JP3631999B2 - Fine bubble feeder - Google Patents

Fine bubble feeder Download PDF

Info

Publication number
JP3631999B2
JP3631999B2 JP2001396908A JP2001396908A JP3631999B2 JP 3631999 B2 JP3631999 B2 JP 3631999B2 JP 2001396908 A JP2001396908 A JP 2001396908A JP 2001396908 A JP2001396908 A JP 2001396908A JP 3631999 B2 JP3631999 B2 JP 3631999B2
Authority
JP
Japan
Prior art keywords
bubble
turbine
water
generation tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001396908A
Other languages
Japanese (ja)
Other versions
JP2003190753A (en
Inventor
康宏 小林
Original Assignee
テック工業有限会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テック工業有限会社 filed Critical テック工業有限会社
Priority to JP2001396908A priority Critical patent/JP3631999B2/en
Publication of JP2003190753A publication Critical patent/JP2003190753A/en
Application granted granted Critical
Publication of JP3631999B2 publication Critical patent/JP3631999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、気泡供給装置に係り、詳細には、気泡発生装置から発生される気泡から微細気泡を分離集泡して供給可能な気泡供給装置に関する。
【0002】
【従来の技術】
汚濁水中の汚濁物質或は懸濁物質を分離するには、一般に浮上分離法や泡沫分離法を用いて行われる。そして、浮上分離法や泡沫分離法では、外気を気泡として汚濁水中に広く浮遊させる必要があった。
泡沫分離法は、汚濁水中に発生させた気泡と汚濁水との気液界面、即ち、気泡周囲に分離目的物質である溶解物質が濃縮されるので、界面活性物質や凝集剤を汚濁水に添加して溶解物質を分離する方法である。この方法は、主に排水中の界面活性物質を除去する目的で適用される。又、金属イオン等の不活性物質を除去する場合には、凝集剤を添加することで金属イオン等を活性化して分離する。
【0003】
浮上分離法は、汚濁水中における懸濁物質の分離方法の一つである。そして、浮上分離法では、汚濁水中の液体と懸濁物質との密度差が小さい場合には、分離を促進する手段として、水中に微細な気泡を導入し、懸濁質に気泡を付着させて分離する。例えば、工場廃水等の処理では、中和凝集されて粗大化したフロックが破壊されない程度の大きさの気泡を付着させて浮上分離させていた。
【0004】
そこで、従来、浮遊選別法や泡沫分離法に用いるための微細気泡の発生装置としては、種々の装置があった。例えば、出願人が発明した『微細気泡発生装置』(特願2001−157960)であり、
【0005】
『 (請求項1) 水槽底部に設けられ、複数の羽根板が回転軸に対し放射状に設けられて回転可能な攪拌部を形成してなる攪拌フィンと、
攪拌フィンの下部に設けられ、攪拌フィンを回転させる駆動部と、
一端が攪拌部の回転中心に位置されて開口され、他端が水槽内の攪拌部へ供給する気体に開口され、他端の開口した気体を攪拌部へ供給可能な供給管と、
からなることを特徴とする微細気泡発生装置。
(請求項2) 水槽外部に設けられ、水槽内部側に設けられる従動部に回転駆動力を提供する駆動部と、
水槽内部に設けられ、一端は駆動部から駆動力を受領して回転可能な従動部を形成し、他端は複数の羽根板からなる攪拌部を形成し、駆動部からの駆動力により水槽内で回転する攪拌フィンと、
一端が攪拌フィンの攪拌部中心に位置されて開口され、他端が水槽外に開口され、水槽外部の気体を水槽内の攪拌部へ供給可能な供給管と、
からなることを特徴とする微細気泡発生装置。
(請求項3) 一方の端部が閉塞され他方の端部が開口された円筒形状からなり、開口された側面には水槽底面に取付可能なフランジ部が設けられる蓋体と、
水槽底面の蓋体外部に設けられ、先端部には蓋体円筒面の円周方向に沿って磁極が交互になるよう複数の磁石が並設されるアウターマグネット部を形成し、基端部にはアウターマグネット部を蓋体円筒軸と回転軸を同じくして回転させるモータ部を形成する駆動部と、
基端部は蓋体内に設けられ、蓋体の円筒内面に沿って複数の磁石を磁極が交互になるよう複数設けられるインナーマグネット部を形成し、先端部は蓋体から水槽内に突設され、複数の羽根板からなる攪拌部を形成し、アウターマグネット部の回転に連れて回転される攪拌フィンと、
一端が開口されて攪拌フィンの攪拌部中心に位置され、他端は水槽外に開口され、気体を水槽内の攪拌部へ供給可能な供給管と、
からなることを特徴とする微細気泡発生装置。
(請求項4) 一方の端部が閉塞され他方の端部が開口された円筒形状からなり、開口された側面には水槽底面に取付可能なフランジ部を設けられる蓋体と、
水槽底面の蓋体外部に設けられ、先端部には蓋体円筒面の円周方向に沿って磁極が交互になるよう複数の磁石が並設されるアウターマグネット部を形成し、基端部にはアウターマグネット部を蓋体円筒軸と回転軸を同じくして回転させるモータ部を形成する駆動部と、
基端部は蓋体内に設けられ、蓋体の円筒内面に沿って複数の磁石を磁極が交互になるよう複数設けられるインナーマグネット部を形成し、先端部は蓋体から水槽内に突設され、複数の羽根板からなる攪拌部を形成し、アウターマグネット部の回転に連れて回転される攪拌フィンと、
一端が開口されて攪拌フィンの攪拌部中心に位置され、他端は水槽外に開口され、気体を水槽内の攪拌部へ供給可能な供給管と、
攪拌フィンの回転外方に設けられ、攪拌フィンの攪拌を邪魔する板状体を立設してなるステータと、
からなることを特徴とする微細気泡発生装置。』からなる。
【0006】
この『微細気泡発生装置』(特願2001−157960)では、攪拌フィンが回転して攪拌することで水槽外部の気体を水槽内部に引き込むと共に微細分解して微細気泡を発生させる。そして、発生した微細気泡によって、槽中で浮遊選別や泡沫分離を行っていた。
そして、液体中に存在する分離対象によっては、浮遊選別法や泡沫分離法を実施するに当り、界面活性物質や凝集剤を汚濁水に予め添加して特定の気体と反応させて除去する、若しくは特定の気体の気泡に付着させて除去するのが望ましいものもあった。
【0007】
【発明が解決しようとする課題】
しかしながら、浮遊選別法や泡沫分離法によって、液体中に存在する特定の分離対象を除去するために、その分離対象を集めるための気体を供給して微細気泡を発生し、分離対象に付着させ分離対象を除去するには、微細気泡以外の比較的大きな気泡があっては、反応槽内に上方への水流が発生してしまい、反応槽内の特定の箇所のみが他の箇所より反応が進んでしまい、均一な反応が望めないと言う問題点があるが、従来例に表す『微細気泡発生装置』(特願2001−157960)では、微細気泡を発生できるものの、気泡中には微細気泡と共に微細でない比較的大きな気泡も発生していたので、良好な分離が出来ないという問題点を有した。
【0008】
この発明は、発生された気泡中から微細気泡を効率よく集泡して槽内に供給可能な微細気泡供給装置を提供することを課題とする。
【0009】
【課題を解決するための手段】
そこでこの発明は、
【0010】
汚濁水が入れられる中空容器からなり、下部には吐出口が開口される気泡発生槽と、先端に汚濁水中で回転可能な攪拌フィンが設けられ、攪拌フィンと気泡発生槽外部とが通気筒によって連通され、攪拌フィンが汚濁水中で回転することで通気筒を経由した気泡発生槽外部からの気体によって微細気泡を含む気泡を発生可能なインペラ部と、インペラ部の下方にインペラ部の回転軸と同軸上に円盤が設けられ、円盤下面には複数の羽根が固定され、回転することで水流を発生するタービンと、タービン下方の気泡発生槽底面に開口され、気泡発生槽への吸水が可能な給水口と、からなることを特徴とする微細気泡供給装置、
【0011】
及び、
汚濁水が入れられる中空容器からなり、下部には吐出口が開口される気泡発生槽と、先端に汚濁水中で回転可能な攪拌フィンが設けられ、攪拌フィンと気泡発生槽外部とが通気筒によって連通され、攪拌フィンが汚濁水中で回転することで通気筒を経由した気泡発生槽外部からの気体によって微細気泡を含む気泡を発生可能なインペラ部と、インペラ部の下方にインペラ部の回転軸と同軸上に円盤が設けられ、円盤下面には複数の羽根が固定され、回転することで水流を発生するタービンと、板状体からなり、気泡発生槽内側面に螺旋状に固定される気泡ガイド板と、タービン下方の気泡発生槽底面に開口され、気泡発生槽への吸水が可能な給水口と、からなることを特徴とする微細気泡供給装置、
【0012】
及び、
汚濁水が入れられる中空容器からなり、下部には吐出口が開口される気泡発生槽と、先端に汚濁水中で回転可能な攪拌フィンが設けられ、攪拌フィンと気泡発生槽外部とが通気筒によって連通され、攪拌フィンが汚濁水中で回転することで通気筒を経由した気泡発生槽外部からの気体によって微細気泡を含む気泡を発生可能なインペラ部と、インペラ部の下方にインペラ部の回転軸と同軸上に円盤が設けられ、円盤下面には複数の羽根が固定され、回転することで水流を発生するタービンと、タービンの下方に設けられ、円筒形状からなり、下端開口が気泡発生槽への給水口を形成する整流筒と、からなることを特徴とする微細気泡供給装置、
【0013】
及び、
汚濁水が入れられる中空容器からなり、下部には吐出口が開口される気泡発生槽と、先端に汚濁水中で回転可能な攪拌フィンが設けられ、攪拌フィンと気泡発生槽外部とが通気筒によって連通され、攪拌フィンが汚濁水中で回転することで通気筒を経由した気泡発生槽外部からの気体によって微細気泡を含む気泡を発生可能なインペラ部と、インペラ部の下方にインペラ部の回転軸と同軸上に円盤が設けられ、円盤下面には複数の羽根が固定され、回転することで水流を発生するタービンと、タービンの下方に設けられ、円筒形状からなり、下端開口が気泡発生槽への給水口を形成する整流筒と、板状体からなり、気泡発生槽内側面に螺旋状に固定される気泡ガイド板と、からなることを特徴とする微細気泡供給装置、
【0014】
を提供する。そして、この発明の作用は以下の通りである。
即ち、供給口が気泡発生槽の底面に開口され整流筒を設けない場合には、気泡発生槽内でインペラ部が回転する。同様に、タービンも回転する。すると、気泡発生槽内のインペラ部周囲部に、インペラ部の回転によって微細気泡を含む大量の気泡が発生する。
この時、タービン下方の気泡発生槽底面に開口された供給口から、気泡発生槽の吐出口にかけて、タービンの回転によって汚濁水内に水流が発生する。この水流によって、インペラ部周囲部に発生した気泡中の微細気泡が水流によって吐出口から排出される。一方、インペラ部周囲部に発生した気泡中の比較的大きな気泡は、タービンによって発生した水流に流されることなく自身の浮力によって上方に浮上する。
【0015】
又、供給口が気泡発生槽の底面に開口され整流筒を設けない場合で、気泡発生槽内側面に気泡ガイド板を設けた場合には、水流によって吐出口へ運ばれる微細気泡は、気泡ガイド板に案内されて気泡ガイド板上及び気泡ガイド板下を吐出口へと向かい吐出口から排出される。
【0016】
更に、気泡発生槽内に整流筒を設けた場合には、気泡発生槽内でインペラ部が回転する。同様に、タービンも回転する。すると、気泡発生槽内のインペラ部周囲部に、インペラ部の回転によって微細気泡を含む大量の気泡が発生する。
この時、整流筒下端の供給口から整流筒上端の開口、気泡発生槽内の整流筒の外側を経由して気泡発生槽の吐出口にかけて、タービンの回転によって汚濁水内に水流が発生する。この水流によって、インペラ部周囲部に発生した気泡中の微細気泡が水流によって吐出口から排出される。一方、インペラ部周囲部に発生した気泡中の比較的大きな気泡は、タービンによって発生した水流に流されることなく自身の浮力によって上方に浮上する。
【0017】
又、気泡発生槽内に整流筒を設けた場合で、気泡発生槽内側面に気泡ガイド板を設けた場合には、水流によって吐出口へ運ばれる微細気泡は、気泡ガイド板に案内されて気泡ガイド板上を吐出口へと向かい吐出口から排出される。
【0018】
【発明の実施の形態】
以下に、この発明の実施の形態を、図面に基づいて説明する。
図1はこの発明の第1の実施の形態である微細気泡発生装置の正面説明図であり、図2はこの発明の実施の形態である微細気泡供給装置を汚濁水槽に実施した状態を表す正面説明図であり、図3はこの発明の実施の形態である微細気泡発生装置の正面説明図の一部を拡大した側面説明図であり、図4は図3のA−A線説明図であり、図5は部品であるインペラ部の説明図であり、図6は同タービンの説明図であり、図7は第2の実施の形態を表す説明図であり、図8は第3の実施の形態である微細気泡発生装置の正面説明図である。
【0019】
1は、この発明の第1の実施の形態である微細気泡発生装置である。微細気泡発生装置1は、分離される液体が満たされる気泡発生槽2と、気泡発生槽2内に気泡を発生させるインペラ部3と、インペラ部3の下部に設けるタービン4と、タービン4の下方に設ける整流筒5と、気泡発生槽2の内側面である壁面に固定される気泡ガイド板6とからなる。そして、微細気泡発生装置1は、他に設ける反応槽Wに取付けられる。
【0020】
気泡発生槽2は、図1乃至図4に表すように、中空な角柱形状から成り、一側面の下部には吐出口21を形成する。吐出口21は、気泡発生槽2の側面幅と略同じ幅となるよう横長な開口として形成される。そして、気泡発生槽2の吐出口21周囲部外面には、微細気泡発生装置1が取付けられる反応槽Wとの間で内部に満たされる分離される液体が漏洩しないようにパッキング(図示せず)が施される。又、吐出口21には、開閉板22を設け、開口量を調整可能とする。
【0021】
インペラ部3は、図1及び図5に表すように、中空円筒体からなる通気筒であるミキシングシャフト32の基端部が気泡発生槽2の上部に固定したモータ31の回転軸に固定され、ミキシングシャフト32の先端は気泡発生槽2の中央より稍下部に位置される。そして、ミキシングシャフト32の先端には、攪拌フィンである攪拌用のインペラ33が固定される。インペラ33は、円盤状の板体34に複数の羽根35が放射状に取付けられてなる。更に、ミキシングシャフト32の基端部には、エア流入口36が穿設され、更に、ミキシングシャフト32の先端はインペラ33の羽根35に開口されており、モータ31が回転することによって、インペラ33が気泡発生槽2内の液体を攪拌し、攪拌に伴ってインペラ33の羽根35部分に発生した負圧によってエア流入口36からインペラ33へ外気(特定の気体、或は、空気)が導入されるよう形成されている。エア流入口36には、図示しないが、流量を制御可能なバルブを設けると共に、特定の気体を流入可能なように接続部を設け、特定の気体を流入可能とする。37はサポータであり、中空円筒体からなり、ミキシングシャフト32を覆うようにミキシングシャフト32の回転軸と同軸上に設け、上部を気泡発生槽2の上面22に固定されて形成される。更に、サポータ37の下端には、ステータ38が固定される。ステータ38は、円盤状の板体に小径な孔が複数穿設された多孔板39がインペラ33の回転する外周面を覆うように設置する。このようにステータ38をインペラ33の外周部に設置することで、インペラ33が回転することで発生する気泡発生槽2内の液体の連れ回りをステータ38が軽減し防止可能である。
【0022】
タービン4は、インペラ33の下端にインペラ33の回転軸と同軸となるよう設置される。即ち、ミキシングシャフト32の延長としてシャフト41を突設する。更にシャフト41の下端には、図6に表すように、円盤状の板体下面に羽根であるブレード42が複数固定されて形成されるタービン本体43を固定して形成する。ブレード42は、回転放射方向とは角度を持って固定され、回転されることで、回転中心から外側へ流れができるように固定される。
更に、タービン4の下部には、整流筒5が設置される。整流筒5は円筒形状からなり、上端がタービン本体43の直下に位置するよう気泡発生槽2の底面23に固定され、予め気泡発生槽2の底面23との間に穿設された孔が給水口52を形成する。そして給水口52は、吸水管51によって吐出口21の下部とを連結し、給水口52が反応槽Wに開口される。
【0023】
気泡ガイド板6は、図1乃至図4に表すように、複数の板状体61が気泡発生槽2の内壁面に傾斜させて設置して形成される。第1の実施の形態では、傾斜面を形成する板状体61は、両端部が気泡発生槽2の隣接する側面に設置された板状体61の間に成るように一側面の幅方向に亙って傾斜されて設置するが、各側面に設置する板状体61の両端を隣り合う側面に設けた板状体の端部と一体となるように連続して設け、気泡ガイド板6が螺旋状に1の傾斜面を連続形成するよう設けても良い。
【0024】
以下に、上述のように形成する第1の実施の形態の作用を説明する。
微細気泡発生装置1に隣接設置された反応槽Wに分離対象である分離する液体が満たされると、微細気泡発生装置1の中にも分離する液体が満たされる。この時、両槽の液面が少なくともインペラ33より上方となるように分離する液体を満たす。この実施の形態では、分離する対象である液体には、予めポリ塩化アルミニウム(PAC)を20mg/l程度の濃度で添加しておいたものである。このポリ塩化アルミニウム(PAC)は、汚濁水中に含まれるコロイド状成分の凝集を補助させる効果を有する。更には、汚濁水中の重金属の最適凝集pH領域を拡大する、汚濁水中の残存金属イオン濃度を下げる、汚濁水の清澄度を上げる等、重金属類を含む汚濁水に対しても処理効果を発揮する。
【0025】
この状態でモータ31が回転を開始すると、インペラ33及びタービン4が回転する。インペラ33が回転すると、インペラ33に設けた羽根35の回転によってインペラ33部分に負圧が生じ、インペラ33の回転数が上昇すると、やがてインペラ33部分に発生した負圧によって、エア流入口36からミキシングシャフト32を経由して気体がインペラ33部分へ引き込まれる。この時、インペラ33に設けた羽根35は、インペラ33部分に引き込まれた気体を分断して気泡Bを発生する。この時発生する気泡Bには、比較的大きな気泡B1と微細気泡B2とがある。詳細には、気泡Bは、液体中で分離対象を付着し、発生後も破壊されない微少な径からなる直径0.5mm以下の微細気泡B2を多く含むようにインペラ部3によって発生されるが、微細気泡B2は直径が略2mm以下であれば分離対象を付着する有効な気泡Bとして機能する。又、微細気泡B2より直径の大きな気泡は、比較的大きな気泡B1であり、分離対象を付着する有効な気泡Bではない。尚、微細気泡B2と比較的大きな気泡B1との直径の境は、略2mmとしたが、微細気泡B2はこれより小径で有るほど有効な気泡Bとして機能し、比較的大きな気泡B1も、略2mmに近ければ有る程度有効な気泡Bとして機能するが、直径5mmというような大きさになれば、殆ど有効ではない気泡Bとなってしまう。
【0026】
浮上分離法或は泡沫分離法に微細気泡が有効な理由は次の理由からも理解できる。即ち、径大な気泡が分散した汚濁水と、径小な気泡が分散した汚濁水とがあり、夫々液体中に分散した気泡の体積と液体の体積との比が同じ場合には、径小な気泡気泡が分散した汚濁水の方が径大な気泡が分散した汚濁水より、気体と液体との境界面積が大きくなることで、除去対象である物質の付着を促すのに有効である。更には、液相と固相との混合状体に機械的機能としての影響を及ぼすと共に、気泡径が小さいと、気泡同士の合体や吸収が起こらない。更に又、気泡径が小さいと、浮上速度がきわめて遅くなり水平方向等への分散性が増大する。そして、分散性が増大することで長時間滞留可能となるので、液相への気相の溶解性が増加し、例えば、酸素の溶解量が増すことによるpH変化や液相内での酸化速度の増大等が生じる。
【0027】
一方、タービン4は、回転することで、整流筒5下端の給水口52から整流5上端の開口、気泡発生槽2内の整流筒5の外側を経由して気泡発生槽2の吐出口21にかけて、液体内に水流を発生する。この時発生される水流は、反応槽Wの吐出口21及び給水口52付近の僅かな領域に影響を及ぼすが、反応槽Wの多くの液体には大きな影響を及ぼすことはない。
【0028】
このようにインペラ33及びタービン4が回転すると、気泡Bが発生して水流ができると、生成された気泡B中、比較的大きな気泡B1は上昇して破壊され、微細気泡B2は発生した吐出口21への水流によって破壊することなく吐出口21へ運ばれる現象が生じる。
この時、微細気泡B2は、気泡ガイド板6にガイドされながら下方の吐出口21へ移動されることとなる。この気泡ガイド板6による気泡B2のガイドは、気泡発生槽2内でタービン4が回転すると、タービン4の放射方向に汚濁水が移動され、移動された汚濁水とタービン4の上部でインペラ部3によって発生した気泡Bとが混合されて気泡ガイド板6の下方へ移動される。この時、比較的大きな気泡B1の多くは、浮力が大きいため発生直後にタービン4側ではなく上方へ移動される。すると、移動された微細気泡B2は更に気泡発生槽2の側面に沿って移動され続けるので、気泡ガイド板6が設置された螺旋に沿って下方へ移動され、やがて吐出口21へ移動される。又、一端は下方へ移動したが再び上方へ移動してしまった微細気泡B2も、上昇中に気泡ガイド板6の下面に当接し、下方へ案内されて吐出口21から反応槽W内へ吐出されることとなる。この時、吐出される気泡量は、開閉板22による吐出口21の開閉量によって調節可能である。
【0029】
そして、水流によって破壊することなく吐出口21から反応槽Wへ供給された微細気泡B2は、分離する液体中に広く分布して浮遊することとなる。
反応槽W内では、吐出口21から供給された微細気泡B2によって液体中の分離対象が付着されることとなる。
【0030】
尚、この実施の形態では、微細気泡発生装置1を反応槽Wに隣接するように設置したが、図7に表す第2の実施の形態のように、微細気泡発生装置1が反応槽Wの中に位置するように2重構造の槽を形成して微細気泡発生装置1を機能させても同等の効果を発揮可能である。この場合には、吸水管51を設置せずともよい。又、この実施の形態では、気泡発生槽2は筐体形状からなるが、円筒形状からなるように形成しても良く、形状は設置する反応槽Wに合わせて適宜選択可能である。更に又、第2の実施の形態による微細気泡発生装置1では、吐出口21に設ける開閉板22の開度を、吐出口21毎に異ならせることも可能であり、吐出口21毎に開度を異ならせることで、微細気泡をより多く必要としている側の反応槽W内により多くの微細気泡B2を供給可能である。
【0031】
更に、この実施の形態では、気泡ガイド板6を設けて微細気泡B2の吐出口21への移動をガイドするように形成したが、気泡ガイド板6を設けずに微細気泡B2が発生した水流によって直接吐出口21から反応槽Wへ供給されるように形成しても良い。
【0032】
次いで、第3の実施の形態を図8に基づき説明する。
第3の実施の形態では、微細気泡発生装置1は、気泡発生槽2と、気泡発生槽2内に気泡を発生させるインペラ部3と、インペラ部3の下部に設けるタービン4と、気泡発生槽2の内側面である壁面に固定される気泡ガイド板6とは、第1の実施の形態同様であるが、整流筒5は設置されない。
従って、第3の実施の形態では、給水口52は第1の実施の形態で整流筒5が設置されていた気泡発生槽2の底面22に開口されてなり、吸水管51を経由して供給されるよう形成する。
【0033】
このように形成される第3の実施の形態では、整流筒5を設けないので、タービン4が回転したときはタービン4の下方に渦が発生することとなるが、発生した渦が微細気泡B2の発生の妨げにならないタービン4の回転領域で使用することで微細気泡B2を発生可能である。
第3の実施の形態は、その他は第1の実施の形態同様である。
又、第3の実施の形態も、第2の実施の形態のように微細気泡発生装置1が反応槽Wの中に位置するように2重構造の槽を形成して微細気泡発生装置1を機能させても同等の効果を発揮可能である。
【0034】
【発明の効果】
この発明によれば、液体中に含まれる分離対象と長時間反応できるように液体中を長時間浮遊可能な微細気泡のみを選択的に取出すことが可能であり、分離を効率よく行えるという効果を奏する。
【図面の簡単な説明】
【図1】この発明の実施の形態である微細気泡発生装置の正面説明図
【図2】同装置を汚濁水槽に実施した状態を表す正面説明図
【図3】同装置の正面説明図の一部を拡大した側面説明図
【図4】図3のA−A線説明図
【図5】部品であるインペラ部の説明図
【図6】同タービンの説明図
【図7】第2の実施の形態を表す説明図
【図8】第3の実施の形態である微細気泡発生装置の正面説明図
【符号の説明】
W 反応槽
B 気泡
B1 比較的大きな気泡
B2 微細気泡
1 微細気泡発生装置
2 気泡発生槽
21 吐出口
22 開閉板
3 インペラ部
31 モータ
32 ミキシングシャフト
33 インペラ
34 板体
35 羽根
36 エア流入口
37 サポータ
38 ステータ
39 多孔板
4 タービン
41 シャフト
42 ブレード
43 タービン本体
5 整流筒
51 吸水管
52 給水口
6 気泡ガイド板
61 板状体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bubble supply device, and more particularly, to a bubble supply device capable of separating and collecting fine bubbles from bubbles generated from a bubble generation device.
[0002]
[Prior art]
In order to separate the pollutant or suspended substance in the polluted water, a floating separation method or a foam separation method is generally used. In the levitation separation method and the foam separation method, the outside air has to be widely suspended in the contaminated water as bubbles.
In the foam separation method, the dissolved substance that is the target substance for separation is concentrated around the gas-liquid interface between the bubbles generated in the polluted water and the polluted water, that is, the surfactant is added to the polluted water. Thus, the dissolved substance is separated. This method is mainly applied for the purpose of removing surface active substances in waste water. In addition, when removing an inert substance such as a metal ion, the metal ion is activated and separated by adding a flocculant.
[0003]
The flotation separation method is one of the methods for separating suspended substances in polluted water. In the levitation separation method, when the density difference between the liquid in the polluted water and the suspended substance is small, as a means for promoting the separation, fine bubbles are introduced into the water and the bubbles are attached to the suspended matter. To separate. For example, in the treatment of factory wastewater or the like, air bubbles having a size that does not destroy the flocs that have been agglomerated by neutralization and agglomeration are attached and floated and separated.
[0004]
Therefore, conventionally, there have been various devices as a device for generating fine bubbles for use in the floating sorting method and the foam separation method. For example, the “microbubble generator” invented by the applicant (Japanese Patent Application No. 2001-157960),
[0005]
(Claim 1) A stirring fin provided at the bottom of the water tank, and having a plurality of blades provided radially with respect to the rotation shaft to form a rotatable stirring portion;
A drive unit provided at a lower portion of the stirring fin and rotating the stirring fin;
One end is located at the rotation center of the stirring unit and is opened, the other end is opened to the gas supplied to the stirring unit in the water tank, and a supply pipe capable of supplying the gas opened at the other end to the stirring unit,
A microbubble generator characterized by comprising:
(Claim 2) A drive unit that is provided outside the aquarium and provides a rotational driving force to a driven unit provided on the inside of the aquarium,
Provided inside the water tank, one end receives a driving force from the driving part to form a rotatable follower part, and the other end forms a stirring part made up of a plurality of blades. A stirring fin rotating at
One end is located at the center of the stirring portion of the stirring fin and opened, the other end is opened outside the water tank, and a supply pipe capable of supplying gas outside the water tank to the stirring section in the water tank,
A microbubble generator characterized by comprising:
(Claim 3) A lid body having a cylindrical shape in which one end is closed and the other end is opened, and a flange portion that can be attached to the bottom of the water tank is provided on the opened side surface;
An outer magnet is provided outside the lid on the bottom of the aquarium, and an outer magnet is formed at the distal end with a plurality of magnets arranged side by side so that the magnetic poles alternate along the circumferential direction of the lid cylindrical surface. Is a drive unit that forms a motor unit that rotates the outer magnet unit in the same manner as the lid cylindrical axis and the rotation axis;
The base end portion is provided in the lid body, and an inner magnet portion is provided in which a plurality of magnets are alternately provided along the cylindrical inner surface of the lid body so that the magnetic poles alternate, and the distal end portion projects from the lid body into the water tank. , Forming a stirring portion composed of a plurality of blades, and stirring fins rotated with the rotation of the outer magnet portion;
One end is opened and positioned at the center of the stirring portion of the stirring fin, the other end is opened outside the water tank, and a supply pipe capable of supplying gas to the stirring section in the water tank,
A microbubble generator characterized by comprising:
(Claim 4) A lid having a cylindrical shape in which one end is closed and the other end is opened, and a flange that can be attached to the bottom of the water tank is provided on the opened side surface;
An outer magnet is provided outside the lid on the bottom of the aquarium, and an outer magnet is formed at the distal end with a plurality of magnets arranged side by side so that the magnetic poles alternate along the circumferential direction of the lid cylindrical surface. Is a drive unit that forms a motor unit that rotates the outer magnet unit in the same manner as the lid cylindrical axis and the rotation axis;
The base end portion is provided in the lid body, and an inner magnet portion is provided in which a plurality of magnets are alternately provided along the cylindrical inner surface of the lid body so that the magnetic poles alternate, and the distal end portion projects from the lid body into the water tank. , Forming a stirring portion composed of a plurality of blades, and stirring fins rotated with the rotation of the outer magnet portion;
One end is opened and positioned at the center of the stirring portion of the stirring fin, the other end is opened outside the water tank, and a supply pipe capable of supplying gas to the stirring section in the water tank,
A stator that is provided outside the rotation of the stirring fin, and has a plate-like body standing upright that disturbs stirring of the stirring fin;
A microbubble generator characterized by comprising: It consists of.
[0006]
In this “fine bubble generating device” (Japanese Patent Application No. 2001-157960), the stirring fin rotates and stirs to draw gas outside the water tank into the water tank and finely decompose it to generate fine bubbles. Then, floating sorting and foam separation were performed in the tank by the generated fine bubbles.
And depending on the separation target present in the liquid, in carrying out the floating sorting method and the foam separation method, a surfactant or a flocculant is added to the contaminated water in advance and reacted with a specific gas to be removed, or Some were desirable to be removed by adhering to certain gas bubbles.
[0007]
[Problems to be solved by the invention]
However, in order to remove a specific separation target existing in the liquid by the floating sorting method or the foam separation method, a gas for collecting the separation target is supplied to generate fine bubbles, which are attached to the separation target and separated. In order to remove the target, if there are relatively large bubbles other than fine bubbles, an upward water flow is generated in the reaction tank, and the reaction proceeds only at a specific place in the reaction tank from the other places. However, the “fine bubble generator” (Japanese Patent Application No. 2001-157960) shown in the conventional example can generate fine bubbles, but in the bubbles, the fine bubbles are generated together with the fine bubbles. Since relatively large bubbles that were not fine were also generated, there was a problem that good separation could not be performed.
[0008]
This invention makes it a subject to provide the fine bubble supply apparatus which can collect fine bubbles efficiently from the produced | generated bubble, and can supply it in a tank.
[0009]
[Means for Solving the Problems]
So this invention is
[0010]
It consists of a hollow container into which polluted water is placed, and a bubble generating tank with a discharge port opened at the bottom, and a stirring fin that can rotate in the polluted water at the tip, and the stirring fin and the outside of the bubble generating tank are connected by a cylinder An impeller portion that is capable of generating bubbles including fine bubbles by gas from outside the bubble generation tank via the passage cylinder by communicating and the stirring fin rotates in the polluted water, and a rotation shaft of the impeller portion below the impeller portion, A disk is provided on the same axis, and a plurality of blades are fixed to the lower surface of the disk. The turbine generates a water flow by rotating, and is opened at the bottom of the bubble generation tank below the turbine, and can absorb water into the bubble generation tank. A fine air bubble supply device comprising a water supply port,
[0011]
as well as,
It consists of a hollow container into which polluted water is placed, and a bubble generating tank with a discharge port opened at the bottom, and a stirring fin that can rotate in the polluted water at the tip, and the stirring fin and the outside of the bubble generating tank are connected by a cylinder An impeller portion that is capable of generating bubbles including fine bubbles by gas from outside the bubble generation tank via the passage cylinder by communicating and the stirring fin rotates in the polluted water, and a rotation shaft of the impeller portion below the impeller portion, A disk guide is provided on the same axis, and a plurality of blades are fixed to the lower surface of the disk. The bubble guide is formed of a turbine that generates a water flow by rotation and a plate-like body, and is fixed to the inner surface of the bubble generation tank in a spiral shape. A fine bubble supply device comprising: a plate, and a water supply opening that is opened at a bottom surface of the bubble generation tank below the turbine and capable of absorbing water into the bubble generation tank;
[0012]
as well as,
It consists of a hollow container into which polluted water is placed, and a bubble generating tank with a discharge port opened at the bottom, and a stirring fin that can rotate in the polluted water at the tip, and the stirring fin and the outside of the bubble generating tank are connected by a cylinder An impeller portion that is capable of generating bubbles including fine bubbles by gas from outside the bubble generation tank via the passage cylinder by communicating and the stirring fin rotates in the polluted water, and a rotation shaft of the impeller portion below the impeller portion, A disk is provided on the same axis, a plurality of blades are fixed on the lower surface of the disk, and a turbine that generates water flow by rotating, and is provided below the turbine, has a cylindrical shape, and has a lower end opening to the bubble generation tank. A fine air bubble supply device characterized by comprising a flow straightening cylinder that forms a water supply port,
[0013]
as well as,
It consists of a hollow container into which polluted water is placed, and a bubble generating tank with a discharge port opened at the bottom, and a stirring fin that can rotate in the polluted water at the tip, and the stirring fin and the outside of the bubble generating tank are connected by a cylinder An impeller portion that is capable of generating bubbles including fine bubbles by gas from outside the bubble generation tank via the passage cylinder by communicating and the stirring fin rotates in the polluted water, and a rotation shaft of the impeller portion below the impeller portion, A disk is provided on the same axis, a plurality of blades are fixed on the lower surface of the disk, and a turbine that generates water flow by rotating, and is provided below the turbine, has a cylindrical shape, and has a lower end opening to the bubble generation tank. A fine bubble supply device comprising a flow straightening cylinder that forms a water supply port, and a bubble guide plate that is formed of a plate-like body and is helically fixed to the inner surface of the bubble generation tank,
[0014]
I will provide a. The operation of the present invention is as follows.
That is, when the supply port is opened at the bottom surface of the bubble generation tank and no rectifying cylinder is provided, the impeller portion rotates in the bubble generation tank. Similarly, the turbine rotates. Then, a large amount of bubbles including fine bubbles are generated around the impeller portion in the bubble generation tank by the rotation of the impeller portion.
At this time, a water flow is generated in the polluted water by the rotation of the turbine from the supply port opened at the bottom of the bubble generation tank below the turbine to the discharge port of the bubble generation tank. By this water flow, fine bubbles in the bubbles generated around the impeller portion are discharged from the discharge port by the water flow. On the other hand, relatively large bubbles in the bubbles generated around the impeller portion float upward due to their own buoyancy without being caused to flow by the water flow generated by the turbine.
[0015]
In addition, when the supply port is opened at the bottom of the bubble generation tank and no rectifying cylinder is provided, and the bubble guide plate is provided on the inner surface of the bubble generation tank, the fine bubbles carried to the discharge port by the water flow are It is guided by the plate, and is discharged from the discharge port toward the discharge port on the bubble guide plate and below the bubble guide plate.
[0016]
Furthermore, when the flow straightening cylinder is provided in the bubble generation tank, the impeller portion rotates in the bubble generation tank. Similarly, the turbine rotates. Then, a large amount of bubbles including fine bubbles are generated around the impeller portion in the bubble generation tank by the rotation of the impeller portion.
At this time, a water flow is generated in the polluted water by the rotation of the turbine from the supply port at the lower end of the rectifying tube to the opening at the upper end of the rectifying tube and the outside of the rectifying tube in the bubble generating tank to the discharge port of the bubble generating tank. By this water flow, fine bubbles in the bubbles generated around the impeller portion are discharged from the discharge port by the water flow. On the other hand, relatively large bubbles in the bubbles generated around the impeller portion float upward due to their own buoyancy without being caused to flow by the water flow generated by the turbine.
[0017]
When a flow straightening cylinder is provided in the bubble generation tank and a bubble guide plate is provided on the inner surface of the bubble generation tank, the fine bubbles carried to the discharge port by the water flow are guided by the bubble guide plate It is discharged from the discharge port on the guide plate toward the discharge port.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is an explanatory front view of a fine bubble generator according to a first embodiment of the present invention, and FIG. 2 is a front view showing a state where the fine bubble supply device according to the embodiment of the present invention is implemented in a contaminated water tank. 3 is an explanatory side view, FIG. 3 is an enlarged side explanatory view of a part of a front explanatory view of a fine bubble generating apparatus according to an embodiment of the present invention, and FIG. 4 is an explanatory view taken along line AA of FIG. FIG. 5 is an explanatory view of an impeller part which is a part, FIG. 6 is an explanatory view of the turbine, FIG. 7 is an explanatory view showing a second embodiment, and FIG. 8 is an explanatory view of the third embodiment. It is front explanatory drawing of the microbubble generator which is a form.
[0019]
Reference numeral 1 denotes a fine bubble generating apparatus according to a first embodiment of the present invention. The fine bubble generating apparatus 1 includes a bubble generating tank 2 filled with a liquid to be separated, an impeller unit 3 that generates bubbles in the bubble generating tank 2, a turbine 4 provided below the impeller unit 3, and a lower part of the turbine 4 And a bubble guide plate 6 fixed to the wall surface which is the inner surface of the bubble generation tank 2. And the fine bubble generator 1 is attached to the reaction tank W provided elsewhere.
[0020]
As shown in FIGS. 1 to 4, the bubble generating tank 2 has a hollow prismatic shape, and a discharge port 21 is formed at the lower part of one side surface. The discharge port 21 is formed as a horizontally long opening so as to have substantially the same width as the side surface width of the bubble generation tank 2. Further, packing (not shown) is performed on the outer surface of the peripheral portion of the discharge port 21 of the bubble generation tank 2 so that the separated liquid filled inside the reaction tank W to which the fine bubble generation device 1 is attached does not leak. Is given. The discharge port 21 is provided with an opening / closing plate 22 so that the opening amount can be adjusted.
[0021]
As shown in FIGS. 1 and 5, the impeller portion 3 is fixed to a rotating shaft of a motor 31 in which a base end portion of a mixing shaft 32 that is a through cylinder formed of a hollow cylindrical body is fixed to an upper portion of the bubble generation tank 2, The tip of the mixing shaft 32 is located below the center of the bubble generating tank 2. A stirring impeller 33 that is a stirring fin is fixed to the tip of the mixing shaft 32. The impeller 33 is formed by attaching a plurality of blades 35 radially to a disk-shaped plate body 34. Further, an air inflow port 36 is formed at the base end portion of the mixing shaft 32, and the tip of the mixing shaft 32 is opened to the blade 35 of the impeller 33, and the impeller 33 is rotated by rotating the motor 31. Stirs the liquid in the bubble generating tank 2, and external air (a specific gas or air) is introduced from the air inlet 36 to the impeller 33 by the negative pressure generated in the blade 35 portion of the impeller 33 with the stirring. It is formed so that. Although not shown, the air inflow port 36 is provided with a valve capable of controlling the flow rate, and provided with a connecting portion so that a specific gas can flow in, so that the specific gas can flow in. Reference numeral 37 denotes a supporter which is formed of a hollow cylindrical body, is provided coaxially with the rotation axis of the mixing shaft 32 so as to cover the mixing shaft 32, and is fixed to the upper surface 22 of the bubble generating tank 2. Further, a stator 38 is fixed to the lower end of the supporter 37. The stator 38 is installed so that a perforated plate 39 in which a plurality of small-diameter holes are formed in a disk-shaped plate body covers an outer peripheral surface on which the impeller 33 rotates. By installing the stator 38 on the outer peripheral portion of the impeller 33 in this way, the stator 38 can reduce and prevent the accompanying liquid in the bubble generation tank 2 that is generated by the rotation of the impeller 33.
[0022]
The turbine 4 is installed at the lower end of the impeller 33 so as to be coaxial with the rotation shaft of the impeller 33. That is, the shaft 41 is protruded as an extension of the mixing shaft 32. Further, as shown in FIG. 6, a turbine main body 43 formed by fixing a plurality of blades 42 as blades on the lower surface of a disk-shaped plate is fixed to the lower end of the shaft 41. The blade 42 is fixed at an angle with respect to the rotational radiation direction, and is fixed so as to flow outward from the center of rotation by being rotated.
Further, a rectifying cylinder 5 is installed in the lower part of the turbine 4. The flow straightening cylinder 5 has a cylindrical shape, and is fixed to the bottom surface 23 of the bubble generation tank 2 so that the upper end is located immediately below the turbine body 43, and a hole previously drilled between the bottom surface 23 of the bubble generation tank 2 is used for water supply. A mouth 52 is formed. The water supply port 52 is connected to the lower portion of the discharge port 21 by the water suction pipe 51, and the water supply port 52 is opened to the reaction tank W.
[0023]
As shown in FIGS. 1 to 4, the bubble guide plate 6 is formed by installing a plurality of plate-like bodies 61 inclined on the inner wall surface of the bubble generation tank 2. In the first embodiment, the plate-like body 61 forming the inclined surface is arranged in the width direction of one side so that both end portions are between the plate-like bodies 61 installed on the adjacent side faces of the bubble generating tank 2. The two ends of the plate-like body 61 installed on each side surface are continuously provided so as to be integrated with the end portions of the plate-like bodies provided on the adjacent side surfaces. You may provide so that one inclined surface may be formed continuously in a spiral.
[0024]
The operation of the first embodiment formed as described above will be described below.
When the liquid to be separated, which is a separation target, is filled in the reaction tank W installed adjacent to the fine bubble generating device 1, the fine bubble generating device 1 is also filled with the liquid to be separated. At this time, the liquid to be separated is filled so that the liquid level of both tanks is at least above the impeller 33. In this embodiment, polyaluminum chloride (PAC) is previously added to the liquid to be separated at a concentration of about 20 mg / l. This polyaluminum chloride (PAC) has the effect of assisting the aggregation of colloidal components contained in the polluted water. Furthermore, it also has a treatment effect on polluted water containing heavy metals, such as expanding the optimum coagulation pH range of heavy metals in polluted water, lowering the residual metal ion concentration in polluted water, and increasing the clarity of polluted water. .
[0025]
When the motor 31 starts rotating in this state, the impeller 33 and the turbine 4 rotate. When the impeller 33 rotates, a negative pressure is generated in the impeller 33 portion by the rotation of the blades 35 provided on the impeller 33, and when the rotation speed of the impeller 33 increases, the negative pressure generated in the impeller 33 portion eventually causes the negative pressure from the air inlet 36. Gas is drawn into the impeller 33 through the mixing shaft 32. At this time, the blades 35 provided on the impeller 33 divide the gas drawn into the impeller 33 and generate bubbles B. The bubbles B generated at this time include relatively large bubbles B1 and fine bubbles B2. Specifically, the bubbles B are generated by the impeller unit 3 so as to include a large number of fine bubbles B2 having a diameter of 0.5 mm or less, which are attached to the separation target in the liquid and are not destroyed even after the generation, The fine bubble B2 functions as an effective bubble B that adheres a separation target if the diameter is approximately 2 mm or less. Further, a bubble having a diameter larger than that of the fine bubble B2 is a relatively large bubble B1, and is not an effective bubble B to which a separation target is attached. Although the boundary between the diameters of the fine bubbles B2 and the relatively large bubbles B1 is about 2 mm, the smaller the diameter of the fine bubbles B2, the more effective the bubbles B1 function. If it is close to 2 mm, it functions as a bubble B that is effective to some extent, but if it has a diameter of 5 mm, it becomes a bubble B that is hardly effective.
[0026]
The reason why fine bubbles are effective in the floating separation method or the foam separation method can be understood from the following reasons. That is, when there is polluted water in which large-sized bubbles are dispersed and contaminated water in which small-sized bubbles are dispersed, and the ratio of the volume of bubbles dispersed in the liquid to the volume of the liquid is the same, the small diameter is reduced. The polluted water in which the bubbles are dispersed has a larger boundary area between the gas and the liquid than the polluted water in which the larger bubbles are dispersed, which is effective in promoting the adhesion of the substance to be removed. In addition, the mixture of the liquid phase and the solid phase has an influence as a mechanical function, and when the bubble diameter is small, the bubbles do not coalesce or absorb. Furthermore, if the bubble diameter is small, the ascent rate is very slow and the dispersibility in the horizontal direction and the like increases. And since the dispersibility increases, it becomes possible to stay for a long time, so that the solubility of the gas phase in the liquid phase increases, for example, the pH change due to the increased amount of dissolved oxygen and the oxidation rate in the liquid phase Increase.
[0027]
On the other hand, the turbine 4 rotates from the water supply port 52 at the lower end of the rectifying cylinder 5 to the discharge port 21 of the bubble generating tank 2 via the opening at the upper end of the rectifying 5 and the outside of the rectifying cylinder 5 in the bubble generating tank 2. Generates a water flow in the liquid. The water flow generated at this time affects a small area near the discharge port 21 and the water supply port 52 of the reaction tank W, but does not significantly affect many liquids in the reaction tank W.
[0028]
When the impeller 33 and the turbine 4 rotate in this manner, when the bubbles B are generated and a water flow is generated, the relatively large bubbles B1 rise and are destroyed in the generated bubbles B, and the fine bubbles B2 are generated at the discharge port. The phenomenon of being transported to the discharge port 21 without breaking by the water flow to the 21 occurs.
At this time, the fine bubbles B <b> 2 are moved to the lower discharge port 21 while being guided by the bubble guide plate 6. When the turbine 4 rotates in the bubble generating tank 2, the guide of the bubble B 2 by the bubble guide plate 6 moves the polluted water in the radial direction of the turbine 4. The bubbles B generated by the above are mixed and moved below the bubble guide plate 6. At this time, many of the relatively large bubbles B1 have a high buoyancy, so that they are moved upward rather than immediately to the turbine 4 side. Then, since the moved fine bubble B2 continues to be moved along the side surface of the bubble generating tank 2, it is moved downward along the spiral in which the bubble guide plate 6 is installed, and is eventually moved to the discharge port 21. In addition, the fine bubble B2 that has moved downward but moved upward again comes into contact with the lower surface of the bubble guide plate 6 while being lifted, and is guided downward and discharged from the discharge port 21 into the reaction tank W. Will be. At this time, the amount of bubbles discharged can be adjusted by the opening / closing amount of the discharge port 21 by the opening / closing plate 22.
[0029]
The fine bubbles B2 supplied from the discharge port 21 to the reaction tank W without being destroyed by the water flow are widely distributed and floated in the liquid to be separated.
In the reaction tank W, the separation target in the liquid is attached by the fine bubbles B2 supplied from the discharge port 21.
[0030]
In this embodiment, the fine bubble generator 1 is installed so as to be adjacent to the reaction vessel W. However, as in the second embodiment shown in FIG. Even if a double-structured tank is formed so as to be located inside and the fine bubble generating device 1 is functioned, the same effect can be exhibited. In this case, the water absorption pipe 51 need not be installed. In this embodiment, the bubble generation tank 2 has a casing shape, but may be formed to have a cylindrical shape, and the shape can be appropriately selected according to the reaction tank W to be installed. Furthermore, in the fine bubble generating device 1 according to the second embodiment, the opening degree of the opening / closing plate 22 provided in the discharge port 21 can be varied for each discharge port 21. It is possible to supply more fine bubbles B2 in the reaction tank W on the side that requires more fine bubbles.
[0031]
Furthermore, in this embodiment, the bubble guide plate 6 is provided so as to guide the movement of the fine bubbles B2 to the discharge port 21. However, the bubble guide plate 6 is not provided, and the water flow generated by the fine bubbles B2 is not provided. You may form so that it may be supplied to the reaction tank W from the discharge outlet 21 directly.
[0032]
Next, a third embodiment will be described with reference to FIG.
In the third embodiment, the fine bubble generating apparatus 1 includes a bubble generating tank 2, an impeller unit 3 that generates bubbles in the bubble generating tank 2, a turbine 4 provided below the impeller unit 3, and a bubble generating tank. The bubble guide plate 6 fixed to the wall surface that is the inner surface of 2 is the same as in the first embodiment, but the rectifying cylinder 5 is not installed.
Therefore, in the third embodiment, the water supply port 52 is opened at the bottom surface 22 of the bubble generation tank 2 in which the rectifying cylinder 5 is installed in the first embodiment, and is supplied via the water absorption pipe 51. To be formed.
[0033]
In the third embodiment formed in this way, the rectifying cylinder 5 is not provided, so that when the turbine 4 rotates, a vortex is generated below the turbine 4, but the generated vortex is a fine bubble B2. By using it in the rotation region of the turbine 4 that does not hinder the generation of the bubbles, it is possible to generate the fine bubbles B2.
The third embodiment is the same as the first embodiment except for the above.
Also, in the third embodiment, a double-structured tank is formed so that the fine bubble generator 1 is located in the reaction tank W as in the second embodiment, and the fine bubble generator 1 is Even if it is made to function, the same effect can be exhibited.
[0034]
【The invention's effect】
According to the present invention, it is possible to selectively take out only the fine bubbles that can float in the liquid for a long time so as to be able to react with the separation target contained in the liquid for a long time, and the effect that the separation can be performed efficiently. Play.
[Brief description of the drawings]
FIG. 1 is a front explanatory view of a fine bubble generating apparatus according to an embodiment of the present invention. FIG. 2 is a front explanatory view showing a state in which the apparatus is applied to a polluted water tank. Fig. 4 is an explanatory diagram of a side surface in which the section is enlarged. Fig. 4 is an explanatory diagram of the AA line in Fig. 3. Fig. 5 is an explanatory diagram of an impeller part which is a part. FIG. 8 is a front view of a microbubble generator according to a third embodiment.
W Reaction tank B Bubble B1 Relatively large bubble B2 Fine bubble 1 Fine bubble generator 2 Bubble generation tank 21 Discharge port 22 Opening / closing plate 3 Impeller portion 31 Motor 32 Mixing shaft 33 Impeller 34 Plate body 35 Blade 36 Air inlet 37 Supporter 38 Stator 39 Perforated plate 4 Turbine 41 Shaft 42 Blade 43 Turbine body 5 Rectifier cylinder 51 Water absorption pipe 52 Water supply port 6 Bubble guide plate 61 Plate-shaped body

Claims (4)

汚濁水が入れられる中空容器からなり、下部には吐出口が開口される気泡発生槽と、
先端に汚濁水中で回転可能な攪拌フィンが設けられ、攪拌フィンと気泡発生槽外部とが通気筒によって連通され、攪拌フィンが汚濁水中で回転することで通気筒を経由した気泡発生槽外部からの気体によって微細気泡を含む気泡を発生可能なインペラ部と、
インペラ部の下方にインペラ部の回転軸と同軸上に円盤が設けられ、円盤下面には複数の羽根が固定され、回転することで水流を発生するタービンと、
タービン下方の気泡発生槽底面に開口され、気泡発生槽への吸水が可能な給水口と、
からなることを特徴とする微細気泡供給装置。
It consists of a hollow container in which polluted water is put, and a bubble generating tank with a discharge port opened at the bottom,
A stirring fin that can rotate in the polluted water is provided at the tip, the stirring fin and the outside of the bubble generation tank communicate with each other through the cylinder, and the stirring fin rotates from the outside of the bubble generation tank via the through cylinder by rotating in the polluted water. An impeller capable of generating bubbles containing fine bubbles by gas; and
A turbine is provided below the impeller portion and coaxially with the rotation shaft of the impeller portion, a plurality of blades are fixed to the lower surface of the disc, and a turbine that generates a water flow by rotating,
A water supply opening that is opened at the bottom of the bubble generation tank below the turbine and can absorb water into the bubble generation tank;
A fine bubble supply device comprising:
汚濁水が入れられる中空容器からなり、下部には吐出口が開口される気泡発生槽と、
先端に汚濁水中で回転可能な攪拌フィンが設けられ、攪拌フィンと気泡発生槽外部とが通気筒によって連通され、攪拌フィンが汚濁水中で回転することで通気筒を経由した気泡発生槽外部からの気体によって微細気泡を含む気泡を発生可能なインペラ部と、
インペラ部の下方にインペラ部の回転軸と同軸上に円盤が設けられ、円盤下面には複数の羽根が固定され、回転することで水流を発生するタービンと、
板状体からなり、気泡発生槽内側面に螺旋状に固定される気泡ガイド板と、
タービン下方の気泡発生槽底面に開口され、気泡発生槽への吸水が可能な給水口と、
からなることを特徴とする微細気泡供給装置。
It consists of a hollow container in which polluted water is put, and a bubble generating tank with a discharge port opened at the bottom,
A stirring fin that can rotate in the polluted water is provided at the tip, the stirring fin and the outside of the bubble generation tank communicate with each other through the cylinder, and the stirring fin rotates from the outside of the bubble generation tank via the through cylinder by rotating in the polluted water. An impeller capable of generating bubbles containing fine bubbles by gas; and
A turbine is provided below the impeller portion and coaxially with the rotation shaft of the impeller portion, a plurality of blades are fixed to the lower surface of the disc, and a turbine that generates a water flow by rotating,
A bubble guide plate made of a plate-like body and fixed in a spiral shape on the inner surface of the bubble generation tank,
A water supply opening that is opened at the bottom of the bubble generation tank below the turbine and can absorb water into the bubble generation tank;
A fine bubble supply device comprising:
汚濁水が入れられる中空容器からなり、下部には吐出口が開口される気泡発生槽と、
先端に汚濁水中で回転可能な攪拌フィンが設けられ、攪拌フィンと気泡発生槽外部とが通気筒によって連通され、攪拌フィンが汚濁水中で回転することで通気筒を経由した気泡発生槽外部からの気体によって微細気泡を含む気泡を発生可能なインペラ部と、
インペラ部の下方にインペラ部の回転軸と同軸上に円盤が設けられ、円盤下面には複数の羽根が固定され、回転することで水流を発生するタービンと、
タービンの下方に設けられ、円筒形状からなり、下端開口が気泡発生槽への給水口を形成する整流筒と、
からなることを特徴とする微細気泡供給装置。
It consists of a hollow container in which polluted water is put, and a bubble generating tank with a discharge port opened at the bottom,
A stirring fin that can rotate in the polluted water is provided at the tip, the stirring fin and the outside of the bubble generation tank communicate with each other through the cylinder, and the stirring fin rotates from the outside of the bubble generation tank via the through cylinder by rotating in the polluted water. An impeller capable of generating bubbles containing fine bubbles by gas; and
A turbine is provided below the impeller portion and coaxially with the rotation shaft of the impeller portion, a plurality of blades are fixed to the lower surface of the disc, and a turbine that generates a water flow by rotating,
A rectifying cylinder provided below the turbine, having a cylindrical shape, and having a lower end opening forming a water supply port to the bubble generation tank,
A fine bubble supply device comprising:
汚濁水が入れられる中空容器からなり、下部には吐出口が開口される気泡発生槽と、
先端に汚濁水中で回転可能な攪拌フィンが設けられ、攪拌フィンと気泡発生槽外部とが通気筒によって連通され、攪拌フィンが汚濁水中で回転することで通気筒を経由した気泡発生槽外部からの気体によって微細気泡を含む気泡を発生可能なインペラ部と、
インペラ部の下方にインペラ部の回転軸と同軸上に円盤が設けられ、円盤下面には複数の羽根が固定され、回転することで水流を発生するタービンと、
タービンの下方に設けられ、円筒形状からなり、下端開口が気泡発生槽への給水口を形成する整流筒と、
板状体からなり、気泡発生槽内側面に螺旋状に固定される気泡ガイド板と、
からなることを特徴とする微細気泡供給装置。
It consists of a hollow container in which polluted water is put, and a bubble generating tank with a discharge port opened at the bottom,
A stirring fin that can rotate in the polluted water is provided at the tip, the stirring fin and the outside of the bubble generation tank communicate with each other through the cylinder, and the stirring fin rotates from the outside of the bubble generation tank via the through cylinder by rotating in the polluted water. An impeller capable of generating bubbles containing fine bubbles by gas; and
A turbine is provided below the impeller portion and coaxially with the rotation shaft of the impeller portion, a plurality of blades are fixed to the lower surface of the disc, and a turbine that generates a water flow by rotating,
A rectifying cylinder provided below the turbine, having a cylindrical shape, and having a lower end opening forming a water supply port to the bubble generation tank,
A bubble guide plate made of a plate-like body and fixed in a spiral shape on the inner surface of the bubble generation tank,
A fine bubble supply device comprising:
JP2001396908A 2001-12-27 2001-12-27 Fine bubble feeder Expired - Fee Related JP3631999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001396908A JP3631999B2 (en) 2001-12-27 2001-12-27 Fine bubble feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001396908A JP3631999B2 (en) 2001-12-27 2001-12-27 Fine bubble feeder

Publications (2)

Publication Number Publication Date
JP2003190753A JP2003190753A (en) 2003-07-08
JP3631999B2 true JP3631999B2 (en) 2005-03-23

Family

ID=27602852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001396908A Expired - Fee Related JP3631999B2 (en) 2001-12-27 2001-12-27 Fine bubble feeder

Country Status (1)

Country Link
JP (1) JP3631999B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003460A (en) * 2014-05-30 2014-08-27 北京石油化工学院 Micro-bubble generation device based on plate type microporous medium foaming mechanism

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2859645A1 (en) * 2003-09-17 2005-03-18 Air Liquide Method of improving the gas injection capacity of a device agitating a liquid and injecting a gas into the liquid
JP3826138B2 (en) * 2004-01-23 2006-09-27 株式会社ダイシン貿易 Bubble generator
JP3878657B2 (en) * 2006-05-30 2007-02-07 株式会社ダイシン貿易 Bubble generator
JP5287573B2 (en) * 2008-07-24 2013-09-11 アイシン精機株式会社 Fine foam group generating device and foam bathing device
CN102711968B (en) * 2010-01-22 2014-07-23 爱信精机株式会社 Micro-bubble group generator and bubble bath apparatus
JP5702598B2 (en) * 2010-12-28 2015-04-15 株式会社エディプラス Rotating body for stirring and stirring device
SE535741C2 (en) * 2011-04-01 2012-12-04 Sorubin Ab Method and apparatus for supplying gas, or a mixture of gases, to a fluid
KR101208753B1 (en) 2012-10-15 2012-12-11 주식회사 한국건설관리공사 Water purification apparatus of closed waterarea in river
KR20150031960A (en) * 2013-09-17 2015-03-25 (주)씨엔티솔루션 Apparatus mixing and dispersing using shiaft installed at the lower part and 3-stage impeller structure
CN105749774B (en) * 2014-12-20 2018-04-10 中国石油化工股份有限公司 A kind of pipe-line mixer
CN107082465A (en) * 2016-02-16 2017-08-22 邬建平 Machine occurs for double turbine pressure solution release ultramicro air bubbles
CN113265845B (en) * 2017-10-17 2022-09-06 合肥美的洗衣机有限公司 Microbubble generator, microbubble generating method, and clothes treating apparatus
CN111979080A (en) * 2020-09-15 2020-11-24 安徽双轮酒业有限责任公司 White spirit production is with white spirit ripening device
CN113666454B (en) * 2021-08-13 2023-05-23 国能荥阳热电有限公司 High-speed mixed bed adopting spiral deflector water distribution plate and hexagonal unit porous plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003460A (en) * 2014-05-30 2014-08-27 北京石油化工学院 Micro-bubble generation device based on plate type microporous medium foaming mechanism
CN104003460B (en) * 2014-05-30 2016-01-06 北京石油化工学院 Based on the micro-bubble generation device of board-like microporous medium foaming mechanism

Also Published As

Publication number Publication date
JP2003190753A (en) 2003-07-08

Similar Documents

Publication Publication Date Title
JP3631999B2 (en) Fine bubble feeder
US6273402B1 (en) Submersible in-situ oxygenator
JP4786775B2 (en) A device that stirs the liquid in the reactor and injects gas into this liquid.
EP0952886B1 (en) Improved gas-liquid vortex mixer
JP2007268376A (en) Apparatus for generating minute gas bubble
JP2009279529A (en) Agitation apparatus
JP2006088155A (en) Gas-liquid mixing impeller
JP2006082072A (en) Apparatus for generating fine bubble, polluted water purifier, and polluted water purification method
JP3790729B2 (en) Gas-liquid mixing impeller
JPS60114397A (en) Water treating device
JP2008274394A (en) Pickling apparatus and method
KR200442636Y1 (en) aerator
JP2000189774A (en) Gas dissolving device
JP3542335B2 (en) Microbubble generator
JPH047028A (en) Fine bubble generating apparatus and floating separation apparatus using the generating apparatus
JPH08173987A (en) Aeration apparatus suitable for tank with high depth of water
JP2010167328A (en) Aeration agitator
JP2004000897A (en) Apparatus for generating minute bubble
JP4483664B2 (en) Sludge treatment equipment
JP3455467B2 (en) Aeration device
JP3936579B2 (en) Defoaming apparatus and defoaming method
JPH0417277Y2 (en)
JPH08103791A (en) Aeration device suitable for deep tank
JPH0924262A (en) Gas-liquid mixing equipment
JPS60227892A (en) Centrifugal type areator with stirring

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees