained by decomposing urea water using the catalyst of the present invention is used as a reducing agent for exhaust gas denitration. The urea water 1 in the tank 2 is sent by a pump 3 to a reactor 4 containing a catalyst solution 5 in which the catalyst of the present invention is suspended in water, and is heated and decomposed by a heater 6 installed in the reactor 4. . The cracked gas and water vapor generated in the reactor 4 are sent to a nozzle 8 provided in the exhaust gas duct 13 together with a carrier gas such as air or nitrogen sent from the gas supply line 7 as necessary. Into the exhaust gas containing nitrogen oxides. The cracked gas and water vapor injected into the exhaust gas are guided to the denitration catalyst layer 9 provided in the exhaust gas duct 13, and the nitrogen oxides are reduced to harmless nitrogen by the denitration catalytic action.
As the denitration catalyst 9 used here, a known catalyst such as a Ti—W—V catalyst or a Ti—Mo—V catalyst mainly composed of titanium oxide is used.

実施例4の装置では、反応器4における尿素分解ガスの発生が変化するまでの時間遅れのため、ガス量や窒素酸化物の濃度などの変動に追従させて高い脱硝性能を維持することが難しい。図2は、反応器4から発生するガスと水蒸気を冷却してアンモニアとイソシアン酸を含む溶液に変換してバッファータンク11に溜めた後、ガス量や窒素酸化物の濃度の変動に合わせてポンプ12により排ガスダクト13中に設けられたノズル8から排ガス中に吹き込むことにより、条件変動に対する応答性を高めたものである。これにより、自動車などのガス量や窒素酸化物の濃度変化の大きな排ガス浄化への対応が可能になる。   In the apparatus of Example 4, it is difficult to maintain high denitration performance by following fluctuations in the amount of gas and the concentration of nitrogen oxides because of the time delay until the generation of urea decomposition gas in the reactor 4 changes. . FIG. 2 shows the gas and water vapor generated from the reactor 4 cooled, converted into a solution containing ammonia and isocyanic acid and stored in the buffer tank 11, and then pumped in accordance with changes in the gas amount and nitrogen oxide concentration. 12, the responsiveness to fluctuations in conditions is enhanced by blowing into the exhaust gas from the nozzle 8 provided in the exhaust gas duct 13. As a result, it is possible to deal with exhaust gas purification in which the amount of gas or the concentration of nitrogen oxides in an automobile or the like changes greatly.

NH3は常温で気体であり、イソシアン酸は沸点が23℃と低い上にNH3と炭酸ガスに加水分解されやすい。このため本実施例のように凝縮液を排ガス中の中にスプレーしても、析出物を生じることがなく、200℃以下でも高い脱硝性能が得られる。 NH 3 is a gas at room temperature, and isocyanic acid has a boiling point as low as 23 ° C. and is easily hydrolyzed to NH 3 and carbon dioxide. For this reason, even if the condensate is sprayed into the exhaust gas as in the present embodiment, no precipitate is formed, and high denitration performance is obtained even at 200 ° C. or lower.

図3に示すようにタンク2中の尿素水1は高圧ポンプ15により実施例1又は2の尿素分解触媒を充填した触媒層16を備え、ヒータ6で加熱可能な反応容器18に送られ、反応容器18で100〜250℃、0.1〜2MPaの条件下で分解される。反応容器18で生成した分解ガスと水蒸気は、バルブ20を有する流路17からポンプ12により排ガスダクト13中に設けられたノズル8に向けて送られ、ノズル8から窒素酸化物を含む排ガス中に注入される。排ガス中に注入された分解ガスと水蒸気は排ガスダクト13内に設けられた脱硝触媒層9に導かれ、脱硝触媒作用により窒素酸化物を無害な窒素に還元する。   As shown in FIG. 3, the urea water 1 in the tank 2 includes a catalyst layer 16 filled with the urea decomposition catalyst of Example 1 or 2 by a high-pressure pump 15 and is sent to a reaction vessel 18 that can be heated by a heater 6 to react. The container 18 is decomposed under the conditions of 100 to 250 ° C. and 0.1 to 2 MPa. The cracked gas and water vapor generated in the reaction vessel 18 are sent from the flow path 17 having the valve 20 to the nozzle 8 provided in the exhaust gas duct 13 by the pump 12, and from the nozzle 8 into the exhaust gas containing nitrogen oxides. Injected. The cracked gas and water vapor injected into the exhaust gas are guided to the denitration catalyst layer 9 provided in the exhaust gas duct 13, and the nitrogen oxides are reduced to harmless nitrogen by the denitration catalytic action.

本発明はディーゼルエンジン排ガスの脱硝など、メンテナンスフリーが望まれている分野において、難分解生成物の析出のない尿素気化装置と該装置を用いる排ガス脱硝に適用性がある。   INDUSTRIAL APPLICABILITY The present invention has applicability to a urea vaporizer that does not cause precipitation of hardly decomposed products and exhaust gas denitration using the device in fields where maintenance-free operation such as denitration of diesel engine exhaust gas is desired.

本発明の尿素分解触媒を脱硝装置に用いた場合の構成図である。It is a block diagram at the time of using the urea decomposition catalyst of this invention for a denitration apparatus. 本発明の尿素分解触媒を脱硝装置に用いた場合の構成図である。It is a block diagram at the time of using the urea decomposition catalyst of this invention for a denitration apparatus. 本発明の尿素分解触媒を脱硝装置に用いた場合の構成図である。It is a block diagram at the time of using the urea decomposition catalyst of this invention for a denitration apparatus.

符号の説明Explanation of symbols

1 尿素水 2 タンク
3 ポンプ 4 反応器
5 触媒スラリ 6 ヒータ
7 キャリアーガス導入ライン
8 分解ガス吹き込みノズル
9 脱硝触媒 10 冷却器
11 バッファータンク 12 ポンプ
13 排ガスダクト 15 高圧ポンプ
16 触媒層 17 流路
18 反応容器 20 バルブ
DESCRIPTION OF SYMBOLS 1 Urea water 2 Tank 3 Pump 4 Reactor 5 Catalyst slurry 6 Heater 7 Carrier gas introduction line 8 Decomposition gas blowing nozzle 9 Denitration catalyst 10 Cooler 11 Buffer tank 12 Pump 13 Exhaust gas duct 15 High pressure pump 16 Catalyst layer 17 Flow path 18 Reaction Container 20 Valve

Claims (10)

メタバナジン酸アンモニウム又はアンモニアと反応してメタバナジン酸アンモニウムを生成するバナジウムの酸化物またはバナジウムのオキソ酸塩を主成分とする尿素水溶液中の尿素をアンモニア(NH3)又はイソシアン酸(HCNO)に分解する尿素分解触媒。 Urea in urea aqueous solution mainly composed of vanadium oxide or vanadium oxoacid salt which reacts with ammonium metavanadate or ammonia to produce ammonium metavanadate is decomposed into ammonia (NH 3 ) or isocyanic acid (HCNO) Urea decomposition catalyst. 酸化チタン又は酸化アルミニウムを含む多孔質担体にメタバナジン酸アンモニウム又は五酸化バナジウムを吸着担持させたものであることを特徴とする請求項1記載の尿素分解触媒。   2. The urea decomposition catalyst according to claim 1, wherein ammonium metavanadate or vanadium pentoxide is adsorbed and supported on a porous carrier containing titanium oxide or aluminum oxide. 請求項1又は2記載の尿素分解触媒の粒子を尿素水に懸濁させ、100℃を超えて尿素の沸点までの間の温度に加熱することにより尿素を分解することを特徴とする尿素の分解方法。   3. Urea decomposition by suspending the urea decomposition catalyst particles according to claim 1 or 2 in urea water and heating to a temperature between 100 ° C. and the boiling point of urea. Method. 請求項3記載の尿素の分解方法で得られる尿素の分解気化物と水蒸気とを含むガスを窒素酸化物を含有する排ガス中に供給した後、アンモニア接触還元脱硝触媒と接触させることにより排ガス中の窒素酸化物を還元除去することを特徴とする排ガス脱硝方法。   A gas containing urea decomposition vaporized by the urea decomposition method according to claim 3 and water vapor is supplied to the exhaust gas containing nitrogen oxides, and then brought into contact with an ammonia catalytic reduction denitration catalyst. An exhaust gas denitration method comprising reducing and removing nitrogen oxides. 請求項3記載の尿素の分解方法で得られる尿素の分解気化物と水蒸気とを含むガス中の尿素の分解気化物と水蒸気を一旦凝縮して液体とした後、該液体を窒素酸化物を含有する排ガス中に供給して気化させ、得られた気化物をアンモニア接触還元脱硝触媒と接触させて排ガス中の窒素酸化物を還元除去することを特徴する排ガス脱硝方法。   The urea decomposition vaporized product obtained by the urea decomposition method according to claim 3 and water vapor in the gas containing water and the water vapor are once condensed to form a liquid, and the liquid contains nitrogen oxides. An exhaust gas denitration method characterized by supplying and vaporizing the exhaust gas to an exhaust gas to be contacted, and contacting the obtained vaporized product with an ammonia catalytic reduction denitration catalyst to reduce and remove nitrogen oxides in the exhaust gas. 請求項1又は2記載の尿素分解触媒の成型体を充填した反応器に尿素水を100〜250℃と1〜20気圧の雰囲気下で通過させることにより尿素の加水分解生成物を含む液体を得ることを特徴とする尿素の分解方法。   A liquid containing a hydrolysis product of urea is obtained by passing urea water through a reactor filled with a molded article of the urea decomposition catalyst according to claim 1 or 2 in an atmosphere of 100 to 250 ° C. and 1 to 20 atm. The urea decomposition method characterized by the above-mentioned. 請求項6記載の尿素の分解方法で得られる尿素の加水分解生成物を含む溶液を窒素酸化物を含有する排ガス中に噴霧して気化させ、該気化物をアンモニア接触還元脱硝触媒と接触させることを特徴する排ガス脱硝方法。   A solution containing the hydrolysis product of urea obtained by the urea decomposition method according to claim 6 is sprayed and vaporized in an exhaust gas containing nitrogen oxides, and the vaporized product is brought into contact with an ammonia catalytic reduction denitration catalyst. An exhaust gas denitration method characterized by 請求項1又は2記載の尿素分解触媒の粒子を尿素水に懸濁させた尿素水スラリタンクと、
該尿素水スラリタンク内の尿素水スラリの加熱手段と、
該尿素水スラリタンク内の尿素が100℃を超えて尿素の沸点までの間の温度に加熱されることにより分解して生成する尿素水分解ガスを窒素酸化物を含有する排ガス流路に供給する尿素水分解ガス供給手段と、
該尿素水分解ガス供給手段の下流側の排ガス流路内に脱硝触媒層と
を備えたことを特徴とする排ガス脱硝装置。
A urea water slurry tank in which particles of the urea decomposition catalyst according to claim 1 or 2 are suspended in urea water;
Means for heating the urea water slurry in the urea water slurry tank;
The urea water decomposition gas generated by decomposition when urea in the urea water slurry tank is heated to a temperature between 100 ° C. and the boiling point of urea is supplied to the exhaust gas passage containing nitrogen oxides. Urea water cracking gas supply means;
An exhaust gas denitration apparatus comprising a denitration catalyst layer in an exhaust gas flow path downstream of the urea water decomposition gas supply means.
請求項1又は2記載の尿素分解触媒の粒子を尿素水に懸濁させた尿素水スラリタンクと、
該尿素水スラリタンク内の尿素水スラリの加熱手段と、
該尿素水スラリタンク内の尿素が100℃を超えて尿素の沸点までの間の温度に加熱されることにより分解して生成する尿素水分解ガスを冷却させて前記ガス中の尿素の分解気化物と水蒸気と一旦凝縮して液体として貯留する冷却兼凝縮液体貯留手段と、
該冷却兼凝縮液体貯留手段中の液体を窒素酸化物を含有する排ガス流路に供給する凝縮液体供給手段と、
該凝縮液体供給手段の下流側の排ガス流路内にアンモニア接触還元脱硝触媒層と
を備えたことを特徴とする排ガス脱硝装置。
A urea water slurry tank in which particles of the urea decomposition catalyst according to claim 1 or 2 are suspended in urea water;
Means for heating the urea water slurry in the urea water slurry tank;
The urea water decomposition gas generated by decomposition when the urea in the urea water slurry tank is heated to a temperature between 100 ° C. and the boiling point of urea is cooled to decompose and vaporize urea in the gas Cooling and condensing liquid storage means for once condensing with water vapor and storing as liquid,
Condensed liquid supply means for supplying the liquid in the cooling and condensed liquid storage means to the exhaust gas flow path containing nitrogen oxides;
An exhaust gas denitration apparatus comprising an ammonia catalytic reduction denitration catalyst layer in an exhaust gas flow path downstream of the condensed liquid supply means.
尿素水タンクと、
請求項1又は2記載の尿素分解触媒の成型体を充填し、100〜250℃と1〜20気圧の雰囲気下にある反応器と、
前記尿素水タンクから前記反応器に尿素水を通過させることにより得られる尿素の加水分解生成物を含む液体を貯留する液体貯留タンクと、
該液体貯留タンク中の液体を窒素酸化物を含有する排ガス流路に供給する凝縮液体供給手段と、
該凝縮液体供給手段の下流側の排ガス流路内にアンモニア接触還元脱硝触媒層と
を備えたことを特徴とする排ガス脱硝装置。
A urea water tank;
A reactor filled with a molded article of the urea decomposition catalyst according to claim 1 or 2 and in an atmosphere of 100 to 250 ° C. and 1 to 20 atm;
A liquid storage tank for storing a liquid containing a hydrolysis product of urea obtained by passing urea water from the urea water tank to the reactor;
Condensed liquid supply means for supplying the liquid in the liquid storage tank to the exhaust gas flow path containing nitrogen oxides;
An exhaust gas denitration apparatus comprising an ammonia catalytic reduction denitration catalyst layer in an exhaust gas flow path downstream of the condensed liquid supply means.
JP2005037658A 2005-02-15 2005-02-15 Exhaust gas denitration method and apparatus using urea decomposition catalyst Active JP4646063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005037658A JP4646063B2 (en) 2005-02-15 2005-02-15 Exhaust gas denitration method and apparatus using urea decomposition catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005037658A JP4646063B2 (en) 2005-02-15 2005-02-15 Exhaust gas denitration method and apparatus using urea decomposition catalyst

Publications (2)

Publication Number Publication Date
JP2006223937A true JP2006223937A (en) 2006-08-31
JP4646063B2 JP4646063B2 (en) 2011-03-09

Family

ID=36985759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037658A Active JP4646063B2 (en) 2005-02-15 2005-02-15 Exhaust gas denitration method and apparatus using urea decomposition catalyst

Country Status (1)

Country Link
JP (1) JP4646063B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274952A (en) * 2007-05-02 2008-11-13 Ford Global Technologies Llc Regeneration method for selective contact reduction catalyst, and regeneration system
JP2009085172A (en) * 2007-10-02 2009-04-23 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2009174380A (en) * 2008-01-23 2009-08-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2009144931A1 (en) * 2008-05-29 2009-12-03 バブコック日立株式会社 Method of operating hydrolytic separator
JP2010506079A (en) * 2006-10-02 2010-02-25 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method and apparatus for providing a reducing agent precursor
JP2012055823A (en) * 2010-09-08 2012-03-22 Babcock Hitachi Kk Denitration device
WO2012104205A1 (en) * 2011-02-04 2012-08-09 Paul Scherrer Institut Ammonia generator converting liquid ammonia precursor solutions to gaseous ammonia for denox-applications using selective catalytic reduction of nitrogen oxides
FR2986824A1 (en) * 2012-02-09 2013-08-16 Coutier Moulage Gen Ind Device for introducing e.g. urea based product into exhaust line of diesel engine of car, has expansion chamber whose duct is connected to partially vaporized additive product sprayer placed on exhaust line by dosing valve
CN107694553A (en) * 2016-08-09 2018-02-16 丰田自动车株式会社 NOxThe manufacture method of occlusion reducing catalyst
CN111701432A (en) * 2020-05-06 2020-09-25 佛山市吉力达铝材科技有限公司 Denitration desulfurizer and preparation method thereof
CN115010148A (en) * 2022-06-10 2022-09-06 西安热工研究院有限公司 Urea catalytic hydrolysis reactor with external ammonia buffer zone

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103395801B (en) * 2013-08-08 2016-03-09 大唐环境产业集团股份有限公司 A kind of method of urea seeding hydrolysis and device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190623A (en) * 1987-01-30 1988-08-08 Mitsubishi Heavy Ind Ltd Removing method for nitrogen oxide in exhaust gas
JPH02191528A (en) * 1989-01-20 1990-07-27 Babcock Hitachi Kk Denitrification device with solid reducing agent utilized therefor
JPH02268811A (en) * 1989-04-10 1990-11-02 Hitachi Zosen Corp Denitration using ammonia generated by hydrolyzing urea
JPH0871372A (en) * 1994-09-07 1996-03-19 Babcock Hitachi Kk Denitration apparatus and method using urea
JPH09294913A (en) * 1996-05-07 1997-11-18 Hitachi Zosen Corp Flue gas denitration method and apparatus
JP2001518047A (en) * 1997-03-21 2001-10-09 イーシーアンドシー テクノロジーズ Process for producing ammonia from urea and its use
JP2004033991A (en) * 2002-07-08 2004-02-05 Mitsubishi Heavy Ind Ltd Method of denitrifying combustion exhaust gas and denitrification catalyst for the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190623A (en) * 1987-01-30 1988-08-08 Mitsubishi Heavy Ind Ltd Removing method for nitrogen oxide in exhaust gas
JPH02191528A (en) * 1989-01-20 1990-07-27 Babcock Hitachi Kk Denitrification device with solid reducing agent utilized therefor
JPH02268811A (en) * 1989-04-10 1990-11-02 Hitachi Zosen Corp Denitration using ammonia generated by hydrolyzing urea
JPH0871372A (en) * 1994-09-07 1996-03-19 Babcock Hitachi Kk Denitration apparatus and method using urea
JPH09294913A (en) * 1996-05-07 1997-11-18 Hitachi Zosen Corp Flue gas denitration method and apparatus
JP2001518047A (en) * 1997-03-21 2001-10-09 イーシーアンドシー テクノロジーズ Process for producing ammonia from urea and its use
JP2004033991A (en) * 2002-07-08 2004-02-05 Mitsubishi Heavy Ind Ltd Method of denitrifying combustion exhaust gas and denitrification catalyst for the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506079A (en) * 2006-10-02 2010-02-25 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method and apparatus for providing a reducing agent precursor
JP2008274952A (en) * 2007-05-02 2008-11-13 Ford Global Technologies Llc Regeneration method for selective contact reduction catalyst, and regeneration system
JP2009085172A (en) * 2007-10-02 2009-04-23 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2009174380A (en) * 2008-01-23 2009-08-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2009144931A1 (en) * 2008-05-29 2009-12-03 バブコック日立株式会社 Method of operating hydrolytic separator
JP2009285578A (en) * 2008-05-29 2009-12-10 Babcock Hitachi Kk Operation method of hydrolysis separator
JP2012055823A (en) * 2010-09-08 2012-03-22 Babcock Hitachi Kk Denitration device
WO2012104205A1 (en) * 2011-02-04 2012-08-09 Paul Scherrer Institut Ammonia generator converting liquid ammonia precursor solutions to gaseous ammonia for denox-applications using selective catalytic reduction of nitrogen oxides
FR2986824A1 (en) * 2012-02-09 2013-08-16 Coutier Moulage Gen Ind Device for introducing e.g. urea based product into exhaust line of diesel engine of car, has expansion chamber whose duct is connected to partially vaporized additive product sprayer placed on exhaust line by dosing valve
CN107694553A (en) * 2016-08-09 2018-02-16 丰田自动车株式会社 NOxThe manufacture method of occlusion reducing catalyst
CN107694553B (en) * 2016-08-09 2020-07-03 丰田自动车株式会社 NOxMethod for producing occluding and reducing catalyst
CN111701432A (en) * 2020-05-06 2020-09-25 佛山市吉力达铝材科技有限公司 Denitration desulfurizer and preparation method thereof
CN111701432B (en) * 2020-05-06 2022-12-23 佛山市吉力达铝材科技有限公司 Denitration desulfurizer and preparation method thereof
CN115010148A (en) * 2022-06-10 2022-09-06 西安热工研究院有限公司 Urea catalytic hydrolysis reactor with external ammonia buffer zone

Also Published As

Publication number Publication date
JP4646063B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP4646063B2 (en) Exhaust gas denitration method and apparatus using urea decomposition catalyst
EP3511621B1 (en) Combustion system
RU2600051C2 (en) Generator of ammonia gas for ammonia production for reducing nitrogen oxides in exhaust gases
WO2012104205A1 (en) Ammonia generator converting liquid ammonia precursor solutions to gaseous ammonia for denox-applications using selective catalytic reduction of nitrogen oxides
CN107427828B (en) Method for regenerating a catalyst
KR101910880B1 (en) Process for the reduction of nitrogen oxides and sulphur oxides in the exhaust gas from internal combustion engine
JP5383648B2 (en) Low temperature urea injection method
JP2011230120A (en) SYSTEM AND METHOD FOR CONTROLLING AND REDUCING NOx EMISSION
Latha et al. A review on scr system for nox reduction in diesel engine
JP3638638B2 (en) Denitration equipment using solid reducing agent
JP2007145796A (en) Urea water and denitrification apparatus using the same
JP2004000867A (en) Apparatus for denitrating exhaust gas, and urea vaporizer used therefor
JP3992083B2 (en) Method and apparatus for flue gas denitration using solid reducing agent
JP3369229B2 (en) Denitration method and apparatus using urea
JP2006122792A (en) Urea hydrolysis catalyst, ammonia manufacturing method, and denitration method
JPH05503662A (en) Catalytic decomposition of cyanuric acid and use of its products to reduce nitrogen oxide emissions
RU2469949C2 (en) Method of purifying smoke gases, containing nitrogen oxides
JPH0871372A (en) Denitration apparatus and method using urea
JP2005288397A (en) Tail gas denitrification apparatus using urea water
US20150321145A1 (en) Internally Heated Urea Reactor/Injector For Use With SCR Emissions Control Device
JP2007075800A (en) Exhaust gas cleaning equipment and exhaust gas cleaning method used for exhaust gas cleaning equipment
JP4266304B2 (en) Exhaust gas denitration method and denitration apparatus
JP5152227B2 (en) Urea water
JP2001027112A (en) NOx REMOVAL SYSTEM
JP4534729B2 (en) Denitration method using urea water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4646063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350