JP3369229B2 - Denitration method and apparatus using urea - Google Patents

Denitration method and apparatus using urea

Info

Publication number
JP3369229B2
JP3369229B2 JP32005492A JP32005492A JP3369229B2 JP 3369229 B2 JP3369229 B2 JP 3369229B2 JP 32005492 A JP32005492 A JP 32005492A JP 32005492 A JP32005492 A JP 32005492A JP 3369229 B2 JP3369229 B2 JP 3369229B2
Authority
JP
Japan
Prior art keywords
urea
catalyst
reaction tank
denitration
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32005492A
Other languages
Japanese (ja)
Other versions
JPH06165913A (en
Inventor
尚美 今田
昌弘 新田
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP32005492A priority Critical patent/JP3369229B2/en
Publication of JPH06165913A publication Critical patent/JPH06165913A/en
Application granted granted Critical
Publication of JP3369229B2 publication Critical patent/JP3369229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は接触還元法による排煙脱
硝方式に係わり、特に還元剤に安全でかつ取扱いが容易
な尿素を用いる脱硝方法と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flue gas denitration system by a catalytic reduction method, and more particularly to a denitration method and apparatus using safe and easy-to-handle urea as a reducing agent.

【0002】[0002]

【従来の技術】発電所、各種工場、自動車などから排出
される排煙中のNOxは、光化学スモッグの原因物質で
あり、その効果的な除去方法として、アンモニア(NH
3)を還元剤とした選択的接触還元による排煙脱硝方法
が火力発電所を中心に幅広く用いられている。最近は、
ディーゼルエンジン、ガスタービンなどを利用したコー
ジェネレーションシステムが都心部を中心として増加し
ており、これらシステムに対してもNOxの排出規制が
適用され、かつ地域によっては強化されるため、大型プ
ラント同様に排煙脱硝装置の設備が急務となっている。
このような小規模施設用脱硝装置はビルなどの人口密集
地で使用されるため、液化NH3の適用は困難である。
そこで、液化NH3の代わりに取扱いが容易で、かつ安
全な尿素を使用する方法が注目されている。
2. Description of the Related Art NOx in smoke emitted from power plants, various factories, automobiles, etc. is a causative substance of photochemical smog, and ammonia (NH
The flue gas denitration method by selective catalytic reduction using 3 ) as a reducing agent is widely used mainly in thermal power plants. Nowadays,
The number of cogeneration systems that use diesel engines, gas turbines, etc. is increasing mainly in central Tokyo. NOx emission regulations are being applied to these systems as well, and they will be strengthened in some regions. There is an urgent need for equipment for flue gas denitration equipment.
Since such denitration equipment for small-scale facilities is used in densely populated areas such as buildings, it is difficult to apply liquefied NH 3 .
Therefore, a method of using urea, which is easy to handle and safe, instead of liquefied NH 3 , is drawing attention.

【0003】尿素を還元剤に用いる脱硝法では、尿素を
気化して排ガス中に均一に混合することが高脱硝率を得
るために必要となり、従来から種々の気化方法が発明さ
れてきた。その代表的な方法としては(1)尿素水を直
接排ガス中に噴霧し蒸発・気化させる方法(特開昭63
−190623号公報、特開平1−47427号公
報)、(2)尿素水または固体状尿素を予め反応槽内で
気化・分解後、煙道内に注入する方法(特開平2−86
813号公報、特開平2−191528号公報)、ある
いは(3)尿素粉末を直接排ガス中に噴霧し気化分解さ
せる方法(特開平2−203923号公報)などが挙げ
られる。
In the denitration method using urea as a reducing agent, it is necessary to vaporize urea and mix it uniformly in the exhaust gas in order to obtain a high denitration rate, and various vaporization methods have been invented conventionally. As a typical method, (1) a method in which urea water is directly sprayed into exhaust gas to evaporate and vaporize (JP-A-63
-190623, JP-A-1-47427), (2) A method of injecting urea water or solid urea into a flue after vaporizing and decomposing it in a reaction tank in advance (JP-A-2-86).
No. 813, Japanese Patent Application Laid-Open No. 2-191528), or (3) a method in which urea powder is directly sprayed into exhaust gas and vaporized and decomposed (Japanese Patent Application Laid-Open No. 2-203923).

【0004】[0004]

【発明が解決しようとする課題】上記従来技術はいずれ
の場合も、尿素の完全な気化、排ガスとの均一混合、あ
るいは操作性などの点に問題があり、広く実用化される
には至ってない。たとえば、(1)の尿素水を排ガス中
へ噴霧する方法は液滴の蒸発速度が遅いため完全に気化
されなかったり、噴霧が不均一になって排ガスとの均一
混合がされにくいという問題がある。また、(3)に示
した固体状の尿素を排ガス中に吹き込む方法は、気化過
程でメラミンやビウレット様の難気化性物質を発生しや
すいため二次公害物質となるという問題があり、また粉
体供給の定量性の限界のためNOx濃度の変動の大きい
排ガスや低濃度NOx含有排ガスの脱硝には適さない。
中では(2)の予め尿素を気化・分解し、ガス状で排ガ
ス中に注入する方法は排ガスとの混合不均一、煙道内へ
のスケール発生および二次公害物質の発生などの問題が
生じない利点を有しているのみならず、定量性、排ガス
との均一混合あるいはNOx濃度の変動に対する追従性
に優れている。しかしながら、従来法による尿素の分解
気化法は、尿素の分解・気化器中に尿素の加熱生成物で
あるスケールを発生しやすいためスケール防止手段を設
ける必要があること、気化器内への固体尿素の定量供給
が困難である等の点により問題を残していた。本発明の
目的は、上記した従来技術の欠点をなくし、液化アンモ
ニアより安全で取扱いの容易な尿素をアンモニアと同様
に脱硝用還元剤として使用できる脱硝方法、装置を提供
することである。
In any of the above-mentioned prior arts, there are problems in complete vaporization of urea, uniform mixing with exhaust gas, operability, etc., and they have not been widely put into practical use. . For example, the method (1) of spraying urea water into the exhaust gas has a problem that the vaporization speed of the liquid droplets is slow so that it is not completely vaporized or that the spray becomes non-uniform and uniform mixing with the exhaust gas is difficult. . Further, the method of blowing solid urea into the exhaust gas as shown in (3) has a problem that it becomes a secondary pollutant because volatile substances such as melamine and biuret are easily generated in the vaporization process. It is not suitable for denitration of exhaust gas with a large fluctuation of NOx concentration or exhaust gas containing low concentration NOx because of the limit of quantitative supply of body.
Among them, (2) the method of vaporizing and decomposing urea in advance and injecting it into the exhaust gas in a gaseous state does not cause problems such as non-uniform mixing with the exhaust gas, generation of scale in the flue and generation of secondary pollutants. Not only is it advantageous, but it is also excellent in quantification, uniform mixing with exhaust gas, and followability to fluctuations in NOx concentration. However, in the conventional method for decomposing and vaporizing urea, it is necessary to provide scale prevention means because scale that is a heating product of urea is likely to be generated in the urea decomposing / vaporizing unit, and the solid urea in the vaporizing unit must be provided. However, there was a problem because it was difficult to supply a fixed amount of. An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to provide a denitrification method and apparatus in which urea, which is safer and easier to handle than liquefied ammonia, can be used as a reducing agent for denitrification similar to ammonia.

【0005】[0005]

【課題を解決するための手段】本発明の上記目的は次の
構成によって達成される。すなわち、排ガス中の窒素酸
化物を脱硝触媒により接触還元させる脱硝方法におい
て、アルカリ金属、アルカリ土類金属または希土類元素
の中のいずれか一種類以上の炭酸塩、ホウ酸塩または水
酸化物からなる塩基性化合物または無機強酸または有機
強酸のアンモニウム塩からなる酸性化合物のいずれかの
化合物のうち、少なくとも一種以上の化合物を含有する
水溶液からなる触媒液を加熱し、該加熱触媒液中に尿素
もしくは尿素水溶液を連続的に供給してアンモニアと二
酸化炭素を発生させると同時に水を蒸発させ、発生した
アンモニア、二酸化炭素および水蒸気の混合気体を排ガ
ス中に注入し、前記混合気体中のアンモニアによって排
ガス中の窒素酸化物を脱硝触媒上で接触還元する尿素を
用いた脱硝方法、または、排ガス中の窒素酸化物を排ガ
ス煙道中に設けられた脱硝触媒層により接触還元させる
脱硝装置において、アルカリ金属、アルカリ土類金属ま
たは希土類元素の中のいずれか一種類以上の炭酸塩、ホ
ウ酸塩または水酸化物からなる塩基性化合物または無機
強酸または有機強酸のアンモニウム塩からなる酸性化合
物のいずれかの化合物を少なくとも一種以上含有する水
溶液からなる触媒液を入れた反応槽と、該反応槽内の触
媒液を、少なくともその沸点まで加熱することのできる
加熱手段と、該加熱手段により加熱された反応槽内の触
媒液に尿素もしくは尿素水溶液を連続的に供給する尿素
もしくは尿素水溶液供給手段と、反応槽で発生したアン
モニア、二酸化炭素および水蒸気の混合気体を排ガス中
に注入する注入手段とを備えた尿素を用いた脱硝装置で
ある。
The above objects of the present invention can be achieved by the following constitutions. That is, in the denitration method in which nitrogen oxides in exhaust gas are catalytically reduced by a denitration catalyst, it is composed of at least one carbonate, borate or hydroxide of alkali metal, alkaline earth metal or rare earth element. Among the compounds of either the basic compound or the acidic compound consisting of an inorganic strong acid or an ammonium salt of an organic strong acid, a catalyst solution consisting of an aqueous solution containing at least one compound is heated, and urea or urea is added to the heated catalyst solution. Aqueous solution is continuously supplied to generate ammonia and carbon dioxide and at the same time water is evaporated, and a mixed gas of generated ammonia, carbon dioxide and water vapor is injected into the exhaust gas, and ammonia in the mixed gas causes NOx removal method using urea that catalytically reduces nitrogen oxides on NOx catalyst, or nitrogen oxidation in exhaust gas In a denitrification device for catalytically reducing carbon dioxide by a denitrification catalyst layer provided in the exhaust gas flue, the denitrification device is composed of at least one carbonate, borate or hydroxide of alkali metal, alkaline earth metal or rare earth element. At least a reaction tank containing a catalyst solution consisting of an aqueous solution containing at least one compound of a basic compound or an acidic compound consisting of an inorganic strong acid or an ammonium salt of an organic strong acid, and a catalyst solution in the reaction tank. Heating means capable of heating to the boiling point, urea or urea aqueous solution supply means for continuously supplying urea or urea aqueous solution to the catalyst solution in the reaction tank heated by the heating means, and ammonia generated in the reaction tank, It is a denitration device using urea, which is provided with an injection means for injecting a mixed gas of carbon dioxide and water vapor into exhaust gas.

【0006】本発明は排ガスとの混合不一致、煙道内へ
のスケール発生および二次公害物質発生などの問題を生
じないという利点を有している。さらに、本発明は従来
の気化方法である粉末尿素を300℃以上の高温触媒上
で気化する方法に比べると、100℃近辺の低温で加水
分解が可能であるなどユーティリティが低減でき、ま
た、尿素の分解気化器内に尿素の加熱生成物であるスケ
ールを発生することがないといった点で優れている。し
かし、アンモニア発生量の制御の点で問題がなお、残さ
れている。すなわち、本発明はNOx濃度の負荷変動に
対してアンモニア発生速度を制御する場合に、反応の制
御方法として尿素の供給量やキャリアガス量の制御だけ
では応答が悪く、アンモニア発生速度をコントロールす
ることができない。液体アンモニアを還元剤として用い
る脱硝方法では、NOx濃度の負荷変動に対する負荷応
答対策としてアキュームレータ方式が用いられている
が、本発明の脱硝方法においては、対象となるガスが発
生したアンモニアと二酸化炭素だけでなく、キャリアガ
スとさらに水蒸気を含んでいるため、巨大なアキューム
レータとなり使用できない。
The present invention has the advantage that problems such as incompatibility with exhaust gas, scale generation in the flue and generation of secondary pollutants do not occur. Further, the present invention can reduce the utility such as hydrolysis at a low temperature around 100 ° C, and can reduce the utility, as compared with the conventional vaporization method in which powdered urea is vaporized on a high temperature catalyst of 300 ° C or higher. It is excellent in that it does not generate scale that is a heating product of urea in the decomposition vaporizer. However, there is still a problem in controlling the amount of generated ammonia. That is, according to the present invention, when the ammonia generation rate is controlled with respect to the load fluctuation of the NOx concentration, the response is poor only by controlling the supply amount of urea or the carrier gas amount as a reaction control method, and the ammonia generation rate is controlled. I can't. In the denitration method using liquid ammonia as a reducing agent, the accumulator method is used as a load response countermeasure against the load fluctuation of NOx concentration, but in the denitration method of the present invention, only the ammonia and carbon dioxide generated by the target gas are generated. Not only that, it also contains carrier gas and water vapor, so it cannot be used as a huge accumulator.

【0007】そこで、前記本発明のアンモニア発生速度
の負荷追従性を改善するために前記尿素を用いた脱硝方
法を改良して触媒液の加熱容量または尿素もしくは尿素
水溶液の触媒液への供給量のうち少なくともいずれかを
増減させてアンモニアの発生速度を制御する方法、また
は、前記尿素を用いた脱硝装置を改良して、反応槽を反
応槽内の触媒液の沸点まで加熱することのできる尿素分
解反応領域と、触媒液の沸点より低い温度に保持してお
くための予備反応領域との二槽に分け、前記尿素分解反
応領域と予備反応領域内の触媒液が互いに相手方の領域
に移動可能なように連結手段を備える構成としても良
い。ここで、触媒液の容量と増減は、次のいずれか一つ
以上を用いることによって達成される。(1)当該触媒
液の入った槽を二槽連結させ、どちらか一方を反応尿素
分解反応槽、もう一方を予備反応槽として、これら二槽
間を液を移動させる。さらに尿素分解反応槽は沸点もし
くは沸点近傍に加熱し、尿素もしくは尿素水溶液を連続
的に供給してNH3とCO2を発生させると同時に水を蒸
発させ、予備反応槽は沸点より低い温度に保持してお
く。(2)当該触媒液の入った反応槽を沸点もしくは沸
点近傍に加熱する区間と沸点より低い温度に加熱する区
間とに分け、その各区間の液量を増減させ、かつ沸点も
しくは沸点近傍に加熱する区間に尿素もしくは尿素水溶
液を連続的に供給してNH3とCO2を発生させると同時
に水を蒸発させ、沸点より低い温度に加熱した区間は沸
点より低い温度に保持する。
Therefore, in order to improve the load followability of the ammonia generation rate of the present invention, the denitration method using urea is improved to improve the heating capacity of the catalyst solution or the supply amount of urea or urea aqueous solution to the catalyst solution. A method for controlling the generation rate of ammonia by increasing or decreasing at least any one of them, or a urea decomposition capable of heating the reaction tank to the boiling point of the catalyst liquid in the reaction tank by improving the denitration apparatus using the urea The reaction area and the preliminary reaction area for keeping the temperature lower than the boiling point of the catalyst solution are divided into two tanks, and the catalyst solutions in the urea decomposition reaction area and the preliminary reaction area can move to each other's area. As described above, the connection means may be provided. Here, the volume and increase / decrease of the catalyst liquid are achieved by using one or more of the following. (1) Two tanks containing the catalyst liquid are connected to each other, and one of them is used as a reaction urea decomposition reaction tank and the other is used as a preliminary reaction tank, and the liquid is moved between these two tanks. Further, the urea decomposition reaction tank is heated to or near the boiling point, urea or an aqueous urea solution is continuously supplied to generate NH 3 and CO 2 , and at the same time water is evaporated, and the preliminary reaction tank is kept at a temperature lower than the boiling point. I'll do it. (2) The reaction tank containing the catalyst liquid is divided into a zone for heating at or near the boiling point and a zone for heating to a temperature lower than the boiling point, and the amount of liquid in each zone is increased or decreased and heated to or near the boiling point. Urea or urea aqueous solution is continuously supplied to the section to generate NH 3 and CO 2 and at the same time water is evaporated, and the section heated to a temperature lower than the boiling point is kept at a temperature lower than the boiling point.

【0008】本発明を実施するに当たり、使用する触媒
液はアルカリ金属、アルカリ土類金属、希土類元素等の
水酸化物、炭酸塩、あるいはその他有機あるいは無機弱
酸塩など塩基触媒として作用する化合物、あるいはこれ
とは逆に硫酸、塩酸、燐酸などの鉱酸や有機強酸または
それらのアンモニウム塩等の弱塩基とからなる塩類など
酸触媒として作用する化合物のいずれか一方または酸触
媒と塩基触媒の混合物を水溶液として用いることができ
る。反応槽内の触媒液はその沸点の上昇を図るため高濃
度の触媒を含有する状態で使用することが望ましく、こ
のためには用いる触媒は溶解度の高いものが望ましい。
また酸や塩基を単独で用いた場合、尿素の分解生成物で
あるNH3やCO2と塩類を作るため尿素の分解が定常に
なるために長時間を要するため炭酸カリウム、炭酸ナト
リウムなどの炭酸塩や硫酸アンモニウムあるいは塩化ア
ンモニウムなどのアンモニウム塩を併用して使用すると
高結果を得やすい。また予め触媒液中に尿素を添加して
おくことにより速やかに定常状態にすることができる。
In carrying out the present invention, the catalyst liquid used is a hydroxide or carbonate of an alkali metal, an alkaline earth metal, a rare earth element or the like, or a compound acting as a base catalyst such as an organic or inorganic weak acid salt, or On the contrary, either one of the compounds acting as an acid catalyst such as a salt consisting of a mineral acid such as sulfuric acid, hydrochloric acid, phosphoric acid or a strong organic acid or a weak base such as an ammonium salt thereof, or a mixture of an acid catalyst and a base catalyst is used. It can be used as an aqueous solution. The catalyst liquid in the reaction tank is preferably used in a state of containing a high concentration of the catalyst in order to increase its boiling point, and for this purpose, the catalyst used has a high solubility.
Further, when an acid or a base is used alone, it takes a long time because the decomposition of urea becomes steady because it forms a salt with NH 3 or CO 2 which is a decomposition product of urea. It is easy to obtain high results when used in combination with a salt or an ammonium salt such as ammonium sulfate or ammonium chloride. Further, by adding urea to the catalyst solution in advance, the steady state can be quickly achieved.

【0009】反応槽内の触媒液の濃度は特に限定される
ものではないが、炭酸アルカリの場合1〜60wt%、
望ましくは10〜50wt%に選定すると好結果が得ら
れる。触媒液の濃度が希薄な場合には尿素の分解速度が
低下し、高すぎる場合には装置停止時に触媒液中の塩類
が凝固しやすく望ましくない。一方尿素の濃度、供給量
は必要なアンモニアの濃度と水の蒸発量から選定され
る。また、加熱触媒液の温度はアンモニア、二酸化炭素
の他に水蒸気を発生させるために、100℃以上である
ことが望ましい。さらに、反応槽で発生したアンモニ
ア、二酸化炭素および水蒸気の混合気体を空気、窒素ガ
ス、あるいは燃焼排ガスなどからなるキャリアガスによ
って排ガス中に搬送することもできる。
The concentration of the catalyst liquid in the reaction tank is not particularly limited, but in the case of alkali carbonate, 1 to 60 wt%,
It is preferable to select 10 to 50 wt% to obtain good results. When the concentration of the catalyst solution is low, the decomposition rate of urea decreases, and when it is too high, the salts in the catalyst solution tend to coagulate when the apparatus is stopped, which is not desirable. On the other hand, the urea concentration and supply amount are selected based on the required ammonia concentration and water evaporation amount. Further, the temperature of the heated catalyst liquid is preferably 100 ° C. or higher in order to generate water vapor in addition to ammonia and carbon dioxide. Further, a mixed gas of ammonia, carbon dioxide and water vapor generated in the reaction tank can be carried into the exhaust gas by a carrier gas such as air, nitrogen gas, or combustion exhaust gas.

【0010】本発明は、尿素の加水分解を促進するため
高濃度の酸もしくは塩基触媒液中に尿素または尿素水溶
液を添加し尿素をアンモニア(NH3)と二酸化炭素
(CO2)に分解すると共に水を蒸発させて発生した水
蒸気で尿素分解ガスの希釈と系外へパージを行うことを
基本原理にしている。従って、尿素の供給方法は尿素を
予め、水溶液として触媒液に供給するのみならず、固体
尿素と水を別々に触媒液に供給して、触媒液中で水蒸気
を発生させる方法等の変形も本発明の範囲内である。さ
らに、触媒液を入れた尿素分解のための反応槽内に撹拌
翼を設けるなど改良によって発明の範囲が制限されるも
のではない。また、本発明の脱硝方法を実現するために
用いる脱硝触媒には、酸化チタンにバナジウム、モリブ
デン、タングステンなどの酸化物を担持した触媒やゼオ
ライト遷移金属を担持したものや酸化鉄の成形体等、公
知のハニカム状、板状、粒状などの触媒が使用できる。
In order to accelerate the hydrolysis of urea, the present invention decomposes urea into ammonia (NH 3 ) and carbon dioxide (CO 2 ) by adding urea or an aqueous urea solution into a highly concentrated acid or base catalyst solution. The basic principle is to dilute the urea decomposition gas and purge it out of the system with water vapor generated by evaporating water. Therefore, the method of supplying urea is not limited to supplying urea to the catalyst solution as an aqueous solution in advance, but it is also possible to modify the method such as supplying solid urea and water separately to the catalyst solution to generate steam in the catalyst solution. It is within the scope of the invention. Further, the scope of the invention is not limited by the improvement such as providing a stirring blade in the reaction tank for decomposing urea containing the catalyst solution. Further, the denitration catalyst used to realize the denitration method of the present invention, vanadium in titanium oxide, molybdenum, a catalyst carrying oxides such as tungsten and zeolite transition metal or iron oxide molded article, Well-known honeycomb, plate, or granular catalysts can be used.

【0011】[0011]

【作用】現在広く実用化されているNH3を還元剤に用
いた脱硝方法と同様の簡便さと制御性に優れた尿素を用
いた脱硝法を提供するため、固体の尿素を排ガスとの混
合が容易で注入量の制御もしやすいガス状にして使用す
ることが望ましい。本発明者は尿素の分解気化法につい
て詳細に検討した結果、尿素水を酸触媒、もしくは塩基
触媒で(1)式のごとくNH3とCO2に加水分解して用
いる方法が良いという結論に達した。 (NH22CO+H2O=2NH3+CO (1) しかしながら、(1)式の反応の平衡は左辺に大きく傾
いており(平衡常数は1/104のオーダー)、希薄な
尿素水や高温高圧下でなければ従来脱硝法のNH3に変
わるような高い濃度のNH3を含むガスが得られないば
かりか、装置が巨大なものになったり、高圧容器が必要
になる。これを避けるためには、発生したNH3とCO2
の分圧を下げると共に触媒反応槽系外に速やかに取り除
いてやる必要がある。本発明は尿素水の水の蒸発を巧み
に利用してこれを達成したものである。
[Function] In order to provide a denitrification method using urea, which has the same simplicity and controllability as the denitrification method using NH 3 as a reducing agent, which is widely used at present, it is possible to mix solid urea with exhaust gas. It is desirable to use it in the form of gas that is easy and the injection amount can be controlled easily. As a result of detailed examination of the decomposition vaporization method of urea, the present inventor came to the conclusion that it is preferable to use a method in which urea water is hydrolyzed into NH 3 and CO 2 with an acid catalyst or a base catalyst as shown in formula (1). did. (NH 2 ) 2 CO + H 2 O = 2NH 3 + CO 2 (1) However, the equilibrium of the reaction of the equation (1) is largely inclined to the left side (equilibrium constant is of the order of 1/10 4 ), and diluted urea water or Not only under high temperature and high pressure conditions, a gas containing a high concentration of NH 3 that can replace NH 3 of the conventional denitration method cannot be obtained, but also the apparatus becomes huge and a high pressure container is required. In order to avoid this, the generated NH 3 and CO 2
It is necessary to lower the partial pressure of and remove it to the outside of the catalytic reaction tank system promptly. The present invention achieves this by skillfully utilizing the evaporation of urea water.

【0012】尿素は酸触媒あるいは塩基触媒の作用によ
って(1)式のように加水分解されるが、通常加熱した
だけでは、前記加水分解反応のNH3とCO2の分圧はあ
まり高くなく、直ちに液相と気相とで平衡してそれ以上
尿素の分解がほとんど進行しなくなり還元剤として使用
するに必要な速度が得られない。これに対し本発明では
触媒液を高濃度にして触媒液を沸点もしくは沸点近傍に
維持する。触媒液を沸点もしくは沸点近傍に保つこと
で、尿素水として添加した水を速やかに蒸発させること
ができ、発生した水蒸気がNH3やCO2の分圧を下げて
(1)の反応を促進させる。更に発生したガス成分は直
ちに系外へ取り除かれるため、これによって更に(1)
式の反応が促進される。これに加えてN2、空気または
燃焼排ガスをキャリアガスとして触媒液に吹き込むこと
により上記した作用が促進されるだけでなく水蒸気の露
点の上昇によって定常的に発生ガス、水蒸気混合物を排
ガス煙道内に吹き込むことができるようになる。排ガス
煙道内に吹き込まれたNH3、CO2、水蒸気混合物は排
ガスと混合されるが、NH3が水蒸気によって希釈され
たガス状で煙道内に吹き込まれるため、従来の固体尿素
や尿素水の吹き込みのような偏流を起こしたり未気化の
尿素液滴を発生することがなく、容易に均一な混合を達
成でき高性能の脱硝装置を構成することができる。
Urea is hydrolyzed by the action of an acid catalyst or a base catalyst as shown in the formula (1), but normally only by heating, the partial pressure of NH 3 and CO 2 in the hydrolysis reaction is not so high, Immediately, the liquid phase and the gas phase are in equilibrium, and the decomposition of urea hardly progresses any more, and the rate required for use as a reducing agent cannot be obtained. On the other hand, in the present invention, the concentration of the catalyst liquid is increased to maintain the catalyst liquid at or near the boiling point. By keeping the catalyst liquid at or near the boiling point, the water added as urea water can be quickly evaporated, and the generated steam lowers the partial pressure of NH 3 and CO 2 to accelerate the reaction (1). . Further, the generated gas component is immediately removed to the outside of the system.
The reaction of the formula is accelerated. In addition to this, by blowing N 2 , air or combustion exhaust gas as a carrier gas into the catalyst liquid, not only the above-mentioned action is promoted but also the generated gas and steam mixture is constantly introduced into the exhaust gas flue due to the rise of the dew point of steam. You will be able to breathe in. The NH 3 , CO 2 , and steam mixture blown into the exhaust gas flue is mixed with the exhaust gas, but since NH 3 is blown into the flue as a gas diluted with water vapor, the conventional solid urea or urea water is blown in. It is possible to easily achieve uniform mixing and to configure a high-performance denitration device without causing such a drift as described above or generating unvaporized urea droplets.

【0013】さらに、本発明者らは尿素からのアンモニ
ア発生速度の負荷追従性を改善するために、尿素の酸あ
るいはアルカリ加熱溶液中における加水分解反応の特性
を詳細に検討し、その特性を利用して容易にアンモニア
発生速度を制御する方法を見いだした。前記式(1)の
尿素の酸およびアルカリ触媒による加水分解反応は次式
(2)、(3)のように進行する。 (NH22CO=NCO-+NH3 (2) NCO-+H2O=NH3+CO (3) このときのアンモニア発生量と尿素供給量のモル比は
2:1でアンモニア発生速度は尿素の供給速度に比例
し、尿素の供給速度を2倍にすると、アンモニアも2倍
発生し、尿素供給速度を1/2にすると、アンモニア発
生速度も1/2となる。しかし、本発明者等の検討結
果、アンモニアの発生速度は、触媒中に存在する未反応
の尿素および/または反応中間体(NCO-)の量にも
比例することが明らかになった。図9にアンモニア発生
速度と触媒液中の窒素含有量(以下、N量と言う)との
関係を示すが、尿素の供給速度と同時に触媒液中のN量
も変わらなければアンモニア発生速度は変化しないこと
が分かる。以上のように、アンモニアの発生速度の制御
には尿素の供給速度のみでなく、触媒液中のN量を制御
できる工夫が必要となる。触媒液中のN量を迅速に変化
させることは難しいが、本発明者はその方法として、加
水分解反応系内に含まれる触媒自体の量を変化させる方
法が良いという結論に達した。
Furthermore, the present inventors have studied in detail the characteristics of the hydrolysis reaction of urea in an acid or alkali heating solution in order to improve the load followability of the ammonia generation rate from urea, and utilize the characteristics. Then, the method of easily controlling the ammonia generation rate was found. The hydrolysis reaction of urea of the formula (1) with an acid and an alkali catalyst proceeds as in the following formulas (2) and (3). (NH 2 ) 2 CO = NCO + NH 3 (2) NCO + H 2 O = NH 3 + CO 2 (3) At this time, the molar ratio of the ammonia generation amount and the urea supply amount is 2: 1 and the ammonia generation rate is urea. When the urea supply rate is doubled, ammonia is also generated twice, and when the urea supply rate is 1/2, the ammonia generation rate is also 1/2. However, as a result of studies by the present inventors, it was revealed that the generation rate of ammonia is proportional to the amount of unreacted urea and / or reaction intermediate (NCO ) present in the catalyst. FIG. 9 shows the relationship between the ammonia generation rate and the nitrogen content in the catalyst solution (hereinafter referred to as N content). If the N rate in the catalyst solution does not change at the same time as the urea supply rate, the ammonia generation rate changes. I know I won't. As described above, in order to control the generation rate of ammonia, it is necessary to devise not only the supply rate of urea but also the amount of N in the catalyst liquid. Although it is difficult to change the amount of N in the catalyst solution rapidly, the present inventor has concluded that a method of changing the amount of the catalyst itself contained in the hydrolysis reaction system is preferable.

【0014】本発明では、反応槽と予備反応槽を連結さ
せ、触媒液量を反応槽と予備触媒槽間を循環させること
によって自由に変化できる構造になっている。例えば、
アンモニア発生速度を現状の1/2にする場合、尿素供
給速度を1/2にするとともに反応槽の触媒液の1/2
量を予備触媒槽へと移動させる。アンモニア発生速度を
2倍にする場合、尿素供給速度を2倍にするとともに反
応槽の触媒量と同量の触媒液を予備反応槽から反応槽へ
と移動させる。このように触媒量を変化させることは触
媒液中のN量を変化させることにほかならない。このよ
うな操作により簡単かつ迅速にアンモニア発生速度を制
御することが可能となる。
The present invention has a structure in which the reaction tank and the preliminary reaction tank are connected and the amount of the catalyst liquid can be freely changed by circulating between the reaction tank and the preliminary catalyst tank. For example,
When the ammonia generation rate is halved from the current rate, the urea supply rate is halved and the catalyst solution in the reaction tank is halved.
Transfer the amount to the pre-catalyst tank. When the ammonia generation rate is doubled, the urea supply rate is doubled and the same amount of catalyst solution as the catalyst in the reaction tank is moved from the preliminary reaction tank to the reaction tank. Changing the amount of catalyst in this way is nothing but changing the amount of N in the catalyst liquid. By such an operation, the ammonia generation rate can be controlled easily and quickly.

【0015】このとき予備反応槽へ移動した一時的に使
用しない触媒液中の未反応尿素ならびに反応中間体が加
水分解によりNH3およびCO2を発生する恐れがある
が、これは、この加水分解反応が触媒液が沸点もしくは
沸点近傍でなければほとんど進行しないという特性を利
用すれば、容易に抑制することができる。すなわち、本
発明は触媒液を高濃度にして沸点が100℃以上のもの
を用いることで、酸および塩基性触媒による尿素の加水
分解を促進させることを特徴としているものと、逆に反
応系を沸点より低い温度に維持すれば、この反応の進行
を抑制することができ、反応に使用しない触媒液からの
NH3の発生を防ぐことを利用したものである。このよ
うに、この反応の特性を巧み利用することによって反応
に使用しない触媒からのNH3の発生を抑制し、触媒液
の循環によるアンモニア発生速度の制御を可能にしてい
る。
At this time, unreacted urea and reaction intermediates in the catalyst solution that is temporarily not used and moved to the preliminary reaction tank may generate NH 3 and CO 2 by hydrolysis, which is caused by this hydrolysis. It can be easily suppressed by utilizing the property that the reaction hardly proceeds unless the catalyst liquid has the boiling point or near the boiling point. That is, the present invention is characterized by accelerating the hydrolysis of urea by an acid and basic catalyst by using a catalyst solution having a high concentration and a boiling point of 100 ° C. or higher. By maintaining the temperature lower than the boiling point, the progress of this reaction can be suppressed, and the use of preventing the generation of NH 3 from the catalyst liquid not used in the reaction is utilized. As described above, by skillfully utilizing the characteristics of this reaction, the generation of NH 3 from the catalyst not used in the reaction is suppressed, and the ammonia generation rate can be controlled by circulating the catalyst solution.

【0016】[0016]

【実施例】本発明の一実施例を図面と共に説明する。ま
ず単独の反応槽を用いる場合の実施例を説明する。 全体の構成 図1に単独の反応槽を用いる発明を実施するための脱硝
装置のフローの一例を示す。図1において、1〜40w
t%の尿素水1を入れたタンク2内から配管10を経て
ポンプ3により尿素水1は反応槽6に送られる。反応槽
6内でヒータ7により沸点もしくはその近傍まで加熱さ
れた数十wt%の濃度の触媒液9により尿素水1の尿素
は加水分解される。尿素は酸あるいは塩基触媒の作用に
よって(1)式のように加水分解されるが、通常加熱し
ただけでは、前記加水分解反応のNH3とCO2の分圧は
あまり高くなく、直ちに液相と気相とで平衡してそれ以
上尿素の分解がほとんど進行しなくなり還元剤として使
用するのに必要な速度が得られない。これに対し本実施
例では触媒液9を高濃度にして沸点を100℃以上に保
つため、尿素水として添加した水を速やかに蒸発させ、
発生した水蒸気がNH3やCO2の分圧を下げて(1)の
反応を促進させる。更に発生した蒸気は配管12により
直ちに系外へ取り除かれるため、これによって更に
(1)式の反応が促進される。これに加えて図1に示し
たようにN2や空気をキャリアガスとしてポンプ4によ
り、配管11から反応槽6内の触媒液9に吹き込むこと
により発生NHとCOの分圧を下げるとともに、触
媒反応系外にこれらの生成物を速やかに排出する作用が
促進されるだけでなく、水蒸気の露点の上昇によって定
常的に発生ガス、水蒸気混合物を配管12を通じて注入
口5から排ガス煙道19内に吹き込むことができるよう
になる。注入口5から煙道19内に吹き込まれたN
3、CO2、水蒸気混合物は排ガスと混合されるが、N
3が水蒸気によって希釈されたガス状で煙道内に吹き
込まれるため、従来の固体尿素や尿素水の吹き込みのよ
うな偏流を起こしたり未気化の尿素液滴を発生すること
がなく、容易に均一な混合を達成でき高性能の脱硝装置
を構成することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. First, an example in the case of using a single reaction tank will be described. Overall Configuration FIG. 1 shows an example of the flow of a denitration apparatus for carrying out the invention using a single reaction tank. In FIG. 1, 1-40w
The urea water 1 is sent to the reaction tank 6 by the pump 3 from the tank 2 containing t% urea water 1 through the pipe 10. Urea in the urea water 1 is hydrolyzed by the catalyst liquid 9 having a concentration of several tens wt% which is heated to the boiling point or its vicinity by the heater 7 in the reaction tank 6. Urea is hydrolyzed by the action of an acid or base catalyst as shown in formula (1), but normally only by heating, the partial pressure of NH 3 and CO 2 in the hydrolysis reaction is not so high, and urea is immediately converted into a liquid phase. In the equilibrium with the gas phase, the decomposition of urea hardly progresses any more, and the rate required for use as a reducing agent cannot be obtained. On the other hand, in this embodiment, in order to make the concentration of the catalyst liquid 9 high and maintain the boiling point at 100 ° C. or higher, the water added as urea water is rapidly evaporated,
The generated water vapor lowers the partial pressure of NH 3 and CO 2 to accelerate the reaction (1). Further, the generated steam is immediately removed from the system by the pipe 12, so that the reaction of the formula (1) is further promoted. In addition to this, as shown in FIG. 1, by blowing N 2 or air as a carrier gas with the pump 4 from the pipe 11 into the catalyst liquid 9 in the reaction tank 6, the partial pressure of generated NH 3 and CO 2 is lowered and Not only the action of promptly discharging these products to the outside of the catalytic reaction system is promoted, but also the generated gas / steam mixture is constantly generated by the rise of the dew point of the steam through the pipe 12 from the inlet 5 to the exhaust gas flue 19 You will be able to blow into it. N blown into the flue 19 from the inlet 5
The H 3 , CO 2 , steam mixture is mixed with the exhaust gas,
Since H 3 is blown into the flue in the form of a gas diluted with water vapor, it does not cause uneven flow like the conventional blowing of solid urea or urea water and does not generate unvaporized urea droplets, and it is easily uniform. Therefore, a high-performance denitration device can be constructed with which excellent mixing can be achieved.

【0017】尿素の供給量と水の供給量を単独で替えて
制御しやすくするために図2のごとく尿素水/固体尿素
の供給系と水の供給系を分けても良い。触媒液9は通
常、沸点近傍か沸点の温度に保たれ、蒸発量に見合った
熱量が外熱もしくは内熱ヒータ7などで与えられる。ま
た、気液接触を良好にするため反応槽6内に撹拌器(図
示せず)を設けることもできる。また、分解ガス中の水
蒸気濃度を低下させて水の露点を下げるとともに煙道1
9内へのガス供給を良好にするために空気、窒素、ある
いは排ガス等をキャリアガスとして反応槽6内に吹き込
むと好結果が得られる。その供給量はどのような量であ
っても良いが、多すぎると熱損失が増加して好ましくは
ない。上記した反応槽6での尿素の分解生成物であるN
3が排ガス中に注入、混合された後、煙道19内の脱
硝用触媒層8に導かれる。排ガス中のNOxは尿素の分
解生成物であるNH3によって還元される。脱硝反応温
度は公知のアンモニアを還元剤とする場合と同様200
〜600℃であり、尿素の注入量はアンモニア換算でN
Ox量に対し0を越えて2程度の範囲で用いる。
The urea water / solid urea supply system and the water supply system may be separated as shown in FIG. 2 so that the supply amount of urea and the supply amount of water are independently changed to facilitate control. The catalyst liquid 9 is usually maintained at or near the boiling point, and the amount of heat corresponding to the amount of evaporation is given by the external heat or the internal heater 7. Further, a stirrer (not shown) may be provided in the reaction tank 6 to improve the gas-liquid contact. In addition, the water vapor concentration in the decomposed gas is lowered to lower the dew point of water, and the flue 1
Good results can be obtained by blowing air, nitrogen, exhaust gas or the like into the reaction tank 6 as a carrier gas in order to improve the gas supply to the inside. The supply amount may be any amount, but if it is too large, heat loss increases, which is not preferable. N which is a decomposition product of urea in the reaction tank 6 described above.
After H 3 is injected into the exhaust gas and mixed, it is guided to the denitration catalyst layer 8 in the flue 19. NOx in the exhaust gas is reduced by NH 3 , which is a decomposition product of urea. The denitration reaction temperature is 200 as in the case of using known ammonia as a reducing agent.
The temperature is up to 600 ° C, and the injection amount of urea is N in terms of ammonia.
It is used in the range of about 0 to 2 with respect to the amount of Ox.

【0018】実施例1 尿素6g、炭酸カリウム6.9gを水50gに溶解した
ものをビーカに入れ砂浴を用いて2時間加熱し、水溶液
を沸騰させながら尿素を分解させると共に水の一部を蒸
発させた。この時の水溶液の平均温度は約107℃であ
った。残った水溶液の重量を測定すると共に高速液体ク
ロマトグラフ装置により表1の条件で尿素の濃度を測定
し、得られた尿素の残量から(4)式により尿素の分解
率を求めた。 尿素分解率(%)=(初期尿素量−尿素残量)/(初期
尿素量)×100 (4) ただし、式(4)で尿素量の単位はいずれもグラムであ
る。
Example 1 6 g of urea and 6.9 g of potassium carbonate dissolved in 50 g of water were placed in a beaker and heated in a sand bath for 2 hours to decompose urea while boiling the aqueous solution and to partially decompose water. Evaporated. The average temperature of the aqueous solution at this time was about 107 ° C. The weight of the remaining aqueous solution was measured, the concentration of urea was measured under the conditions shown in Table 1 by a high performance liquid chromatograph, and the decomposition rate of urea was determined from the obtained residual amount of urea by the formula (4). Urea decomposition rate (%) = (initial urea amount-urea residual amount) / (initial urea amount) × 100 (4) However, in the formula (4), the unit of the urea amount is gram.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例2〜6 実施例1の炭酸カリウム6.9gに替えて、炭酸ナトリ
ウムNa2CO3を5.3g、水酸化バリウムBa(O
H)2・8H2Oを16.3g、水酸化セリウムCe(O
H)2を8.7g、硫酸アンモニウム(NH42SO4
6.6g、炭酸カリウムを3.5g、塩化アンモニウム
を3.3gをそれぞれ用いた他は実施例1と同様にして
水の蒸発量と尿素の分解率を求めた。
Examples 2 to 6 In place of 6.9 g of potassium carbonate of Example 1, 5.3 g of sodium carbonate Na 2 CO 3 and barium hydroxide Ba (O) were used.
H) 2 · 8H 2 O and 16.3 g, cerium hydroxide Ce (O
H) 2 8.7 g, ammonium sulfate (NH 4 ) 2 SO 4 6.6 g, potassium carbonate 3.5 g, and ammonium chloride 3.3 g were used in the same manner as in Example 1 except that water was evaporated. The amount and the decomposition rate of urea were obtained.

【0021】比較例1〜5 実施例1〜6と同様の水溶液を用いて沸騰させないよう
に99〜101℃に加熱した油浴に入れ30分間保持し
た。しかる後、実施例1と同様して水の蒸発量と尿素の
分解率を求めた。実施例1〜6および比較例1〜5で得
られた結果を表2にまとめて示す。
Comparative Examples 1 to 5 The same aqueous solutions as in Examples 1 to 6 were used and placed in an oil bath heated to 99 to 101 ° C. for 30 minutes so as not to boil. Then, in the same manner as in Example 1, the evaporation amount of water and the decomposition rate of urea were obtained. The results obtained in Examples 1 to 6 and Comparative Examples 1 to 5 are summarized in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】表2において実施例1〜6はいずれも高い
尿素分解率が得られているのに対し、実施例1〜6とほ
ぼ同じ温度に沸騰させることなく加熱され、水の蒸発量
が少ない比較例1〜5はほとんど尿素が分解しないこと
が分かる。本結果は、酸もしくは塩基触媒を用いて尿素
の分解を促進するためには生成物を水蒸気と共に系外に
取り除くことが必須であることを示すものであり、これ
を利用した本発明の方法が優れたものであることを示し
ている。
In Table 2, in all of Examples 1 to 6, a high urea decomposition rate was obtained, whereas in Example 1, the sample was heated to the same temperature as in Examples 1 to 6 without boiling, and the evaporation amount of water was small. It can be seen that Comparative Examples 1 to 5 hardly decompose urea. This result shows that in order to accelerate the decomposition of urea by using an acid or base catalyst, it is essential to remove the product out of the system together with steam, and the method of the present invention utilizing this is It shows that it is excellent.

【0024】実施例7 定常的な尿素の分解を確認するため、図3のような系統
を持つ実験装置を用い、表3の条件で2.3wt%の尿
素水溶液を連続的に送入した場合のアンモニアとCO2
の発生量を測定した。
Example 7 In order to confirm steady decomposition of urea, an experimental apparatus having a system as shown in FIG. 3 was used, and 2.3 wt% urea aqueous solution was continuously fed under the conditions of Table 3. Ammonia and CO 2
Was measured.

【0025】[0025]

【表3】 [Table 3]

【0026】図3において、2.3wt%の尿素水1は
タンク2内から配管10を経てポンプ3により反応槽6
に送られ、尿素水1中の尿素は、反応槽6内でヒータ7
により沸点もしくはその近傍まで加熱された数十wt%
の濃度の炭酸カリウムと尿素からなる触媒液9により加
水分解される。分解生成物は配管13に設けられた冷却
器16により冷却され、トラップ17で凝縮する成分を
除き、発生するCO2を配管14を介してモニタ18に
導き測定する。なお、尿素を予め投入するのは早く定常
にするためである。アンモニアは5%硫酸水溶液でトラ
ップしたものをイオンクロマトグラフ法で定量し、CO
2は赤外線吸収式モニタで測定した。図4にCOおよび
NH3の発生速度とそれから計算される尿素の分解率を
経時変化を示した。約2時間以降ほぼ100%の尿素分
解率が得られ、注入した尿素に見合うアンモニアが定常
的に得られることが分かる。
In FIG. 3, 2.3 wt% of urea water 1 is supplied from the tank 2 through the pipe 10 to the reaction tank 6 by the pump 3.
The urea in the urea water 1 is sent to the heater 7 in the reaction tank 6.
Heated up to or near the boiling point by tens of wt%
It is hydrolyzed by the catalyst liquid 9 composed of potassium carbonate and urea having a concentration of. The decomposition products are cooled by the cooler 16 provided in the pipe 13, the components condensed in the trap 17 are removed, and the generated CO 2 is guided to the monitor 18 via the pipe 14 and measured. It should be noted that the urea is preliminarily added in order to make it steady quickly. Ammonia was trapped with a 5% sulfuric acid aqueous solution and quantified by ion chromatography, and CO
2 was measured with an infrared absorption monitor. FIG. 4 shows the CO and NH 3 generation rates and the decomposition rate of urea calculated from them with time. It can be seen that after about 2 hours, a urea decomposition rate of almost 100% was obtained, and ammonia corresponding to the injected urea was constantly obtained.

【0027】実施例8 実施例7で発生させた尿素の分解ガスを図1の系統を有
する脱硝装置を用い表4の条件で脱硝試験を行った。得
られた脱硝率は、尿素の分解ガスをアンモニアガスに置
き換えた場合と等しく95%以上の値であった。
Example 8 A denitration test was conducted on the decomposition gas of urea generated in Example 7 under the conditions shown in Table 4 using a denitration apparatus having the system shown in FIG. The obtained denitration rate was 95% or more, which was the same as when the urea decomposition gas was replaced with ammonia gas.

【0028】[0028]

【表4】 [Table 4]

【0029】次に反応槽と予備反応槽を用いる発明の実
施例について説明する。 全体構成 この実施例は、尿素の加水分解触媒液を反応に使用する
系と反応に使用しない系とにわけ、反応に使用しない系
の触媒液は沸点より低い温度に保ち、触媒液をその2つ
の系間で循環させることを基本原理としている。したが
って、図5のフローで示される反応槽と予備反応槽をも
設ける装置の他、反応槽を3つ以上設ける方法、ひとつ
の反応槽で沸点もしくは沸点近傍に加熱する区間と沸点
より低い温度に保つ区間とに分ける装置などの変形も本
発明の範囲内である。図5において、1〜40wt%の
尿素水21を入れたタンク22内から配管42、43を
経てポンプ23により尿素水21は数十wt%の濃度の
触媒液31を入れた反応槽26に送られる。反応槽26
には予備反応槽27が配管48を介して接続されてい
る。予備反応槽27には槽内の触媒液31を一定温度に
保温するための加熱手段30が設けられている。反応槽
26と予備反応槽27との間の液の移動はポンプ33を
用いて行う。また、トラップ28はポンプ33への逆流
防止のために設けられている。また、反応槽26には前
記図1とフローと同様にN2や空気をキャリアガスとし
てポンプ24により配管44、45から反応槽26内の
触媒液31に吹き込むことにより発生NH3とCO2の分
圧を下げるとともに、触媒反応系外にこれらの生成物を
速やかに排出する作用が促進されるだけでなく、水蒸気
の露点の上昇によって定常的に発生ガス、水蒸気混合物
を配管46を通じて注入口25から脱硝触媒30の配置
された排ガス煙道39内に吹き込むことができるように
なっている。上記構成を持つ図5のフローにおいて、反
応槽26中に導入された尿素水21中の尿素は、反応槽
26内でヒータ29により沸点もしくはその近傍まで加
熱された数十wt%の濃度の触媒液31により加水分解
される。この触媒反応については図1のフローにおける
反応槽6内での反応と同一である。
Next, examples of the invention using a reaction tank and a preliminary reaction tank will be described. Overall Configuration In this example, the hydrolysis catalyst solution of urea is divided into a system used for the reaction and a system not used for the reaction, the catalyst solution of the system not used for the reaction is kept at a temperature lower than the boiling point, and the catalyst solution is The basic principle is to circulate between two systems. Therefore, in addition to the apparatus shown in the flow chart of FIG. 5, which is also provided with a reaction tank and a preliminary reaction tank, a method of providing three or more reaction tanks, a section in which one reaction tank heats at or near the boiling point and a temperature lower than the boiling point Modifications such as a device for dividing into a keeping section are also within the scope of the present invention. In FIG. 5, the urea water 21 is sent from a tank 22 containing 1 to 40 wt% of urea water 21 to a reaction tank 26 containing a catalyst solution 31 having a concentration of several tens wt% by a pump 23 via pipes 42 and 43. To be Reaction tank 26
The pre-reaction tank 27 is connected to the via pipe 48. The preliminary reaction tank 27 is provided with heating means 30 for keeping the catalyst liquid 31 in the tank at a constant temperature. The pump 33 is used to move the liquid between the reaction tank 26 and the preliminary reaction tank 27. Further, the trap 28 is provided to prevent backflow to the pump 33. Further, in the same manner as in the flow shown in FIG. 1 above, the reaction tank 26 generates NH 3 and CO 2 by blowing N 2 or air as a carrier gas into the catalyst liquid 31 in the reaction tank 26 from the pipes 44 and 45 by the pump 24. Not only is the action of promptly discharging these products out of the catalytic reaction system promoted while the partial pressure is lowered, but also the generated gas / steam mixture is constantly introduced through the pipe 46 due to the rise of the dew point of the steam. It can be blown into the exhaust gas flue 39 in which the denitration catalyst 30 is arranged. In the flow of FIG. 5 having the above-described configuration, the urea in the urea water 21 introduced into the reaction tank 26 is heated to a boiling point or its vicinity by a heater 29 in the reaction tank 26 and is a catalyst having a concentration of several tens wt%. It is hydrolyzed by the liquid 31. This catalytic reaction is the same as the reaction in the reaction tank 6 in the flow of FIG.

【0030】沸点もしくはその近傍まで加熱された数十
wt%の濃度の触媒液31中に1〜40wt%の尿素水
溶液がポンプ23で注入され、反応槽26内の尿素は酸
あるいは塩基触媒の作用によって加水分解される。反応
槽26内で発生したNH3とCO2、および尿素水として
添加された水の蒸発による水蒸気は、反応槽26に吹き
込まれたキャリアガスとともに配管46を通じて煙道3
9内に吹き込まれる。このとき、排ガス中のNOx濃度
の変動に対して、NH3発生量を増減させる必要がある
場合、次のような操作を行う。NH3発生量を少なくす
る場合、反応槽26中に配管48によって連結された予
備反応槽27に、ポンプ33を用いて反応槽26中の触
媒液31の一部を送り、尿素供給量を減少させる。逆に
NH3発生量を大きくする必要のある場合には、予備反
応槽27から反応槽26に触媒液31を送り尿素供給量
を増加させる。NH3発生量を増減させる場合には、反
応槽26と予備反応槽27との間の触媒液31の移動の
外に、キャリアガス量を増減させる方法とかヒータ29
の加熱度合いの調整による水蒸気発生量を増減させる方
法を併用してもよい。
A 1 to 40 wt% urea aqueous solution is injected by a pump 23 into a catalyst liquid 31 having a concentration of several tens wt% heated to or near the boiling point, and urea in the reaction tank 26 acts as an acid or base catalyst. Is hydrolyzed by. The NH 3 and CO 2 generated in the reaction tank 26, and the steam generated by the evaporation of the water added as urea water together with the carrier gas blown into the reaction tank 26 pass through the pipe 46 and the flue 3
It is blown into 9. At this time, if it is necessary to increase or decrease the NH 3 generation amount with respect to the fluctuation of the NOx concentration in the exhaust gas, the following operation is performed. To reduce the amount of NH 3 generated, the pump 33 is used to send a part of the catalyst liquid 31 in the reaction tank 26 to the preliminary reaction tank 27 connected to the reaction tank 26 by the pipe 48 to reduce the urea supply amount. Let On the contrary, when it is necessary to increase the NH 3 generation amount, the catalyst liquid 31 is sent from the preliminary reaction tank 27 to the reaction tank 26 to increase the urea supply amount. When increasing or decreasing the NH 3 generation amount, a method of increasing or decreasing the carrier gas amount in addition to the movement of the catalyst liquid 31 between the reaction tank 26 and the preliminary reaction tank 27 or the heater 29 is used.
The method of increasing or decreasing the amount of steam generated by adjusting the heating degree may be used in combination.

【0031】また、触媒液31の反応槽26と予備反応
槽27との間の移動手段としては、ポンプ33で触媒液
31を吸引・押し込む方法以外に、ガスで加圧・減圧さ
せる方法を用いてもよい。また、ポンプ33の位置は反
応槽26と予備反応槽27の間でもよく、ポンプを2個
以上設け、増加ラインと減少ラインとに分けてもよい。
予備反応槽27は沸点より低い温度で保つ必要がある
が、あまり低い温度に保つと触媒の溶解度以下になって
触媒が析出したり、また、反応系に戻したときに反応温
度が低下するという問題を生じるため、注意が必要であ
る。予備反応槽27内の触媒は、沸点より低い温度に維
持しておけば、その中に含まれる未反応の尿素および反
応中間体が加水分解することを抑制できるが、触媒液3
1を撹拌することなどにより多少の分解は生じるため、
激しい撹拌、ガスバブリングなどは行わない方が好まし
い。上記した分解方法で分解された尿素が排ガス中に注
入、混合された後、煙道39内の脱硝触媒槽30に導か
れる。排ガス中のNOxは尿素の分解生成物であるNH
3によって還元される。脱硝反応温度は図1のフローと
同様に公知のNH3を還元剤とする場合と同様200〜
600℃であり、尿素の注入量はNH3換算でNOx量
に対し0を越えて2程度の範囲で用いる。
As a means for moving the catalyst liquid 31 between the reaction tank 26 and the preliminary reaction tank 27, a method of pressurizing / depressurizing with a gas is used in addition to the method of sucking / pushing the catalyst liquid 31 with the pump 33. May be. Further, the position of the pump 33 may be between the reaction tank 26 and the preliminary reaction tank 27, or two or more pumps may be provided and divided into an increasing line and a decreasing line.
It is necessary to keep the temperature of the preliminary reaction tank 27 at a temperature lower than the boiling point, but if kept too low, the solubility of the catalyst will be lowered and the catalyst will be deposited, or the reaction temperature will decrease when it is returned to the reaction system. Be careful because it causes problems. If the catalyst in the preliminary reaction tank 27 is kept at a temperature lower than the boiling point, hydrolysis of unreacted urea and reaction intermediates contained therein can be suppressed.
Since some decomposition will occur by stirring 1 etc.,
It is preferable not to perform vigorous stirring or gas bubbling. The urea decomposed by the above-described decomposition method is injected into the exhaust gas, mixed, and then introduced into the denitration catalyst tank 30 in the flue 39. NOx in the exhaust gas is NH, which is a decomposition product of urea.
Reduced by 3 . The denitration reaction temperature is 200 to 200, which is the same as in the case of using known NH 3 as a reducing agent, as in the flow of FIG.
The temperature is 600 ° C., and the amount of urea to be injected is in the range of about 2 in excess of 0 with respect to the amount of NOx in terms of NH 3 .

【0032】実施例9 図5のようなフローを持つ装置を用い、表5の条件Aで
尿素水溶液を連続的に反応槽26に送入した場合のアン
モニアとCO2の発生量を測定した。
Example 9 Using a device having a flow as shown in FIG. 5, the amounts of ammonia and CO 2 generated were measured when the aqueous urea solution was continuously fed into the reaction tank 26 under the condition A shown in Table 5.

【0033】[0033]

【表5】 [Table 5]

【0034】アンモニアは5%硫酸水溶液でトラップし
たものをイオンクロマトグラフ法で定量し、CO2は赤
外線吸収式モニタで測定した。定常的に尿素の分解率が
100%となることを確認した後、触媒液31の1/2
量をポンプ33によって予備反応槽27へ吸引した。こ
の時予備反応槽27における触媒保持温度は100℃と
した。触媒液31の移動と同時に尿素供給量など表5の
条件Aのすべてを、その1/2量の条件Bに切り替え
た。切り替えて2時間その状態を維持し、その後、予備
反応槽27の触媒液31全体をポンプ33によって反応
槽26へと移動させ、同時に条件Aに切り替え、その間
のアンモニアとCO2の発生量を測定した。図6にアン
モニアとCO2の発生速度の経時変化を示した。触媒液
31を移動させた直後のアンモニアとCO2の発生速度
が即座に所定量に達していることが分かる。本実施例と
比較するために図1のフローを持つ装置を用い、表6の
条件で尿素水溶液を連続的に反応槽26に送入した場合
のアンモニアとCO2の発生量を測定した。
Ammonia was trapped with a 5% sulfuric acid aqueous solution and quantified by ion chromatography, and CO 2 was measured by an infrared absorption monitor. After confirming that the decomposition rate of urea constantly becomes 100%, 1/2 of the catalyst liquid 31
The amount was sucked into the preliminary reaction tank 27 by the pump 33. At this time, the catalyst holding temperature in the preliminary reaction tank 27 was 100 ° C. Simultaneously with the movement of the catalyst liquid 31, all of the conditions A in Table 5, such as the urea supply amount, were switched to the condition B of ½ amount thereof. After switching, the state is maintained for 2 hours, then the whole catalyst liquid 31 in the preliminary reaction tank 27 is moved to the reaction tank 26 by the pump 33, and at the same time, the condition A is switched to measure the amount of ammonia and CO 2 generated during that time. did. FIG. 6 shows the changes over time in the generation rates of ammonia and CO 2 . It can be seen that the generation rates of ammonia and CO 2 immediately after moving the catalyst liquid 31 have reached a predetermined amount immediately. For comparison with this example, the apparatus having the flow of FIG. 1 was used to measure the amounts of ammonia and CO 2 generated when the aqueous urea solution was continuously fed into the reaction tank 26 under the conditions shown in Table 6.

【0035】[0035]

【表6】 [Table 6]

【0036】定常的に尿素の分解率が100%となるこ
とを確認した後、尿素供給量のみを1/2量に切り替え
た。切り替えて2時間その状態を維持し、その後、再び
尿素供給量を初期の量に切り替え、その間のアンモニア
とCO2の発生量を測定した。図7に示すように、尿素
供給量のみを変化させただけでは、NH3の発生量が所
定量に変化するまでに2時間あまりかかることが分か
る。
After confirming that the decomposition rate of urea was constantly 100%, only the urea supply amount was switched to 1/2. After switching, the state was maintained for 2 hours, after which the urea supply amount was switched to the initial amount again, and the amounts of ammonia and CO 2 generated during that period were measured. As shown in FIG. 7, it can be understood that it takes more than two hours until the amount of NH 3 generated changes to a predetermined amount by changing only the urea supply amount.

【0037】試験例1 図1のフローを持つ装置を用い、表6の条件で尿素水溶
液を連続的に送入した場合のアンモニアとCO2の発生
量を測定し、定常的にアンモニアとCO2が発生するこ
とを確認した。この時のアンモニアとCO2の発生速度
は、定常状態でそれぞれ1.6および0.8mmol/
minであった。
Test Example 1 Using the apparatus having the flow shown in FIG. 1, the amounts of ammonia and CO 2 generated when urea aqueous solution was continuously fed under the conditions shown in Table 6 were measured, and ammonia and CO 2 were constantly steadily added. It was confirmed that At this time, the generation rates of ammonia and CO 2 were 1.6 and 0.8 mmol / cm 2 respectively in the steady state.
It was min.

【0038】実施例10 試験例1によって定常状態が確認された触媒液を、図3
に示すフローを持つ装置の反応槽26に入れ、触媒液の
温度が80℃に保つようにし、反応開始1分後、10分
後、60分後のアンモニアおよびCO2発生量の経時変
化を測定した。
Example 10 The catalyst liquid of which the steady state was confirmed in Test Example 1 is shown in FIG.
The temperature of the catalyst solution is kept at 80 ° C. in the reaction tank 26 of the apparatus having the flow shown in Fig. 1 and the time-dependent change in the amount of ammonia and CO 2 generated is measured 1 minute, 10 minutes and 60 minutes after the start of the reaction. did.

【0039】実施例11および12 実施例9と同様の操作を行い、触媒液31の温度を90
℃および100℃に維持したときの反応開始1分後、1
0分後、60分後のNH3およびCO2発生量の経時変化
をそれぞれ測定した。
Examples 11 and 12 The same operation as in Example 9 was carried out, and the temperature of the catalyst liquid 31 was adjusted to 90
1 minute after the start of the reaction when maintained at ℃ and 100 ℃, 1
The changes with time of the amounts of NH 3 and CO 2 generated after 0 minutes and 60 minutes were measured.

【0040】比較例6および7 実施例10〜12と同様の操作を行い、触媒液31の温
度70℃および110℃に維持したときの反応開始1分
後、10分後、60分後のNH3およびCO2発生量の経
時変化をそれぞれ測定した。実施例10〜12および比
較例6および7で得られた結果を表7にまとめて示す。
Comparative Examples 6 and 7 When the same operation as in Examples 10 to 12 was carried out and the temperature of the catalyst liquid 31 was maintained at 70 ° C. and 110 ° C., NH after 1 minute, 10 minutes and 60 minutes from the start of the reaction. 3 and CO 2 generation rates were measured over time. The results obtained in Examples 10 to 12 and Comparative Examples 6 and 7 are summarized in Table 7.

【0041】[0041]

【表7】 [Table 7]

【0042】表7において本発明になる実施例10〜1
2はいずれもほとんどNH3およびCO2の発生は無く、
また、いずれも触媒液31中から泡が発生したり、触媒
液31中に析出物が発生することは無かった。これに対
し、保持温度が70℃である比較例6、7においてはN
3およびCO2の発生はほとんど認められなかったが、
触媒液31中に析出物が発生していた。また保持温度が
110℃である比較例7においては、反応槽26への尿
素供給停止後もNH3およびCO2の発生が顕著に認めら
れており、また触媒液31からは、沸騰による無数の泡
が発生していた。本結果は、触媒液31を沸点より低い
温度、触媒の溶解度以上の温度に保つことで触媒液31
を定常状態のまま保持できることを示している。
In Table 7, Examples 10 to 1 according to the present invention
No 2 produced almost no NH 3 and CO 2 ,
Further, in all cases, no bubbles were generated in the catalyst liquid 31 and no precipitate was generated in the catalyst liquid 31. On the other hand, in Comparative Examples 6 and 7 in which the holding temperature is 70 ° C., N
Almost no generation of H 3 and CO 2 was observed,
Precipitates were generated in the catalyst liquid 31. Further, in Comparative Example 7 in which the holding temperature is 110 ° C., NH 3 and CO 2 are remarkably generated even after the supply of urea to the reaction tank 26 is stopped, and the catalyst liquid 31 shows innumerable amounts due to boiling. Bubbles were generated. This result shows that by keeping the temperature of the catalyst liquid 31 lower than the boiling point and higher than the solubility of the catalyst, the catalyst liquid 31
It can be maintained in a steady state.

【0043】実施例13 反応槽と予備反応槽を用いる発明に関するその他の実施
例を図8に示す。反応槽26に導入される尿素、キャリ
アガス、排ガスへの発生NH3およびCO2の供給系統は
図5に示すフローと同一であるので説明は省略する。反
応槽26には加熱ヒータ55が多段に設けられ、個別に
温度設定ができるようにされている。反応槽26の上部
は沸点もしくは沸点近傍に、下部は沸点より低い温度に
なるように加熱ヒータ55の設定がなされている。図8
に示すフローにおける反応槽26でのNH3の発生量を
増減させる場合、次のような操作を行う。NH3発生量
を少なくする場合、個々のヒータ55の設定温度を調節
して、沸点もしくは沸点近傍に加熱する触媒液31の量
を減少させ、かつタンク22からの尿素供給量を減少さ
せる。逆にNH3発生量を大きくする場合には、個々の
ヒータ55の設定温度を調節して、沸点もしくは沸点近
傍に加熱する触媒液31の量を増加させ、かつタンク2
2からの尿素供給量を増加させる。また、ヒータ55の
温度を一定にしておき、触媒液31自体を圧力の増減に
よって移動させる方式は本実施例の範囲内である。
Embodiment 13 Another embodiment relating to the invention using a reaction tank and a preliminary reaction tank is shown in FIG. The supply system of urea, carrier gas, generated NH 3 and CO 2 to the exhaust gas introduced into the reaction tank 26 is the same as the flow shown in FIG. Heaters 55 are provided in multiple stages in the reaction tank 26 so that the temperature can be individually set. The heater 55 is set so that the upper portion of the reaction tank 26 is at or near the boiling point and the lower portion is at a temperature lower than the boiling point. Figure 8
When increasing or decreasing the amount of NH 3 generated in the reaction tank 26 in the flow shown in FIG. When the amount of generated NH 3 is reduced, the set temperature of each heater 55 is adjusted to reduce the amount of the catalyst liquid 31 that is heated at or near the boiling point, and the amount of urea supplied from the tank 22 is reduced. On the contrary, when the NH 3 generation amount is increased, the set temperature of each heater 55 is adjusted to increase the amount of the catalyst liquid 31 heated to or near the boiling point, and the tank 2
Increase the urea supply from 2. Further, the method of keeping the temperature of the heater 55 constant and moving the catalyst liquid 31 itself by increasing or decreasing the pressure is within the range of this embodiment.

【0044】実施例14 実施例9で発生させた尿素の分解ガスを図5のフローを
有する脱硝装置を用い表5の条件で脱硝試験を行った。
NOx濃度の変動に対し、触媒液31の移動によりNH
3発生速度を制御したときの脱硝率の応答遅れは認めら
れなかった。
Example 14 A denitration test was conducted on the decomposition gas of urea generated in Example 9 using the denitration apparatus having the flow shown in FIG. 5 under the conditions shown in Table 5.
When the NOx concentration changes, the movement of the catalyst liquid 31 causes NH
3 No response delay of the denitrification rate was observed when the generation rate was controlled.

【0045】[0045]

【発明の効果】本発明により液化アンモニアに比べ安全
で取扱いの容易な尿素をガス状で煙道に注入し脱硝する
ことが可能になる。これにより尿素を用いる脱硝法で従
来から問題となっていた尿素の気化・混合を完全に行う
ことができ、また、さらに、NH3発生速度の負荷追従
性を改善することも可能となり、アンモニアを還元剤に
用いる脱硝法と同様の信頼性の高い脱硝法並びに装置を
提供できる。特に液化アンモニアが使用できない都市お
よびその近郊におけるNOxの固定発生源に対し、安全
なかつ高性能な脱硝装置を提供できることの社会的寄与
は大きい。
EFFECTS OF THE INVENTION According to the present invention, it is possible to inject urea into the flue in a gaseous state in the form of gas, which is safer and easier to handle than liquefied ammonia, for denitration. This makes it possible to completely perform the vaporization and mixing of urea, which has been a problem in the denitration method using urea, and also to improve the load followability of the NH 3 generation rate. A highly reliable denitration method and apparatus similar to the denitration method used for a reducing agent can be provided. In particular, for a fixed source of NOx in a city and its suburbs where liquefied ammonia cannot be used, providing a safe and high-performance denitration device makes a great social contribution.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の単独の反応槽を用いる実施例1〜7
の系統図である。
FIG. 1 Examples 1 to 7 using a single reaction tank of the present invention
FIG.

【図2】 本発明の単独の反応槽を用いる実施例1〜7
の系統図である。
FIG. 2 Examples 1 to 7 using a single reaction vessel of the present invention
FIG.

【図3】 本発明の実施例7の系統図である。FIG. 3 is a system diagram of Example 7 of the present invention.

【図4】 本発明の実施例7の結果を示す図である。FIG. 4 is a diagram showing the results of Example 7 of the present invention.

【図5】 本発明の反応槽と予備反応槽を用いる実施例
8〜12の系統図である。
FIG. 5 is a system diagram of Examples 8 to 12 using the reaction tank of the present invention and the preliminary reaction tank.

【図6】 本発明の実施例8における発生NH3および
CO2の経時変化を示す図である。
FIG. 6 is a diagram showing changes with time of generated NH 3 and CO 2 in Example 8 of the present invention.

【図7】 本発明の単独の反応槽を用いる場合の発生N
3およびCO2の経時変化を示す図である。
FIG. 7: N generated when a single reaction tank of the present invention is used
Is a diagram showing the time course of H 3 and CO 2.

【図8】 本発明の反応槽と予備反応槽を用いる実施例
13の系統図である。
FIG. 8 is a system diagram of Example 13 using the reaction tank and the preliminary reaction tank of the present invention.

【図9】 本発明のNH3発生速度と触媒液中のN量と
の関係を示す図である。
FIG. 9 is a diagram showing the relationship between the NH 3 generation rate and the amount of N in the catalyst liquid of the present invention.

【符号の説明】[Explanation of symbols]

1、21…尿素水、5、25…注入口、7、29、55
…ヒータ、8、30…脱硝触媒、9…触媒液、16…冷
却器、17…トラップ、18…CO2モニタ、19、3
9…煙道
1, 21 ... Urea water, 5, 25 ... Injecting port, 7, 29, 55
... heater, 8, 30 ... denitration catalyst, 9 ... catalyst liquid, 16 ... cooler, 17 ... trap, 18 ... CO 2 monitor, 19, 3
9 ... Flue

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−191528(JP,A) 化学大辞典6 縮刷版,日本,共立出 版株式会社,1963年12月15日,縮刷版第 1刷,p.823 (58)調査した分野(Int.Cl.7,DB名) B01D 53/90 B01D 53/56 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-191528 (JP, A) Chemistry Dictionary 6 Miniature edition, Japan, Kyoritsu Publishing Co., Ltd., December 15, 1963, first edition edition , P. 823 (58) Fields surveyed (Int.Cl. 7 , DB name) B01D 53/90 B01D 53/56

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 排ガス中の窒素酸化物を脱硝触媒により
接触還元させる脱硝方法において、アルカリ金属、アル
カリ土類金属または希土類元素の中のいずれか一種類以
上の炭酸塩、ホウ酸塩または水酸化物からなる塩基性化
合物または無機強酸または有機強酸のアンモニウム塩か
らなる酸性化合物のいずれかの化合物のうち、少なくと
も一種以上の化合物を含有する水溶液からなる触媒液を
加熱し、該加熱触媒液中に尿素もしくは尿素水溶液を連
続的に供給してアンモニアと二酸化炭素を発生させると
同時に水を蒸発させ、発生したアンモニア、二酸化炭素
および水蒸気の混合気体を排ガス中に注入し、前記混合
気体中のアンモニアによって排ガス中の窒素酸化物を脱
硝触媒上で接触還元することを特徴とする尿素を用いた
脱硝方法。
1. A denitration method in which nitrogen oxides in exhaust gas are catalytically reduced by a denitration catalyst, wherein a carbonate, borate or hydroxide of at least one selected from alkali metals, alkaline earth metals and rare earth elements is used. A basic compound consisting of a compound or an acidic compound consisting of an ammonium salt of an inorganic strong acid or an organic strong acid, a catalyst liquid consisting of an aqueous solution containing at least one compound is heated, Urea or an aqueous urea solution is continuously supplied to generate ammonia and carbon dioxide, and at the same time water is evaporated, and a mixed gas of the generated ammonia, carbon dioxide and water vapor is injected into the exhaust gas, and ammonia is mixed in the mixed gas. A NOx removal method using urea, which comprises catalytically reducing nitrogen oxides in exhaust gas on a NOx removal catalyst.
【請求項2】 触媒液の加熱容量または尿素もしくは尿
素水溶液の触媒液への供給量のうち少なくともいずれか
を増減させてアンモニアの発生速度を制御することを特
徴とする請求項1記載の尿素を用いた脱硝方法。
2. The urea according to claim 1, wherein the generation rate of ammonia is controlled by increasing or decreasing at least one of the heating capacity of the catalyst solution and the supply amount of urea or an aqueous urea solution to the catalyst solution. The denitration method used.
【請求項3】 触媒液の加熱容量は沸点もしくは沸点近
傍に加熱する区間と沸点より低い温度に加熱する区間と
に分けられた触媒液の入った反応領域の前記各区間の液
量を増減させ、かつ沸点もしくは沸点近傍に加熱される
区間に尿素もしくは尿素水溶液を連続的に供給して、ア
ンモニアと二酸化炭素を発生させると同時に水を蒸発さ
せることを特徴とする請求項2記載の尿素を用いた脱硝
方法。
3. The heating capacity of the catalyst liquid is increased or decreased by increasing or decreasing the amount of liquid in each section of the reaction region containing the catalyst solution, which is divided into a section for heating at or near the boiling point and a section for heating to a temperature lower than the boiling point. The urea according to claim 2, wherein urea or an aqueous urea solution is continuously supplied to a section heated to or near the boiling point to generate ammonia and carbon dioxide and at the same time evaporate water. The denitration method used.
【請求項4】 加熱触媒液の温度が100℃以上である
ことを特徴とする請求項1ないし3のいずれかに記載の
尿素を用いた脱硝方法。
4. The denitration method using urea according to claim 1, wherein the temperature of the heated catalyst liquid is 100 ° C. or higher.
【請求項5】 加熱触媒液の温度が該水溶液の沸点また
は沸点近傍の温度であることを特徴とする請求項1ない
し3のいずれかに記載の尿素を用いた脱硝方法。
5. The method for denitration using urea according to claim 1, wherein the temperature of the heated catalyst liquid is at or near the boiling point of the aqueous solution.
【請求項6】 発生したアンモニア、二酸化炭素および
水蒸気の混合気体を空気、窒素ガス、あるいは燃焼排ガ
スなどからなるキャリアガスによって排ガス中に搬送さ
れることを特徴とする請求項1ないし5のいずれかに記
載の尿素を用いた脱硝方法。
6. The mixed gas of generated ammonia, carbon dioxide and water vapor is conveyed into the exhaust gas by a carrier gas composed of air, nitrogen gas, combustion exhaust gas or the like. A denitration method using urea according to 1.
【請求項7】 排ガス中の窒素酸化物を排ガス煙道中に
設けられた脱硝触媒層により接触還元させる脱硝装置に
おいて、 アルカリ金属、アルカリ土類金属または希土類元素の中
のいずれか一種類以上の炭酸塩、ホウ酸塩または水酸化
物からなる塩基性化合物または無機強酸または有機強酸
のアンモニウム塩からなる酸性化合物のいずれかの化合
物を少なくとも一種以上含有する水溶液からなる触媒液
を入れた反応槽と、 該反応槽内の触媒液を、少なくともその沸点まで加熱す
ることのできる加熱手段と、該加熱手段により加熱され
た反応槽内の触媒液に尿素もしくは尿素水溶液を連続的
に供給する尿素もしくは尿素水溶液供給手段と、 反応槽で発生したアンモニア、二酸化炭素および水蒸気
の混合気体を排ガス中に注入する注入手段とを備えたこ
とを特徴とする尿素を用いた脱硝装置。
7. A denitration device for catalytically reducing nitrogen oxides in exhaust gas by a denitration catalyst layer provided in an exhaust gas flue, wherein at least one carbonic acid selected from alkali metal, alkaline earth metal and rare earth element is used. salt, and a basic compound consists of borate or hydroxide or a strong inorganic acid or reaction vessel where the acidic compound Neu either the compounds comprising an ammonium salt of an organic strong acid put catalyst solution comprising an aqueous solution containing at least one or more Heating means capable of heating the catalyst liquid in the reaction tank to at least its boiling point, and urea or urea for continuously supplying urea or an aqueous urea solution to the catalyst liquid in the reaction tank heated by the heating means Equipped with an aqueous solution supply means and an injection means for injecting a mixed gas of ammonia, carbon dioxide and water vapor generated in the reaction tank into the exhaust gas A denitration device using urea characterized in that
【請求項8】 反応槽を反応槽内の触媒液の沸点まで加
熱することのできる尿素分解反応領域と、触媒液の沸点
より低い温度に保持しておくための予備反応領域とに分
け、前記尿素分解反応領域と予備反応領域内の触媒液が
互いに相手方の領域に移動可能なように連結手段を備え
たことを特徴とする請求項7記載の尿素を用いた脱硝装
置。
8. The urea decomposition reaction region capable of heating the reaction tank to the boiling point of the catalyst liquid in the reaction tank and the preliminary reaction region for keeping the temperature lower than the boiling point of the catalyst liquid, 8. The denitration device using urea according to claim 7, further comprising a connecting means so that the catalyst liquids in the urea decomposition reaction region and the preliminary reaction region can move to each other.
JP32005492A 1992-11-30 1992-11-30 Denitration method and apparatus using urea Expired - Fee Related JP3369229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32005492A JP3369229B2 (en) 1992-11-30 1992-11-30 Denitration method and apparatus using urea

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32005492A JP3369229B2 (en) 1992-11-30 1992-11-30 Denitration method and apparatus using urea

Publications (2)

Publication Number Publication Date
JPH06165913A JPH06165913A (en) 1994-06-14
JP3369229B2 true JP3369229B2 (en) 2003-01-20

Family

ID=18117212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32005492A Expired - Fee Related JP3369229B2 (en) 1992-11-30 1992-11-30 Denitration method and apparatus using urea

Country Status (1)

Country Link
JP (1) JP3369229B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3419015B2 (en) * 1992-02-24 2003-06-23 日本精工株式会社 Manufacturing method of rolling bearing device to which preload is applied
DE4328081A1 (en) * 1992-12-02 1994-06-09 Nsk Ltd Pretensioning adjustable roller bearing - simultaneously measuring tension as axial pressure is exerted for relative displacement of two bearing rings
JP3419052B2 (en) * 1993-12-17 2003-06-23 日本精工株式会社 Method of manufacturing double-row ball bearing and double-row ball bearing preloaded
US6761868B2 (en) 2001-05-16 2004-07-13 The Chemithon Corporation Process for quantitatively converting urea to ammonia on demand
JP4596354B2 (en) * 2001-08-27 2010-12-08 三浦工業株式会社 Denitration apparatus cleaning method and apparatus
EP1514589A1 (en) * 2003-08-12 2005-03-16 Hochschule Rapperswil, Institut für angewandte Umwelttechnik Process and agent for the denitration of exhaust gases
DE102006023147A1 (en) * 2006-05-16 2008-01-10 Emitec Gesellschaft Für Emissionstechnologie Mbh Method and device for providing a gaseous substance mixture
US20090148370A1 (en) 2007-12-06 2009-06-11 Spencer Iii Herbert W Process to produce ammonia from urea
JP5496026B2 (en) * 2010-09-08 2014-05-21 バブコック日立株式会社 Denitration equipment
US9586831B2 (en) 2014-06-09 2017-03-07 Wahlco, Inc. Urea to ammonia process
JP5885811B1 (en) * 2014-11-21 2016-03-16 株式会社タクマ Urea hydrolysis apparatus and control method thereof
EP3470639A1 (en) * 2017-10-16 2019-04-17 Winterthur Gas & Diesel Ltd. Device and method for generating a reducing agent gas from a liquid or solid reducing agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
化学大辞典6 縮刷版,日本,共立出版株式会社,1963年12月15日,縮刷版第1刷,p.823

Also Published As

Publication number Publication date
JPH06165913A (en) 1994-06-14

Similar Documents

Publication Publication Date Title
JP3369229B2 (en) Denitration method and apparatus using urea
JP4646063B2 (en) Exhaust gas denitration method and apparatus using urea decomposition catalyst
FI88463C (en) Multistage procedure for reducing the concentration of pollutants in exhaust gases
KR100378695B1 (en) Method and apparatus for treating waste gases by exposure to electron beams
JP3100191B2 (en) Flue gas denitration equipment
KR101702831B1 (en) Abatement of Nitrogen Oxides and Sulfur Oxides
CN103796954A (en) Ammonia gas generator and method for producing ammonia in order to reduce nitrogen oxides in exhaust gas
US6500398B1 (en) Method and apparatus for decomposing N2O
WO2012104205A1 (en) Ammonia generator converting liquid ammonia precursor solutions to gaseous ammonia for denox-applications using selective catalytic reduction of nitrogen oxides
KR960011040B1 (en) Method and apparatus for removing nitrogen oxides
JP3638638B2 (en) Denitration equipment using solid reducing agent
JPH0857261A (en) Denitrification apparatus using aqueous solution of reducing agent
JP2014233671A (en) Denitration equipment
JPH0871372A (en) Denitration apparatus and method using urea
KR100437875B1 (en) NOx reduction system by selective catalytic reduction available for urea as reducing agent
JP2001157822A (en) Method for removing nitrogen oxide in combustion exhaust gas
US5399326A (en) Process for noncatalytic NOx abatement
BG64727B1 (en) Method and apparatus for desulfurizing exhaust gas
JPH0286813A (en) Stack gas denitration apparatus
JP2007301524A (en) Method and apparatus for denitrification
US20150321145A1 (en) Internally Heated Urea Reactor/Injector For Use With SCR Emissions Control Device
JP2001027112A (en) NOx REMOVAL SYSTEM
US4873066A (en) Low temperature process for the reduction of nitrgen oxides in an effluent
JPH05269351A (en) Method for removing nitrogen oxides
JPH0523543A (en) Denitration apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees