JP2006220387A - Heat exchanger and production method therefor - Google Patents

Heat exchanger and production method therefor Download PDF

Info

Publication number
JP2006220387A
JP2006220387A JP2005035624A JP2005035624A JP2006220387A JP 2006220387 A JP2006220387 A JP 2006220387A JP 2005035624 A JP2005035624 A JP 2005035624A JP 2005035624 A JP2005035624 A JP 2005035624A JP 2006220387 A JP2006220387 A JP 2006220387A
Authority
JP
Japan
Prior art keywords
substrate
heat exchanger
slit
slits
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005035624A
Other languages
Japanese (ja)
Other versions
JP4774753B2 (en
Inventor
Mitsunori Taniguchi
光徳 谷口
Osao Kido
長生 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005035624A priority Critical patent/JP4774753B2/en
Priority to US10/593,696 priority patent/US7637313B2/en
Priority to PCT/JP2005/007062 priority patent/WO2005100896A1/en
Priority to TW094111652A priority patent/TW200538695A/en
Publication of JP2006220387A publication Critical patent/JP2006220387A/en
Priority to US12/617,325 priority patent/US8230909B2/en
Priority to US12/617,297 priority patent/US20100051249A1/en
Application granted granted Critical
Publication of JP4774753B2 publication Critical patent/JP4774753B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost and high-reliability heat exchanger having a very easy-to-produce structure while holding very excellent heat exchange performance. <P>SOLUTION: This heat exchanger has: first base plates 10 nearly parallel formed with long slits 40 and short slits 30; and second base plates 20 formed with slits 50 each having the same shape as the short slit 30, and each having a full length shorter than the long slit 40. The plurality of first base plates 10 and the plurality of second base plates 20 are laminated such that the short slits 30 of the first base plates and the slits 50 of the second base plates communicate with each other, an extra-pipe flow passage 60 is configured by the short slits 30 of the first base plates and the slits 50 of the second base plates, and an in-pipe flow passage 70 is configured by the long slits 40 of the first base plates and the second base plates 20. Thereby, a heat exchange part configured by only a pipe can be configured from the base plates formed with the slits, and production can be easily performed to provide the heat exchanger at low cost. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は冷却システム、放熱システムや加熱システム等用の熱交換器に関するもので、特に情報機器などコンパクト性を要求されるシステムで使用される液体と気体の熱交換器及びその製造方法に関するものである。   The present invention relates to a heat exchanger for a cooling system, a heat dissipation system, a heating system, and the like, and more particularly to a liquid and gas heat exchanger used in a system that requires compactness such as information equipment and a method for manufacturing the same. is there.

従来、この種の熱交換器としては、管とフィンとから構成されたものが一般的であるが、近年はそのコンパクト化を図るために、管径及び管ピッチを小さくし、管を高密度化する傾向にある。その極端な形態としては、管外径が0.5mm程度の非常に細い管のみから熱交換部が構成されたものがある(例えば、特許文献1参照)。   Conventionally, this type of heat exchanger is generally composed of tubes and fins. However, in recent years, in order to achieve compactness, the tube diameter and tube pitch are reduced, and the tubes are made dense. It tends to become. As an extreme form thereof, there is one in which the heat exchanging portion is composed only of a very thin tube having a tube outer diameter of about 0.5 mm (for example, see Patent Document 1).

図17は、特許文献1に記載された従来の熱交換器の正面図である。   FIG. 17 is a front view of a conventional heat exchanger described in Patent Document 1. FIG.

図17に示すように、従来の熱交換器は、所定間隔を置いて対向配置される入口タンク1と出口タンク2と、入口タンク1と出口タンク2の間に断面円環の複数の管3が配置され、管3の外部を外部流体が流通されるコア部4が構成されている。管3内を流通する内部流体としては主に水や不凍液が用いられ、外部流体としては空気が主流であり、それぞれが流通し、熱交換を行う。   As shown in FIG. 17, the conventional heat exchanger has an inlet tank 1 and an outlet tank 2 that are arranged to face each other at a predetermined interval, and a plurality of tubes 3 having a circular cross section between the inlet tank 1 and the outlet tank 2. Is arranged, and a core portion 4 is formed through which an external fluid flows through the outside of the tube 3. Water or antifreeze is mainly used as an internal fluid that circulates in the pipe 3, and air is mainly used as an external fluid, and each circulates and performs heat exchange.

そして、管3を碁盤目状に配置するとともに、管3の外径を0.2mm以上0.8mm以下とし、隣接する管3のピッチを管外径で除した値を0.5以上3.5以下とすることで、使用動力に対する熱交換量を大幅に向上できるとしている。
特開2001−116481号公報
And while arrange | positioning the pipe | tube 3 in grid shape, the outer diameter of the pipe | tube 3 shall be 0.2 mm or more and 0.8 mm or less, and the value which remove | divided the pitch of the adjacent pipe | tube 3 by the pipe outer diameter is 0.5 or more. By setting it to 5 or less, it is said that the amount of heat exchange for the power used can be greatly improved.
JP 2001-116481 A

上記従来の熱交換器を構成する具体的な要素や製造方法については示されていないが、一般的には、多数の細い管3と、特定の面に多数の細かい円孔を予め空けた入口タンク1と出口タンク2を用意し、入口タンク1及び出口タンク2の円孔に管3の両端を挿入し、溶接等によって管3の挿入部を入口タンク1及び出口タンク2に接着する方法が考えられる。しかしながら、長くて細い管3は非常に高価であるばかりでなく、入口タンク1や出口タンク2に管3の挿入用の微細な円孔を所定の微細なピッチで設けることと、非常に多くの管3を入口タンク1や出口タンク2に挿入し接着する工程が非常に困難であり、熱交換性能が高くても、非常に高価でかつ洩れに対する信頼性が低いものになるという課題を有していた。   Although the specific elements and manufacturing method constituting the conventional heat exchanger are not shown, in general, a large number of thin tubes 3 and a large number of fine circular holes on a specific surface are previously opened. There is a method in which the tank 1 and the outlet tank 2 are prepared, both ends of the pipe 3 are inserted into the circular holes of the inlet tank 1 and the outlet tank 2, and the insertion portion of the pipe 3 is bonded to the inlet tank 1 and the outlet tank 2 by welding or the like. Conceivable. However, the long and thin pipe 3 is not only very expensive, but a very small number of holes for inserting the pipes 3 are provided in the inlet tank 1 and the outlet tank 2 at a predetermined fine pitch. The process of inserting and bonding the tube 3 into the inlet tank 1 and the outlet tank 2 is very difficult, and even if the heat exchange performance is high, there is a problem that it is very expensive and has low reliability against leakage. It was.

本発明は、上記従来の課題を解決するもので、非常に優れた熱交換性能を保持しながら、非常に製造が容易な構造で、安価で、かつ信頼性の高い熱交換器を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides an inexpensive and highly reliable heat exchanger having a structure that is extremely easy to manufacture while maintaining extremely excellent heat exchange performance. With the goal.

上記従来の課題を解決するために、本発明の熱交換器は長いスリットと短いスリットとを略平行に複数設けた第1の基板と、前記短いスリットと略同形状のスリットを前記短いスリットの投影と略同位置に設け、かつ前記長いスリットよりも短い第2の基板を複数積層し、前記短いスリットと前記スリットが管外流路を構成し、前記長いスリットと前記第2の基板が管内流路を構成したものである。   In order to solve the above-described conventional problems, the heat exchanger of the present invention includes a first substrate provided with a plurality of long slits and short slits substantially parallel to each other, and a slit having substantially the same shape as the short slit. A plurality of second substrates that are provided at substantially the same position as the projection and that are shorter than the long slits are stacked, the short slits and the slits form an external flow path, and the long slits and the second substrate flow in the tube. A road is constructed.

これにより、管のみによって構成された熱交換部をスリットを設けた基板から構成することができ、容易に製作することができる。   Thereby, the heat exchange part comprised only with the pipe | tube can be comprised from the board | substrate which provided the slit, and can be manufactured easily.

また、本発明の熱交換器は前記第1の基板を前記第2の基板間に複数積層したものである。   In the heat exchanger of the present invention, a plurality of the first substrates are stacked between the second substrates.

これにより、前記第1の基板の積層枚数を変えることにより、容易に管内流路断面積を変えることができる。   Accordingly, the cross-sectional area of the flow path in the tube can be easily changed by changing the number of stacked first substrates.

また、本発明の熱交換器は前記管内流路を外部流体の流入側ほど前記基板積層方向に大きくしたものである。   In the heat exchanger of the present invention, the flow path in the tube is made larger in the substrate stacking direction toward the inflow side of the external fluid.

これにより、外部流体と内部流体の温度差が大きく、熱交換量が大きい外部流体の流入側ほど、内部流体を多く流すことができ、効率よく熱交換することができるため、熱交換器をさらに小さくすることができる。   Accordingly, since the temperature difference between the external fluid and the internal fluid is large and the inflow side of the external fluid having a large heat exchange amount, the internal fluid can flow more and heat can be exchanged efficiently. Can be small.

また、本発明の熱交換器は前記管内流路の出入り口を前記管外流路方向に拡大したものである。   Moreover, the heat exchanger of this invention expands the entrance / exit of the said flow path in a pipe | tube in the said flow path outside a pipe | tube.

これにより、内部流体の出入り口の開口面積を大きくすることができ、管内抵抗を低減し、内部流体の流量を増加させることにより、熱交換器の能力を向上させることができるため、熱交換器を小さくすることができる。   As a result, the opening area of the entrance / exit of the internal fluid can be increased, the resistance in the pipe can be reduced, and the capacity of the heat exchanger can be improved by increasing the flow rate of the internal fluid. Can be small.

また、本発明の熱交換器の製造方法は前記基板をプレスにより加工したものである。   Moreover, the manufacturing method of the heat exchanger of this invention processes the said board | substrate with a press.

これにより、容易且つ安価に基板を製作することができる。   Thereby, a board | substrate can be manufactured easily and cheaply.

また、本発明の熱交換器の製造方法は前記基板をエッチングにより加工したものである。   Moreover, the manufacturing method of the heat exchanger of this invention processes the said board | substrate by an etching.

これにより、前記長いスリットと短いスリットの間を短くし、管内流路壁厚を薄くしても、スリット製作時に応力がかからないため、容易に製作することができる。   As a result, even if the gap between the long slit and the short slit is shortened and the flow path wall thickness in the pipe is made thin, no stress is applied at the time of manufacturing the slit, so that it can be manufactured easily.

また、本発明の熱交換器の製造方法は前記基板相互を熱溶着接合により接合したものである。   Moreover, the manufacturing method of the heat exchanger of this invention joins the said board | substrates by heat welding joining.

これにより、ロウ材を用いず容易に接合することができ、管内流路を目詰まりさせることがなく、信頼性が向上する。   Thereby, it can join easily, without using a brazing material, and does not clog a pipe | tube flow path, and reliability improves.

また、本発明の熱交換器の製造方法は前記基板相互を超音波接合により接合したものである。   Moreover, the manufacturing method of the heat exchanger of this invention joins the said board | substrates by ultrasonic bonding.

これにより、接合部のみ基材が溶融するため溶融した基材で管内流路を目詰まりさせることがなく、さらに信頼性が向上する。   Thereby, since the base material is melted only at the joint portion, the flow path in the tube is not clogged with the melted base material, and the reliability is further improved.

また、本発明の熱交換器の製造方法は前記基板相互を拡散接合により接合したものである。   Moreover, the manufacturing method of the heat exchanger of this invention joins the said board | substrates by diffusion bonding.

これにより、基材も溶融しないため、管内流路を目詰まりさせることはなくさらに信頼性が向上する。   Thereby, since the base material is not melted, the flow path in the tube is not clogged, and the reliability is further improved.

本発明の熱交換器は、製造が容易な構造のため、安価に熱交換器を提供することができる。   Since the heat exchanger of the present invention has a structure that is easy to manufacture, the heat exchanger can be provided at low cost.

また、本発明の熱交換器の製造方法は、容易かつ信頼性の高い熱交換器を提供することができる。   Moreover, the manufacturing method of the heat exchanger of this invention can provide an easy and reliable heat exchanger.

請求項1に記載の発明は、長いスリットと短いスリットとを略平行に設けた第1の基板と、前記短いスリットと略同形状のスリットを設けてかつ前記長いスリットよりもその全長を短くした第2の基板とを有し、前記第1の基板の短いスリットと前記第2の基板のスリットとが連通するように前記第1の基板と前記第2の基板とを複数枚積層し、前記第1の基板の短いスリットと前記第2の基板のスリットとで管外流路を構成し、前記第1の基板の長いスリットと前記第2の基板とで管内流路を構成する熱交換器であり、従来は管のみによって構成された熱交換部をスリットを設けた基板から構成するため、容易に製作することができ、安価に熱交換器を提供することができる。   In the first aspect of the present invention, the first substrate having a long slit and a short slit provided substantially in parallel with each other, a slit having substantially the same shape as the short slit, and a total length shorter than the long slit are provided. And stacking a plurality of the first substrate and the second substrate so that the short slit of the first substrate and the slit of the second substrate communicate with each other, A heat exchanger in which a short slit of the first substrate and a slit of the second substrate constitute an external flow path, and a long slit of the first substrate and the second substrate constitute an internal flow path. In addition, conventionally, since the heat exchanging portion constituted only by the tube is constituted by a substrate provided with a slit, it can be easily manufactured and a heat exchanger can be provided at low cost.

請求項2に記載の発明は、請求項1に記載の発明において、前記第2の基板で前記第1の基板を挟むように配置したものであり、長いスリットの両端部を残して第2の基板で挟むことにより簡素な構成で容易に管内流路を構成することができる。   According to a second aspect of the present invention, in the first aspect of the present invention, the second substrate is disposed so as to sandwich the first substrate, and both ends of a long slit are left behind. By interposing between the substrates, the in-pipe flow path can be easily configured with a simple configuration.

請求項3に記載の発明は、請求項1または2に記載の発明において、前記長いスリットと前記短いスリットとを交互に配置したものであり、管外流路と管内流路とが交互に配置されるようにして熱交換効率をより高め、かつ基板全体領域を効率よく活用できるようになる。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the long slits and the short slits are alternately arranged, and the external flow paths and the internal flow paths are alternately arranged. Thus, the heat exchange efficiency can be further improved, and the entire substrate area can be efficiently utilized.

請求項4に記載の発明は、請求項1から3のいずれか一項に記載の発明の第1の基板を第2の基板間に複数積層した熱交換器であり、第1の基板の積層枚数を変えることにより、容易に管内流路断面積を変えることができ、容易に熱交換器の仕様変更が行えるため、安価に熱交換器を提供することができる。   Invention of Claim 4 is a heat exchanger which laminated | stacked two or more 1st board | substrates of invention of any one of Claim 1 to 3 between 2nd board | substrates, Lamination | stacking of 1st board | substrates By changing the number of sheets, the cross-sectional area of the flow path in the pipe can be easily changed, and the specification of the heat exchanger can be easily changed, so that the heat exchanger can be provided at low cost.

請求項5に記載の発明は、請求項1から4のいずれか一項に記載の発明の管内流路を外部流体の流入側ほど前記基板積層方向に大きくした熱交換器であり、外部流体と内部流体の温度差が大きく、熱交換量が大きい外部流体の流入側ほど、内部流体を多く流すことにより、効率よく熱交換することができるため、熱交換器をさらに小さくすることができ、安価に熱交換器を提供することができる。   The invention according to claim 5 is a heat exchanger in which the pipe flow path of the invention according to any one of claims 1 to 4 is increased in the substrate stacking direction toward the inflow side of the external fluid. Because the temperature difference of the internal fluid is large and the inflow side of the external fluid where the amount of heat exchange is large, it is possible to exchange heat efficiently by flowing more internal fluid, so the heat exchanger can be further reduced in size and inexpensive. A heat exchanger can be provided.

請求項6に記載の発明は、請求項1から5のいずれか一項に記載の発明の管内流路の出入り口を管外流路方向に拡大した熱交換器であり、内部流体の出入り口の開口面積を大きくすることができ、管内抵抗を低減し、内部流体の流量を増加させることにより、熱交換器の能力を向上させることができるため、熱交換器を小さくすることができる。   Invention of Claim 6 is a heat exchanger which expanded the entrance / exit of the flow path in the pipe | tube of the invention as described in any one of Claim 1 to the flow path outside a pipe | tube, and is the opening area of the entrance / exit of an internal fluid Since the capacity of the heat exchanger can be improved by reducing the resistance in the pipe and increasing the flow rate of the internal fluid, the heat exchanger can be made small.

請求項7に記載の発明は請求項1から6のいずれか一項に記載の発明の基板をプレスにより加工した熱交換器の製造方法であり、容易且つ安価に基板を製作することができ、安価に熱交換器を提供することができる。   Invention of Claim 7 is a manufacturing method of the heat exchanger which processed the board | substrate of the invention as described in any one of Claim 1-6 by press, and can manufacture a board | substrate easily and cheaply, A heat exchanger can be provided at low cost.

請求項8に記載の発明は請求項1から6のいずれか一項に記載の発明の基板をエッチングにより加工した熱交換器の製造方法であり、長いスリットと短いスリットの間を短くし、管内流路壁厚を薄くしても、容易に製作することができ、安価に熱交換器を提供することができる。   Invention of Claim 8 is a manufacturing method of the heat exchanger which processed the board | substrate of invention as described in any one of Claim 1 to 6 by etching, shortens between a long slit and a short slit, Even if the channel wall thickness is reduced, it can be easily manufactured, and a heat exchanger can be provided at low cost.

請求項9に記載の発明は請求項1から6のいずれか一項に記載の発明の基板相互を熱溶着接合により接合した熱交換器の製造方法であり、ロウ材を用いず容易に接合することができるため、ロウ材により管内流路を目詰まりさせることがなく、信頼性が向上するとともに、安価に熱交換器を提供することができる。   The invention according to claim 9 is a method of manufacturing a heat exchanger in which the substrates of the invention according to any one of claims 1 to 6 are bonded to each other by heat welding, and is easily bonded without using a brazing material. Therefore, the flow path in the pipe is not clogged by the brazing material, the reliability is improved, and the heat exchanger can be provided at a low cost.

請求項10に記載の発明は請求項1から6のいずれか一項に記載の発明の基板相互を超音波接合により接合した熱交換器の製造方法であり、接合部のみ基材が溶融するため溶融した基材で管内流路を目詰まりさせることがなく、さらに信頼性が向上するとともに、安価に熱交換器を提供することができる。   Invention of Claim 10 is a manufacturing method of the heat exchanger which joined the board | substrates of invention of any one of Claim 1 to 6 by ultrasonic bonding, and since a base material fuse | melts only a junction part. The melted base material does not clog the flow path in the tube, and the reliability can be further improved and the heat exchanger can be provided at a low cost.

請求項11に記載の発明は請求項1から6のいずれか一項に記載の発明の基板相互を拡散接合により接合した熱交換器の製造方法であり、拡散接合は基材も溶融しないため、管内流路を目詰まりさせることがなく、さらにさらに信頼性が向上するとともに、安価に熱交換器を提供することができる。   Invention of Claim 11 is a manufacturing method of the heat exchanger which joined the board | substrates of invention of any one of Claim 1 to 6 by diffusion bonding, and since diffusion bonding does not melt a base material, It is possible to provide a heat exchanger at low cost while further improving the reliability without clogging the flow path in the pipe.

以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例または先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same configurations as those of the conventional example or the embodiments described above, and detailed descriptions thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における熱交換部の斜視図である。熱交換部は第1の基板10と第2の基板20とが交互に積層され構成されている。
(Embodiment 1)
FIG. 1 is a perspective view of a heat exchange unit according to Embodiment 1 of the present invention. The heat exchanging portion is configured by alternately laminating the first substrate 10 and the second substrate 20.

図2は同実施の形態の第1の基板の正面図であり、図3は同実施の形態の第2の基板の正面図である。第1の基板10には複数の短いスリット30と複数の長いスリット40が略平行に一つずつ交互になるように配置されている。第2の基板20には短いスリット30と同形状のスリット50が短いスリット30の投影と同位置に設けられている。   FIG. 2 is a front view of the first substrate of the embodiment, and FIG. 3 is a front view of the second substrate of the embodiment. In the first substrate 10, a plurality of short slits 30 and a plurality of long slits 40 are arranged alternately one by one in parallel. In the second substrate 20, a slit 50 having the same shape as the short slit 30 is provided at the same position as the projection of the short slit 30.

このように、短いスリット30とスリット50とが投影面上で重なるために相互に連通することになり、管外流路60が構成される。また、第2の基板20の寸法に関して、スリット50の長手方向となる方向の寸法は長いスリット40の長手方向の長さよりも短く、長いスリット40の両端が第2の基板20の両端よりも外側になるよう設置されており、長いスリット40の両端以外の部分が第2の基板20に挟まれることにより管内流路70が構成され、長いスリット40の両端が管内流路70の出入り口となる。なお、本実施の形態では第1の基板10と第2の基板20を交互に設置したが、管内流路70の断面積を大きくしたい場合など、第2の基板20間に第1の基板10を複数設置しても良い。   Thus, since the short slit 30 and the slit 50 overlap on the projection surface, they communicate with each other, and the extra-tube flow path 60 is configured. Further, regarding the dimension of the second substrate 20, the dimension in the longitudinal direction of the slit 50 is shorter than the length of the long slit 40 in the longitudinal direction, and both ends of the long slit 40 are outside the both ends of the second substrate 20. An in-tube flow path 70 is configured by sandwiching the portion other than both ends of the long slit 40 between the second substrates 20, and both ends of the long slit 40 serve as entrances and exits of the in-tube flow path 70. In the present embodiment, the first substrate 10 and the second substrate 20 are alternately installed. However, when the cross-sectional area of the in-tube flow path 70 is to be increased, the first substrate 10 is interposed between the second substrates 20. You may install more than one.

第1の基板10と第2の基板20相互は熱溶着接合により接合すれば、ロウ材を用いず、基材を溶融させて接合するため、ロウ材が管内流路70内に流れ出すことはなく、管内流路70が目詰まりすることによる不良を低減することができる。特に、超音波接合では接合部分のみを加熱することができるため、さらに信頼性が向上する。また、拡散接合は基材が溶融しない温度までの加熱と加圧を同時に掛けることにより原子の拡散(相互拡散)現象が生じ、原子の結びつきにより接合を行うため、拡散接合で接合すれば基材の溶融もなく、管内流路70の目詰まりを防止でき、さらに信頼性が向上する。   If the first substrate 10 and the second substrate 20 are joined together by heat welding, the brazing material is not used and the base material is melted and joined, so that the brazing material does not flow into the in-pipe channel 70. In addition, defects due to clogging of the in-tube flow path 70 can be reduced. In particular, in ultrasonic bonding, only the bonded portion can be heated, so that reliability is further improved. In addition, diffusion bonding causes atomic diffusion (interdiffusion) phenomenon by simultaneously applying heating and pressurization to a temperature at which the base material does not melt, and bonding is performed by linking atoms. Therefore, it is possible to prevent clogging of the in-pipe flow path 70 and further improve the reliability.

第1の基板10と第2の基板20をプレス加工により成形すれば、比較的容易にかつ大量に成形できるため、熱交換器を安価に提供できる。この際、管内流路70の壁となる短いスリット30と長いスリット40の間隔は第1の基板10の肉厚よりも大きく、プレス加工時の応力で管内流路70壁が捩れることがなく、不良率を低減できる。よって、熱交換器を安価に提供することができる。また、第1の基板10及び第2の基板20をエッチングにより成形すれば、スリット成形時に応力がかからないため、管内流路70の壁が捩れること無く、管内流路70壁を小さくしても、容易に製作することができ、安価に熱交換器を提供することができる。   If the 1st board | substrate 10 and the 2nd board | substrate 20 are shape | molded by press work, since it can shape | mold comparatively easily and in large quantities, a heat exchanger can be provided cheaply. At this time, the distance between the short slit 30 and the long slit 40 which become the walls of the in-pipe flow path 70 is larger than the thickness of the first substrate 10, and the in-pipe flow path 70 wall is not twisted by the stress during the press working. , The defective rate can be reduced. Therefore, a heat exchanger can be provided at low cost. In addition, if the first substrate 10 and the second substrate 20 are formed by etching, no stress is applied during slit forming. Therefore, the wall of the pipe flow path 70 is not twisted, and the wall of the pipe flow path 70 can be reduced. Therefore, the heat exchanger can be easily manufactured and can be provided at a low cost.

図4は、本発明の実施の形態1における熱交換器の正面図であり、図5は同実施の形態の熱交換器の側面図である。また、図6は図4のA−A線断面図であり、図7は図4のB−B線断面図である。図8は図5のC−C線断面図である。通常、熱交換部の両端に内部流体入口ヘッダー80および出口ヘッダー90を取り付けて使用される。なお、入口ヘッダー80と出口ヘッダー90を入れ替えても良い。   FIG. 4 is a front view of the heat exchanger according to Embodiment 1 of the present invention, and FIG. 5 is a side view of the heat exchanger according to the same embodiment. 6 is a cross-sectional view taken along line AA in FIG. 4, and FIG. 7 is a cross-sectional view taken along line BB in FIG. 8 is a cross-sectional view taken along the line CC of FIG. Normally, the internal fluid inlet header 80 and the outlet header 90 are attached to both ends of the heat exchange unit. The inlet header 80 and the outlet header 90 may be interchanged.

以上のように構成された熱交換器について、以下その動作、作用を説明する。   About the heat exchanger comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

入口ヘッダー80から流入した内部流体が分岐されて管内流路70内を流れ、出口ヘッダー90から流出する。また外部流体は管外流路60を第1の基板10や第2の基板20の平面方向に流れる。この内部流体と外部流体とが熱交換部において熱交換する。この際、第1の基板10に設けた長いスリット40の幅を微細にし、短いスリット30と長いスリット40の間隔を小さくすることにより、管を細くし、かつ短いスリット30とスリット50の幅を小さくすることで、管のピッチを小さくすることが容易にできるので、非常にコンパクトな熱交換器を容易に構成できる。   The internal fluid that has flowed in from the inlet header 80 is branched and flows in the in-pipe channel 70, and flows out from the outlet header 90. Further, the external fluid flows in the planar direction of the first substrate 10 and the second substrate 20 through the extra-tube flow path 60. The internal fluid and the external fluid exchange heat in the heat exchange section. At this time, by narrowing the width of the long slit 40 provided in the first substrate 10 and reducing the distance between the short slit 30 and the long slit 40, the tube is thinned and the width of the short slit 30 and the slit 50 is reduced. Since the pipe pitch can be easily reduced by reducing the size, a very compact heat exchanger can be easily configured.

以上のように、本実施の形態においては、複数の長いスリット40と複数の短いスリット30とを略平行に一つずつ交互に配置した第1の基板10と、短いスリット30と略同形状のスリット50を短いスリット30の投影と略同位置に設けてかつ長いスリット40よりも短い第2の基板20とを複数積層し、短いスリット30とスリット50が管外流路60を構成し、長いスリット40とこれを挟む第2の基板20とで管内流路70を構成する構造であり、従来は管のみによって構成された熱交換部をスリットを設けた基板から構成しており、容易に製作することができ、安価に熱交換器を提供することができる。   As described above, in the present embodiment, the first substrate 10 in which the plurality of long slits 40 and the plurality of short slits 30 are alternately arranged in parallel one by one, and the short slits 30 have substantially the same shape. A plurality of slits 50 are provided at substantially the same position as the projections of the short slits 30 and a plurality of second substrates 20 shorter than the long slits 40 are stacked, and the short slits 30 and the slits 50 constitute the external flow path 60. 40 and the second substrate 20 sandwiching this, the pipe internal flow path 70 is configured. Conventionally, the heat exchanging portion constituted only by the tube is constituted by a substrate provided with a slit, and is easily manufactured. The heat exchanger can be provided at low cost.

また、本実施の形態では第1の基板10と第2の基板20をプレスにより加工したものであり、容易且つ大量・安価に基板を製作することができ、安価に熱交換器を提供することができる。   In the present embodiment, the first substrate 10 and the second substrate 20 are processed by pressing, and the substrate can be manufactured easily, in large quantities and at low cost, and a heat exchanger can be provided at low cost. Can do.

また、本実施の形態では、第1の基板10と第2の基板20相互は熱溶着接合により接合すれば、ロウ材を用いず、基材を溶融させて接合するため、ロウ材が管内流路70内に流れ出すことはなく、管内流路70が目詰まりすることによる不良を低減することができる。特に、超音波接合では接合部分のみを加熱することができるため、さらに信頼性が向上する。また、拡散接合は基材が溶融しない温度までの加熱と加圧を同時に掛けることにより原子の拡散(相互拡散)現象が生じ、原子の結びつきにより接合を行うため、拡散接合で接合すれば基材の溶融もなく、管内流路70の目詰まりを防止でき、さらに信頼性が向上し、不良品の低減が図れ、安価に熱交換器を提供することができる。   Further, in the present embodiment, if the first substrate 10 and the second substrate 20 are bonded to each other by heat welding, the brazing material is melted and bonded without using the brazing material. It does not flow into the channel 70, and defects due to clogging of the in-pipe channel 70 can be reduced. In particular, in ultrasonic bonding, only the bonded portion can be heated, so that reliability is further improved. In addition, diffusion bonding causes atomic diffusion (interdiffusion) phenomenon by simultaneously applying heating and pressurization to a temperature at which the base material does not melt, and bonding is performed by linking atoms. Therefore, it is possible to prevent clogging of the flow path 70 in the tube, further improve the reliability, reduce defective products, and provide a heat exchanger at low cost.

なお、本実施の形態では複数の短いスリット30と複数の長いスリット40とを一つずつ交互になるように配置することにより、管外流路60と管内流路70とが交互に配置されるようにして熱交換効率をより高め、かつ基板全体領域を効率よく活用できるようにしたが、この形態に限定されるものではなく、例えば短いスリット30相互間に複数の長いスリット40を配置したり、長いスリット40相互間に複数の短いスリット30を配置してもよい。   In the present embodiment, the plurality of short slits 30 and the plurality of long slits 40 are alternately arranged one by one so that the external flow paths 60 and the internal flow paths 70 are alternately arranged. In this way, the heat exchange efficiency is further improved and the entire area of the substrate can be efficiently used. However, the present invention is not limited to this form. For example, a plurality of long slits 40 may be disposed between the short slits 30; A plurality of short slits 30 may be arranged between the long slits 40.

また、敢えて複数の短いスリット30と複数の長いスリット40の領域を分けて配置することも設計上の都合や他の条件とのバランスで可能である。   In addition, it is possible to divide and arrange the areas of the plurality of short slits 30 and the plurality of long slits 40 in consideration of design convenience and other conditions.

さらに、形状としては短いスリット30と長いスリット40との代わりに同様の作用が期待できるものであれば必ずしもスリット形状にこだわらない。   Furthermore, as long as the same action can be expected instead of the short slit 30 and the long slit 40, the shape is not necessarily limited to the slit shape.

また、短いスリット30と長いスリット40とを略平行に配置することが、流路の形成においてスペースファクタや熱交換の効率面で好ましくはあるが、この点も必ずしも略平行の配置に限らず設計上や加工上の事情に応じて適宜変形して実施することも可能である。   In addition, it is preferable to arrange the short slit 30 and the long slit 40 substantially in parallel in terms of space factor and heat exchange efficiency in the formation of the flow path, but this point is not necessarily limited to the substantially parallel arrangement. It is also possible to carry out by appropriately modifying according to the above and processing circumstances.

(実施の形態2)
図9は、本発明の実施の形態2における熱交換部の斜視図である。熱交換部は第1の基板110を第2の基板120が挟み込むように積層されて構成されており、実施の形態1と同様に短いスリット130とスリット150で管外流路160を構成しており、長いスリット140と第2の基板120で管内流路170が構成されている。ここで、外部流体の流入側では第2の基板120間に第1の基板110が3枚積層され、続いて2枚、外部流体の出口では1枚積層することにより、管内流路170を外部流体の流入側ほど基板積層方向に大きくしている。本実施の形態では、外部流体の流れ方向に3列配置したが、複数列で有れば、3列でなくとも良い。また、第1の基板110の積層枚数を変えて、管内流路170の基板積層方向の長さを大きくしたが、第1の基板110の厚みを変えて、基板積層方向の長さを大きくすることもできる。
(Embodiment 2)
FIG. 9 is a perspective view of a heat exchange unit according to Embodiment 2 of the present invention. The heat exchanging portion is configured by laminating the first substrate 110 so that the second substrate 120 is sandwiched therebetween, and the external flow path 160 is configured by the short slit 130 and the slit 150 as in the first embodiment. The long slit 140 and the second substrate 120 constitute an in-tube flow path 170. Here, three first substrates 110 are stacked between the second substrates 120 on the inflow side of the external fluid, and then two sheets are stacked, and one sheet is stacked at the outlet of the external fluid. The fluid inflow side is increased in the substrate stacking direction. In the present embodiment, three rows are arranged in the flow direction of the external fluid. Further, the length of the in-tube flow path 170 in the substrate stacking direction is increased by changing the number of stacked first substrates 110, but the thickness of the first substrate 110 is changed to increase the length of the substrate stacking direction. You can also.

図10は同実施の形態の第1の基板の正面図であり、図11は同実施の形態の第2の基板の正面図である。第1の基板110には短いスリット130と長いスリット140が略平行に複数設けられている。長いスリット140の管内流路入口171と管内流路出口172が管外流路160方向に拡大されている。第2の基板120には実施の形態1と同様に短いスリット130と同形状のスリット150が短いスリット130の投影と同位置に設けられている。   FIG. 10 is a front view of the first substrate of the embodiment, and FIG. 11 is a front view of the second substrate of the embodiment. The first substrate 110 is provided with a plurality of short slits 130 and long slits 140 substantially in parallel. An in-pipe channel inlet 171 and an in-pipe channel outlet 172 of the long slit 140 are expanded in the direction of the extra-tube channel 160. Similarly to the first embodiment, the second substrate 120 is provided with a slit 150 having the same shape as the short slit 130 at the same position as the projection of the short slit 130.

第1の基板110と第2の基板120相互は熱溶着接合により接合すれば、ロウ材を用いず、基材を溶融させて接合するため、ロウ材が管内流路170内に流れ出すことはなく、管内流路170が目詰まりすることによる不良を低減することができる。特に、超音波接合では接合部分のみを加熱することができるため、さらに信頼性が向上する。また、拡散接合は基材が溶融しない温度までの加熱と加圧を同時に掛けることにより原子の拡散(相互拡散)現象が生じ、原子の結びつきにより接合を行うため、拡散接合で接合すれば基材の溶融もなく、管内流路170の目詰まりを防止でき、さらに信頼性が向上する。   If the first substrate 110 and the second substrate 120 are bonded to each other by heat welding, the brazing material is not used and the base material is melted and joined, so that the brazing material does not flow into the in-tube flow path 170. In addition, defects due to clogging of the in-tube flow path 170 can be reduced. In particular, in ultrasonic bonding, only the bonded portion can be heated, so that reliability is further improved. In addition, diffusion bonding causes atomic diffusion (interdiffusion) phenomenon by simultaneously applying heating and pressurization to a temperature at which the base material does not melt, and bonding is performed by linking atoms. Therefore, the clogging of the pipe flow path 170 can be prevented, and the reliability is further improved.

第1の基板110と第2の基板120をプレス加工により成形すれば、比較的容易にかつ大量に成形できるため、熱交換器を安価に提供できる。この際、管内流路170の壁となる短いスリット130と長いスリット140の間隔は第1の基板110の肉厚よりも大きく、プレス加工時の応力により、管内流路170壁が捩れにくくなり、不良率が低減し、熱交換器を安価に提供することができる。また、第1の基板110及び第2の基板120をエッチングにより成形すれば、管内流路170の壁が捩れることが無く、管内流路170壁を小さくしても、容易に製作することができ、安価に熱交換器を提供することができる。   If the first substrate 110 and the second substrate 120 are formed by press working, they can be formed relatively easily and in large quantities, so that a heat exchanger can be provided at a low cost. At this time, the distance between the short slit 130 and the long slit 140 that are walls of the pipe flow path 170 is larger than the thickness of the first substrate 110, and the wall of the pipe flow path 170 is less likely to be twisted due to stress during the pressing process. The defective rate is reduced, and the heat exchanger can be provided at low cost. Further, if the first substrate 110 and the second substrate 120 are formed by etching, the wall of the in-tube flow path 170 is not twisted and can be easily manufactured even if the in-tube flow path 170 wall is made small. The heat exchanger can be provided at low cost.

図12は、本発明の実施の形態2における熱交換器の正面図であり、図13は同実施の形態の熱交換器の側面図である。また、図14は図12のD−D線断面図であり、図15は図12のE−E線断面図である。図16は図13のF−F線断面図である。通常、熱交換部の両端に内部流体入口ヘッダー80および出口ヘッダー90を取り付けて使用される。なお、入口ヘッダー80と出口ヘッダー90を入れ替えても良い。   FIG. 12 is a front view of a heat exchanger according to Embodiment 2 of the present invention, and FIG. 13 is a side view of the heat exchanger of the same embodiment. 14 is a cross-sectional view taken along the line DD of FIG. 12, and FIG. 15 is a cross-sectional view taken along the line EE of FIG. 16 is a cross-sectional view taken along line FF in FIG. Normally, the internal fluid inlet header 80 and the outlet header 90 are attached to both ends of the heat exchange unit. The inlet header 80 and the outlet header 90 may be interchanged.

以上のように構成された熱交換器について、以下その動作、作用を説明する。   About the heat exchanger comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

入口ヘッダー80から流入した内部流体が分岐されて管内流路入口171から管内流路170内を流れ、管内流路出口172を通って出口ヘッダー90から流出する。この時、管内流路入口171及び管内流路出口172が拡大されているため流路抵抗が小さく、同じポンプ動力でも内部流体の循環量を増加させることができる。よって、熱交換量が向上し、熱交換器を小さくすることができるため、安価に熱交換器を提供することができる。また外部流体は管外流路160を第1の基板110や第2の基板120の平面方向に流れる。この内部流体と外部流体とが熱交換部において熱交換する。この際、外部流体と内部流体の温度差が大きい外部流体上流側で第1の基板110の積層枚数を多くして、基板積層方向の長さを大きくしたことにより、内部流体を多く流すことができ熱交換量が向上し、熱交換器を小さくすることができ、安価に熱交換器を提供することができる。   The internal fluid that flows in from the inlet header 80 is branched and flows from the in-pipe channel inlet 171 through the in-pipe channel 170, and then flows out from the outlet header 90 through the in-pipe channel outlet 172. At this time, since the in-pipe channel inlet 171 and the in-pipe channel outlet 172 are enlarged, the channel resistance is small, and the circulation amount of the internal fluid can be increased even with the same pump power. Therefore, the amount of heat exchange is improved and the heat exchanger can be made small, so that the heat exchanger can be provided at low cost. Further, the external fluid flows in the planar direction of the first substrate 110 and the second substrate 120 through the extra-tube flow path 160. The internal fluid and the external fluid exchange heat in the heat exchange section. At this time, by increasing the number of first substrates 110 stacked on the upstream side of the external fluid where the temperature difference between the external fluid and the internal fluid is large, the length in the substrate stacking direction is increased, so that a large amount of internal fluid can flow. The amount of heat exchange can be improved, the heat exchanger can be made smaller, and the heat exchanger can be provided at low cost.

以上のように、本実施の形態においては、長いスリット140と短いスリット130とを略平行に複数設けた第1の基板110と、短いスリット130と略同形状のスリット150を短いスリット130の投影と略同位置に設け、かつ長いスリット140よりも短い第2の基板120を複数積層し、短いスリット130とスリット150が管外流路160を構成し、長いスリット140と第2の基板120が管内流路170を構成したため、容易に製作することができ、安価に熱交換器を提供することができる。   As described above, in the present embodiment, the first substrate 110 in which a plurality of long slits 140 and short slits 130 are provided substantially in parallel, and the slits 150 having substantially the same shape as the short slits 130 are projected by the short slits 130. And a plurality of second substrates 120 that are shorter than the long slits 140 are stacked, the short slits 130 and the slits 150 constitute the extra-tube flow path 160, and the long slits 140 and the second substrate 120 are within the tube. Since the flow path 170 is configured, it can be easily manufactured and a heat exchanger can be provided at low cost.

また、本実施の形態においては、管内流路170を外部流体の流入側ほど基板積層方向に大きくしたため、外部流体と内部流体の温度差が大きく、熱交換量が大きい外部流体の流入側ほど、内部流体を多く流すことにより、熱交換量が向上し、熱交換器をさらに小さくすることができ、安価に熱交換器を提供することができる。   In the present embodiment, since the pipe flow path 170 is increased in the substrate stacking direction as the inflow side of the external fluid, the temperature difference between the external fluid and the internal fluid is large, and the inflow side of the external fluid having a large heat exchange amount is By flowing a large amount of the internal fluid, the amount of heat exchange is improved, the heat exchanger can be further reduced, and the heat exchanger can be provided at low cost.

また、本実施の形態においては、第2の基板120間に積層する第1の基板110の枚数を増減し、管内流路170の基板積層方向の大きさを変更したため、熱交換器を容易に製作でき、安価に熱交換器を提供することができる。   In the present embodiment, the number of the first substrates 110 stacked between the second substrates 120 is increased and decreased, and the size of the in-pipe flow path 170 in the substrate stacking direction is changed. The heat exchanger can be provided at low cost.

また、本実施の形態では、管内流路170の入口171及び出口172を管外流路160方向に拡大したため、内部流体の出入り口の開口面積を大きくすることができ、管内抵抗を低減し、内部流体の流量を増加させることにより、熱交換器量を向上させることができるため、熱交換器を小さくすることができる。   In this embodiment, since the inlet 171 and outlet 172 of the in-pipe channel 170 are expanded in the direction of the extra-pipe channel 160, the opening area of the inlet / outlet of the inner fluid can be increased, the in-pipe resistance is reduced, and the inner fluid is reduced. Since the amount of the heat exchanger can be improved by increasing the flow rate, the heat exchanger can be made smaller.

また、本実施の形態では、プレス加工により第1の基板110及び第2の基板120を成形すれば、比較的容易にかつ大量に成形できるため、熱交換器を安価に提供できる。この際、管内流路170の壁となる短いスリット130と長いスリット140の間隔は第1の基板110の肉厚よりも大きく、プレス加工時の応力により、管内流路170壁が捩れにくくなり、不良率が低減し、熱交換器を安価に提供することができる。また、第1の基板110及び第2の基板120をエッチングにより成形すれば、管内流路170の壁が捩れることが無く、管内流路170壁を小さくしても、容易に製作することができ、安価に熱交換器を提供することができる。   In the present embodiment, if the first substrate 110 and the second substrate 120 are formed by press working, they can be formed relatively easily and in large quantities, so that a heat exchanger can be provided at low cost. At this time, the distance between the short slit 130 and the long slit 140 that are walls of the pipe flow path 170 is larger than the thickness of the first substrate 110, and the wall of the pipe flow path 170 is less likely to be twisted due to stress during the pressing process. The defective rate is reduced, and the heat exchanger can be provided at low cost. Further, if the first substrate 110 and the second substrate 120 are formed by etching, the wall of the in-tube flow path 170 is not twisted and can be easily manufactured even if the in-tube flow path 170 wall is made small. The heat exchanger can be provided at low cost.

また、本実施の形態では、第1の基板110と第2の基板120相互は熱溶着接合により接合すれば、ロウ材を用いず、基材を溶融させて接合するため、ロウ材が管内流路170内に流れ出すことはなく、管内流路170が目詰まりすることによる不良を低減することができる。特に、超音波接合では接合部分のみを加熱することができるため、さらに信頼性が向上する。また、拡散接合は基材が溶融しない温度までの加熱と加圧を同時に掛けることにより原子の拡散(相互拡散)現象が生じ、原子の結びつきにより接合を行うため、拡散接合で接合すれば、基材の溶融もなく、管内流路170の目詰まりを防止でき、さらに信頼性が向上し、不良品の低減が図れ安価に熱交換器を提供することができる。   Further, in the present embodiment, if the first substrate 110 and the second substrate 120 are bonded to each other by heat welding, the brazing material is melted and bonded without using the brazing material. It does not flow into the channel 170, and defects due to clogging of the in-pipe channel 170 can be reduced. In particular, in ultrasonic bonding, only the bonded portion can be heated, so that reliability is further improved. In addition, diffusion bonding causes the atomic diffusion (interdiffusion) phenomenon by simultaneously applying heating and pressurization to a temperature at which the base material does not melt, and bonds by bonding of atoms. There is no melting of the material, the clogging of the in-tube flow path 170 can be prevented, the reliability is further improved, defective products can be reduced, and a heat exchanger can be provided at low cost.

以上のように、本発明にかかる熱交換器は、非常に優れた熱交換性能を維持しながら、安価に実現でき、冷凍冷蔵機器や空調機器用の熱交換器や、廃熱回収機器等の用途にも適用できる。   As described above, the heat exchanger according to the present invention can be realized at low cost while maintaining very excellent heat exchange performance, such as heat exchangers for refrigeration equipment and air conditioning equipment, waste heat recovery equipment, etc. It can also be applied to applications.

本発明の実施の形態1における熱交換部の斜視図The perspective view of the heat exchange part in Embodiment 1 of this invention 本発明の実施の形態1における第1の基板の正面図Front view of the first substrate in Embodiment 1 of the present invention 本発明の実施の形態1における第2の基板の正面図Front view of second substrate in embodiment 1 of the present invention 本発明の実施の形態1における熱交換器の正面図The front view of the heat exchanger in Embodiment 1 of this invention 同実施の形態の熱交換器の側面図Side view of the heat exchanger of the same embodiment 図4のA−A線断面図AA line sectional view of FIG. 図4のB−B線断面図BB sectional view of FIG. 図5のC−C線断面図CC sectional view of FIG. 本発明の実施の形態2における熱交換部の斜視図The perspective view of the heat exchange part in Embodiment 2 of this invention 本発明の実施の形態2における第1の基板の正面図Front view of first substrate according to Embodiment 2 of the present invention 本発明の実施の形態2における第2の基板の正面図Front view of the second substrate in Embodiment 2 of the present invention 本発明の実施の形態2における熱交換器の正面図Front view of heat exchanger according to Embodiment 2 of the present invention 同実施の形態の熱交換器の側面図Side view of the heat exchanger of the same embodiment 図12のD−D線断面図DD sectional view of FIG. 図12のE−E線断面図EE sectional view of FIG. 図13のF−F線断面図FF sectional view of FIG. 従来の熱交換器の正面図Front view of conventional heat exchanger

符号の説明Explanation of symbols

10、110 第1の基板
20、120 第2の基板
30、130 短いスリット
40、140 長いスリット
50、150 スリット
60、160 管外流路
70、170 管内流路
171 管内流路入口
172 管内流路出口
10, 110 First substrate 20, 120 Second substrate 30, 130 Short slit 40, 140 Long slit 50, 150 Slit 60, 160 External flow channel 70, 170 Internal flow channel 171 Internal flow channel inlet 172 Internal flow channel outlet

Claims (11)

長いスリットと短いスリットとを略平行に設けた第1の基板と、前記短いスリットと略同形状のスリットを設けてかつ前記長いスリットよりもその全長を短くした第2の基板とを有し、前記第1の基板の短いスリットと前記第2の基板のスリットとが連通するように前記第1の基板と前記第2の基板とを複数枚積層し、前記第1の基板の短いスリットと前記第2の基板のスリットとで管外流路を構成し、前記第1の基板の長いスリットと前記第2の基板とで管内流路を構成する熱交換器。   A first substrate provided with a long slit and a short slit substantially in parallel, and a second substrate provided with a slit having substantially the same shape as the short slit and having a shorter overall length than the long slit; A plurality of the first substrate and the second substrate are stacked so that the short slit of the first substrate and the slit of the second substrate communicate with each other, and the short slit of the first substrate and the slit A heat exchanger in which an external flow path is configured with the slits of the second substrate, and an internal flow path is configured with the long slits of the first substrate and the second substrate. 前記第2の基板で前記第1の基板を挟むように配置した請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the heat exchanger is disposed so that the first substrate is sandwiched between the second substrates. 前記長いスリットと前記短いスリットとを交互に配置した請求項1または2に記載の熱交換器。   The heat exchanger according to claim 1 or 2, wherein the long slits and the short slits are alternately arranged. 前記第1の基板を前記第2の基板間に複数積層した請求項1から3のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 3, wherein a plurality of the first substrates are stacked between the second substrates. 前記管内流路を外部流体の流入側ほど前記基板積層方向に大きくした請求項1から4のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 4, wherein the flow path in the pipe is increased in the substrate stacking direction toward the inflow side of the external fluid. 前記管内流路の出入り口を前記管外流路方向に拡大した請求項1から5のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 5, wherein an entrance / exit of the flow path in the pipe is expanded in the direction of the flow path outside the pipe. 前記基板をプレスにより加工した請求項1から6のいずれか一項に記載の熱交換器の製造方法。   The manufacturing method of the heat exchanger as described in any one of Claim 1 to 6 which processed the said board | substrate with the press. 前記基板をエッチングにより加工した請求項1から6のいずれか一項に記載の熱交換器の製造方法。   The manufacturing method of the heat exchanger as described in any one of Claim 1 to 6 which processed the said board | substrate by the etching. 前記基板相互を熱溶着接合により接合した請求項1から6のいずれか一項に記載の熱交換器の製造方法。   The method for manufacturing a heat exchanger according to any one of claims 1 to 6, wherein the substrates are bonded to each other by heat welding. 前記基板相互を超音波接合により接合した請求項1から6のいずれか一項に記載の熱交換器の製造方法。   The method for manufacturing a heat exchanger according to any one of claims 1 to 6, wherein the substrates are bonded to each other by ultrasonic bonding. 前記基板相互を拡散接合により接合した請求項1から6のいずれか一項に記載の熱交換器の製造方法。   The method for manufacturing a heat exchanger according to any one of claims 1 to 6, wherein the substrates are bonded to each other by diffusion bonding.
JP2005035624A 2004-04-14 2005-02-14 Heat exchanger and manufacturing method thereof Expired - Fee Related JP4774753B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005035624A JP4774753B2 (en) 2005-02-14 2005-02-14 Heat exchanger and manufacturing method thereof
US10/593,696 US7637313B2 (en) 2004-04-14 2005-04-12 Heat exchanger and its manufacturing method
PCT/JP2005/007062 WO2005100896A1 (en) 2004-04-14 2005-04-12 Heat exchanger and method of producing the same
TW094111652A TW200538695A (en) 2004-04-14 2005-04-13 Heat exchanger and method of producing the same
US12/617,325 US8230909B2 (en) 2004-04-14 2009-11-12 Heat exchanger and its manufacturing method
US12/617,297 US20100051249A1 (en) 2004-04-14 2009-11-12 Heat exchanger and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035624A JP4774753B2 (en) 2005-02-14 2005-02-14 Heat exchanger and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006220387A true JP2006220387A (en) 2006-08-24
JP4774753B2 JP4774753B2 (en) 2011-09-14

Family

ID=36982828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035624A Expired - Fee Related JP4774753B2 (en) 2004-04-14 2005-02-14 Heat exchanger and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4774753B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007001836T5 (en) 2006-08-11 2009-05-28 Kabushiki Kaisha Kobe Seiko Sho, Kobe Aluminum alloy for anodic oxidation treatment, process for producing the same, aluminum component with anodic oxidation coating and plasma processing apparatus
KR101077707B1 (en) 2009-04-30 2011-10-27 피엔피에너지텍 주식회사 High temperature heat exchanger for fuel cell system and it's Making method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189770A (en) * 1984-03-09 1985-09-27 Canon Inc Corona electrifier for image forming device
JPH07243788A (en) * 1993-10-14 1995-09-19 Nippondenso Co Ltd Heat exchanger
JP2003302176A (en) * 2001-08-07 2003-10-24 Denso Corp Boiling cooler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189770A (en) * 1984-03-09 1985-09-27 Canon Inc Corona electrifier for image forming device
JPH07243788A (en) * 1993-10-14 1995-09-19 Nippondenso Co Ltd Heat exchanger
JP2003302176A (en) * 2001-08-07 2003-10-24 Denso Corp Boiling cooler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007001836T5 (en) 2006-08-11 2009-05-28 Kabushiki Kaisha Kobe Seiko Sho, Kobe Aluminum alloy for anodic oxidation treatment, process for producing the same, aluminum component with anodic oxidation coating and plasma processing apparatus
KR101077707B1 (en) 2009-04-30 2011-10-27 피엔피에너지텍 주식회사 High temperature heat exchanger for fuel cell system and it's Making method

Also Published As

Publication number Publication date
JP4774753B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP6504367B2 (en) Heat exchanger
KR20070088654A (en) Heat exchanger and method of producing the same
JP5794022B2 (en) Heat exchanger
WO2005100896A1 (en) Heat exchanger and method of producing the same
EP2676094B1 (en) Method of producing a heat exchanger and a heat exchanger
JP5663413B2 (en) Serpentine heat exchanger
JPH09189490A (en) Heat exchanger and its manufacture
KR20080076222A (en) Laminated heat exchanger and fabricating method thereof
JP2010121925A (en) Heat exchanger
JP4774753B2 (en) Heat exchanger and manufacturing method thereof
JP2006207937A (en) Heat exchanger, and its manufacturing method
JP4765619B2 (en) Heat exchanger and manufacturing method thereof
JP7247717B2 (en) Heat exchanger
CN100476336C (en) Heat exchanger and method of producing the same
JP2006153360A (en) Heat exchanger and its manufacturing method
KR100795269B1 (en) Heat exchanger and method of producing the same
KR20070064938A (en) Heat exchanger
JP4622492B2 (en) Heat exchanger and manufacturing method thereof
JP2007040680A (en) Heat exchanger and its manufacturing method
JPH11294991A (en) Integrally juxtaposed heat exchanger
JP5525805B2 (en) Heat exchanger
JP4882504B2 (en) Heat exchanger
JP2006078063A (en) Heat exchanger and manufacturing method thereof
JP2008116117A (en) Manufacturing method of heat exchanger
JP2001050687A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees