JP2005288397A - Tail gas denitrification apparatus using urea water - Google Patents

Tail gas denitrification apparatus using urea water Download PDF

Info

Publication number
JP2005288397A
JP2005288397A JP2004110662A JP2004110662A JP2005288397A JP 2005288397 A JP2005288397 A JP 2005288397A JP 2004110662 A JP2004110662 A JP 2004110662A JP 2004110662 A JP2004110662 A JP 2004110662A JP 2005288397 A JP2005288397 A JP 2005288397A
Authority
JP
Japan
Prior art keywords
exhaust gas
denitration
reactor
reducing agent
urea water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004110662A
Other languages
Japanese (ja)
Inventor
Shuya Nagayama
脩也 永山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004110662A priority Critical patent/JP2005288397A/en
Publication of JP2005288397A publication Critical patent/JP2005288397A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tail gas denitrification apparatus removing harmful components of nitrogen oxides in tail gas exhausted from a diesel engine, a gas engine, a gas turbine, a boiler, or a heating furnace, using urea water as a reducing agent, preferably used for purifying tail gas, using a hydrolysis reactor for promoting hydrolysis of urea water, or a cyclone. <P>SOLUTION: The hydrolysis reactor is provided between a urea water pouring part and a denitrification reactor, for hydrolyzing by the temperature and moisture possessed by the tail gas itself in a tail gas passage. The cyclone is installed between the urea water pouring part and the denitrification reactor, efficiently hydrolyzing urea water even with a short tail gas pipe, or the cyclone is installed between the urea water pouring part and the denitrification reactor, for holding a hydrolysis catalyst component on its inner face for promoting hydrolysis. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、還元剤として尿素水を用いてディーゼルエンジン・ガスエンジン・ガスタービン及びボイラ・加熱炉等(以下、エンジン等という)から排出される排ガス中の有害成分である窒素酸化物を除去して排ガスの浄化に好適に用いられる、尿素の加水分解の促進を計る加水分解反応器またはサイクロン容器を用いた排ガス脱硝装置に関する。   The present invention uses urea water as a reducing agent to remove nitrogen oxides, which are harmful components in exhaust gas discharged from diesel engines, gas engines, gas turbines, boilers, heating furnaces, and the like (hereinafter referred to as engines). The present invention relates to an exhaust gas denitration apparatus using a hydrolysis reactor or a cyclone container for promoting the hydrolysis of urea, which is preferably used for purification of exhaust gas.

自動車・各種工場等から排出される排ガス中の窒素酸化物は光化学スモッグの主原因の一つである。
その効果的な除去方法として、アンモニア(NH)を還元剤とする脱硝触媒を内蔵した脱硝反応器を用いる脱硝方式は、反応原理がシンプルで有害な副生物の発生が無く取扱いが簡単であることからこれまでに広く用いられている。
Nitrogen oxides in exhaust gas discharged from automobiles and various factories are one of the main causes of photochemical smog.
As an effective removal method, a denitration method using a denitration reactor containing a denitration catalyst containing ammonia (NH 3 ) as a reducing agent has a simple reaction principle and is easy to handle without generating harmful by-products. So far it has been widely used.

排ガス中の窒素酸化物を代表する一酸化窒素及び二酸化窒素等のアンモニアによる分解反応の化学式は次の通りである。 The chemical formula of the decomposition reaction by ammonia such as nitrogen monoxide and nitrogen dioxide representing nitrogen oxides in exhaust gas is as follows.

Figure 2005288397
Figure 2005288397

Figure 2005288397
尚、これまでは該還元剤として液化アンモニアまたはアンモニア水(通常は25%濃度程度)を使用しているが、該液化アンモニアまたは該アンモニア水から発生するアンモニアガスは人体にとって著しく有害であるばかりでなく爆発の危険性があり、これらの還元剤を人工密集地などに設置する民生用並びに自動車用の脱硝装置に適用することは極めて難しい。
Figure 2005288397
Until now, liquefied ammonia or aqueous ammonia (usually about 25% concentration) has been used as the reducing agent, but the ammonia gas generated from the liquefied ammonia or aqueous ammonia is not only harmful to the human body. There is no danger of explosion, and it is extremely difficult to apply these reducing agents to consumer and automobile denitration equipment installed in artificial crowded areas.

そこで安全で取り扱いが容易であり、分解によってアンモニアガスを発生する代替還元剤として、次式で示す通りアンモニア化合物である尿素をアンモニア(ガス)と二酸化炭素(ガス)に分解して用いる方法がある。 Therefore, as an alternative reducing agent that is safe and easy to handle and generates ammonia gas by decomposition, there is a method in which urea, which is an ammonia compound, is decomposed into ammonia (gas) and carbon dioxide (gas) as shown in the following formula. .

Figure 2005288397
ここで、尿素を用いる方法として、固体の尿素は吸湿性が高く取扱いが困難であるばかりでなく、還元剤は別途設けられる制御装置によって所定量を供給する必要があるが定量供給する手段が複雑となるために、固体のままで用いるのではなく専ら尿素水(通常32%〜40%濃度程度)を排ガス流路に直接注入して流路内でアンモニアを発生させ、または別途設けられた尿素気化器を設けてアンモニアガスを発生させて脱硝作用に寄与させる方法が提案されている。(特開平11−171535号公報及び特開2004−867号公報)
Figure 2005288397
Here, as a method using urea, not only solid urea is hygroscopic and difficult to handle, but a reducing agent needs to be supplied in a predetermined amount by a separate control device, but the means for quantitative supply is complicated. Therefore, urea water (usually about 32% to 40% concentration) is not directly used as a solid, but is directly injected into the exhaust gas passage to generate ammonia, or urea provided separately A method of providing a vaporizer and generating ammonia gas to contribute to denitration has been proposed. (Japanese Patent Laid-Open Nos. 11-171535 and 2004-867)

図4は排ガス流路に尿素水を直接注入して流路内でアンモニアに自然転換させる方法を示している。
しかしながら、尿素水を排ガス流路に直接注入する方法による尿素水からアンモニアへの充分なる転換の実現のための条件(排ガス流路中での尿素水液滴のアンモニアガスへの転換時間または必要排ガス流路長さ)は、注入手段により排ガス流路内に注入される尿素水の液滴の大きさ及び排ガスの温度・流速等によって大きく異なるが、いずれにしても自然転換で充分なアンモニアへの転換に要する必要充分な排ガス流路長さが必要となるため、尿素水を用いる脱硝装置の適用が配置上の制約のためしばしば不可能となる場合がある。
一例として尿素水液滴の大きさによるアンモニアガスへの転換時間を確認するために実施した試験結果を図1に示す。
FIG. 4 shows a method in which urea water is directly injected into the exhaust gas flow path and is naturally converted into ammonia in the flow path.
However, conditions for realizing sufficient conversion from urea water to ammonia by the method of directly injecting urea water into the exhaust gas flow path (time for converting urea water droplets to ammonia gas in the exhaust gas flow path or required exhaust gas The length of the flow path) varies greatly depending on the size of the urea water droplets injected into the exhaust gas flow path by the injection means and the temperature and flow rate of the exhaust gas, but in any case, the natural conversion will result in sufficient ammonia. Since a necessary and sufficient exhaust gas flow path length required for the conversion is required, application of a denitration apparatus using urea water is often impossible due to restrictions on arrangement.
As an example, FIG. 1 shows the results of a test conducted to confirm the conversion time to ammonia gas depending on the size of urea water droplets.

図1から、比較的に微細に噴霧注入することを考慮された注入手段による噴霧ノズルで液滴粒径が直径で100ミクロン程度で噴霧される場合であっても、排ガス温度が220℃のとき排ガス中での尿素水が充分にアンモニアに転換するまでの滞留時間は約0.23秒が必要であることを示している。
このことは、排ガス流速が50m/sの場合、排ガス流路は約12mもの長さが必要となるため排ガス流路への尿素水注入部と脱硝反応器の配置上の制約が大きく、特に自動車用でこの配置は現実的に不可能である。
From FIG. 1, even when the droplet diameter is sprayed at a diameter of about 100 microns with a spray nozzle by an injection means that is considered to be sprayed relatively finely, the exhaust gas temperature is 220 ° C. This shows that the residence time required for the urea water in the exhaust gas to sufficiently convert to ammonia is about 0.23 seconds.
This means that when the exhaust gas flow rate is 50 m / s, the exhaust gas passage needs to be as long as about 12 m. Therefore, the arrangement of the urea water injection part and the denitration reactor into the exhaust gas passage is greatly restricted. This arrangement is practically impossible.

一方、分解触媒として特開平11−171535号公報で提案されているアルカリ金属系を用いて分解したアンモニアを脱硝反応器へ導く方法は、一部のアルカリ分をアンモニアが同伴することによって該反応器内に収容されている脱硝触媒が該アルカリ分によって被毒されて著しい触媒劣化を惹起するので、加水分解作用は有っても本来の脱硝触媒の機能が損なわれるため脱硝装置構成上好ましくない。 On the other hand, a method of introducing ammonia decomposed using an alkali metal system proposed in Japanese Patent Application Laid-Open No. 11-171535 as a decomposition catalyst to a denitration reactor is based on the fact that a part of the alkali is accompanied by ammonia. Since the denitration catalyst accommodated in the inside is poisoned by the alkali and causes significant catalyst deterioration, the function of the original denitration catalyst is impaired even if it has a hydrolysis action, which is not preferable in terms of the denitration apparatus configuration.

他方、特開2004−887号公報で排ガス流路系から独立して別途に尿素気化器を設置することが提案されている。本方式は別途高温熱源を必要とし且つ気化器内部の温度制御が必要であるばかりでなく、これらのシステムメカニズムからエンジン等の急峻な負荷変動に伴い要求される尿素噴霧量が著しく変化する場合に、アンモニアの必要量に対する充分な応答性が応答性が確保されないことが考えられる。 On the other hand, Japanese Patent Application Laid-Open No. 2004-887 proposes to install a urea vaporizer separately from the exhaust gas flow path system. This method not only requires a separate high-temperature heat source and temperature control inside the carburetor, but also when the amount of urea spray required due to sudden load fluctuations of the engine etc. changes significantly from these system mechanisms. It is conceivable that sufficient responsiveness to the required amount of ammonia is not ensured.

排ガス流路の系内での尿素水のアンモニアへの転換を充分に行うと共に転換時間を短縮し、排ガス流路における尿素水注入部と脱硝反応器の間の必要流路長さを短縮して、排ガス流路への尿素水注入部と脱硝反応器の配置に関する制約を小さくすると共に、尿素水のアンモニアへの転換効率を高め、構成部品がシンプルで脱硝装置の配置が容易で脱硝効率が高い脱硝装置を実現する。
また、エンジン等の急峻な負荷変動(排ガス量、NOx等の変化)に対して応答性の優れた脱硝装置を実現する。
Sufficiently convert urea water to ammonia in the exhaust gas flow path system, shorten the conversion time, and shorten the required flow path length between the urea water injection part and the denitration reactor in the exhaust gas flow path. In addition to reducing the restrictions on the placement of urea water injection section and denitration reactor in the exhaust gas flow path, the conversion efficiency of urea water to ammonia is increased, the components are simple, the denitration equipment is easy to arrange, and the denitration efficiency is high Realize denitration equipment.
Further, a denitration apparatus having excellent responsiveness to steep load fluctuations (changes in exhaust gas amount, NOx, etc.) of an engine or the like is realized.

加水分解反応器に内蔵されている尿素加水分解能を有するゼオライト・アルミナ・チタニアのうち1種以上から選ばれた組成物、またはチタニア−バナジウム系・チタニア−バナジウム−タングステン系・チタニア−タングステン系のうちの1種以上からなる分解触媒によって構成される球状・柱状・円筒状等のペレット型またはハニカム型の分解触媒を還元剤注入部と排ガス脱硝反応器の間の排ガス流路の排ガス流れの中に直接に配置して、還元剤注入部から排ガス流路内に注入された尿素水を、燃焼排ガス中にもともと含まれる豊富な水分によって該加水分解反応器で連続的に尿素を加水分解してアンモニアを発生させて該アンモニアを脱硝反応器に供給するようにする。 Composition selected from one or more of zeolite, alumina, and titania having urea hydrolysis ability built into the hydrolysis reactor, or among titania-vanadium, titania-vanadium-tungsten, titania-tungsten Spherical, columnar, cylindrical, etc. pellet-type or honeycomb-type decomposition catalyst composed of one or more of the above decomposition catalysts in the exhaust gas flow in the exhaust gas flow path between the reducing agent injection part and the exhaust gas denitration reactor Directly arranged, urea water injected into the exhaust gas flow path from the reducing agent injection part is continuously hydrolyzed in the hydrolysis reactor with abundant moisture originally contained in the combustion exhaust gas, and ammonia And the ammonia is supplied to the denitration reactor.

図2は、チタニア−バナジウム系の分解触媒を用いた場合における、尿素水のアンモニアガスへの転換時間を確認のために実施した試験の結果を示す。
この結果から、排ガス温度220℃において該転換時間が約0.017秒となって、図1における分解触媒なしでのその他同一条件での該転換時間が0.23秒であるのに対して約7%に短縮されていることがわかる。
このことは、尿素注入部から脱硝反応器までの排ガス流路の長さが分解触媒なしの場合に対し約7%に短縮できるので、脱硝装置の配置上の制約が著しく緩和されて配置スペース上の制約の厳しい条件下でも脱硝装置の設置が可能となる。
FIG. 2 shows the results of tests conducted for confirming the conversion time of urea water to ammonia gas when a titania-vanadium-based decomposition catalyst was used.
From this result, the conversion time was about 0.017 seconds at an exhaust gas temperature of 220 ° C., and the conversion time under the same other conditions without a cracking catalyst in FIG. 1 was about 0.23 seconds. It turns out that it is shortened to 7%.
This is because the length of the exhaust gas flow path from the urea injection section to the denitration reactor can be shortened to about 7% compared to the case without a cracking catalyst, so the restrictions on the arrangement of the denitration device are remarkably eased and the installation space is reduced. The denitration equipment can be installed even under severe conditions.

そしてこの場合において、効果的なアンモニアガスへの転換率を確保のため分解触媒の単位触媒量を示すAV値は2000Nm/h・m以下であればアンモニアガスへの転換率を約40%以上確保できるので実用的である。(図3参照)
ここで、AV値は排ガス量に対する分解触媒の量を示す特性値として次の式で表される。
尚、分解触媒は該触媒形状を形成する幾何学的形状によって単位表面積(単位体積当たりの幾何学的表面積)が多様であるため該単位表面積が考慮されている。
In this case, if the AV value indicating the unit catalyst amount of the cracking catalyst is 2000 Nm 3 / h · m 2 or less in order to secure an effective conversion rate to ammonia gas, the conversion rate to ammonia gas is about 40%. This is practical because it can be secured. (See Figure 3)
Here, the AV value is expressed by the following equation as a characteristic value indicating the amount of the decomposition catalyst with respect to the exhaust gas amount.
In addition, since the decomposition catalyst has various unit surface areas (geometric surface area per unit volume) depending on the geometric shape forming the catalyst shape, the unit surface area is taken into consideration.

Figure 2005288397
Figure 2005288397

また、還元剤注入部から排ガス流路内に注入された尿素水の排ガス中での滞留時間の確保と尿素水液滴の加水分解に関する有効接触面積を確保して加水分解を効率よく完結させるため、排ガス流れにサイクロン作用を与えるように工夫されたサイクロン容器を配置して、還元剤注入部から排ガス流路内に注入された尿素水を、燃焼排ガス中にもともと含まれる水分によってサイクロン容器で連続的に尿素を加水分解してアンモニアを発生させて該アンモニアを脱硝反応器に供給するようにする。 In addition, in order to efficiently complete the hydrolysis by securing the retention time in the exhaust gas of urea water injected from the reducing agent injection part into the exhaust gas flow path and ensuring the effective contact area for hydrolysis of urea water droplets A cyclone container designed to give a cyclone action to the exhaust gas flow is arranged, and urea water injected into the exhaust gas flow path from the reducing agent injection part is continuously contained in the cyclone container by the moisture originally contained in the combustion exhaust gas. In particular, urea is hydrolyzed to generate ammonia, and the ammonia is supplied to the denitration reactor.

また、還元剤注入部から排ガス流路内に注入された尿素水の排ガス中での滞留時間の確保と尿素水液滴の加水分解に関する有効接触面積を確保して加水分解を効率よく完結させるため、尿素加水分解能を有するゼオライト・アルミナ・チタニアのうち1種以上から選ばれた組成物、またはチタニア−バナジウム系・チタニア−バナジウム−タングステン系・チタニア−タングステン系のうちの1種以上からなる分解触媒で内面を被覆または分解触媒の成型体を内面に配置した排ガス流れにサイクロン作用を与えるように工夫された加水分解反応器を排ガス流路の排ガス流れの中に直接に配置して、還元剤注入部から排ガス流路内に注入された尿素水を、燃焼排ガス中にもともと含まれる水分によって該加水分解反応器で連続的に尿素を加水分解してアンモニアを発生させて該アンモニアを脱硝反応器に供給するようにする。 In addition, in order to efficiently complete the hydrolysis by securing the retention time in the exhaust gas of urea water injected from the reducing agent injection part into the exhaust gas flow path and ensuring the effective contact area for hydrolysis of urea water droplets A composition selected from one or more of zeolite, alumina, and titania having urea hydrolytic ability, or a decomposition catalyst comprising one or more of titania-vanadium, titania-vanadium-tungsten, and titania-tungsten Injecting a reducing agent directly into the exhaust gas flow in the exhaust gas flow path with a hydrolysis reactor designed to give a cyclone effect to the exhaust gas flow coated with the inner surface or the molded catalyst catalyst on the inner surface The urea water injected into the exhaust gas flow path from the section is continuously hydrolyzed by the hydrolysis reactor with the water originally contained in the combustion exhaust gas. To generate ammonia so as to supply the ammonia denitration reactor was.

前述の効果によって、尿素水を用いる脱硝装置において、有効な排気管スペースが確保できない場合であっても脱硝装置が採用可能となって、安全で安価な脱硝装置を提供できて、現在、適用されていない小型エンジン等への脱硝装置の普及に貢献できる。   Due to the above-described effects, a denitration apparatus using urea water can be employed even when an effective exhaust pipe space cannot be secured, and a safe and inexpensive denitration apparatus can be provided and is currently applied. This contributes to the spread of denitration equipment for small engines that are not installed.

発明の実施の形態を実施例に基づき図面を参照して説明する。
図5は本考案のもととなる加水分解反応器を配置した脱硝装置の構成を示している。
加水分解反応器に内蔵されている加水分解能を有するゼオライト・アルミナ・チタニアのうち1種以上から選ばれた組成物、またはチタニア−バナジウム系・チタニア−バナジウム−タングステン系・チタニア−タングステン系のうちの1種以上からなる分解触媒によって構成される球状・柱状・円筒状等のペレット型またはハニカム型の分解触媒を還元剤注入部と排ガス脱硝反応器の間の排ガス流路の排ガス流れの中に直接に配置して、還元剤注入部から排ガス流路内に注入された尿素水を、燃焼排ガス中にもともと含まれる豊富な水分によって該加水分解反応器で連続的に尿素を加水分解してアンモニアを発生させて該アンモニアを脱硝反応器に供給するようにする。
Embodiments of the present invention will be described based on examples with reference to the drawings.
FIG. 5 shows a configuration of a denitration apparatus provided with a hydrolysis reactor as a basis of the present invention.
A composition selected from one or more of zeolite, alumina, and titania having hydrolytic ability built in a hydrolysis reactor, or a titania-vanadium system, titania-vanadium-tungsten system, titania-tungsten system Spherical, columnar, cylindrical, etc. pellet-type or honeycomb-type decomposition catalysts composed of one or more decomposition catalysts are directly put into the exhaust gas flow in the exhaust gas passage between the reducing agent injection section and the exhaust gas denitration reactor. The urea water injected into the exhaust gas flow path from the reducing agent injection part is continuously hydrolyzed in the hydrolysis reactor by the abundant moisture contained in the combustion exhaust gas, and ammonia is The ammonia is supplied to the denitration reactor.

排ガスはそれ自身が通常200〜500℃の温度と排ガス全量に対し体積比で通常5〜12%の水分を有しているため、注入された尿素水から分解触媒の触媒作用によって加水分解反応器内で分解されたアンモニアは、脱硝反応器に流入して脱硝作用に寄与する。
図6は本考案のサイクロン容器を配置した脱硝装置の構成を示している。
注入された尿素水は排ガスの流れの中で、排ガス自身が有する温度と水分によって加水分解が自然に行われるが、排気ガス中に注入される尿素水の液滴の大きさおよび排ガス自身の温度等によってアンモニアに有効に転換させるためには必要な尿素の排ガス中での滞留時間が通常0.1秒以上必要である。因みに、排気管内流速が50m/sの場合にはアンモニア注入部から脱硝反応器までの排気管長さは5m以上が必要となる。
Since the exhaust gas itself usually has a temperature of 200 to 500 ° C. and a water content of usually 5 to 12% by volume with respect to the total amount of the exhaust gas, the hydrolysis reactor reacts with the catalytic action of the decomposition catalyst from the injected urea water. The ammonia decomposed inside the gas flows into the denitration reactor and contributes to the denitration action.
FIG. 6 shows a configuration of a denitration apparatus in which a cyclone container according to the present invention is arranged.
The injected urea water is naturally hydrolyzed in the exhaust gas flow by the temperature and moisture of the exhaust gas itself, but the size of the urea water droplets injected into the exhaust gas and the temperature of the exhaust gas itself In order to effectively convert to ammonia by such means, the residence time of the necessary urea in the exhaust gas usually requires 0.1 seconds or more. Incidentally, when the flow velocity in the exhaust pipe is 50 m / s, the length of the exhaust pipe from the ammonia injection part to the denitration reactor needs to be 5 m or more.

そこで、サイクロン容器を用いれば排ガスの滞留時間を延長することができると同時に、排ガス分子に比べて尿素固体の質量が大きいので尿素は該サイクロン容器の内周に一時的に捕捉されて尿素の滞留が更に保たれる。 Therefore, if the cyclone container is used, the residence time of the exhaust gas can be extended, and at the same time the urea solid mass is larger than the exhaust gas molecules, so that urea is temporarily trapped in the inner periphery of the cyclone container and the urea residence Is further preserved.

図14及び図15は本考案の別の加水分解反応器の構造を示している。
図6のサイクロン容器の作用・効果に加えて、尿素加水分解能を有するゼオライト・アルミナ・チタニアのうち1種以上から選ばれた組成物、またはチタニア−バナジウム系・チタニア−バナジウム−タングステン系・チタニア−タングステン系のうちの1種以上からなる分解触媒でサイクロン容器の内面を被覆または分解触媒の成型体を内面に配置したサイクロン効果を有する加水分解反応器とすることで、還元剤注入部から排ガス流路内に注入された尿素水を、燃焼排ガス中にもともと含まれる水分によって該加水分解反応器で連続的に尿素を加水分解してアンモニアを発生させて該アンモニアを脱硝反応器に供給するようにする。
14 and 15 show the structure of another hydrolysis reactor of the present invention.
In addition to the action and effect of the cyclone container of FIG. 6, a composition selected from at least one of zeolite, alumina, and titania having urea hydrolytic ability, or titania-vanadium-based, titania-vanadium-tungsten-based, titania- By making the hydrolysis reactor having a cyclone effect by coating the inner surface of the cyclone vessel with a decomposition catalyst composed of one or more of tungsten-based or placing a molded catalyst catalyst on the inner surface, the exhaust gas flow from the reducing agent injection part The urea water injected into the passage is continuously hydrolyzed in the hydrolysis reactor by the water originally contained in the combustion exhaust gas to generate ammonia, and the ammonia is supplied to the denitration reactor. To do.

尚、図6及び図14・図15の方法によれば、図5の方法による加水分解反応器の分解触媒が上流から飛来するすすや鉄錆等の異物によって目詰まりする問題を回避することが出来る。 Incidentally, according to the method of FIG. 6 and FIGS. 14 and 15, it is possible to avoid the problem that the decomposition catalyst of the hydrolysis reactor according to the method of FIG. 5 is clogged by foreign matters such as soot flying from the upstream and iron rust. I can do it.

図5は、本考案の第1実施例を示す。
エンジン等(1)の排ガスの流路(3)中の尿素水注入部(9)と脱硝反応器(10)の間に加水分解反応器(12)が設置されている。
加水分解反応器内には尿素加水分解能を有するゼオライト・アルミナ・チタニアのうち1種以上から選ばれた組成物、またはチタニア−バナジウム系・チタニア−バナジウム−タングステン系・チタニア−タングステン系のうちの1種以上からなる分解触媒によって構成される球状・柱状・円筒状等のペレット型またはハニカム型の分解触媒が排ガス流路の系内に排ガスに直接接する構成にて内蔵されている。
FIG. 5 shows a first embodiment of the present invention.
A hydrolysis reactor (12) is installed between the urea water injection part (9) and the denitration reactor (10) in the exhaust gas flow path (3) of the engine or the like (1).
In the hydrolysis reactor, a composition selected from one or more of zeolite, alumina, and titania having urea hydrolysis ability, or one of titania-vanadium, titania-vanadium-tungsten, and titania-tungsten is used. Spherical, columnar, cylindrical, etc. pellet-type or honeycomb-type decomposition catalysts composed of cracking catalysts composed of more than seeds are incorporated in the exhaust gas flow path system so as to be in direct contact with the exhaust gas.

注入された尿素水は排ガスが有する温度と燃焼排ガス中にもともと豊富に含まれている水分によって加水分解反応器(12)内でアンモニアを発生させて該アンモニアを脱硝反応器(10)に供給する。
この方式によれば、特開平5−15739公報、特開平11−319483公報、特開2004−867号公報で提案されている別途設ける加水分解反応器方式および特開平11−171535公報に提案されている排ガスの温度のみを活用する間接型の加水分解反応器に比べて、排ガスの温度と排ガス中にもともと含まれる水分が加水分解反応器(12)内で直接作用するので、加水分解による尿素水からのアンモニアへの転換が効率よく行われると同時に応答時間も短縮出来ることとなって、エンジン等(1)の負荷が急峻に変化して該エンジン等から排出される排ガス量および排ガス中の窒素酸化物の時々刻々の変動に対して適切なる脱硝作用を求められる場合にアンモニアの供給の応答性は重要であるが、応答時間の著しい短縮を計ることが出来ると共に尿素水の加水分解に関する装置がシンプルとなり極めて実用的である。
The injected urea water generates ammonia in the hydrolysis reactor (12) by the temperature of the exhaust gas and the moisture originally contained in the combustion exhaust gas, and supplies the ammonia to the denitration reactor (10). .
According to this method, a separately provided hydrolysis reactor method proposed in JP-A-5-15739, JP-A-11-319483, JP-A-2004-867 and JP-A-11-171535 are proposed. Compared with an indirect hydrolysis reactor that uses only the temperature of the exhaust gas, the temperature of the exhaust gas and the water originally contained in the exhaust gas directly act in the hydrolysis reactor (12). The conversion from ammonia to ammonia can be performed efficiently, and at the same time the response time can be shortened, and the load of the engine etc. (1) changes sharply and the amount of exhaust gas discharged from the engine etc. and the nitrogen in the exhaust gas The responsiveness of the ammonia supply is important when an appropriate denitration action is required against the fluctuation of oxides, but the response time is significantly shortened. It is very practical result apparatus on the Hydrolysis of the urea water and simple with it.

図6は本考案の第2実施例を示す。
エンジン等(1)の排ガスの流路(3)中の尿素水注入部(9)と脱硝反応器(10)の間にサイクロン容器(14)が設置されている。
図8〜図13はサイクロン容器(14)の種々の構造を示す。
流入排ガス(6)はサイクロン本体(15)の胴(16)に接線方向に流入するように配置される。流出排ガス(7)は図8ように接線方向であっても図9のように軸方向であってもよい。
FIG. 6 shows a second embodiment of the present invention.
A cyclone container (14) is installed between the urea water injection section (9) and the denitration reactor (10) in the exhaust gas flow path (3) of the engine or the like (1).
8 to 13 show various structures of the cyclone container (14).
The inflowing exhaust gas (6) is arranged so as to flow in the tangential direction into the body (16) of the cyclone body (15). The effluent exhaust gas (7) may be tangential as shown in FIG. 8 or axial as shown in FIG.

サイクロン容器(14)内に流入した排ガスは減速されて旋回流(17)を与えられて該サイクロン容器内で滞留すると共にそれまで排ガス流れと共に有った排ガス分子より質量の大きい尿素水の液滴は、排ガスの有する温度および水分補給の条件の下で、排ガスの旋回流による遠心力によって胴(16)の内面に暫時付着して加水分解に要する滞留時間を経過後、アンモニアガスとなって流出排ガス(7)と共に脱硝反応器(10)の方へ流出する。 The exhaust gas flowing into the cyclone container (14) is decelerated and given a swirling flow (17), stays in the cyclone container and stays in the cyclone container, and drops of urea water having a mass larger than the exhaust gas molecules that have been with the exhaust gas flow until then. Is temporarily attached to the inner surface of the cylinder (16) by centrifugal force due to the swirling flow of exhaust gas under the conditions of exhaust gas temperature and water replenishment, and then flows out as ammonia gas after elapse of the residence time required for hydrolysis. It flows out to the denitration reactor (10) together with the exhaust gas (7).

図14及び図15は本考案の第3実施例を示す。
サイクロン容器内に流入した排ガスは減速されて旋回流を与えられて滞留すると共にそれまで排ガス流れと共に有った排ガス分子より質量の大きい尿素水の液滴は、排ガスの有する温度および水分補給の条件の下で、排ガスの旋回流による遠心力によって胴(16)の内面に暫時付着して加水分解に要する滞留時間を経過後、アンモニアガスとなって流出排ガス(7)と共に脱硝反応器(10)の方へ流出するされるのは第2実施例の通りである。
ここで、第3実施例では加水分解を促進させるために、サイクロン容器本体(15)内面に尿素の加水分解能の高い分解触媒の被覆膜(27)または分解触媒成型体(28)を配置したものである。
14 and 15 show a third embodiment of the present invention.
The exhaust gas that has flowed into the cyclone vessel is decelerated and swirled to stay, and the urea water droplets that have a larger mass than the exhaust gas molecules that existed with the exhaust gas flow up to that point are the temperature and hydration conditions of the exhaust gas. The denitration reactor (10) together with the effluent exhaust gas (7) becomes ammonia gas after a residence time required for hydrolysis for a while due to centrifugal force caused by the swirling flow of the exhaust gas. As shown in the second embodiment, the liquid flows out toward this direction.
Here, in the third embodiment, in order to promote hydrolysis, a coating film (27) or a decomposition catalyst molded body (28) of a decomposition catalyst having a high hydrolysis capacity of urea is arranged on the inner surface of the cyclone container body (15). Is.

図10はサイクロン容器本体(15)の内側に排ガスの旋回力の持続のため旋回案内板(18)を設けたサイクロン容器の内部構造の透視図を示す。
以上、本発明は上記実施例に限定されず尿素水を排ガス流路に直接注入してなる脱硝装置に広く適用可能であることは言うまでもない。
FIG. 10 shows a perspective view of the internal structure of the cyclone container in which a swivel guide plate (18) is provided inside the cyclone container main body (15) to maintain the swirling force of the exhaust gas.
As mentioned above, it cannot be overemphasized that this invention is widely applicable to the denitration apparatus formed by inject | pouring urea water directly into an exhaust gas flow path, without being limited to the said Example.

本考案の第1の根拠となる尿素水のアンモニアへの転換に要する時間を確認したテスト結果を示す。The test result which confirmed the time required for the conversion of the urea water to ammonia which becomes the 1st ground of this invention is shown. 本考案の第2の根拠となる分解触媒の存在下での尿素水のアンモニアへの転換に要する時間を確認したテスト結果を示す。The test result which confirmed the time which conversion of urea water to ammonia in the presence of the cracking catalyst used as the 2nd grounds of this invention is shown. 本考案の第3の根拠となる分解触媒AV値に対するアンモニアへの転換に要する時間を確認したテスト結果を示す。The test result which confirmed the time which conversion to ammonia with respect to the decomposition catalyst AV value used as the 3rd grounds of this invention is shown. 従来技術を示す。The prior art is shown. 本考案における加水分解反応器を用いた第1実施例を示す。The 1st Example using the hydrolysis reactor in this invention is shown. 本考案におけるサイクロン容器を用いた第2実施例を示す。The 2nd Example using the cyclone container in this invention is shown. 噴霧された尿素水液滴の排ガス流路中での挙動の模式図を示す。The schematic diagram of the behavior in the exhaust gas flow path of the sprayed urea water droplet is shown. サイクロン容器の構造を示す。The structure of a cyclone container is shown. サイクロン容器の別の構造を示す。2 shows another structure of a cyclone container. 内部に旋回案内板を設けたサイクロン容器の透視図を示す。The perspective view of the cyclone container which provided the turning guide plate inside is shown. 図8のサイクロン容器のA−A断面を示す。The AA cross section of the cyclone container of FIG. 8 is shown. 図9のサイクロン容器のB−B断面を示す。FIG. 10 shows a BB cross section of the cyclone container of FIG. 9. FIG. 図8のサイクロン容器における別の構造を示す。9 shows another structure in the cyclone container of FIG. サイクロン容器内面に分解触媒被覆膜を設けた構造を示す。The structure which provided the decomposition catalyst coating film in the cyclone container inner surface is shown. サイクロン容器内面に分解触媒成型体を設けた構造を示す。The structure which provided the decomposition catalyst shaping | molding body in the cyclone container inner surface is shown.

符号の説明Explanation of symbols

1 エンジン等
2 排ガス
3 排ガス流路
4 排ガス管
5 排ガス管必要長さ
6 流入排ガス
7 流出排ガス
8 排ガス中水分
9 尿素水注入部
10 脱硝反応器
11 脱硝触媒
12 加水分解反応器
13 分解触媒
14 サイクロン容器
15 サイクロン本体
16 サイクロン胴
17 排ガス旋回流
18 旋回案内板
19 尿素水タンク
20 尿素水溶液
21 尿素水供給ポンプ
22 尿素水注入ノズル
23 尿素水供給管
24 尿素水噴霧液滴
25 一部水分が蒸発した尿素水
26 尿素
27 分解触媒被覆膜
28 分解触媒成型体
29 高温排ガス
30 アンモニアガス

DESCRIPTION OF SYMBOLS 1 Engine etc. 2 Exhaust gas 3 Exhaust gas flow path 4 Exhaust gas pipe 5 Exhaust gas pipe required length 6 Inflow exhaust gas 7 Outflow exhaust gas 8 Moisture in exhaust gas 9 Urea water injection part 10 Denitration reactor 11 Denitration catalyst 12 Hydrolysis reactor 13 Decomposition catalyst 14 Cyclone Container 15 Cyclone body 16 Cyclone cylinder 17 Exhaust gas swirl flow 18 Swirling guide plate 19 Urea water tank 20 Urea aqueous solution 21 Urea water supply pump 22 Urea water injection nozzle 23 Urea water supply pipe 24 Urea water spray droplet 25 Partially evaporated water Urea water 26 Urea 27 Decomposition catalyst coating film 28 Decomposition catalyst molded body 29 High temperature exhaust gas 30 Ammonia gas

Claims (3)

窒素酸化物含有排ガスの流路と、該流路内に窒素酸化物の還元剤を注入する注入ノズルを設けた注入部と、該還元剤の注入部の後流側に設けられた脱硝触媒を内蔵した脱硝反応器を有する排ガス脱硝装置において、還元剤注入部と脱硝反応器の間の排ガス流路中に、尿素加水分解能を有するゼオライト・アルミナ・チタニアのうち1種以上から選ばれた組成物、またはチタニア−バナジウム系・チタニア−バナジウム−タングステン系・チタニア−タングステン系のうちの1種以上からなる加水分解触媒成分によって構成される球状・柱状・円筒状等のペレット型またはハニカム型の加水分解触媒(以下、分解触媒という)であって、排ガス流路内の排ガス流れの中にAV値が2000Nm/h・m以下となる該分解触媒を内蔵した加水分解反応器を配置して、還元剤注入部から注入された尿素水からアンモニアを発生させて該アンモニアを脱硝反応器に供給するようにした脱硝装置。 A flow path for nitrogen oxide-containing exhaust gas, an injection section provided with an injection nozzle for injecting a nitrogen oxide reducing agent into the flow path, and a denitration catalyst provided on the downstream side of the injection section for the reducing agent In the exhaust gas denitration apparatus having a built-in denitration reactor, a composition selected from one or more of zeolite, alumina, and titania having urea hydrolysis ability in the exhaust gas flow path between the reducing agent injection section and the denitration reactor Or pellet-type or honeycomb-type hydrolysis composed of one or more hydrolysis catalyst components of titania-vanadium, titania-vanadium-tungsten, titania-tungsten, etc. catalyst (hereinafter, referred to as decomposition catalyst) a pressurized to AV value in the exhaust gas flow of the exhaust gas flow path has a built-in said cracking catalyst becomes 2000Nm 3 / h · m 2 or less By placing a decomposition reactor, the reducing agent to generate ammonia from the urea water injected from the injection unit denitration apparatus that supplies the ammonia denitration reactor. 窒素酸化物含有排ガスの流路と、該流路内に窒素酸化物の還元剤を注入する注入ノズルを設けた注入部と、該還元剤の注入部の後流側に設けられた脱硝触媒を内蔵した脱硝反応器を有する排ガス脱硝装置において、還元剤注入部と脱硝反応器の間の排ガス流路中に、サイクロン効果を有する容器を配置して、還元剤注入部から注入された尿素水からアンモニアを発生させて該アンモニアを脱硝反応器に供給するようにした脱硝装置。 A flow path for nitrogen oxide-containing exhaust gas, an injection section provided with an injection nozzle for injecting a nitrogen oxide reducing agent into the flow path, and a denitration catalyst provided on the downstream side of the injection section for the reducing agent In the exhaust gas denitration apparatus having a built-in denitration reactor, a container having a cyclone effect is disposed in the exhaust gas flow path between the reducing agent injection unit and the denitration reactor, and the urea water injected from the reducing agent injection unit A denitration apparatus that generates ammonia and supplies the ammonia to a denitration reactor. 窒素酸化物含有排ガスの流路と、該流路内に窒素酸化物の還元剤を注入する注入ノズルを設けた注入部と、該還元剤の注入部の後流側に設けられた脱硝触媒を内蔵した脱硝反応器を有する排ガス脱硝装置において、還元剤注入部と脱硝反応器の間の排ガス流路中に、尿素加水分解能を有するゼオライト・アルミナ・チタニアのうち1種以上から選ばれた組成物、またはチタニア−バナジウム系・チタニア−バナジウム−タングステン系・チタニア−タングステン系のうちの1種以上からなる分解触媒を内面に被覆または該分解触媒の成型体を内面に配置させたサイクロン効果を有する加水分解反応器を配置して、還元剤注入部から注入された尿素水から該加水分解反応器でアンモニアを発生させて該アンモニアを脱硝反応器に供給するようにした脱硝装置。
A flow path for nitrogen oxide-containing exhaust gas, an injection section provided with an injection nozzle for injecting a nitrogen oxide reducing agent into the flow path, and a denitration catalyst provided on the downstream side of the injection section for the reducing agent In the exhaust gas denitration apparatus having a built-in denitration reactor, a composition selected from one or more of zeolite, alumina, and titania having urea hydrolysis ability in the exhaust gas flow path between the reducing agent injection section and the denitration reactor Or a hydrolytic catalyst having a cyclone effect in which a cracking catalyst comprising at least one of titania-vanadium, titania-vanadium-tungsten, titania-tungsten is coated on the inner surface or a molded product of the decomposition catalyst is disposed on the inner surface. A decomposition reactor is arranged so that ammonia is generated in the hydrolysis reactor from the urea water injected from the reducing agent injection section, and the ammonia is supplied to the denitration reactor. Denitration equipment.
JP2004110662A 2004-04-05 2004-04-05 Tail gas denitrification apparatus using urea water Pending JP2005288397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004110662A JP2005288397A (en) 2004-04-05 2004-04-05 Tail gas denitrification apparatus using urea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004110662A JP2005288397A (en) 2004-04-05 2004-04-05 Tail gas denitrification apparatus using urea water

Publications (1)

Publication Number Publication Date
JP2005288397A true JP2005288397A (en) 2005-10-20

Family

ID=35321951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004110662A Pending JP2005288397A (en) 2004-04-05 2004-04-05 Tail gas denitrification apparatus using urea water

Country Status (1)

Country Link
JP (1) JP2005288397A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122792A (en) * 2004-10-28 2006-05-18 Hitachi Zosen Corp Urea hydrolysis catalyst, ammonia manufacturing method, and denitration method
JP2009149504A (en) * 2007-12-06 2009-07-09 Ec & C Technologies Inc Improved method for manufacturing ammonia from urea
EP2095866A1 (en) * 2008-02-25 2009-09-02 JGC Catalysts and Chemicals Ltd. Exhaust gas treatment apparatus
JP2009228484A (en) * 2008-03-19 2009-10-08 Tokyo Roki Co Ltd Exhaust emission control device for internal combustion engine
CN102171423A (en) * 2008-10-16 2011-08-31 康明斯过滤Ip公司 Detachable decomposition reactor with an integral mixer
JP2012036799A (en) * 2010-08-05 2012-02-23 Honda Motor Co Ltd Exhaust emission control system of internal combustion engine
JP2013541373A (en) * 2010-10-01 2013-11-14 エンパイア テクノロジー ディベロップメント エルエルシー Cyclone catalyst duct
KR101334826B1 (en) * 2012-08-02 2013-11-29 현대머티리얼 주식회사 Selective catalyst reduction system for vessel using cyclone system
CN103691317A (en) * 2013-12-11 2014-04-02 山东华亚环保科技有限公司 Preparation method of purifying agent of automobile exhaust
EP2990115A1 (en) 2014-08-25 2016-03-02 N.E. Chemcat Corporation Urea hydrolysis catalyst, selective reduction catalyst containing urea hydrolysis material, and exhaust gas cleaning apparatus
CN113750948A (en) * 2021-09-09 2021-12-07 西安热工研究院有限公司 Urea catalytic hydrolysis reactor and method for flue gas denitration
KR102384194B1 (en) * 2021-10-07 2022-04-08 박수경 Ammonia generating system and process

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122792A (en) * 2004-10-28 2006-05-18 Hitachi Zosen Corp Urea hydrolysis catalyst, ammonia manufacturing method, and denitration method
JP4599989B2 (en) * 2004-10-28 2010-12-15 日立造船株式会社 Ammonia production method and denitration method
JP2009149504A (en) * 2007-12-06 2009-07-09 Ec & C Technologies Inc Improved method for manufacturing ammonia from urea
US8080209B2 (en) 2008-02-25 2011-12-20 Jgc Catalysts And Chemicals Ltd. Exhaust gas treatment apparatus
EP2095866A1 (en) * 2008-02-25 2009-09-02 JGC Catalysts and Chemicals Ltd. Exhaust gas treatment apparatus
JP2009228484A (en) * 2008-03-19 2009-10-08 Tokyo Roki Co Ltd Exhaust emission control device for internal combustion engine
CN102171423A (en) * 2008-10-16 2011-08-31 康明斯过滤Ip公司 Detachable decomposition reactor with an integral mixer
JP2012036799A (en) * 2010-08-05 2012-02-23 Honda Motor Co Ltd Exhaust emission control system of internal combustion engine
JP2013541373A (en) * 2010-10-01 2013-11-14 エンパイア テクノロジー ディベロップメント エルエルシー Cyclone catalyst duct
US8932533B2 (en) 2010-10-01 2015-01-13 Empire Technology Development Llc Cyclonic catalytic ducts
KR101334826B1 (en) * 2012-08-02 2013-11-29 현대머티리얼 주식회사 Selective catalyst reduction system for vessel using cyclone system
CN103691317A (en) * 2013-12-11 2014-04-02 山东华亚环保科技有限公司 Preparation method of purifying agent of automobile exhaust
EP2990115A1 (en) 2014-08-25 2016-03-02 N.E. Chemcat Corporation Urea hydrolysis catalyst, selective reduction catalyst containing urea hydrolysis material, and exhaust gas cleaning apparatus
CN113750948A (en) * 2021-09-09 2021-12-07 西安热工研究院有限公司 Urea catalytic hydrolysis reactor and method for flue gas denitration
KR102384194B1 (en) * 2021-10-07 2022-04-08 박수경 Ammonia generating system and process

Similar Documents

Publication Publication Date Title
CA2840341C (en) Method for generating ammonia from an ammonia precursor substance for reducing nitrogen oxides in exhaust
KR102309224B1 (en) Method for purifying diesel engine exhaust gases
JP5097475B2 (en) Method for adding at least one reactant to an exhaust gas flow of an internal combustion engine and an exhaust gas flow treatment device for an internal combustion engine
EP2691617B1 (en) Process for the reduction of nitrogen oxides and sulphur oxides in the exhaust gas from internal combustion engine.
JP2005288397A (en) Tail gas denitrification apparatus using urea water
JP4646063B2 (en) Exhaust gas denitration method and apparatus using urea decomposition catalyst
KR101619098B1 (en) Exhaust gas purification device
RU2009105733A (en) COMPACT WASTE GAS PROCESSING SYSTEM
ES2569923T3 (en) Post-treatment device for the exhaust gases of an internal combustion engine
CN102966413A (en) Nachbehandlungssystem
EP3492718A1 (en) Exhaust line for a vehicle
Latha et al. A review on scr system for nox reduction in diesel engine
US20080041045A1 (en) Apparatus and method for assisting selective catalytic reduction
JP2006077576A (en) Denitration reactor
JP2009091976A (en) Exhaust emission control device for internal combustion engine
JPH08281074A (en) Denitrification equipment using urea
CN103502590B (en) The Exhaust gas purifying device of internal-combustion engine
JP3513162B2 (en) Nitrogen oxide removal method
KR20090084055A (en) The reduction agent injection system for increasing nh3 evolution in sncr process
JP3499576B2 (en) Method and apparatus for removing nitrogen oxides
KR100780609B1 (en) Injector for reducing the nitrogen oxide content in exhaust gas by combustion and exhaust gas purifing system thereof
JP7319653B2 (en) Exhaust gas treatment method, exhaust gas treatment system and ship equipped with exhaust gas treatment system
KR102402306B1 (en) Selective catalytic reduction system
JP3911808B2 (en) Denitration equipment
KR20170015680A (en) Nitrogen oxide reduction agent comprising rrea containing fine bubbles