JP2010051906A - Fluid transfer device for sewage treatment - Google Patents

Fluid transfer device for sewage treatment Download PDF

Info

Publication number
JP2010051906A
JP2010051906A JP2008220842A JP2008220842A JP2010051906A JP 2010051906 A JP2010051906 A JP 2010051906A JP 2008220842 A JP2008220842 A JP 2008220842A JP 2008220842 A JP2008220842 A JP 2008220842A JP 2010051906 A JP2010051906 A JP 2010051906A
Authority
JP
Japan
Prior art keywords
water
storage tank
fluid transfer
tank
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008220842A
Other languages
Japanese (ja)
Inventor
Tomoya Masuda
智也 増田
Kazuhiko Yoneyama
和彦 米山
Kenji Suzuki
賢二 鈴木
Naoya Kawakami
直哉 川上
Toshitaka Ohara
利隆 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAHI TEC ENVIRONMENTAL SOLUTI
ASAHI TEC ENVIRONMENTAL SOLUTIONS CORP
Original Assignee
ASAHI TEC ENVIRONMENTAL SOLUTI
ASAHI TEC ENVIRONMENTAL SOLUTIONS CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAHI TEC ENVIRONMENTAL SOLUTI, ASAHI TEC ENVIRONMENTAL SOLUTIONS CORP filed Critical ASAHI TEC ENVIRONMENTAL SOLUTI
Priority to JP2008220842A priority Critical patent/JP2010051906A/en
Publication of JP2010051906A publication Critical patent/JP2010051906A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid transfer device which transfers a solid foreign matter such as screen residues removed from sewage with a fluid, and enables efficient discharge of the foreign matter such as the screen residues after being crushed. <P>SOLUTION: Water containing screen residues is made to tangentially flow into a treatment water tank 10 by an inflow pipe 12 after being crushed by a crusher 16 installed on a guide chute 14. While the water containing the crushed screen residues is rotated in the treatment water tank 10 by an agitator 22 installed in the treatment water tank 10, the flow of the water is converted to a vertical flow by guide vanes 24, 26. A discharge pipe 36 opens at an intermediate position between a set water level L and the bottom 10-1 in the treatment water tank 10. The water containing the crushed screen residues is discharged by a drainage pump 38 to be transferred to a screen residue treatment site. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は下水中から取り除かれたし渣(スクリーン渣)等の固形異物を流体移送する流体移送装置に関するものである。   The present invention relates to a fluid transfer device that fluidly transfers solid foreign matters such as screen residue removed from sewage.

沈砂地から取り出されたし渣を破砕装置によって破砕後に洗浄槽に導き、破砕されたし渣を含んだ洗浄槽中の水を排水ポンプにより流体移送管中を流体移送する下水処理用の流体移送装置が公知である(特許文献1)。沈砂池から取り出されたし渣は水と共に流水トラフにて洗浄槽に輸送され、洗浄槽は一次洗浄部と二次洗浄部との2分割構造になっており、し渣は水流下で流水トラフから一次洗浄部に運ばれ、洗浄水による洗浄作用を受けると共に一次洗浄部に設けられた破砕機により破砕を受けた後に二次洗浄部に運ばれる。二次洗浄部には攪拌機が設けられ、破砕されたし渣は洗浄水と共に攪拌を受け、二次洗浄部の底面に開口する排出用吸込み管に外部設置の移送ポンプにて吸引され、スクリーン分離機にてし渣のみ分離され、処理場に運搬される。
特開2001−187399号公報
Fluid transfer for sewage treatment in which slag removed from the sedimentation ground is crushed by a crushing device and then guided to a washing tank, and water in the washing tank containing the crushed residue is fluid-transferred through a fluid transfer pipe by a drainage pump. An apparatus is known (Patent Document 1). The residue removed from the sand basin is transported to the washing tank with running water trough together with water, and the washing tank has a two-part structure consisting of a primary washing section and a secondary washing section. Then, it is transported to the primary cleaning section, is subjected to the cleaning action by the cleaning water, is crushed by the crusher provided in the primary cleaning section, and is then transported to the secondary cleaning section. The secondary cleaning unit is equipped with a stirrer, and the crushed residue is agitated with the cleaning water, sucked by the externally installed transfer pump into the suction pipe that opens at the bottom of the secondary cleaning unit, and separated into screens. Only the residue is separated by a machine and transported to the treatment plant.
JP 2001-187399 A

特許文献1の技術では一次洗浄部に破砕機を設けることによりし渣の破砕を行った後、二次洗浄部に送り、二次洗浄部に設けた攪拌機によりし渣を水中に均等分布させ吸込み管により効率的な吸引を行わせようという思想のものである。攪拌機は洗浄槽の壁面に設けており、洗浄槽の壁面設置の攪拌機は洗浄槽内に惹起される旋回流により攪拌機能を達成する。ところが、し渣はプラスチックフィルムなどを主体とした軽量な性状のものであるため、水中での浮力がその重量に対して相対的に大きいため、単に旋回流による攪拌を行っだけでは底面に向けて沈降し難く、その殆どが表面近くの水中を回り続けることとなる。表面で回り続けているうちにも新しいし渣の流入は継続することから、し渣同士が絡み合って大きな塊状となってしまい易かった。他方、吸込み管は洗浄槽の底面にその開口部が設けられているため、破砕後のし渣は吸込み管のところまでは中々到達しない。そのため、し渣は中々排出に至らず、洗浄槽からのし渣の排出のため下水の流入を一旦停止し、洗浄槽の液面を下げて行き、洗浄槽底面に設置した吸込み管による吸込みを行わせるような運転を行わざるを得ないが、この場合、絡み合って大きな塊となったし渣が吸込み管に一斉に吸引され、移送ポンプの閉塞の恐れがあった。   In the technique of Patent Document 1, the crusher is crushed by providing a crusher in the primary washing unit, then sent to the secondary washing unit, and the crusher is evenly distributed in the water by the stirrer provided in the secondary washing unit and sucked The idea is to allow efficient suction by a tube. The stirrer is provided on the wall surface of the cleaning tank, and the stirrer installed on the wall surface of the cleaning tank achieves the stirring function by the swirling flow induced in the cleaning tank. However, since the residue is lightweight, mainly made of plastic film, the buoyancy in water is relatively large relative to its weight. It is difficult to settle, and most of it continues to rotate in the water near the surface. Since the inflow of new debris continued while continuing to rotate on the surface, the debris entangled with each other and easily formed into a large lump. On the other hand, since the opening of the suction pipe is provided in the bottom surface of the washing tank, the residue after crushing does not reach the suction pipe. For this reason, the residue is not discharged, but the inflow of sewage is temporarily stopped to remove the residue from the washing tank, the liquid level of the washing tank is lowered, and suction is performed by the suction pipe installed at the bottom of the washing tank. However, in this case, a large lump of entangled mass was sucked into the suction pipe all at once, and the transfer pump might be blocked.

この発明は以上の問題点に鑑みなされたものであり、破砕後のし渣等の異物の排出を効率的に行うことができるようにすることを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to enable efficient discharge of foreign matters such as residue after crushing.

この発明によれば、下水から分離された固形異物を水流にて搬送せしめる搬送路と、前記搬送路からの固形異物を破砕する破砕手段と、破砕手段を通過後の固形異物を含んだ水を貯留せしめる貯留水槽と、前記貯留水槽内において固形異物を含んだ水を攪拌せしめる攪拌手段と、攪拌後の固形異物を含んだ水を排出する排出路とを備えた汚水処理用流体移送装置において、前記排出路は前記貯留水槽における水面と底面との中間の位置において貯留水槽に開口していることを特徴とする汚水処理用流体移送装置が提供される。   According to this invention, the transport path for transporting the solid foreign matter separated from the sewage by the water flow, the crushing means for crushing the solid foreign matter from the transport path, and the water containing the solid foreign matter after passing through the crushing means. In a sewage treatment fluid transfer apparatus, comprising: a storage water tank to be stored; a stirring means for stirring water containing solid foreign matter in the storage water tank; and a discharge path for discharging water containing solid foreign matter after stirring; The waste water treatment fluid transfer device is provided in which the discharge path is opened to the storage tank at a position intermediate between the water surface and the bottom surface of the storage tank.

貯留水槽に対する排出路の開口位置は貯留水槽における水面と貯留水槽の底面との中間の位置であり、換言すれば、貯留水槽の底面から所定距離上方に離間した位置である。ここに、貯留水槽における水面とは通常の作動状態における水面レベルのことで、水面レベルセンサにより水面レベルを検出し、所定レベルとなるような水流の調節は行われる。破砕後のし渣等の固形異物は攪拌手段による攪拌作用を受けることにより貯留水槽の底面に向けて沈降付勢されるが、その重量は軽量であり他方大きな浮力を受けるために沈降深さには限界があるが、排出路の開口位置は貯留水槽における水面と貯留水槽の底面との中間の位置(貯留水槽の底面から所定距離上方に離間した位置)であるため排出路の開口位置を適切設定することにより浮力とのバランスを取ることで攪拌によるし渣等の固形異物の沈降深さを排出路の開口位置近傍とすることができ、そのため、破砕後のし渣等の固形異物を実質的に滞留させることなく排出路に向けて効率的に排出することができる。   The opening position of the discharge path with respect to the water storage tank is an intermediate position between the water surface in the water storage tank and the bottom surface of the water storage tank, in other words, a position spaced apart from the bottom surface of the water storage tank by a predetermined distance. Here, the water level in the storage tank is the water level in a normal operating state, and the water level is detected by the water level sensor, and the water flow is adjusted to a predetermined level. Solid foreign matter such as residue after crushing is forced to settle toward the bottom of the reservoir by receiving a stirring action by the stirring means. Although there is a limit, the opening position of the discharge channel is an intermediate position between the water surface of the storage tank and the bottom surface of the storage tank (a position spaced apart from the bottom surface of the storage tank by a predetermined distance). By setting the balance with the buoyancy, the sedimentation depth of solid foreign matter such as residue by stirring can be set near the opening position of the discharge path, so that solid foreign matter such as residue after crushing is substantially eliminated. Therefore, it is possible to efficiently discharge toward the discharge path without stagnation.

前記攪拌手段は、前記貯留水槽中において旋回流を発生せしめる旋回流発生手段と、前記旋回流と協働することにより旋回流を貯留水槽の前記排出口に向かう縦方向流に変換する流れ方向変換手段とから構成することができる。旋回流を縦方向流に変換する手段を設けることで、攪拌による貯留水槽内でのし渣等の固形異物の沈降深さを大きくとることができるため、排出路の開口位置をより深くすることができ、貯留水槽の全容量を有効に活用することができる。   The stirring means is a swirl flow generating means for generating a swirl flow in the reservoir tank, and a flow direction change for converting the swirl flow into a longitudinal flow toward the discharge port of the reservoir tank in cooperation with the swirl flow. Means. By providing a means to convert the swirl flow into the longitudinal flow, it is possible to increase the settling depth of solid foreign matters such as residue in the storage tank by agitation, so that the opening position of the discharge channel is made deeper. And the entire capacity of the storage tank can be used effectively.

この発明において、搬送路と貯留水槽とを幾分の落差をもって接続する案内シュートを設けることができる。案内シュートを設けることで搬送路から貯留水槽へのスムースな流れを得ることができ、水位が低下し過ぎることがないため排出路に設置されるポンプの閉塞等の不具合を未然防止することができ、また案内シュートは搬送路を単に水槽に接続しているだけであるため、貯留機能は必要としていないため全体としての水槽の容積は小さくなり、装置の小型化、製造コストの低減を実現することができる。   In this invention, the guide chute which connects a conveyance path and a storage water tank with a certain drop can be provided. By providing a guide chute, it is possible to obtain a smooth flow from the conveyance path to the storage tank, and it is possible to prevent problems such as blockage of the pump installed in the discharge path because the water level does not drop too much. In addition, since the guide chute simply connects the conveyance path to the water tank, the storage function is not required, so the volume of the water tank as a whole is reduced, and the apparatus is downsized and the manufacturing cost is reduced. Can do.

この破砕手段は前記案内シュートに設置することができ、余分な水量を滞留させることなくし渣等の固形異物を迅速に破砕し、貯留水槽まで案内することができ、これも装置全体の寸法の小型化に寄与させることができる。   This crushing means can be installed on the guide chute and can quickly crush solid foreign matters such as residue without causing an excess amount of water to stay, and can guide it to the storage tank. Can contribute to the development.

この発明において、前記貯留水槽は円形若しくは楕円形の断面形状をなし、前記搬送路は貯留水槽に実質的に接線方向において開口させることができ、これにより貯留水槽に効率的な旋回運動を惹起させることができる。   In this invention, the reservoir tank has a circular or elliptical cross-sectional shape, and the transfer path can be opened substantially tangentially to the reservoir tank, thereby causing an efficient swiveling motion to the reservoir tank. be able to.

破砕後のしさ等の固形異物を貯留水槽に滞留させることなく排出路より効率的かつ迅速に排出することができ、貯留水槽の容積を抑制しつつ効率的な異物除去を行うことができ、異物の滞留・蓄積がないため排出路に設置されるポンプの閉塞等の不具合を未然防止することができる。   Solid foreign matter such as the strength after crushing can be efficiently and quickly discharged from the discharge channel without staying in the reservoir, and the foreign matter can be removed efficiently while suppressing the volume of the reservoir. Since there is no stagnation or accumulation, problems such as blockage of a pump installed in the discharge path can be prevented.

以下この発明の汚水処理用流体移送装置を汚水処理場におけるし渣の処理において実施した場合を例に説明すると、貯留水槽10は汚水処理場における沈砂地(図示しない)の近傍に設けられる。貯留水槽10には沈砂池から取り出されたし渣が流水管12によって送られてくる。貯留水槽10は図2に示すように円形(若しくは楕円形)の断面形状をなし、流水管12は貯留水槽10の内部空洞に対し接線方向に開口するように貯留水槽10の側面に固定される。貯留水槽10の側面への固定端部において流水管12は案内シュート14(流水管12とでこの発明の搬送路を構成する)を形成しており、流水管12から矢印aのように流入されるし渣を含んだ水は幾分の落差をもって貯留水槽10に導入され、攪拌処理のため貯留される。   Hereinafter, the case where the sewage treatment fluid transfer device of the present invention is implemented in the processing of residue in a sewage treatment plant will be described as an example. The storage tank 10 is provided in the vicinity of a sand sink (not shown) in the sewage treatment plant. The residue taken out from the settling basin is sent to the storage tank 10 by the flowing water pipe 12. The water storage tank 10 has a circular (or elliptical) cross-sectional shape as shown in FIG. 2, and the water flow pipe 12 is fixed to the side surface of the water storage tank 10 so as to open in a tangential direction with respect to the internal cavity of the water storage tank 10. . The flowing water pipe 12 forms a guide chute 14 (which constitutes the conveying path of the present invention with the flowing water pipe 12) at the fixed end to the side surface of the reservoir tank 10, and flows into the flowing water pipe 12 as indicated by an arrow a. The water containing the residue is introduced into the storage tank 10 with a slight drop and stored for the stirring process.

案内シュート14に破砕機16(この発明の破砕手段)が設けられ、流水管12からの流水中に含まれるし渣は破砕作用を受け、破砕後のし渣が貯留水槽10に導入されるようになっている。破砕機16はし渣の破砕が可能なものであれば如何なる構造のものでも良いが、この実施形態では特許文献1の構造に準じたものであり、一対の直立破砕ユニット18, 20を備えており、直立破砕ユニット18, 20の各々は直立方向に沿って間隔をおいた複数のカッタディスク18-1, 20-1を備えており、各直立破砕ユニット18, 20を構成するカッタディスク18-1, 20-1は夫々の軸18-2, 20-2に固定され、回転駆動モータ21は軸18-2, 20-2の一方に連結され、かつ軸18-2, 20-2は歯車(図示しない)により相互に連結され、回転駆動モータ21の回転軸の回転は、カッタディスク18-1, 20-1をして図2の矢印fのように内向きにかつ流水管12から貯留水槽10に向けて回転せしめる。そして、一方の直立破砕ユニット18, 20の一つのカッタディスク18-1又は 20-1が他方の直立破砕ユニット20, 18の隣接するカッタディスク20-1又は18-1に部分的に面接触しつつ幾分入り込んだ構造をなす。そのため、流水管12から流水下で運ばれてくるし渣は面接触するカッタディスク18-1, 20-1間で破砕を受け、貯留水槽10に流入せしめられる。   The guide chute 14 is provided with a crusher 16 (the crushing means of the present invention) so that the residue contained in running water from the flowing water pipe 12 is subjected to crushing action, and the crushed residue is introduced into the storage tank 10. It has become. The crusher 16 may have any structure as long as it can crush the residue, but in this embodiment, the crusher 16 conforms to the structure of Patent Document 1 and includes a pair of upright crushing units 18 and 20. Each of the upright crushing units 18 and 20 includes a plurality of cutter discs 18-1 and 20-1 spaced along the upright direction, and each of the upright crushing units 18 and 20 includes a cutter disc 18- 1, 20-1 are fixed to the respective shafts 18-2, 20-2, the rotary drive motor 21 is connected to one of the shafts 18-2, 20-2, and the shafts 18-2, 20-2 are gears. The rotation shafts of the rotary drive motor 21 are connected to each other (not shown), and the rotation of the rotary shaft of the rotary drive motor 21 is stored inward as indicated by the arrow f in FIG. Rotate toward the aquarium 10. Then, one cutter disk 18-1 or 20-1 of one upright crushing unit 18 or 20 partially makes surface contact with the adjacent cutter disk 20-1 or 18-1 of the other upright crushing unit 20 or 18. However, it has a slightly intrusive structure. Therefore, the residue transported from the flowing water pipe 12 under running water is crushed between the cutter disks 18-1 and 20-1 that are in surface contact with each other, and flows into the storage tank 10.

貯留水槽10にはし渣を含んだ水の攪拌を行う攪拌手段が設けられ、攪拌手段はこの実施形態においては、攪拌機22(この発明の旋回流発生手段)と、案内羽根24, 26(この発明の流れ方向変換手段)とから構成される。図2に示すように攪拌機22は回転駆動モータ27と、回転駆動モータ27の回転軸に連結された攪拌羽根28とから成る。回転駆動モータ27の回転軸は水平方向に延びており、攪拌羽根28は水平な軸線を中心として回転する。攪拌羽根28の回転によって、貯留水槽10の円周方向に沿って旋回流が図2の矢印Sのように形成される。貯留水槽10の円周方向に沿って旋回流を形成するための攪拌機22は必要に応じて複数設置することができる。攪拌機22の設置は流水管12が案内シュート14を介して貯留水槽10の接線方向に開口していることも相俟って貯留水槽10内に強力な旋回流Sを形成することに寄与させることができる。   The storage tank 10 is provided with stirring means for stirring water containing residue, and in this embodiment, the stirring means is a stirrer 22 (swirl flow generating means of the present invention) and guide blades 24 and 26 (this The flow direction changing means of the invention). As shown in FIG. 2, the stirrer 22 includes a rotation drive motor 27 and a stirring blade 28 connected to the rotation shaft of the rotation drive motor 27. The rotation shaft of the rotation drive motor 27 extends in the horizontal direction, and the stirring blade 28 rotates around the horizontal axis. By the rotation of the stirring blade 28, a swirling flow is formed as indicated by an arrow S in FIG. A plurality of agitators 22 for forming a swirling flow along the circumferential direction of the reservoir 10 can be installed as necessary. The installation of the agitator 22 contributes to the formation of a strong swirl flow S in the reservoir 10 in combination with the fact that the water pipe 12 opens in the tangential direction of the reservoir 10 via the guide chute 14. Can do.

次に、この発明の流れ方向変換手段を構成する案内羽根24, 26について説明すると、案内羽根24, 26のうち外側案内羽根24は、図1及び図2に示すように、貯留水槽10の内周壁面に沿って配置され、内側案内羽根26は貯留水槽10の中心部に配置される。外側案内羽根24は肉薄の板材にて形成され、外側案内羽根24はその幅方向の一側縁にて貯留水槽10の内周面に溶接などにより貯留水槽10の内周面より貯留水槽10の内側に向けて径方向に起立して固定される。そして、貯留水槽10の内周壁に対する外側案内羽根24の固定部位は上から下にゆくに従って旋回流の回転方向Sに沿って螺旋状に変位しており、最上端の取付け部と最下端の取付け部とでは貯留水槽10の周面に沿って所定周長rに亘って溶接固定されている(図2参照)。一対の外側案内羽根24は180°点対称に設けられるためいずれの外側案内羽根24も回転方向Sに旋回流に作用することでこれを上から下の縦方向の水流(図1の矢印H)に変換するべく作用する。そして、貯留水槽10の内周面からの外側案内羽根24の高さvは途中までは同一であるがその後は回転方向に沿って徐々に高さを低くしており、最下端ではh=0(周面と面一)となっている。次に、内側案内羽根26について説明すると、内側案内羽根26も肉薄の板材にて形成され、内側案内羽根26は螺旋状をなして直立支柱29の外周面に溶接固定されており、その螺旋方向は、上から下に従って直立支柱29に対する内側案内羽根26の固定部が旋回流の方向にずれてゆく方向である。換言すれば螺旋の延びる方向が上から下に向かって旋回流Sの方向である。そのため、外側案内羽根24と同様に内側案内羽根26も旋回流Sと協働することにより旋回流Sを上から下への縦方向(矢印H)に流れを変換する機能を達成するものである。また、外側案内羽根24と同様に内側案内羽根26についてもその高さは上の部分では一定であるが、ある高さ部位から羽根は徐々に低くなり、最終的には直立支柱29と面一(高さ=0)となる。直立支柱29は下端は貯留水槽10の底面10-1に固定され、上端は貯留水槽10の上面10-2に固定される。旋回流形成手段としての攪拌機22と流れ方向変換手段としての案内羽根24, 26とから構成されるこの発明の攪拌手段は特開2005−155514に記載のものと同様なものである。   Next, the guide vanes 24 and 26 constituting the flow direction changing means of the present invention will be described. Of the guide vanes 24 and 26, the outer guide vanes 24 are arranged in the reservoir 10 as shown in FIGS. It arrange | positions along a surrounding wall surface, and the inner side guide blade | wing 26 is arrange | positioned in the center part of the water storage tank 10. FIG. The outer guide vane 24 is formed of a thin plate material, and the outer guide vane 24 is connected to the inner peripheral surface of the water storage tank 10 at one side edge in the width direction from the inner peripheral surface of the water storage tank 10 by welding or the like. Standing radially inward and fixed. And the fixing | fixed site | part of the outer side guide blade | wing 24 with respect to the inner peripheral wall of the storage tank 10 is helically displaced along the rotation direction S of a swirl | vortex flow from the top to the bottom, and the attachment part of an uppermost end and attachment of a lowermost end The part is welded and fixed over a predetermined circumferential length r along the circumferential surface of the reservoir 10 (see FIG. 2). Since the pair of outer guide vanes 24 are provided symmetrically about 180 °, any of the outer guide vanes 24 acts on the swirling flow in the rotation direction S, thereby causing the water flow in the vertical direction from above to below (arrow H in FIG. 1). Acts to convert to The height v of the outer guide vane 24 from the inner peripheral surface of the storage tank 10 is the same up to the middle, but thereafter the height is gradually lowered along the rotation direction, and h = 0 at the lowest end. (Same as the circumference). Next, the inner guide vane 26 will be described. The inner guide vane 26 is also formed of a thin plate material, and the inner guide vane 26 is helically fixed to the outer peripheral surface of the upright support column 29 in the spiral direction. Is a direction in which the fixed portion of the inner guide vane 26 with respect to the upright support column 29 is shifted in the direction of the swirling flow from top to bottom. In other words, the direction in which the spiral extends is the direction of the swirl flow S from top to bottom. Therefore, like the outer guide vane 24, the inner guide vane 26 also cooperates with the swirl flow S to achieve the function of converting the swirl flow S in the vertical direction (arrow H) from top to bottom. . Similarly to the outer guide vane 24, the height of the inner guide vane 26 is constant in the upper portion, but the vane gradually decreases from a certain height, and finally is flush with the upright column 29. (Height = 0). The upright support 29 has a lower end fixed to the bottom surface 10-1 of the reservoir 10 and an upper end fixed to the upper surface 10-2 of the reservoir 10. The stirring means of the present invention comprising the stirrer 22 as the swirl flow forming means and the guide vanes 24 and 26 as the flow direction changing means is the same as that described in JP-A-2005-155514.

図1において、30は水位センサを示しており、水位センサ30からの貯留水槽10の検出液面レベルに応じて洗浄水を注入する周知の手段(図示しない)が設けられており、貯留水槽10内の液面レベルは設定を維持する仕組みが設けられている。図中、一点鎖線Lはこの設定の液面レベルを模式的に示している。この液面レベルLは流水管12より適当な落差D(図1)を持って設定されており、し渣を含んだ水流は破砕機16による破砕を受けた後、滞留することなく、貯留水槽10に流入するようになっている。この液面レベルLが何らかの原因で上昇しても、スクリーン32によってし渣が流通することは阻止され、オーバフロー水は配管34によって沈砂池側に戻るようになっている。   In FIG. 1, reference numeral 30 denotes a water level sensor, which is provided with known means (not shown) for injecting cleaning water according to the detected liquid level of the water tank 10 from the water level sensor 30. A mechanism for maintaining the level of the liquid level inside is provided. In the figure, the alternate long and short dash line L schematically shows the liquid level of this setting. This liquid level L is set with an appropriate drop D (FIG. 1) from the water pipe 12, and the water flow containing the residue is crushed by the crusher 16 and then does not stay, so that the storage tank 10 flows in. Even if the liquid level L rises for some reason, the screen 32 prevents the residue from circulating, and the overflow water returns to the sedimentation basin side by the pipe 34.

貯留水槽10は絞られた円錐部10Aを介して底部に連なる下部10Bが絞られた形状をなしているが、し渣の排出を行う排出管36(この発明の排出路)は絞られる部位より上方における貯留水槽10の側壁面に連結されている。排出管36に排水ポンプ38が設置される。貯留水槽10の側壁面に対する排出管36の接続部は貯留水槽10の設定液面レベルLと貯留水槽10の底面10-1との中間に位置(底面よりの高さh)し、換言すれば、貯留水槽10の設定液面レベルLより下方に離間し、貯留水槽10の底面10-1より上方に離間している。機能的には、貯留水槽10の側壁面に対する排出管36の接続部は、貯留水槽10での旋回流及び縦方向流による攪拌により貯留水槽10で得られるし渣の沈み込み深さの部位に排出管36の接続部を位置させている。これにより、し渣を貯留水槽10内に実質的に滞留させることなく矢印cのように排出管36から排出することが可能となる。排出管36についても貯留水槽10に対する取り付けは図2に示すように接線方向に開口するように行われており、貯留水槽10から排水管36への円滑な液流が得られるようになっている。尚、40はドレン管であり、一端は貯留水槽10の底部に連なる下部10Bに接続され、他端はバルブ42を介して排水ポンプ38の上流側において排出管36に合流されている。排水管36の他端は、周知のように、し渣の洗浄のため路面に近い浄水場としては相対的に高い部位に位置するし渣洗浄サイト(図示しない)まで延びており、破砕されたし渣を含んだ水流は矢印dのようにし渣洗浄サイトまで流体移送される。この流体移送及びし渣の分離方式は特許文献1に開示されたものと同様に行うことができる。   The storage tank 10 has a shape in which a lower portion 10B connected to the bottom portion is narrowed through a narrowed conical portion 10A, but a discharge pipe 36 (discharge passage of the present invention) for discharging the residue is drawn from a portion to be narrowed. It is connected to the side wall surface of the upper storage tank 10. A drainage pump 38 is installed in the discharge pipe 36. The connecting portion of the discharge pipe 36 to the side wall surface of the reservoir 10 is positioned in the middle (the height h from the bottom) between the set liquid level L of the reservoir 10 and the bottom 10-1 of the reservoir 10, in other words. The water tank 10 is spaced below the set liquid level L and is spaced above the bottom surface 10-1 of the water tank 10. Functionally, the connection portion of the discharge pipe 36 to the side wall surface of the storage tank 10 is located at a portion of the depth of sinking of the residue obtained in the storage tank 10 by the swirling flow and the vertical flow in the storage tank 10. The connection part of the discharge pipe 36 is located. As a result, the residue can be discharged from the discharge pipe 36 as indicated by an arrow c without substantially retaining the residue in the storage water tank 10. The drain pipe 36 is also attached to the storage tank 10 so as to open in a tangential direction as shown in FIG. 2, so that a smooth liquid flow from the storage tank 10 to the drain pipe 36 can be obtained. . In addition, 40 is a drain pipe, one end is connected to the lower part 10B connected to the bottom part of the reservoir tank 10, and the other end is joined to the discharge pipe 36 via the valve 42 on the upstream side of the drainage pump 38. As is well known, the other end of the drain pipe 36 is located at a relatively high site as a water purification plant close to the road surface for cleaning the residue, and extends to a residue cleaning site (not shown) and crushed. The water flow containing the residue is transferred to the residue cleaning site as indicated by an arrow d. This fluid transfer and residue separation method can be performed in the same manner as that disclosed in Patent Document 1.

この発明の動作について説明すると、沈砂地(図示しない)から掻き揚げられたし渣は水と共に流水管12により案内シュート14まで運ばれ、そこに設置された破砕機16による破砕作用を受け、破砕後のし渣は貯留水槽10に接線方向(矢印a)より導入される。貯留水槽10に設置された攪拌機22は貯留水槽10内に矢印S方向の旋回流を形成し、この旋回流の方向は流水管12からの接線方向の流入方向と一致するため、強力な旋回流となる。この旋回流Sは貯留水槽10の内周壁に固定された外側案内羽根24及び中心の直立支柱29に固定された内側案内羽根26の案内を受ける。即ち、外側案内羽根24及び内側案内羽根26のいずれもが上から下の部位ほど旋回流の回転方向Sにずれた形状をなすため、外側案内羽根24及び内側案内羽根26に当たったときに旋回流Sは下向き、即ち、縦方向Hに変換される。このような下向きの縦方向の流れは比重の小さなし渣のような異物であっても水面に浮上するのを防止し、処理水とし渣との均等混合を実現することができる。他方、し渣はプラスチックフィルム片などの比重の小さな素材からなるため、浮力に対する重量は相対的に軽量であるため、縦方向流Hがあるといっても貯留水槽10内のし渣の沈み込みには限界があり、貯留水槽10の底面10-1から上方に離間した部位に留まる。然るに、この発明では排出管36の開口部位は貯留水槽10の底面10-1から上方に離間した貯留水槽10の側壁面の部位に位置し、貯留水槽10の底面10-1から排出管36の開口部位に対する高さhは貯留水槽10内で沈み込み得るし渣の深さ位置に対応した位置に設定されている。そのため、し渣は排出管36より効率的に吸引(矢印c)され、排出ポンプ38より排出することができる。即ち、軽量のし渣が攪拌にかかわらず、水面近くに長期に滞留し、塊状に絡み合ってしまうという従来技術の不具合に対する有効な対策となる。   The operation of the present invention will be described. The residue scraped up from the sand sink (not shown) is carried to the guide chute 14 along with the water by the flowing water pipe 12, subjected to the crushing action by the crusher 16 installed there, and crushed. The remaining residue is introduced into the reservoir 10 from the tangential direction (arrow a). The stirrer 22 installed in the water storage tank 10 forms a swirling flow in the direction of arrow S in the water storage tank 10, and the direction of this swirling flow coincides with the inflow direction in the tangential direction from the water flow pipe 12. It becomes. This swirl flow S is guided by the outer guide vane 24 fixed to the inner peripheral wall of the reservoir 10 and the inner guide vane 26 fixed to the upright support column 29 at the center. That is, since both the outer guide vane 24 and the inner guide vane 26 have a shape shifted in the rotational direction S of the swirling flow from the top to the lower part, the swirl is performed when the outer guide vane 24 and the inner guide vane 26 hit each other. The stream S is converted downward, ie in the longitudinal direction H. Such a downward vertical flow prevents foreign matter such as a residue having a small specific gravity from floating on the surface of the water, and can be evenly mixed with the residue as treated water. On the other hand, since the residue is made of a material having a small specific gravity such as a plastic film piece, the weight against the buoyancy is relatively light. There is a limit, and it stays in the part spaced apart upward from the bottom face 10-1 of the reservoir tank 10. However, in this invention, the opening part of the discharge pipe 36 is located in the part of the side wall surface of the water storage tank 10 that is spaced upward from the bottom face 10-1 of the water storage tank 10, and the discharge pipe 36 extends from the bottom face 10-1 of the water storage tank 10. The height h with respect to the opening portion is set to a position corresponding to the depth position of the residue that can sink in the reservoir 10. Therefore, the residue is efficiently sucked (arrow c) from the discharge pipe 36 and can be discharged from the discharge pump 38. That is, it is an effective measure against the problem of the prior art that light weight residue remains in the vicinity of the water surface for a long time regardless of agitation and is entangled in a lump.

ドレン管40は通常は閉鎖しているが、貯留水槽10を空にする場合にバルブ42を開けることにより貯留水槽10の底面の堆積物を排出させるのに使用するが、この発明ではし渣が貯留水槽10に長期に滞留し、塊状に固まってしまうようなことはないから、円滑なドレン作業を実現することができる。   Although the drain pipe 40 is normally closed, it is used to discharge deposits on the bottom surface of the reservoir tank 10 by opening the valve 42 when the reservoir tank 10 is emptied. Since it does not stay in the storage tank 10 for a long time and does not harden into a lump, a smooth drain operation can be realized.

図1はこの発明の汚水処理用流体移送装置の概略的縦断面図である。FIG. 1 is a schematic longitudinal sectional view of a sewage treatment fluid transfer apparatus according to the present invention. 図1はこの発明の汚水処理用流体移送装置の概略的横断面図である。FIG. 1 is a schematic cross-sectional view of a sewage treatment fluid transfer apparatus according to the present invention.

符号の説明Explanation of symbols

10…貯留水槽
12…流水管
14…案内シュート
16…破砕機(破砕手段)
18, 20…直立破砕ユニット
22…攪拌機
24, 26…案内羽根
30…水位センサ
36…排出管
38…排水ポンプ
40…ドレン管
DESCRIPTION OF SYMBOLS 10 ... Reservoir tank 12 ... Flowing water pipe 14 ... Guide chute 16 ... Crusher (crushing means)
18, 20 ... Upright crushing unit 22 ... Stirrer
24, 26 ... Guide blade 30 ... Water level sensor 36 ... Drain pipe 38 ... Drain pump 40 ... Drain pipe

Claims (5)

下水から分離された固形異物を水流にて搬送せしめる搬送路と、前記搬送路からの固形異物を破砕する破砕手段と、破砕手段を通過後の固形異物を含んだ水を貯留せしめる貯留水槽と、前記貯留水槽内において固形異物を含んだ水を攪拌せしめる攪拌手段と、攪拌後の固形異物を含んだ水を排出する排出路とを備えた汚水処理用流体移送装置において、前記排出路は前記貯留水槽における水面と底面との中間の位置において貯留水槽に開口していることを特徴とする汚水処理用流体移送装置。   A transport path for transporting solid foreign matter separated from the sewage in a water stream, a crushing means for crushing the solid foreign matter from the transport path, a reservoir tank for storing water containing the solid foreign matter after passing through the crushing means, In the sewage treatment fluid transfer apparatus, comprising: a stirring means for stirring water containing solid foreign matters in the storage tank; and a discharge passage for discharging water containing solid foreign matters after stirring. A sewage treatment fluid transfer device, wherein the storage tank is opened at a position intermediate between a water surface and a bottom surface of the water tank. 請求項1に記載の発明において、前記攪拌手段は、前記貯留水槽中において旋回流を発生せしめる旋回流発生手段と、前記旋回流と協働することにより旋回流を貯留水槽の前記排出口に向かう縦方向流に変換する流れ方向変換手段とから構成されることを特徴とする汚水処理用流体移送装置。   In the invention according to claim 1, the stirring means is directed to the swirling flow generating means for generating a swirling flow in the storage tank, and the swirling flow is directed to the discharge port of the storage tank by cooperating with the swirling flow. A fluid transfer device for wastewater treatment, characterized by comprising a flow direction converting means for converting into a longitudinal flow. 請求項1若しくは2に記載の発明において、前記搬送路と前記貯留水槽とを幾分の落差をもって接続する案内シュートが具備されることを特徴とする汚水処理用流体移送装置。   The sewage treatment fluid transfer apparatus according to claim 1 or 2, further comprising a guide chute that connects the transport path and the reservoir tank with a slight drop. 請求項3に記載の発明において、前記破砕手段は前記案内シュートに設置されることを特徴とする汚水処理用流体移送装置。   4. The sewage treatment fluid transfer apparatus according to claim 3, wherein the crushing means is installed on the guide chute. 請求項1から4のいずれか一項に記載の発明において、前記貯留水槽は円形若しくは楕円形の断面形状をなし、前記搬送路は貯留水槽に実質的に接線方向において開口されることを特徴とする汚水処理用流体移送装置。   The invention according to any one of claims 1 to 4, wherein the water storage tank has a circular or elliptical cross-sectional shape, and the conveyance path is substantially tangentially opened to the water storage tank. A fluid transfer device for wastewater treatment.
JP2008220842A 2008-08-29 2008-08-29 Fluid transfer device for sewage treatment Pending JP2010051906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008220842A JP2010051906A (en) 2008-08-29 2008-08-29 Fluid transfer device for sewage treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008220842A JP2010051906A (en) 2008-08-29 2008-08-29 Fluid transfer device for sewage treatment

Publications (1)

Publication Number Publication Date
JP2010051906A true JP2010051906A (en) 2010-03-11

Family

ID=42068396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008220842A Pending JP2010051906A (en) 2008-08-29 2008-08-29 Fluid transfer device for sewage treatment

Country Status (1)

Country Link
JP (1) JP2010051906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217349A (en) * 2014-05-19 2015-12-07 前澤工業株式会社 Screen residue transfer equipment and method
JP2017000989A (en) * 2015-06-15 2017-01-05 株式会社日立製作所 Sewage sludge washing equipment and operating method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217349A (en) * 2014-05-19 2015-12-07 前澤工業株式会社 Screen residue transfer equipment and method
JP2017000989A (en) * 2015-06-15 2017-01-05 株式会社日立製作所 Sewage sludge washing equipment and operating method thereof

Similar Documents

Publication Publication Date Title
JP5916005B2 (en) Sand settling device
KR102081851B1 (en) Vortex type Combined Screening and Grit Removal system having a scum removal device
JP7033011B2 (en) Screw type separator and wastewater treatment system
CN220572733U (en) Waste water recovery adds medicine treatment facility
KR100832549B1 (en) Hellix Flow, Multiple Cell Type Waste and Grit Remover
JP2010051906A (en) Fluid transfer device for sewage treatment
JP2023153410A (en) Solid-liquid separation system
JP5067809B2 (en) Sand settling equipment
JP2023103340A (en) Solid-liquid separation system
KR101869471B1 (en) A treatment device that sinks sand mixed with sewage-like wastewater
JP4141229B2 (en) Device for transferring fluid from solid sand basin
CN211912841U (en) Sedimentation tank drags for silt device
KR200439029Y1 (en) Apparatus for separating sedimented sand
CN210457908U (en) Horizontal spiral sedimentation sludge dewatering and separating device
KR102066510B1 (en) Inclined spiral sludge collector
JP7417987B2 (en) Driving method of solid-liquid separator
JP7555558B2 (en) Method for driving cleaning device and cleaning device
JP2024100876A (en) Solid-liquid separator driving method and solid-liquid separator
JP7524021B2 (en) Floating matter recovery device
JP5646379B2 (en) Sand settling machine
JP2022066971A (en) Cleaning device
JPH0112525B2 (en)
JP2006068603A (en) Sludge treatment apparatus
JP2021084061A (en) Driving method of solid-liquid separator and solid-liquid separator
JP3957050B2 (en) Sediment dewatering machine