JP2006223271A - Rearing water tank for fishes and method for removing sludge in rearing water tank or the like - Google Patents

Rearing water tank for fishes and method for removing sludge in rearing water tank or the like Download PDF

Info

Publication number
JP2006223271A
JP2006223271A JP2005044746A JP2005044746A JP2006223271A JP 2006223271 A JP2006223271 A JP 2006223271A JP 2005044746 A JP2005044746 A JP 2005044746A JP 2005044746 A JP2005044746 A JP 2005044746A JP 2006223271 A JP2006223271 A JP 2006223271A
Authority
JP
Japan
Prior art keywords
sludge
water tank
tank
swirling flow
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005044746A
Other languages
Japanese (ja)
Other versions
JP4686706B2 (en
Inventor
Masanori Kikuchi
正憲 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Miyazaki NUC
Original Assignee
University of Miyazaki NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Miyazaki NUC filed Critical University of Miyazaki NUC
Priority to JP2005044746A priority Critical patent/JP4686706B2/en
Publication of JP2006223271A publication Critical patent/JP2006223271A/en
Application granted granted Critical
Publication of JP4686706B2 publication Critical patent/JP4686706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for removing sludge in a rearing water tank for fishes designed to gather the sludge such as fish feces precipitating in the bottom of the water tank by actions of a fluid during draining and effectively discharge the sludge. <P>SOLUTION: The water tank 1 is formed by installing a large-diameter part 1a and a small-diameter part 1b so that the diameter D2 of the cylindrical lower part is smaller than the diameter D1 in the upper part and dividing the parts through a net body or a lattice body 11. A drain 2 and a discharge pipe 3 having a diameter comparable to that of the drain 2 are mounted in the bottom of the water tank with a somewhat gap S kept from the bottom of the water tank. When water is periodically discharged from the drain 2, a swirling flow is imparted to water in the upper part 1a of the water tank. When discharged from the drain 2 in the bottom, water is moved to the lower part 1b of the water tank. Since the diameter D2 of the lower part 1b of the water tank is smaller than the diameter D1 of the upper part of the water tank, the swirling speed is increased by the law of preservation of angular momentum. On the other hand, the swirling speed is extremely reduced due to the viscosity of water in the bottom of the water tank 1. Thereby, centrifugal force by swirling is smaller than that of water in the upper part. A strong flow toward the center is produced in the bottom because of the imbalance and the flow is bent upward in the center of the swirling. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、魚類の飼育用水槽などの水槽内の水を浄化する技術に関するものである。   The present invention relates to a technique for purifying water in an aquarium such as a fish rearing aquarium.

従来、魚類の飼育用水槽における沈殿物除去の方法は様々ある。水を抜いての清掃や、通常は平らな水槽の底に円錐状の傾斜をつけ沈殿物を中央に集めるもの、サイフォン効果を用いるもの、自動の清掃ロボット等である。しかし、飼育には海水を使用するためポンプは錆び易く、できるだけ機械設備の簡易なものが望ましい。また、水槽の底に傾斜をつけたものでは水槽内での清掃作業等の際の危険性を増すばがりでなく労力やコストが嵩む。   Conventionally, there are various methods for removing precipitates in fish rearing tanks. For example, cleaning by draining water, or collecting a sediment in the center with a conical slope at the bottom of a flat aquarium, using a siphon effect, or an automatic cleaning robot. However, since seawater is used for breeding, the pump is easily rusted, and it is desirable that the mechanical equipment be as simple as possible. In addition, if the bottom of the water tank is inclined, not only the danger of cleaning work in the water tank is increased, but labor and cost are increased.

そこで、水槽内の水表面の浮遊物を除去する装置として、水を吸引する取水口と、吸引された水を浄化する浄化手段と、浄化された水を水槽内へ吐出する吐出口とを有し、この取水口を水槽内の底部に設けると共に、かつ複数の吐出口を水槽内の相対向する側壁に相対向しないように設け、取水口を渦の中心とする渦巻き流を水槽内に発生せしめるもの(例えば、特許文献1参照。)、魚類介類の飼育水槽の底に排水管を立設して設け、この排水管の上端で水面近傍の浮遊物を、排水管の下端で底部の堆積物を排出するようにしたものがある(例えば、特許文献2参照。)。   Therefore, as a device for removing floating substances on the water surface in the water tank, there are a water intake port for sucking water, a purification means for purifying the sucked water, and a discharge port for discharging the purified water into the water tank. The water intake is provided at the bottom of the water tank, and a plurality of outlets are provided so as not to face the opposite side walls of the water tank, and a spiral flow with the water intake as the center of the vortex is generated in the water tank. A drainage pipe is erected on the bottom of a fish tank for raising fish (for example, see Patent Document 1), and suspended matter near the water surface is provided at the upper end of the drainage pipe. There is one that discharges deposits (see, for example, Patent Document 2).

特開2000−15017号公報Japanese Unexamined Patent Publication No. 2000-15017 特開2001−224277号公報JP 2001-224277 A

しかしながら、上記特許文献1に記載されたものは、単なる旋回流を発生させて浮遊物を巻き込み排出するものであり、常に大量の水を循環させる必要がある。また、特許文献2に記載されたものは、浮遊物や堆積物が一気に集約されて排出されるものではなく、浄化効率が良いとは言い難い。本発明は、前記のような問題点に鑑み、水槽底部に沈殿する魚糞等の汚泥を排水時の流体の働きにより集約させ効果的に排出できる魚類の飼育用水槽等の汚泥除去方法を提供すること、及びその方法を用いた水槽を提供することを目的する。   However, what is described in the above-mentioned Patent Document 1 generates a simple swirling flow to entrain and discharge suspended matter, and it is necessary to constantly circulate a large amount of water. Moreover, what was described in patent document 2 is not what is collected and discharged | emitted at once, and it is hard to say that purification efficiency is good. In view of the above-mentioned problems, the present invention provides a method for removing sludge from fish rearing tanks and the like that can collect and effectively discharge sludge such as fish excrement precipitated at the bottom of the aquarium by the action of fluid during drainage. An object is to provide a water tank using the method.

このため本発明の魚類の飼育用水槽は、筒状水槽の下部の直径が上部の直径よりも小となるように区画して形成し、収容された流体に付与される旋回流によって生じるトルネード効果により水槽底部の汚泥を旋回流の回転軸に向って集約することを第1の特徴とする。また、水槽底部の汚泥を旋回流の回転軸に向って集約すると共に、旋回流の回転軸に倣って上昇させて集約することを第2の特徴とする。さらに、旋回流の回転軸上で且つ水槽底部から上方に突出する汚泥排出筒を設け、回転軸に倣って上昇させた汚泥を排出することを第3の特徴とする。さらにまた、水槽の上部及び/又は下部の断面が楕円形、矩形及び/又は多角形若しくは円形であり、水槽の下部の水平断面積が上部より小となるように区画して形成したことを第4の特徴とする。また、本発明の魚類の飼育水槽等の汚泥除去方法において、水槽を上部と下部に区画して形成し、下部の直径又は水平断面積が上部より小となるように成し、収容された流体に付与される旋回流によって生じるトルネード効果により水槽底部の汚泥を旋回流の回転軸に向って集約することを第5特徴とする。また、水槽底部の汚泥を旋回流の回転軸の中心に向って集約すると共に、旋回流の回転軸に倣って上昇させて集約することを第6の特徴とする。さらに、旋回流の回転軸上で且つ水槽底部から上方に突出する汚泥排出筒を設け、回転軸に倣って上昇させた汚泥を排出することを第7の特徴とする。さらにまた、水槽を上部と下部に区画して形成し、下部の直径又は水平断面積が上部より小となるように成し、収容された流体に付与される旋回流によって生じるトルネード効果により水槽底部の汚泥を旋回流の回転軸に向って集約し、旋回流の回転軸上で且つ水槽底部から上方に突出する汚泥排出筒を設け、回転軸に倣って上昇させた汚泥を排出する方法において、水槽底部に設けた排水口の弁の開閉を反復することにより、汚泥排出筒と底部排水口の両者から汚泥を排出することを第8の特徴とする。   Therefore, the fish tank according to the present invention has a tornado effect generated by a swirling flow applied to the contained fluid, which is formed by dividing the cylindrical aquarium so that the lower diameter is smaller than the upper diameter. The first characteristic is that the sludge at the bottom of the water tank is collected toward the rotating shaft of the swirl flow. In addition, the second feature is that the sludge at the bottom of the water tank is aggregated toward the rotational axis of the swirl flow, and is raised along the rotation axis of the swirl flow to be aggregated. Furthermore, a third feature is that a sludge discharge cylinder is provided on the rotating shaft of the swirling flow and protrudes upward from the bottom of the water tank, and the sludge raised along the rotating shaft is discharged. Furthermore, the cross section of the upper and / or lower part of the aquarium is elliptical, rectangular and / or polygonal or circular, and the horizontal cross-sectional area of the lower part of the aquarium is defined so as to be smaller than the upper part. 4 features. Further, in the method for removing sludge from the fish rearing tank of the present invention, the water tank is divided into an upper part and a lower part, and the lower part of the diameter or horizontal cross-sectional area is smaller than the upper part. The fifth feature is that the sludge at the bottom of the water tank is concentrated toward the rotation axis of the swirl flow by the tornado effect generated by the swirl flow applied to the swirl flow. A sixth feature is that the sludge at the bottom of the water tank is gathered toward the center of the rotating shaft of the swirling flow, and is raised and gathered along the rotating shaft of the swirling flow. Furthermore, a seventh feature is that a sludge discharge cylinder is provided on the rotating shaft of the swirling flow and protrudes upward from the bottom of the water tank, and the sludge raised along the rotating shaft is discharged. Furthermore, the tank is formed by dividing the tank into an upper part and a lower part, and the bottom diameter or horizontal cross-sectional area is smaller than the upper part. In the method of collecting the sludge of the swirl flow toward the rotating shaft of the swirling flow, providing a sludge discharge cylinder protruding upward from the bottom of the water tank on the rotating shaft of the swirling flow, and discharging the sludge raised along the rotating shaft, The eighth feature is that sludge is discharged from both the sludge discharge cylinder and the bottom drain port by repeatedly opening and closing the valve of the drain port provided at the bottom of the water tank.

本発明の汚泥除去方法によれば、下記の利点がある。
(1)水槽の底に傾斜等をつける必要がなく水槽内での作業が安全に行える。
(2)清掃ロボット等の特別な機械類を必要としないため、海水を使用する陸上飼育水槽に適している。
(3)小規模な生け簀や、鑑賞用水槽においても、水の交換や清掃の頻度を減少できる。
The sludge removal method of the present invention has the following advantages.
(1) It is not necessary to incline the bottom of the aquarium, and the work in the aquarium can be performed safely.
(2) Since special machinery such as a cleaning robot is not required, it is suitable for an aquaculture tank that uses seawater.
(3) The frequency of water exchange and cleaning can be reduced even in small-scale sacrifices and viewing water tanks.

次に図面に示す実施例を参照して、本発明の実施の形態を詳述する。図1は本発明に係る水槽の斜視図、図2は水槽中のトルネード効果を模式的に示す水槽の断面図、図3は本発明に係る実験装置の概略図、図4は計測点を示す模式図、図5乃至図12はバルブの開閉と流速との関係を示すグラフである。   Next, embodiments of the present invention will be described in detail with reference to examples shown in the drawings. 1 is a perspective view of a water tank according to the present invention, FIG. 2 is a cross-sectional view of a water tank schematically showing the tornado effect in the water tank, FIG. 3 is a schematic diagram of an experimental apparatus according to the present invention, and FIG. 4 shows measurement points. Schematic diagrams, FIGS. 5 to 12, are graphs showing the relationship between the opening and closing of the valve and the flow velocity.

図1及び図2に示すように、本発明に係る水槽1は筒状の下部の直径D2が上部の直径D1よりも小となるように大径部1aと小径部1bとに網体又は格子体11を介して区画して形成されており、その底部に排水口2及び排水口2と同程度の直径の汚泥排出筒(以下、単に排出パイプ3という)が水槽底部から若干の隙間S(好ましくは数センチメートル)を空けて取り付けられている。水はこの排水口2から定期的に排出される。大径部1aの水には魚類を飼育するための旋回流が与えられている。すなわち、水は角運動量を持っている。水は底部の排水口2から排出されるとき、水槽1の下部に移動する。このとき水槽の小径部1bの直径D2は水槽の大径部1aの直径D1よりも小さいので、角運動量保存側により旋回速度が増す。一方、水槽1の底部では水の粘性のために旋回速度は極めて遅くなっている。このため、旋回による遠心力は大径部1aの水の遠心力よりも小さく、このアンバランスのために、図2中矢示するごとく、底部では水槽の中心に向う強い流れが生ずる。この流れは旋回の中心で上向きに曲げられる。このような流れができることをトルネード効果という。さらに、排出パイプ3の上部開口からも水が吸い込まれるので、この効果は一層強められる。   As shown in FIG. 1 and FIG. 2, the water tank 1 according to the present invention has a mesh or lattice on the large diameter portion 1a and the small diameter portion 1b so that the diameter D2 of the cylindrical lower portion is smaller than the diameter D1 of the upper portion. A drainage port 2 and a sludge discharge cylinder (hereinafter simply referred to as a discharge pipe 3) having the same diameter as the drainage port 2 are formed at the bottom thereof with a slight gap S ( (Preferably several centimeters). Water is periodically discharged from the drain 2. A swirling flow for raising fish is given to the water of the large diameter portion 1a. That is, water has angular momentum. When the water is discharged from the drain port 2 at the bottom, it moves to the lower part of the water tank 1. At this time, since the diameter D2 of the small-diameter portion 1b of the water tank is smaller than the diameter D1 of the large-diameter portion 1a of the water tank, the turning speed is increased on the angular momentum storage side. On the other hand, at the bottom of the water tank 1, the turning speed is extremely slow due to the viscosity of water. For this reason, the centrifugal force by turning is smaller than the centrifugal force of water in the large-diameter portion 1a, and due to this imbalance, a strong flow toward the center of the water tank occurs at the bottom as indicated by arrows in FIG. This flow is bent upward at the center of swirl. Such a flow is called a tornado effect. Furthermore, since water is also sucked in from the upper opening of the discharge pipe 3, this effect is further enhanced.

すなわち、流体を満たし、蓋をした円筒状の固定された水槽において、蓋を円筒の中心軸周りに等角速度回転させた場合、中の流体は蓋に牽引される形で回転する。しかし、水槽自体は固定されているので、水槽側壁及び底部では速度がゼロである。この速度差(遠心力の差)により、二種類の境界層(蓋と流体の間で放射状に、底と流体の間で側壁から円筒の中心に向って流れるエクマン層と、側壁と流体の間を蓋から底に向って流れるスチュワトソン層)を含む循環流が発生する。この時、底部と流体の間を流れるエクマン層の流れを用いると、流体より比重の高い物質を回転軸底部に集めることが可能となる。当然、この循環流は蓋の回転が速いほど強いが、実際の飼育用水槽において過度な旋回流を発生させることは不可能である。そこで、本発明者らは、図3に示す実験装置により、次の条件に基づいて水槽の水を排出する時のみ強い旋回流及び循環流を発生させる実験を行った。
(1)水槽の上部と下部の直径を変える。
(2)水を排出する際にバルブの開閉を行う。
(3)排水口に排出筒を取付ける。
(4)水槽上部に取付けた回転盤を回転させる。
That is, when a lid is rotated at a constant angular velocity around the central axis of a cylinder in a cylindrical fixed water tank filled with a fluid and covered, the fluid inside is rotated in such a manner as to be pulled by the lid. However, since the aquarium itself is fixed, the speed is zero at the aquarium sidewall and bottom. This difference in velocity (difference in centrifugal force) causes two types of boundary layers (an Ekman layer that flows radially between the lid and the fluid, between the bottom and the fluid from the side wall toward the center of the cylinder, and between the side wall and the fluid). A circulating flow is generated that includes a Stewartson layer that flows from the lid toward the bottom. At this time, if the flow of the Ekman layer flowing between the bottom and the fluid is used, it is possible to collect a substance having a specific gravity higher than that of the fluid at the bottom of the rotating shaft. Naturally, this circulation flow is stronger as the rotation of the lid is faster, but it is impossible to generate an excessive swirl flow in an actual breeding aquarium. Therefore, the present inventors conducted an experiment to generate a strong swirl flow and a circulation flow only when the water in the aquarium is discharged based on the following conditions using the experimental apparatus shown in FIG.
(1) Change the upper and lower diameter of the tank.
(2) The valve is opened and closed when water is discharged.
(3) Attach the discharge tube to the drain outlet.
(4) Rotate the turntable attached to the upper part of the water tank.

水槽底部に沈殿した汚泥を除去する際、排水口2の弁(図示せず)の開閉を数回繰り返す。この操作により、汚泥は排出パイプ3の周囲に集められ、弁が開放されたときに、一気に効率良く排出される。すなわち、弁が開放しているとき、トルネード効果により底部の中心に集約された汚泥は、汚泥排水口2から順次排出されるが、一旦弁を閉じると、トルネード効果による上昇流が発生し、汚泥は、排水口2上方に立設した排出パイプ3に沿って上昇し始める。数秒後、排水口2の弁を開けると、排出パイプ3内部の水は下方に一気に排出され、それに伴って、排出パイプ3に沿って上昇してきた汚泥も排出パイプ3上端開口から排出される。また、水槽底部の汚泥は、底部中心に設けられ排水口2から排出される。暫く放置した後、排水口の弁を閉じて上昇流を発生させ、再度、弁を開放する動作を反復して行うことにより、効率良く汚泥を排出することができる。以上のように、排水口2の弁の開閉を反復して行うことにより、効率良く汚泥を排出することができる。勿論、弁の開閉動作を行わず、一定の開度を保持して開放し続けることでも汚泥の排出は可能である。   When removing the sludge settled on the bottom of the water tank, opening and closing of the valve (not shown) of the drain port 2 is repeated several times. By this operation, the sludge is collected around the discharge pipe 3 and discharged efficiently at a time when the valve is opened. That is, when the valve is open, the sludge concentrated in the center of the bottom due to the tornado effect is discharged sequentially from the sludge drain port 2, but once the valve is closed, an upward flow due to the tornado effect is generated, and the sludge Begins to rise along the discharge pipe 3 erected above the drain port 2. A few seconds later, when the valve of the drain port 2 is opened, the water inside the discharge pipe 3 is discharged at a stretch, and along with this, the sludge rising along the discharge pipe 3 is also discharged from the upper end opening of the discharge pipe 3. Moreover, the sludge at the bottom of the water tank is provided at the center of the bottom and is discharged from the drain port 2. After leaving for a while, the valve of the drain port is closed to generate an upward flow, and the operation of opening the valve is repeated again, whereby sludge can be discharged efficiently. As described above, sludge can be discharged efficiently by repeatedly opening and closing the valve of the drain port 2. Of course, sludge can also be discharged by keeping the valve open and closing without opening and closing the valve.

(実験例)
実験装置は、水槽1にバルブ4とバルブ開閉装置4aと回転盤5モータ5a及びモータ制御装置5bが取付けられている。水槽1内の水はバルブ開閉装置の操作により排出される。実験装置はバルブの全開・全閉時間をそれぞれ0秒〜30秒に設定でき、また、バルブが全開から全閉、全閉から全開になるまでに10秒間を要する。また、流速を測定する際には、LDV(レーザードップラー流速計)6のプローブ7を支持台8に固定する。プローブ支持台8のハンドル9を調節することで、レーザーの交点を計測点に合わせることができる。ここで、水槽1の大径部1aの直径D1は600mm、小径部1bの直径D2は300mm、大径部1aの高さH1は150mm、小径部1bの高さH2は350mmとした、尚、図中10はパソコンである。
(Experimental example)
In the experimental device, a water tank 1 is provided with a valve 4, a valve opening / closing device 4a, a rotating disk 5 motor 5a and a motor control device 5b. Water in the water tank 1 is discharged by operating the valve opening / closing device. The experimental apparatus can set the full open / close time of the valve to 0 to 30 seconds, respectively, and it takes 10 seconds from the full open to the full close and from the full close to the full open. Further, when measuring the flow velocity, a probe 7 of an LDV (Laser Doppler velocimeter) 6 is fixed to the support base 8. By adjusting the handle 9 of the probe support 8, the laser intersection can be adjusted to the measurement point. Here, the diameter D1 of the large diameter portion 1a of the water tank 1 is 600 mm, the diameter D2 of the small diameter portion 1b is 300 mm, the height H1 of the large diameter portion 1a is 150 mm, and the height H2 of the small diameter portion 1b is 350 mm. In the figure, 10 is a personal computer.

流速測定:
図4に示す水槽1の測定点4点A,B,C,Dにおいて、バルブを開放し続けた場合、周期的にバルブを開放した場合、また、排出筒を付けた状態(以下、筒有りという)、排出筒を付けていない状態(以下、筒無しという)のそれぞれの状態での流速をLDVにより計測した。また、回転盤を回転させた場合(回転数15.18rpm)は軸方向成分、周方向成分ともに計測し、回転させない場合は軸方向成分のみを計測した。ここで、
測定点A:r=135、z=240 測定点B:r=15、z=240
測定点C:r=135、z=80 測定点D:r=15、z=80
(r:中心からの距離 z:底からの高さ 単位:mm)とする。
Flow velocity measurement:
At the four measurement points A, B, C, and D of the water tank 1 shown in FIG. 4, when the valve is kept open, when the valve is opened periodically, or when a discharge cylinder is attached (hereinafter, there is a cylinder) The flow velocity in each state where no discharge cylinder was attached (hereinafter referred to as “no cylinder”) was measured by LDV. When the rotating disk was rotated (rotation number 15.18 rpm), both the axial component and the circumferential component were measured, and when not rotating, only the axial component was measured. here,
Measurement point A: r = 135, z = 240 Measurement point B: r = 15, z = 240
Measurement point C: r = 135, z = 80 Measurement point D: r = 15, z = 80
(R: distance from the center z: height from the bottom unit: mm).

測定結果:
中心軸付近(B点、D点)に比べ側壁付近(A点、C点)は、軸方向速度、周方向速度共にバルブ開放(流しっぱなし、以下開放という)時の最大速度及びバルブ開閉(周期的な開閉、以下開閉という)時の速度変化が小さい。また、軸方向速度では下部測定点(C点、D点)に比べて上部測定点(A点、B点)も、同様に最大速度と速度変化が小さい、これらの差は、側壁の摩擦抵抗及び排水口の吸い込みによるものと考えられる。以上のことより、以下D点における考察を行った。
Measurement result:
Compared to the vicinity of the central axis (points B and D), the vicinity of the side wall (points A and C) has a maximum speed and valve opening and closing (valid and hereinafter referred to as opening) for both the axial speed and the circumferential speed. The speed change during periodic opening and closing (hereinafter referred to as opening and closing) is small. Also, in the axial velocity, the upper measurement point (point A, point B) is similarly smaller in the upper measurement point (point A, point B) than the lower measurement point (point C, point D). It is thought that this is due to the suction of the drain outlet. Based on the above, the following points D were considered.

バルブ開放時:
図5及び図6に示すように、D点において、軸方向速度は80秒程度で最小速度となりその後上昇する。図7及び図8に示すように、周方向速度は時間経過による速度上昇が見られ、計測開始から120秒程で最大速度となった。
バルブ開閉時:
D点において、軸方向速度はバルブ開放時と比べて速度変化が大きい。周方向速度はバルブを開け閉めした時に多少の速度変化が見られた。また、軸方向速度と周方向速度のグラフは逆位相となるが、これは、バルブ開閉により縦方向の循環がより加速されていることの証明である。
When valve is open:
As shown in FIGS. 5 and 6, at the point D, the axial speed becomes the minimum speed in about 80 seconds and then increases. As shown in FIGS. 7 and 8, the circumferential speed increased with time, and reached the maximum speed in about 120 seconds from the start of measurement.
When opening and closing the valve:
At point D, the axial speed has a larger speed change than when the valve is open. The circumferential speed was slightly changed when the valve was opened and closed. In addition, the graphs of the axial speed and the circumferential speed are in opposite phases, which is a proof that the vertical circulation is further accelerated by opening and closing the valve.

排出筒有り・筒無しによる差:
排出筒を設置した場合は、設置しない場合に比べて、開閉時の軸方向速度の振幅が大きくなる。これは排出筒による整流効果によるものと思われる。
Difference with and without discharge tube:
When the discharge cylinder is installed, the amplitude of the axial speed at the time of opening and closing becomes larger than when the discharge cylinder is not installed. This seems to be due to the rectification effect of the discharge tube.

回転盤の回転は、水槽内流体に旋回流及び循環流を発生させた。これは流速測定により証明された。バルブ開放時は120秒程度で水面が水槽1a下部に達する。また、図7及び図8のグラフに示すように、周方向速度が計測開始から120秒程度で最大速度となる。この結果より水槽に段差を設けたことで、より強い旋回流が発生したものと考えられる。また、図9、図10、図11及び図12のグラフから判るように、周期的にバルブを開閉することで、縦方向の循環が加速され、回転盤による旋回だけでは除去できなかった茶葉(汚泥の代わりとなる沈殿物)を排出することができた。さらに、排出筒を付けることで、開放時は最大速度が大きくなり開閉時は速度の振幅が大きくなることが判った、これは排出筒によりトルネード効果が強められた結果であり、排出筒設置の妥当性を示している。   The rotation of the turntable generated a swirl flow and a circulation flow in the fluid in the water tank. This was verified by flow measurements. When the valve is opened, the water surface reaches the lower part of the water tank 1a in about 120 seconds. Further, as shown in the graphs of FIGS. 7 and 8, the circumferential speed reaches the maximum speed in about 120 seconds from the start of measurement. From this result, it is considered that a stronger swirling flow was generated by providing a step in the water tank. Also, as can be seen from the graphs of FIGS. 9, 10, 11 and 12, by periodically opening and closing the valve, the circulation in the vertical direction is accelerated, and the tea leaves (which could not be removed only by turning with the rotating disk) It was possible to discharge the precipitate (substitute for sludge). Furthermore, it was found that by attaching the discharge cylinder, the maximum speed increases when opened and the amplitude of the speed increases when opening and closing, which is the result of the tornado effect being strengthened by the discharge cylinder. It shows validity.

可視実験:
水槽内に水を入れた後、水槽上部に茶葉を入れた。次いで、回転盤を回転させた場合(回転数15.18rpm)、また周期的にバルブを開閉した場合の茶葉の動きを観察した。同様に、回転盤を回転させずにバルブを開放した場合の茶葉の動きを観察した。いずれの場合も排水筒を設置しない状態で行った。
(回転無しの場合)
水槽内の流体が静止した状態では、水槽上部に浮かんだ茶葉はバルブを開放してもほとんど落下しない。水面が水槽下部に到達しても茶葉は落下せず、全ての水を排出してもほとんどの茶葉が水槽内に残留した。
(回転有りの場合)
回転盤を回転させると、回転が流体に伝わり水槽上部に浮かんだ茶葉が落下し始め、その後全ての茶葉が水槽の底まで落下した。バルブを開けると、茶葉は排水口から流出し、バルブを閉じると中心付近に集約した。そこで、再度バルブを開けると集約した茶葉は一気に流出した。この操作を反復することで、水槽内のほとんどの茶葉を除去することができた。
Visible experiment:
After putting water in the water tank, tea leaves were put in the upper part of the water tank. Next, the movement of the tea leaves was observed when the rotating disk was rotated (rotation speed: 15.18 rpm) and when the valve was opened and closed periodically. Similarly, the movement of the tea leaves was observed when the valve was opened without rotating the turntable. In either case, the test was conducted without a drain tube.
(When there is no rotation)
When the fluid in the aquarium is stationary, the tea leaves floating on the top of the aquarium hardly fall even when the valve is opened. Even when the water surface reached the bottom of the aquarium, the tea leaves did not fall, and even when all the water was drained, most of the tea leaves remained in the aquarium.
(With rotation)
When the rotating disk was rotated, the rotation was transferred to the fluid, and the tea leaves floating at the top of the aquarium began to fall, and then all the tea leaves fell to the bottom of the aquarium. When the valve was opened, the tea leaves flowed out of the drain, and when the valve was closed, it gathered near the center. Then, when the valve was opened again, the collected tea leaves flowed all at once. By repeating this operation, most of the tea leaves in the aquarium could be removed.

尚、本発明の対象となる水槽は、円筒形状の水槽のみならず、水平断面が矩形の水槽や多角形の水槽も含まれる。断面が楕円形、矩形又は多角形の水槽においても、上部に対し下部が小となるように形成すれば、収容された流体に付与される旋回流によってトルネード効果が生じる。また、上部が筒状で下部が矩形又は多角形のものやその逆の形状、若しくは水平断面が円形、楕円形、矩形、多角形の水槽を上下任意に組み合わせるものでも良い。また、実験では円盤を用いて旋回流を発生させたが、実水槽においては流体の噴出により旋回流を発生させる方法や、回転プロペラを用いて旋回流を発生させる方法等を採用してもよい。   In addition, the water tank used as the object of the present invention includes not only a cylindrical water tank but also a water tank having a rectangular horizontal section and a polygonal water tank. Even in a tank having an elliptical, rectangular, or polygonal cross section, if the lower part is formed smaller than the upper part, a tornado effect is generated by the swirling flow applied to the contained fluid. Moreover, the upper part is cylindrical and the lower part is rectangular or polygonal, or vice versa, or the horizontal cross section may be arbitrarily combined up and down with a circular, elliptical, rectangular or polygonal water tank. In the experiment, a swirling flow was generated using a disk. However, in a real water tank, a method of generating a swirling flow by ejecting a fluid or a method of generating a swirling flow using a rotating propeller may be adopted. .

本発明は、魚類の飼育や生簀など魚類を飼育する水槽の浄化技術において有用である。   INDUSTRIAL APPLICABILITY The present invention is useful in the purification technology for aquariums for raising fish such as fish breeding and ginger.

本発明に係る水槽の斜視図である。It is a perspective view of the water tank concerning the present invention. 水槽中のトルネード効果を模式的に示す水槽の断面図である。It is sectional drawing of the water tank which shows the tornado effect in a water tank typically. 本発明に係る実験装置の概略図である。It is the schematic of the experimental apparatus which concerns on this invention. 流速の計測点を示す模式図である。It is a schematic diagram which shows the measurement point of the flow velocity. バルブの開閉と流速との関係を示すグラフである。It is a graph which shows the relationship between the opening and closing of a valve | bulb, and the flow velocity. バルブの開閉と流速との関係を示すグラフである。It is a graph which shows the relationship between the opening and closing of a valve | bulb, and the flow velocity. バルブの開閉と流速との関係を示すグラフである。It is a graph which shows the relationship between the opening and closing of a valve | bulb, and the flow velocity. バルブの開閉と流速との関係を示すグラフである。It is a graph which shows the relationship between the opening and closing of a valve | bulb, and the flow velocity. バルブの開閉と流速との関係を示すグラフである。It is a graph which shows the relationship between the opening and closing of a valve | bulb, and the flow velocity. バルブの開閉と流速との関係を示すグラフである。It is a graph which shows the relationship between the opening and closing of a valve | bulb, and the flow velocity. バルブの開閉と流速との関係を示すグラフである。It is a graph which shows the relationship between the opening and closing of a valve | bulb, and the flow velocity. バルブの開閉と流速との関係を示すグラフである。It is a graph which shows the relationship between the opening and closing of a valve | bulb, and the flow velocity.

符号の説明Explanation of symbols

1 水槽
1a大径部
1b小径部
2 排水口
3 汚泥排出筒(排出パイプ)
4 バルブ
4aバルブ開閉装置
5 回転盤
5aモーター
5bモーター制御装置
6 LDV
7 プローブ
8 支持台
9 ハンドル
10パソコン
11網体又は格子体
1 Water tank 1a Large diameter part 1b Small diameter part 2 Drain port 3 Sludge discharge pipe (discharge pipe)
4 Valve 4a Valve opening / closing device 5 Turntable 5a Motor 5b Motor control device 6 LDV
7 Probe 8 Support base 9 Handle 10 Personal computer 11 Network or lattice

Claims (8)

筒状水槽の下部の直径が上部の直径よりも小となるように区画して形成し、収容された流体に付与される旋回流によって生じるトルネード効果により水槽底部の汚泥を旋回流の回転軸に向って集約することを特徴とする魚類の飼育用水槽。 The bottom of the cylindrical tank is divided and formed so that it is smaller than the diameter of the upper part, and the sludge at the bottom of the tank is turned into the rotation axis of the swirling flow by the tornado effect generated by the swirling flow applied to the contained fluid. A fish tank for collecting fish, characterized by concentrating toward it. 水槽底部の汚泥を旋回流の回転軸に向って集約すると共に、旋回流の回転軸に倣って上昇させて集約することを特徴とする請求項1記載の魚類の飼育用水槽。 2. The fish rearing tank according to claim 1, wherein the sludge at the bottom of the aquarium is gathered toward the rotation axis of the swirling flow, and is raised and gathered along the rotation axis of the swirling flow. 旋回流の回転軸上で且つ水槽底部から上方に突出する汚泥排出筒を設け、回転軸に倣って上昇させた汚泥を排出することを特徴とする請求項1又は請求項2記載の魚類の飼育用水槽。 The fish breeding according to claim 1 or 2, wherein a sludge discharge cylinder is provided on the rotating shaft of the swirling flow and protrudes upward from the bottom of the water tank, and the sludge raised along the rotating shaft is discharged. Aquarium. 水槽の上部及び/又は下部の断面が楕円形、矩形及び/又は多角形若しくは円形であり、水槽の下部の水平断面積が上部より小となるように区画して形成したことを特徴とする請求項1乃至請求項3のいずれかに記載の魚類の飼育用水槽。 The upper and / or lower section of the aquarium is elliptical, rectangular and / or polygonal or circular, and the horizontal section of the lower section of the aquarium is partitioned so as to be smaller than the upper section. The fish tank for raising fish according to any one of claims 1 to 3. 水槽を上部と下部に区画して形成し、下部の直径又は水平断面積が上部より小となるように成し、収容された流体に付与される旋回流によって生じるトルネード効果により水槽底部の汚泥を旋回流の回転軸に向って集約することを特徴とする魚類の飼育水槽等の汚泥除去方法。 The tank is divided into an upper part and a lower part.The lower part has a lower diameter or horizontal cross-sectional area than the upper part, and the sludge at the bottom of the tank is formed by the tornado effect generated by the swirling flow applied to the contained fluid. A method for removing sludge from fish breeding aquariums, etc., characterized by concentrating toward a rotational axis of a swirling flow. 水槽底部の汚泥を旋回流の回転軸の中心に向って集約すると共に、旋回流の回転軸に倣って上昇させて集約することを特徴とする請求項5記載の魚類の飼育水槽等の汚泥除去方法。 6. The sludge removal of a fish breeding aquarium or the like according to claim 5, wherein the sludge at the bottom of the aquarium is gathered toward the center of the rotating shaft of the swirling flow and is gathered by raising along the rotating shaft of the swirling flow. Method. 旋回流の回転軸上で且つ水槽底部から上方に突出する汚泥排出筒を設け、回転軸に倣って上昇させた汚泥を排出することを特徴とする請求項4又は請求項5記載の魚類の飼育水槽等の汚泥除去方法。 6. The fish breeding according to claim 4 or 5, wherein a sludge discharge tube is provided on the rotating shaft of the swirling flow and protrudes upward from the bottom of the water tank, and the sludge raised along the rotating shaft is discharged. Sludge removal method for water tanks. 水槽を上部と下部に区画して形成し、下部の直径又は水平断面積が上部より小となるように成し、収容された流体に付与される旋回流によって生じるトルネード効果により水槽底部の汚泥を旋回流の回転軸に向って集約し、旋回流の回転軸上で且つ水槽底部から上方に突出する汚泥排出筒を設け、回転軸に倣って上昇させた汚泥を排出する方法において、水槽底部に設けた排水口の弁の開閉を反復することにより、汚泥排出筒と底部排水口の両者から汚泥を排出することを特徴とする魚類の飼育水槽等の汚泥除去方法。 The tank is divided into an upper part and a lower part.The lower part has a lower diameter or horizontal cross-sectional area than the upper part, and the sludge at the bottom of the tank is formed by the tornado effect generated by the swirling flow applied to the contained fluid. In a method of providing a sludge discharge tube that is concentrated toward the rotating shaft of the swirling flow and protrudes upward from the bottom of the water tank on the rotating shaft of the swirling flow, the sludge raised along the rotating shaft is discharged. A method for removing sludge from a fish rearing tank or the like, wherein sludge is discharged from both the sludge discharge tube and the bottom drain port by repeatedly opening and closing the valve of the drain port provided.
JP2005044746A 2005-02-21 2005-02-21 Sludge removal method for fish rearing tank and rearing tank Active JP4686706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005044746A JP4686706B2 (en) 2005-02-21 2005-02-21 Sludge removal method for fish rearing tank and rearing tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005044746A JP4686706B2 (en) 2005-02-21 2005-02-21 Sludge removal method for fish rearing tank and rearing tank

Publications (2)

Publication Number Publication Date
JP2006223271A true JP2006223271A (en) 2006-08-31
JP4686706B2 JP4686706B2 (en) 2011-05-25

Family

ID=36985178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005044746A Active JP4686706B2 (en) 2005-02-21 2005-02-21 Sludge removal method for fish rearing tank and rearing tank

Country Status (1)

Country Link
JP (1) JP4686706B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101653105B (en) * 2009-09-08 2011-09-07 中国水产科学研究院渔业机械仪器研究所 Water-saving marine fish culture water purification plant and method
JP2016077268A (en) * 2014-10-22 2016-05-16 Jfeエンジニアリング株式会社 Land rearing device of tuna
CN107455317A (en) * 2017-09-22 2017-12-12 辽宁省海洋水产科学研究院 Jellyfish cultivation automatic water-exchanging system and its application
CN107494399A (en) * 2017-09-29 2017-12-22 新希望六和饲料股份有限公司 Fish excrement collection cylinder is used in a kind of fish feed experiment
KR20230024760A (en) * 2021-08-12 2023-02-21 주식회사 이지엑스 Fish bowl cleaner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058215A (en) * 1983-09-08 1985-04-04 Takara Kogyo Kk Filter apparatus
JPH0234164U (en) * 1988-08-30 1990-03-05
JPH0622663A (en) * 1992-07-07 1994-02-01 Matsushita Electric Ind Co Ltd Water tank for aquarium fish
JP2000069879A (en) * 1998-09-01 2000-03-07 Kaiyo Seibutsu Saibai Center:Kk Water tank system for culturing marine animal
JP2002017200A (en) * 2000-07-04 2002-01-22 Hitachi Zosen Corp Water tank for exhibition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058215A (en) * 1983-09-08 1985-04-04 Takara Kogyo Kk Filter apparatus
JPH0234164U (en) * 1988-08-30 1990-03-05
JPH0622663A (en) * 1992-07-07 1994-02-01 Matsushita Electric Ind Co Ltd Water tank for aquarium fish
JP2000069879A (en) * 1998-09-01 2000-03-07 Kaiyo Seibutsu Saibai Center:Kk Water tank system for culturing marine animal
JP2002017200A (en) * 2000-07-04 2002-01-22 Hitachi Zosen Corp Water tank for exhibition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101653105B (en) * 2009-09-08 2011-09-07 中国水产科学研究院渔业机械仪器研究所 Water-saving marine fish culture water purification plant and method
JP2016077268A (en) * 2014-10-22 2016-05-16 Jfeエンジニアリング株式会社 Land rearing device of tuna
CN107455317A (en) * 2017-09-22 2017-12-12 辽宁省海洋水产科学研究院 Jellyfish cultivation automatic water-exchanging system and its application
CN107494399A (en) * 2017-09-29 2017-12-22 新希望六和饲料股份有限公司 Fish excrement collection cylinder is used in a kind of fish feed experiment
KR20230024760A (en) * 2021-08-12 2023-02-21 주식회사 이지엑스 Fish bowl cleaner
KR102616925B1 (en) 2021-08-12 2023-12-21 주식회사 이지엑스 Fish bowl cleaner

Also Published As

Publication number Publication date
JP4686706B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP4686706B2 (en) Sludge removal method for fish rearing tank and rearing tank
CN1895719A (en) Degassing apparatus and ultrasonic wave washing apparatus using the same
NO318527B1 (en) Waste separation system for fish cages
US20220341114A1 (en) Marine debris collection device
JP2008200565A (en) Biological treatment device
JP3631999B2 (en) Fine bubble feeder
KR20100112138A (en) Method and apparatus for mixing
JP2010005519A (en) Floatation separation apparatus
JP5497873B2 (en) Levitation separator
JP2011101858A (en) Scum discharge trough and scum recovery apparatus
KR200186618Y1 (en) Nursery for breeding fishes by using vessel
JP4768049B2 (en) Floating oil recovery device
CN108862762B (en) Resonance type sand basin
EP1066220B1 (en) Method and pump for impelling water in waters
CN108786193B (en) Shunting type grit chamber
JP2001321605A (en) Oil/water separation device
JP5478201B2 (en) Precipitation tank guide plate and scum recovery device
CN203735274U (en) Movable hardening pool sediment washing device
JP2008119643A (en) Gravity concentration tank
RU49468U1 (en) SILT PUMP CLEANER FOR WEIGHTED PARTICLES
JP6853626B2 (en) Stirrer
JP5524775B2 (en) Levitation separator
JP2008115816A (en) Vertical suction pump
JP2001104705A (en) Oil-water separation device
JP2010051906A (en) Fluid transfer device for sewage treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080219

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20110118

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150