JP2006211804A - Noncontact power supply system - Google Patents

Noncontact power supply system Download PDF

Info

Publication number
JP2006211804A
JP2006211804A JP2005019544A JP2005019544A JP2006211804A JP 2006211804 A JP2006211804 A JP 2006211804A JP 2005019544 A JP2005019544 A JP 2005019544A JP 2005019544 A JP2005019544 A JP 2005019544A JP 2006211804 A JP2006211804 A JP 2006211804A
Authority
JP
Japan
Prior art keywords
core
coil
air
contact power
power feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005019544A
Other languages
Japanese (ja)
Inventor
聡 ▲高▼繁
Satoshi Takashige
Makoto Uehira
眞 植平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsubakimoto Chain Co
Original Assignee
Tsubakimoto Chain Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsubakimoto Chain Co filed Critical Tsubakimoto Chain Co
Priority to JP2005019544A priority Critical patent/JP2006211804A/en
Publication of JP2006211804A publication Critical patent/JP2006211804A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Conveyors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact power supply system in which the number of times when the gap between the air core coils of a noncontact power receiving unit comes to a core wound with a coil at a noncontact power supply section is small and lowering in power receiving capacity of the noncontact power receiving unit is insignificant. <P>SOLUTION: The noncontact power supply system comprises a noncontact power supply section 2 having a core 22 wound with a coil 21 being supplied with an AC current, and a noncontact power receiving unit 1 having a plurality of air core coils 11 being carried along a carrying path (not shown) and coupled with the coil 21 inductively and receiving power from the noncontact power supply section 2. A power supply section S where the core 22 is stalled and a magnetic flux generated around the coil 21 interlinks the air core coil 11 of the noncontact power receiving unit 1, and a non-power supply section where the core 22 is not installed are provided in the carrying path. Length of the core 22 in the length direction of the carrying path is not longer than the length of the air core coil 11 in the length direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非接触給電部から非接触で受電する非接触受電装置が搬送路に沿って搬送される非接触給電システムに関するものである。   The present invention relates to a non-contact power feeding system in which a non-contact power receiving device that receives power in a non-contact manner from a non-contact power feeding unit is transported along a transport path.

非接触給電システムは、非接触給電部及び非接触受電装置を備えており、非接触受電装置は、例えば、予め定められた搬送路を搬送される搬送体に設置されている。非接触受電装置は、搬送路に設けられている非接触給電部から非接触で受電して、搬送体に設置されている昇降装置、照明装置等の負荷に給電する。搬送体は、搬送装置によって例えばチェーンで牽引されることにより搬送されており、搬送装置に給電する装置は、非接触受電装置とは別途設けられている。   The non-contact power feeding system includes a non-contact power feeding unit and a non-contact power receiving device, and the non-contact power receiving device is installed on a transport body that is transported along a predetermined transport path, for example. The non-contact power receiving device receives power in a non-contact manner from a non-contact power feeding unit provided in the transport path, and feeds power to a load such as a lifting device or a lighting device installed on the transport body. The transport body is transported, for example, by being pulled by a chain by the transport device, and a device for supplying power to the transport device is provided separately from the non-contact power receiving device.

従来、非接触給電部としては、搬送路の略全経路にわたって敷設された給電線が用いられており、非接触受電装置は、交流電流が流れる給電線に誘導結合するコイルを備えている。このコイルは、磁性体製のコアに巻装されているので、給電線からの受電効率が向上する。このような従来の非接触給電システムは、搬送路に沿って搬送される負荷に対して連続的に給電する必要がある場合、又は負荷に対して搬送路の任意の位置で給電する場合に好適である(特許文献1参照)。   Conventionally, as the non-contact power supply unit, a power supply line laid over substantially the entire path of the conveyance path is used, and the non-contact power receiving apparatus includes a coil that is inductively coupled to a power supply line through which an alternating current flows. Since this coil is wound around the core made of a magnetic material, the power receiving efficiency from the feeder line is improved. Such a conventional non-contact power feeding system is suitable when it is necessary to continuously feed power to a load transported along the transport path, or when power is supplied to an arbitrary position of the transport path with respect to the load. (See Patent Document 1).

しかし、負荷に対して搬送路の特定の区間で給電する区間給電を行なう場合、給電線を搬送路の略全経路にわたって敷設する従来の非接触給電システムでは、敷設された給電線及び給電線の敷設工程に無駄が生じるという問題があった。
これを解決する為に、給電線を搬送路の所定区間にのみ敷設してある非接触給電システムが考えられている。しかし、その非接触受電装置は、コイルが巻装されたコアを1又は複数備える為、重量が大きくなるという問題があった。
また、搬送路に沿って搬送される負荷に対して連続的に給電する場合、又は負荷に対して搬送路の任意の位置で給電する場合でも、非接触受電装置は、コイルが巻装されたコアを1又は複数備える為、重量が大きくなるという問題があった。
However, in the case of performing section feeding that feeds power to a specific section of the transport path with respect to the load, in the conventional non-contact power feeding system in which the feed line is laid over substantially the entire path of the transport path, There was a problem that the laying process was wasted.
In order to solve this problem, a non-contact power supply system in which a power supply line is laid only in a predetermined section of a conveyance path is considered. However, since the non-contact power receiving apparatus includes one or more cores around which coils are wound, there is a problem that the weight increases.
Further, even when power is supplied continuously to a load conveyed along the conveyance path, or even when power is supplied to an arbitrary position of the conveyance path with respect to the load, the non-contact power receiving device is wound with a coil. Since one or more cores are provided, there is a problem that the weight increases.

そこで、本出願人は、このような問題を解決する為に、非接触給電部のコイル及びコアを設置してある給電区間と設置していない非給電区間とを搬送路に設け、非接触受電装置が空芯コイルを備えることにより、給電線を搬送路の略全経路にわたって敷設する必要がなく、非接触受電装置を軽量化することが出来る非接触給電システムを、特願2004−103227号において提案している。
特許第2822780号公報 特開2001−44054号公報
Therefore, in order to solve such a problem, the present applicant provides a feeding path in which the coil and core of the non-contact power feeding unit are installed and a non-feeding section in which the coil and core are not installed in the conveyance path, thereby In Japanese Patent Application No. 2004-103227, a non-contact power feeding system that can reduce the weight of a non-contact power receiving device without having to lay a power feeding line over substantially the entire path of the conveyance path by providing the device with an air-core coil. is suggesting.
Japanese Patent No. 2822780 JP 2001-44054 A

この非接触給電システムでは、図14(a)の説明図に示すように、非接触給電部のコイル212が巻装してあるコア221の、搬送体の搬送方向の長さが、非接触受電装置の空芯コイル11の搬送方向の長さより大きい場合、図14(a)の説明図に示すように、コア221に空芯コイル11間の隙間が2ヶ所掛かるときがある。
空芯コイル11間の隙間は、コア221からの受電に寄与しない部分であり、図15の電力−電圧特性図に示すように、空芯コイル11間の隙間が、コア221に掛からないとき(A)に比べて、隙間がコア221に1ヶ所掛かるとき(B)、及び隙間がコア221に2ヶ所掛かるとき(C)では、非接触受電装置の受電能力が低下して変動し、安定しないという問題がある。
In this non-contact power supply system, as shown in the explanatory diagram of FIG. 14A, the length of the core 221 around which the coil 212 of the non-contact power supply unit is wound is the non-contact power reception. When the length of the air core coil 11 of the apparatus is larger than the length in the conveyance direction, there are cases where two gaps between the air core coils 11 are applied to the core 221 as shown in the explanatory diagram of FIG.
The gap between the air-core coils 11 is a portion that does not contribute to power reception from the core 221, and when the gap between the air-core coils 11 is not applied to the core 221 as shown in the power-voltage characteristic diagram of FIG. 15 ( Compared to A), when the gap is applied to the core 221 at one place (B) and when the gap is applied to the core 221 at two places (C), the power receiving capability of the non-contact power receiving device is decreased and fluctuates and is not stable. There is a problem.

本発明は、上述したような問題に鑑みてなされたものであり、非接触給電部のコイルが巻装してあるコアに、非接触受電装置の空芯コイル間の隙間が掛かる箇所が少なく、非接触受電装置の受電能力の低下が小さい非接触給電システムを提供することを目的とする。
また、本発明は、非接触給電部のコイルが巻装してあるコアに、非接触受電装置の空芯コイル間の隙間が掛かる部分の長さの和が変動せず、非接触受電装置の受電能力が安定した非接触給電システムを提供することを目的とする。
The present invention has been made in view of the above-described problems, and there are few places where a gap between air-core coils of a non-contact power receiving device is applied to a core around which a coil of a non-contact power feeding unit is wound, It is an object of the present invention to provide a non-contact power feeding system in which a decrease in power receiving capability of a non-contact power receiving apparatus is small.
Further, the present invention does not change the sum of the lengths of the portions where the gaps between the air-core coils of the non-contact power receiving device are applied to the core on which the coil of the non-contact power feeding unit is wound. An object of the present invention is to provide a non-contact power feeding system with stable power receiving capability.

第1発明に係る非接触給電システムは、交流電流が供給されるコイルが巻装されたコアを有する非接触給電部と、搬送路に沿って搬送され、前記コイルに誘導結合する複数の空芯コイルを有し、前記非接触給電部から受電する非接触受電装置とを備え、前記コアが設置されており、前記コイルの周囲に生じる磁束が、搬送されてきた前記非接触受電装置の空芯コイルに鎖交する給電区間と、前記コアが設置されていない非給電区間とが前記搬送路に設けてある非接触給電システムであって、前記搬送路の長さ方向の前記コアの長さは、前記空芯コイルの前記長さ方向の長さ以下であることを特徴とする。   A contactless power supply system according to a first aspect of the present invention includes a contactless power supply unit having a core around which a coil to which an alternating current is supplied is wound, and a plurality of air cores that are transported along a transport path and inductively coupled to the coil A non-contact power receiving device that has a coil and receives power from the non-contact power feeding unit, wherein the core is installed, and a magnetic flux generated around the coil is conveyed to the air core of the non-contact power receiving device A non-contact power feeding system in which a power feeding section interlinking with a coil and a non-power feeding section in which the core is not installed are provided in the transport path, and the length of the core in the length direction of the transport path is The length of the air-core coil is equal to or less than the length in the length direction.

この非接触給電システムでは、非接触給電部が、交流電流が供給されるコイルが巻装されたコアを有し、非接触受電装置が、搬送路に沿って搬送され、前記コイルに誘導結合する複数の空芯コイルを有し、非接触給電部から受電する。搬送路には、前記コアが設置されており、前記コイルの周囲に生じる磁束が、搬送されてきた非接触受電装置の空芯コイルに鎖交する給電区間と、前記コアが設置されていない非給電区間とが設けてある。搬送路の長さ方向の前記コアの長さは、空芯コイルの前記長さ方向の長さ以下である。   In this non-contact power supply system, the non-contact power supply unit has a core around which a coil to which an alternating current is supplied is wound, and the non-contact power receiving device is transported along the transport path and is inductively coupled to the coil. It has a plurality of air-core coils and receives power from the non-contact power feeding unit. In the conveyance path, the core is installed, and the magnetic flux generated around the coil is linked to the air-core coil of the non-contact power receiving apparatus that has been conveyed, and the core is not installed. A feeding section is provided. The length of the core in the length direction of the conveyance path is equal to or less than the length of the air core coil in the length direction.

第2発明に係る非接触給電システムは、交流電流が供給されるコイルが巻装された複数のコアを有する非接触給電部と、搬送路に沿って搬送され、前記コイルに誘導結合する等間隔に設けられた複数の空芯コイルを有し、前記非接触給電部から受電する非接触受電装置とを備え、前記コアが設置されており、前記コイルの周囲に生じる磁束が、搬送されてきた前記非接触受電装置の空芯コイルに鎖交する給電区間と、前記コアが設置されていない非給電区間とが前記搬送路に設けてある非接触給電システムであって、前記搬送路の長さ方向の前記複数のコアの長さの合計は、前記空芯コイルの前記長さ方向の長さ以下であり、前記複数のコアは、該コアの各部分と前記空芯コイルの各部分との相対位置関係が重複しないように設置されていることを特徴とする。   A non-contact power feeding system according to a second aspect of the present invention is a non-contact power feeding unit having a plurality of cores around which a coil to which an alternating current is supplied is wound, and an equal interval that is transported along a transport path and inductively coupled to the coil. A non-contact power receiving device that receives power from the non-contact power supply unit, the core is installed, and magnetic flux generated around the coil has been conveyed A non-contact power feeding system in which a power feeding section interlinking with an air-core coil of the non-contact power receiving device and a non-power feeding section in which the core is not installed are provided in the transport path, and the length of the transport path The sum of the lengths of the plurality of cores in the direction is equal to or less than the length in the length direction of the air-core coil, and the plurality of cores includes a portion of the core and a portion of the air-core coil. Installed so that the relative positional relationship does not overlap And wherein the door.

この非接触給電システムでは、非接触給電部が、交流電流が供給されるコイルが巻装された複数のコアを有し、非接触受電装置が、搬送路に沿って搬送され、前記コイルに誘導結合する等間隔に設けられた複数の空芯コイルを有し、非接触給電部から受電する。搬送路には、前記コアが設置されており、前記コイルの周囲に生じる磁束が、搬送されてきた非接触受電装置の空芯コイルに鎖交する給電区間と、前記コアが設置されていない非給電区間とが設けてある。搬送路の長さ方向の複数のコアの長さの合計は、空芯コイルの前記長さ方向の長さ以下であり、複数のコアは、該コアの各部分と空芯コイルの各部分との相対位置関係が重複しないように設置されている。   In this non-contact power supply system, the non-contact power supply unit has a plurality of cores around which a coil to which an alternating current is supplied is wound, and the non-contact power receiving device is transported along a transport path and guided to the coil It has a plurality of air-core coils that are connected at equal intervals and receives power from the non-contact power feeding unit. In the conveyance path, the core is installed, and the magnetic flux generated around the coil is linked to the air-core coil of the non-contact power receiving apparatus that has been conveyed, and the core is not installed. A feeding section is provided. The sum of the lengths of the plurality of cores in the length direction of the conveyance path is equal to or less than the length in the length direction of the air-core coil, and the plurality of cores includes each part of the core and each part of the air-core coil. It is installed so that the relative positional relationship of

第3発明に係る非接触給電システムは、交流電流が供給されるコイルが巻装されたコアを有する非接触給電部と、搬送路に沿って搬送され、前記コイルに誘導結合する等間隔に設けられた複数の空芯コイルを有し、前記非接触給電部から受電する非接触受電装置とを備え、前記コアが設置されており、前記コイルの周囲に生じる磁束が、搬送されてきた前記非接触受電装置の空芯コイルに鎖交する給電区間と、前記コアが設置されていない非給電区間とが前記搬送路に設けてある非接触給電システムであって、前記搬送路の長さ方向の前記コアの長さは、前記空芯コイルの前記長さ方向の長さと、該空芯コイル間の距離との和に等しいことを特徴とする。   A non-contact power supply system according to a third aspect of the present invention is provided with a non-contact power supply unit having a core around which a coil to which an alternating current is supplied is wound, and at equal intervals that are transported along a transport path and inductively coupled to the coil. A non-contact power receiving device that receives power from the non-contact power supply unit, the core is installed, and the magnetic flux generated around the coil has been conveyed. A non-contact power feeding system in which a power feeding section interlinking with an air-core coil of a contact power receiving device and a non-power feeding section in which the core is not installed are provided in the transport path, in the length direction of the transport path The length of the core is equal to the sum of the length in the length direction of the air-core coil and the distance between the air-core coils.

この非接触給電システムでは、非接触給電部が、交流電流が供給されるコイルが巻装されたコアを有し、非接触受電装置が、搬送路に沿って搬送され、前記コイルに誘導結合する等間隔に設けられた複数の空芯コイルを有し、非接触給電部から受電する。搬送路には、前記コアが設置されており、前記コイルの周囲に生じる磁束が、搬送されてきた非接触受電装置の空芯コイルに鎖交する給電区間と、前記コアが設置されていない非給電区間とが設けてある。搬送路の長さ方向の前記コアの長さは、空芯コイルの前記長さ方向の長さと、空芯コイル間の距離との和に等しい。   In this non-contact power supply system, the non-contact power supply unit has a core around which a coil to which an alternating current is supplied is wound, and the non-contact power receiving device is transported along the transport path and is inductively coupled to the coil. It has a plurality of air-core coils provided at equal intervals and receives power from the non-contact power feeding unit. In the conveyance path, the core is installed, and the magnetic flux generated around the coil is linked to the air-core coil of the non-contact power receiving apparatus that has been conveyed, and the core is not installed. A feeding section is provided. The length of the core in the length direction of the transport path is equal to the sum of the length in the length direction of the air core coil and the distance between the air core coils.

第4発明に係る非接触給電システムは、交流電流が供給されるコイルが巻装された複数のコアを有する非接触給電部と、搬送路に沿って搬送され、前記コイルに誘導結合する等間隔に設けられた複数の空芯コイルを有し、前記非接触給電部から受電する非接触受電装置とを備え、前記コアが設置されており、前記コイルの周囲に生じる磁束が、搬送されてきた前記非接触受電装置の空芯コイルに鎖交する給電区間と、前記コアが設置されていない非給電区間とが前記搬送路に設けてある非接触給電システムであって、前記搬送路の長さ方向の前記複数のコアの長さの合計は、前記空芯コイルの前記長さ方向の長さと、該空芯コイル間の距離との和に等しく、前記複数のコアは、該コアの各部分と前記空芯コイルの各部分との相対位置関係が重複しないように設置されていることを特徴とする。   A non-contact power feeding system according to a fourth aspect of the present invention is a non-contact power feeding unit having a plurality of cores around which a coil to which an alternating current is supplied is wound, and an equal interval that is transported along a transport path and inductively coupled to the coil. A non-contact power receiving device that receives power from the non-contact power supply unit, the core is installed, and magnetic flux generated around the coil has been conveyed A non-contact power feeding system in which a power feeding section interlinking with an air-core coil of the non-contact power receiving device and a non-power feeding section in which the core is not installed are provided in the transport path, and the length of the transport path The total length of the plurality of cores in the direction is equal to the sum of the length in the length direction of the air-core coil and the distance between the air-core coils, and the plurality of cores are each part of the core. And the relative positional relationship between each part of the air-core coil Characterized in that it is installed so as not to.

この非接触給電システムでは、非接触給電部が、交流電流が供給されるコイルが巻装された複数のコアを有し、非接触受電装置が、搬送路に沿って搬送され、前記コイルに誘導結合する等間隔に設けられた複数の空芯コイルを有し、非接触給電部から受電する。搬送路には、前記コアが設置されており、前記コイルの周囲に生じる磁束が、搬送されてきた非接触受電装置の空芯コイルに鎖交する給電区間と、前記コアが設置されていない非給電区間とが設けてある。搬送路の長さ方向の前記複数のコアの長さの合計は、空芯コイルの前記長さ方向の長さと、空芯コイル間の距離との和に等しく、複数のコアは、該コアの各部分と空芯コイルの各部分との相対位置関係が重複しないように設置されている。   In this non-contact power supply system, the non-contact power supply unit has a plurality of cores around which a coil to which an alternating current is supplied is wound, and the non-contact power receiving device is transported along a transport path and guided to the coil It has a plurality of air-core coils that are connected at equal intervals and receives power from the non-contact power feeding unit. In the conveyance path, the core is installed, and the magnetic flux generated around the coil is linked to the air-core coil of the non-contact power receiving apparatus that has been conveyed, and the core is not installed. A feeding section is provided. The total length of the plurality of cores in the length direction of the conveyance path is equal to the sum of the length in the length direction of the air-core coil and the distance between the air-core coils. It is installed so that the relative positional relationship between each part and each part of the air-core coil does not overlap.

第1発明の非接触給電システムによれば、非接触給電部のコイルが巻装してあるコアに、非接触受電装置の空芯コイル間の隙間が掛かる箇所が最大で1ヶ所となり、非接触受電装置の受電能力の低下が小さい非接触給電システムを実現することが出来る。   According to the non-contact power feeding system of the first invention, the core where the coil of the non-contact power feeding unit is wound has a maximum of one portion where the gap between the air-core coils of the non-contact power receiving device is applied, and the non-contact power feeding system. A contactless power feeding system in which a decrease in power receiving capability of the power receiving device is small can be realized.

第2発明の非接触給電システムによれば、非接触給電部のコイルが巻装してあるコアに、非接触受電装置の空芯コイル間の隙間が掛かる箇所が最大で1ヶ所となり、非接触受電装置の受電能力の低下が小さく、また、非接触給電部のコアの配置の自由度が増す非接触給電システムを実現することが出来る。   According to the non-contact power feeding system of the second invention, the core where the coil of the non-contact power feeding portion is wound has a maximum of one place where the gap between the air-core coils of the non-contact power receiving device is applied, and the non-contact power feeding system. It is possible to realize a non-contact power feeding system in which a decrease in power receiving capability of the power receiving device is small and the degree of freedom of arrangement of the core of the non-contact power feeding unit is increased.

第3発明の非接触給電システムによれば、非接触給電部のコイルが巻装してあるコアに、非接触受電装置の空芯コイル間の隙間が掛かる部分の長さの和が変動せず一定となり、非接触受電装置の受電能力が安定した非接触給電システムを実現することが出来る。   According to the non-contact power feeding system of the third invention, the sum of the lengths of the portions where the gaps between the air-core coils of the non-contact power receiving device are applied to the core around which the coil of the non-contact power feeding portion is wound does not vary. A non-contact power feeding system in which the power receiving capability of the non-contact power receiving apparatus is stable can be realized.

第3,4発明の非接触給電システムによれば、非接触給電部のコイルが巻装してあるコアに、非接触受電装置の空芯コイル間の隙間が掛かる部分の長さの和が変動せず、非接触受電装置の受電能力が安定し、また、非接触給電部のコアの配置の自由度が増す非接触給電システムを実現することが出来る。   According to the non-contact power feeding system of the third and fourth inventions, the sum of the lengths of the portions where the gap between the air-core coils of the non-contact power receiving device is applied to the core around which the coil of the non-contact power feeding unit is wound varies. Therefore, it is possible to realize a non-contact power feeding system in which the power receiving capability of the non-contact power receiving apparatus is stabilized and the degree of freedom of arrangement of the core of the non-contact power feeding unit is increased.

以下に、本発明をその実施の形態を示す図面に基づき説明する。
(実施の形態1)
図1は、本発明に係る非接触給電システムの実施の形態1を用いた搬送システムの例を示す説明図であり、図2及び図3は、図1に示す搬送システムの搬送体の構成例を示す正面図及び側面図である。図1に示す搬送システム6は、自動車製造システムの例であり、複数の自動車を流れ作業的に製造する製造ラインであり、車体(以下、ワークという)を複数、一方向に搬送しつつ、部品の取り付け及び検査等の作業が行なわれる。
Hereinafter, the present invention will be described with reference to the drawings illustrating embodiments thereof.
(Embodiment 1)
FIG. 1 is an explanatory view showing an example of a transport system using the first embodiment of the non-contact power feeding system according to the present invention, and FIGS. 2 and 3 are configuration examples of the transport body of the transport system shown in FIG. It is the front view and side view which show. A conveyance system 6 shown in FIG. 1 is an example of an automobile manufacturing system, which is a production line that manufactures a plurality of automobiles in a flow-oriented manner, and conveys a plurality of vehicle bodies (hereinafter referred to as workpieces) in one direction while moving parts. Installation and inspection work is performed.

この搬送システム6は、複数(例えば15台)の搬送体3,3,…、非接触受電装置1,1,…(図2,3)、及び昇降機器5,5,…をそれぞれ同数備え、所定の搬送路に沿って各搬送体3を搬送させる為の搬送装置4を備えている。
非接触給電システム7(図2)は、搬送路の一部に給電区間S,S,…を、他部に非給電区間N,N,…を設けてあり、更に、給電区間S,S,…の個数と同数の非接触給電部2,2,…(図2)を備えている。
非接触受電装置1(図2,3)は、空芯コイル11,11,…と共振コンデンサ121,121,…(図5参照)とを備え、非接触給電部2(図2)は、コイル21,21,…とコア22,22,…とを備えている。以下では、搬送体3の搬送方向を前後方向(長さ方向)といい、搬送方向に略直交する水平方向を左右方向(幅方向)と記述する。
The transport system 6 includes a plurality of (for example, 15) transport bodies 3, 3,..., Non-contact power receiving devices 1, 1,... (FIGS. 2, 3), and lift devices 5, 5,. A transport device 4 for transporting each transport body 3 along a predetermined transport path is provided.
The non-contact power feeding system 7 (FIG. 2) includes power feeding sections S, S,... In a part of the conveyance path, and non-power feeding sections N, N,. The same number of non-contact power feeding units 2, 2,... (FIG. 2) are provided.
The non-contact power receiving device 1 (FIGS. 2 and 3) includes air-core coils 11, 11,... And resonant capacitors 121, 121,. Are provided with cores 22, 21,. Below, the conveyance direction of the conveyance body 3 is called the front-back direction (length direction), and the horizontal direction substantially orthogonal to a conveyance direction is described as the left-right direction (width direction).

搬送体3は、4個の車輪32,32,…(図2,3)を前後左右に有する全長約6mの台車31を備え、ワークが載置される昇降台35を台車31上に備える。また、搬送体3には、昇降台35を昇降させる昇降機器5が設置してあり、更に、昇降機器5に給電する非接触受電装置1が設置してある。即ち、搬送体3が搬送路を搬送されることにより、非接触受電装置1が搬送路に沿って搬送される。   The conveyance body 3 includes a carriage 31 having a total length of about 6 m having four wheels 32, 32,... (FIGS. 2 and 3) on the front, rear, left, and right, and a carriage 35 on which the workpiece is placed. In addition, a lifting device 5 that lifts and lowers the lifting platform 35 is installed on the carrier 3, and a non-contact power receiving device 1 that supplies power to the lifting device 5 is also installed. That is, the non-contact power receiving device 1 is transported along the transport path by transporting the transport body 3 along the transport path.

搬送装置4は、レール41,46を備え、レール41は、底部41bと、底部41bの左右両端部に並置された凸条部41a,41aとを有し、凸条部41a,41aに各搬送体3左右の車輪32,32,…が転接している。レール46は、レール41と略同様の構成である。レール41,46は、搬送体3の搬送路であり、それぞれ全長約130mを有する。
レール41上を搬送される搬送体3の昇降台35には、図示しないワークが載置され、レール46上を搬送される搬送体3にはワークが載置されない。つまり、レール41は各搬送体3の往路(作業用搬送路)であり、レール46は復路(返送用搬送路)である。レール46は例えば床面に敷設され、レール41はレール46の上側に離隔して設置されている。
The conveying device 4 includes rails 41 and 46, and the rail 41 includes a bottom 41b and protruding ridges 41a and 41a juxtaposed on both left and right ends of the bottom 41b, and each conveying to the protruding ridges 41a and 41a. The wheels 32 on the left and right of the body 3 are in rolling contact. The rail 46 has substantially the same configuration as the rail 41. The rails 41 and 46 are transport paths for the transport body 3 and each have a total length of about 130 m.
A workpiece (not shown) is placed on the lifting platform 35 of the transport body 3 transported on the rail 41, and no work is placed on the transport body 3 transported on the rail 46. That is, the rail 41 is the forward path (working transport path) of each transport body 3, and the rail 46 is the return path (returning transport path). The rail 46 is laid on the floor surface, for example, and the rail 41 is spaced apart from the upper side of the rail 46.

更に、搬送装置4は、駆動ローラ42、従動ローラ43、モータ44及びチェーン45を備えている。駆動ローラ42及び従動ローラ43は、レール41の前後方向両端部に、ローラ42,43の軸方向を左右方向に略一致させて配置されている。チェーン45は、無端状に設けられ、レール41の上側及び下側を通って、ローラ42,43に懸吊されている。モータ44は、駆動ローラ42を略一定の所定速度で回転させる。
このような搬送装置4は、例えば商用電源から電線を介してモータ44駆動用の電力を得る。搬送体3,3,…は、互いに適長離隔してレール41上部側のチェーン45に着脱自在に掛止されている。
Further, the transport device 4 includes a driving roller 42, a driven roller 43, a motor 44 and a chain 45. The driving roller 42 and the driven roller 43 are arranged at both ends in the front-rear direction of the rail 41 so that the axial directions of the rollers 42 and 43 are substantially aligned with the left-right direction. The chain 45 is provided in an endless manner, and is suspended from rollers 42 and 43 through the upper and lower sides of the rail 41. The motor 44 rotates the driving roller 42 at a substantially constant predetermined speed.
Such a transport device 4 obtains electric power for driving the motor 44 from a commercial power source via an electric wire, for example. The transport bodies 3, 3,... Are detachably hooked on the chain 45 on the upper side of the rail 41 with an appropriate distance from each other.

モータ44により駆動ローラ42が回転した場合、チェーン45を介して従動ローラ43も回転し、チェーン45が白抜矢符方向に略一定速度で回転する。搬送体3,3,…は、チェーン45の回転により車輪32,32,…(図2,3)が転動して、レール41の一端側から他端側へ白抜矢符方向に略一定速度(例えば時速4km)でレール41上を搬送される。つまり、搬送体3,3,…は、自走せず、互いに数珠状につながれた状態でチェーン45に牽引されて移動する。また、搬送装置4は、レール41に係る構成と同様に、レール46に沿って矢符方向に搬送体3を搬送する為の図示しない駆動ローラ、従動ローラ、モータ及びチェーンを備えている。   When the driving roller 42 is rotated by the motor 44, the driven roller 43 is also rotated through the chain 45, and the chain 45 is rotated at a substantially constant speed in the direction of the white arrow. The wheels 3, 32,... (FIGS. 2, 3) roll by the rotation of the chain 45, and the transport bodies 3, 3,... Are substantially constant in the direction of the white arrow from one end side to the other end side of the rail 41. It is conveyed on the rail 41 at a speed (for example, 4 km / h). That is, the transport bodies 3, 3,... Do not self-propelled and move while being pulled by the chain 45 in a state where they are connected to each other in a bead shape. Similarly to the configuration related to the rail 41, the transport device 4 includes a driving roller, a driven roller, a motor, and a chain (not shown) for transporting the transport body 3 along the rail 46 in the arrow direction.

本実施の形態1における搬送路には、昇降機器5に対して給電する為の給電区間Sが、離散的に複数(例えば6箇所)設けてあり、給電区間S以外の搬送路は、昇降機器5に給電しない非給電区間Nである。作業者は、給電区間S,S,…の何れかに搬送体3が掛かっている場合に、つまり、搬送体3が給電区間Sを通過している間に、昇降台35上のワークに対して所定の作業を行なう。このとき、作業者は、作業内容及び作業の利便性等に応じて、昇降機器5を用いて昇降台35を昇降させ、ワークの上下方向の位置を調整する。ここで、作業者は、搬送体3に乗り込んで作業を行なっても良く、レール41の左右外側に設けられた図示しない作業台上にて作業を行なっても良い。   In the transport path in the first embodiment, a plurality of power feeding sections S for feeding power to the lifting device 5 are provided in a discrete manner (for example, six locations). 5 is a non-power feeding section N in which power is not supplied to the power source 5. When the transporter 3 is hung on any of the power feeding sections S, S,..., That is, while the transporting body 3 passes through the power feeding section S, To perform the prescribed work. At this time, the worker raises and lowers the lifting platform 35 using the lifting device 5 and adjusts the vertical position of the workpiece in accordance with the work content and the convenience of the work. Here, the worker may get on the transport body 3 and work on a work table (not shown) provided on the left and right outer sides of the rail 41.

搬送体3が給電区間Sを通過した後、次の給電区間Sに到達する迄、ワークに対して昇降機器5を用いる作業は行なわれない。つまり、本実施の形態1における各昇降機器5には、搬送体3が給電区間Sに掛かっている間のみ給電すれば良く、それ以外は給電する必要がない。尚、搬送体3が給電区間Sに掛かっていないときに、ワークに対して昇降機器5を用いない作業を行なうことが出来る。   After the transport body 3 passes through the power feeding section S, the work using the lifting device 5 is not performed on the workpiece until the next power feeding section S is reached. That is, it is only necessary to supply power to each lifting device 5 in the first embodiment while the carrier 3 is in the power supply section S, and otherwise there is no need to supply power. In addition, when the conveyance body 3 is not over the power feeding section S, an operation without using the lifting / lowering device 5 can be performed on the workpiece.

このように、給電区間S,S,…は、昇降台35に載置されたワークに対して、作業者が所定の作業を行なうべき作業区間でもあり、給電区間S,S,…は、往路であるレール41に関して設けられており、復路であるレール46に関しては設けられていない。この為、各搬送体3のレール46上における搬送速度は、レール41上における搬送速度より高速であることが望ましい。また、搬送体3は、給電区間Sで停止することはない。この為、各ワークに対する作業が効率良く行なわれる。   As described above, the power feeding sections S, S,... Are also work sections in which the operator should perform a predetermined work on the work placed on the lifting platform 35. The power feeding sections S, S,. Is provided for the rail 41, and is not provided for the rail 46 which is the return path. For this reason, it is desirable that the transport speed of each transport body 3 on the rail 46 is higher than the transport speed on the rail 41. Further, the transport body 3 does not stop in the power feeding section S. For this reason, work on each workpiece is efficiently performed.

各搬送体3は、レール41の一端側にて昇降台35にワークが載置され、更に、各搬送体3自身がチェーン45に取り付けられる。この後、各搬送体3はレール41上を搬送され、給電区間S,S,…を通過する。レール41の他端側に到着したとき、各搬送体3は、昇降台35からワークが取り外され、更に各搬送体3自身がチェーン45から取り外されて、図示しない昇降装置で下段のレール46へ移送される。ワークが載置されていない各搬送体3は、レール46の一端側から他端側へレール46上を搬送され、他端側に到着したときに、上段のレール41の一端側へ移送される。レール41へ移送された各搬送体3は、昇降台35に新たなワークが載置され、チェーン45に取り付けられて、再びレール41上を搬送される。   Each carrier 3 has a work placed on the lifting platform 35 at one end of the rail 41, and each carrier 3 itself is attached to a chain 45. Thereafter, each transport body 3 is transported on the rail 41 and passes through the power feeding sections S, S,. When arriving at the other end side of the rail 41, each carrier 3 has its workpiece removed from the lifting platform 35 and each carrier 3 itself removed from the chain 45, and is moved to the lower rail 46 by a lifting device (not shown). Be transported. Each transport body 3 on which no workpiece is placed is transported on the rail 46 from one end side of the rail 46 to the other end side, and is transferred to one end side of the upper rail 41 when it reaches the other end side. . Each transport body 3 transferred to the rail 41 is loaded with a new work on the lifting platform 35, attached to the chain 45, and transported on the rail 41 again.

各非接触受電装置1は、導線又は導体製のパイプを用いてロ字状に形成された空芯コイル11を複数(例えば10個)備える。搬送体3の台車31底面には、台車31底面からレール41の底部41b側へ突出するI字状のコイル取付部33が台車31の最前部から最後部にわたって設けてあり、各空芯コイル11はコイル固定具34でコイル取付部33に固定されることにより、レール41の底部41bに対向して台車31底面に吊設されている。尚、各空芯コイル11をコイル取付部33に固定する構成ではなく、非磁性体製のコイル取付部に巻装する構成でも良い。   Each non-contact power receiving device 1 includes a plurality (for example, 10) of air-core coils 11 formed in a square shape using a conductive wire or a conductor pipe. An I-shaped coil mounting portion 33 protruding from the bottom surface of the carriage 31 toward the bottom 41b side of the rail 41 is provided on the bottom surface of the carriage 31 of the transport body 3 from the foremost part to the rearmost part. Is fixed to the coil mounting portion 33 by a coil fixture 34, and is suspended from the bottom surface of the carriage 31 so as to face the bottom portion 41 b of the rail 41. In addition, the structure which winds around the coil attachment part made from a nonmagnetic body may be sufficient instead of the structure which fixes each air-core coil 11 to the coil attachment part 33. FIG.

空芯コイル11,11,…は、搬送体3の側面側から見た各空芯コイル11の形状(以下、側面視の形状と記す)がロ字状になるような向きで、前後方向に互いに適長離隔されて略一直線に並置されている。つまり、搬送体3の正面/背面側から見た各空芯コイル11の形状(以下、正面視の形状と記す)がI字状になるよう配置されている。また、空芯コイル11,11,…は隣り合う空芯コイル11,11同士が直列に接続されており、非接触給電部2(図2)のコイル21,21,…に誘導結合する。   The air core coils 11, 11,... Are oriented in the front-rear direction so that the shape of each air core coil 11 (hereinafter referred to as a side view shape) viewed from the side surface side of the carrier 3 is a square shape. They are spaced apart from each other by an appropriate length and are juxtaposed in a substantially straight line. That is, the air core coils 11 are arranged so as to have an I-shape when viewed from the front / back side of the carrier 3 (hereinafter referred to as a front view shape). Are adjacently connected in series, and are inductively coupled to the coils 21, 21,... Of the non-contact power feeding section 2 (FIG. 2).

コイル取付部33は、アルミニウムで形成されており、台車31と空芯コイル11,11,…との間に介在して、空芯コイル11,11,…に係る漏れ磁束を遮蔽し、漏れ磁束の外部(例えば搬送体3に搭載された電気機器)への悪影響を低減する磁界遮蔽部としても機能する。尚、コイル取付部33で磁界を遮蔽する構成ではなく、台車31と空芯コイル11,11,…との間に介在する、例えば、非磁性体であり導電性の非鉄金属を用いてなる磁界遮蔽板を設けておく構成でも良い。   The coil mounting portion 33 is made of aluminum, and is interposed between the carriage 31 and the air core coils 11, 11,... To shield the leakage magnetic flux related to the air core coils 11, 11. It also functions as a magnetic field shielding unit that reduces adverse effects on the outside (for example, electrical equipment mounted on the carrier 3). In addition, it is not the structure which shields a magnetic field with the coil attachment part 33, for example, the magnetic field which is interposed between the trolley | bogie 31 and the air-core coils 11, 11, ... is a nonmagnetic material and uses electroconductive nonferrous metal. The structure which provides the shielding board may be sufficient.

各給電区間Sには、非接触給電部2が備えるコア22と、コア22に巻装されたコイル21とが設置されているが、各非給電区間Nには、コア22もコイル21も設置されていない。コア22は、図5(a)に示すように、正面視がコ字状に形成されたフェライト製であり、基部22a及び2つの脚部22b,22bを有し、コイル21は脚部22b,22bに巻装されている。尚、図5(b)に示すように、コア22の脚部22b,22bに代えて、コア22の基部22aにコイル211を巻装しても良い。   In each power feeding section S, a core 22 provided in the non-contact power feeding section 2 and a coil 21 wound around the core 22 are installed. In each non-power feeding section N, both the core 22 and the coil 21 are installed. It has not been. As shown in FIG. 5A, the core 22 is made of ferrite having a U-shape when viewed from the front, and has a base portion 22a and two leg portions 22b and 22b, and the coil 21 includes leg portions 22b, It is wound around 22b. As shown in FIG. 5B, a coil 211 may be wound around the base portion 22 a of the core 22 instead of the leg portions 22 b and 22 b of the core 22.

図4は、本発明に係る非接触給電システム7の実施の形態1が備える非接触給電部2及び非接触受電装置1の構成例を示す斜視図である。図4では、空芯コイル11,11,…と非接触給電部2との位置関係を明示する為、搬送体3の図示を省略している。
給電区間Sにおけるレール41の底部41b上面には、細長矩形のコア取付板40が、コア取付板40の長さ方向が前後方向に略一致するようにして敷設してある。コア22は、正面視の形状がU字状になるような向きで、基部22aがコア取付板40に固定され、脚部22b,22bを上にして設置されている。
FIG. 4 is a perspective view illustrating a configuration example of the contactless power feeding unit 2 and the contactless power receiving device 1 included in the first embodiment of the contactless power feeding system 7 according to the present invention. 4, in order to clarify the positional relationship between the air-core coils 11, 11,...
On the upper surface of the bottom 41b of the rail 41 in the power feeding section S, an elongated rectangular core mounting plate 40 is laid so that the length direction of the core mounting plate 40 substantially coincides with the front-rear direction. The core 22 is installed so that the base 22a is fixed to the core mounting plate 40 and the legs 22b and 22b are facing upward so that the shape in front view is U-shaped.

空芯コイル11,11,…は、搬送体3が搬送されている場合に、コア22の脚部22b,22bの間を搬送方向(図4、白抜矢符方向)へ移動し、この場合、空芯コイル11とコイル21及びコア22とは、適長離隔しており、互いに接触しない。尚、空芯コイル11,11,…を樹脂モールドしたり、空芯コイル11,11,…に対して合成樹脂製のカバーを設けたりして、空芯コイル11,11,…を保護し、空芯コイル11とコイル21及びコア22等との直接的な当接を防止する構成でも良い。
コア22の長さ、コア22に対するコイル21の巻き数、各空芯コイル11の巻き数、長さ、空芯コイル11の個数及び離隔距離等は、昇降機器5が必要とする電力(例えば最大1.5kW〜2kW)、台車31の長さ等の仕様に応じて決定される。
The air core coils 11, 11,... Move between the leg portions 22b, 22b of the core 22 in the transport direction (FIG. 4, white arrow direction) when the transport body 3 is transported. The air-core coil 11, the coil 21 and the core 22 are separated by an appropriate length and do not contact each other. The air-core coils 11, 11,... Are resin-molded, or a cover made of synthetic resin is provided on the air-core coils 11, 11,. The structure which prevents the direct contact | abutting with the air-core coil 11, the coil 21, the core 22, etc. may be sufficient.
The length of the core 22, the number of turns of the coil 21 with respect to the core 22, the number of turns of each air-core coil 11, the length, the number of air-core coils 11, the separation distance, etc. 1.5 kW to 2 kW), and is determined according to specifications such as the length of the carriage 31.

図6は、本実施の形態1の非接触受電装置1の空芯コイル11と非接触給電部2のコア22との搬送方向の長さの関係を示す説明図である。搬送方向の長さaを有する各空芯コイル11は、隙間dを隔てて設けられており、上記搬送方向のコア22の長さbは、各空芯コイル11の長さa以下に設定されている。これにより、コア22からの受電に寄与しない、空芯コイル11間の隙間がコア22に掛かるのは、1ヶ所以下となり、非接触受電装置1の受電能力の低下を抑制することが出来る。   FIG. 6 is an explanatory diagram illustrating a relationship in length in the transport direction between the air-core coil 11 of the contactless power receiving device 1 of the first embodiment and the core 22 of the contactless power feeding unit 2. Each air-core coil 11 having a length a in the transport direction is provided with a gap d therebetween, and the length b of the core 22 in the transport direction is set to be equal to or less than the length a of each air-core coil 11. ing. As a result, the gap between the air-core coils 11 that does not contribute to power reception from the core 22 is applied to the core 22 in one or less places, and a decrease in power reception capability of the non-contact power reception device 1 can be suppressed.

図7は、非接触給電部2及び非接触受電装置1の回路構成例を示すブロック図である。非接触給電部2は、コイル21の他に補償コンデンサ23及び高周波電源装置24を備えている。コイル21及び補償コンデンサ23は、高周波電源装置24に直列に接続されている。
高周波電源装置24は、商用電源に接続され、AC200V、60Hzの商用電源を整流し平滑化して直流に変換した後、変換した直流をインバータ(DC−AC変換器)ににより高周波交流(例えば20KHz)に変換し、変換した高周波交流をイミタンス変換回路により高周波の定電流としてコイル21に通流させる。
FIG. 7 is a block diagram illustrating a circuit configuration example of the contactless power feeding unit 2 and the contactless power receiving device 1. The non-contact power feeding unit 2 includes a compensation capacitor 23 and a high frequency power supply device 24 in addition to the coil 21. The coil 21 and the compensation capacitor 23 are connected in series to the high frequency power supply device 24.
The high frequency power supply device 24 is connected to a commercial power source, rectifies and smoothes a commercial power source of AC 200 V, 60 Hz, and converts it into a direct current, and then converts the converted direct current into a high frequency alternating current (for example, 20 kHz) by an inverter (DC-AC converter). The converted high-frequency alternating current is passed through the coil 21 as a high-frequency constant current by the immittance conversion circuit.

高周波電源装置24により非接触給電部2のコイル21に高周波電流が通流されると、コイル21の周囲に、時間的に変化する磁束が形成される。搬送体3が搬送されているとき、各空芯コイル11は、コイル21の周囲に生じる磁束に対して搬送方向に順次的に鎖交する。非接触受電装置1は、コイル21の周囲に生じた磁束が空芯コイル11,11,…に鎖交することにより、空芯コイル11,11,…に発生した誘導起電力を受電する。   When a high frequency current is passed through the coil 21 of the non-contact power feeding unit 2 by the high frequency power supply device 24, a magnetic flux that changes with time is formed around the coil 21. When the transport body 3 is transported, the air-core coils 11 are sequentially linked in the transport direction with respect to the magnetic flux generated around the coil 21. The non-contact power receiving device 1 receives the induced electromotive force generated in the air-core coils 11, 11,... When the magnetic flux generated around the coil 21 is linked to the air-core coils 11, 11,.

非接触受電装置1は、空芯コイル11,11,…の他に受電部12と出力端子10とを備え、また、昇降機器5は、直流を交流に変換するインバータ機能を有するモータドライバ51と、交流モータであるモータ52とを備えている。非接触受電装置1の出力端子10には、DCバスDBを介してモータドライバ51が接続してあり、モータドライバ51は、負荷であるモータ52を駆動して、昇降台35を昇降させる。   The non-contact power receiving device 1 includes a power receiving unit 12 and an output terminal 10 in addition to the air-core coils 11, 11,..., And the lifting device 5 includes a motor driver 51 having an inverter function for converting direct current to alternating current. And a motor 52 which is an AC motor. A motor driver 51 is connected to the output terminal 10 of the non-contact power receiving apparatus 1 via a DC bus DB, and the motor driver 51 drives a motor 52 as a load to raise and lower the lifting platform 35.

受電部12は、空芯コイル11,11,…と同数の共振コンデンサ121,121,…を備え、空芯コイル11,11,…と共振コンデンサ121,121,…とは、それぞれ直列に接続されて直列共振回路120を構成している。また、受電部12は、直列共振回路120の出力側に接続され、交流を全波整流するダイオードブリッジを用いた整流回路122と、整流回路122の出力電圧を平滑する平滑コンデンサ123とを備え、平滑コンデンサ123の両端子が非接触受電装置1の出力端子10,10に接続されている。   The power receiving unit 12 includes the same number of resonance capacitors 121, 121,... As the air core coils 11, 11,..., And the air core coils 11, 11,. Thus, the series resonance circuit 120 is configured. The power receiving unit 12 includes a rectifier circuit 122 that is connected to the output side of the series resonant circuit 120 and uses a diode bridge that performs full-wave rectification of alternating current, and a smoothing capacitor 123 that smoothes the output voltage of the rectifier circuit 122. Both terminals of the smoothing capacitor 123 are connected to the output terminals 10 and 10 of the non-contact power receiving device 1.

直列共振回路120は、空芯コイル11,11,…がコイル21に誘導結合する為に、コイル21を流れる高周波電流に共振するよう構成されている。この場合、直列共振回路120は、空芯コイル11,11,…に誘起された電力を受けて、高周波交流の定電圧源として機能する。尚、直列共振回路120をコイル21を流れる高周波電流に完全に共振させる必要はない。   The series resonance circuit 120 is configured to resonate with a high-frequency current flowing through the coil 21 so that the air-core coils 11, 11,. In this case, the series resonant circuit 120 receives power induced in the air-core coils 11, 11,... And functions as a high-frequency AC constant voltage source. It is not necessary for the series resonance circuit 120 to completely resonate with the high-frequency current flowing through the coil 21.

直列共振回路120の出力(交流定電圧)は、整流回路122で全波整流され、整流回路122から出力された直流は、平滑コンデンサ123で平滑される。非接触受電装置1は、平滑コンデンサ123で平滑された直流を、出力端子10及びDCバスDBを通じて、モータドライバ51へ供給する。モータドライバ51は、供給された直流を交流に変換して、モータ52へ供給する。   The output (AC constant voltage) of the series resonant circuit 120 is full-wave rectified by the rectifier circuit 122, and the direct current output from the rectifier circuit 122 is smoothed by the smoothing capacitor 123. The non-contact power receiving apparatus 1 supplies the direct current smoothed by the smoothing capacitor 123 to the motor driver 51 through the output terminal 10 and the DC bus DB. The motor driver 51 converts the supplied direct current into alternating current and supplies it to the motor 52.

ところで、非接触給電部2が補償コンデンサ23を備えない場合、コイル21をコア22に巻装してあるので、コイル21のインダクタンスが高周波電源装置24内の共振回路(イミタンス変換回路)の定数より大きくなり、共振状態が維持できなくなり、非接触受電装置1の受電効率が低下する。つまり、補償コンデンサ23は、非接触給電部2のインダクタンスを所定値以下に維持して、非接触受電装置1の受電効率の低下を防止する為に備えている。   By the way, when the non-contact electric power feeding part 2 is not provided with the compensation capacitor | condenser 23, since the coil 21 is wound around the core 22, the inductance of the coil 21 is based on the constant of the resonance circuit (immittance conversion circuit) in the high frequency power supply device 24. The resonance state cannot be maintained and the power receiving efficiency of the non-contact power receiving device 1 is reduced. That is, the compensation capacitor 23 is provided in order to prevent a decrease in power receiving efficiency of the non-contact power receiving device 1 by maintaining the inductance of the non-contact power feeding unit 2 below a predetermined value.

以上のような非接触給電システム7では、搬送体3が給電区間Sに掛かっているときに、非接触受電装置1が、非接触給電部2から給電され(受電し)て、負荷である昇降機器5へ給電する。また、昇降機器5への給電時に搬送体3が停止する必要がなく、移動中に給電可能である。これにより、自動車製造システムの自動車製造効率が向上する。   In the non-contact power feeding system 7 as described above, when the carrier 3 is in the power feeding section S, the non-contact power receiving device 1 is fed (receives power) from the non-contact power feeding unit 2 and is lifted and lowered as a load. Power is supplied to the device 5. Moreover, it is not necessary to stop the conveyance body 3 at the time of electric power feeding to the raising / lowering apparatus 5, and electric power feeding is possible during movement. Thereby, the automobile manufacturing efficiency of the automobile manufacturing system is improved.

(実施の形態2)
図8(a)は、本発明に係る非接触給電システムの実施の形態2の非接触受電装置の空芯コイルと非接触給電部のコアとの関係を示す説明図である。この本非接触給電システム7aでは、非接触受電装置1は、搬送方向の長さaを有する各空芯コイル11が隙間dを隔てて設けられており、非接触給電部1aは、上記搬送方向の長さbを有する2つのコア22a,22bが設けられている。2つのコア22a,22bは、それぞれコイル21a,21bが巻装され、図8(b)に示すように、長さbの合計2bが、各空芯コイル11の長さa以下になるように設定されている。尚、2つのコア22a,22bの長さは等しくなくても良い。
(Embodiment 2)
Fig.8 (a) is explanatory drawing which shows the relationship between the air-core coil of the non-contact power receiving apparatus of Embodiment 2 of the non-contact electric power feeding system which concerns on this invention, and the core of a non-contact electric power feeding part. In this non-contact power feeding system 7a, the non-contact power receiving apparatus 1 includes air core coils 11 each having a length a in the transport direction with a gap d therebetween. Two cores 22a and 22b having a length b are provided. The two cores 22a and 22b are wound with coils 21a and 21b, respectively, so that the total 2b of the length b is equal to or less than the length a of each air-core coil 11, as shown in FIG. Is set. The lengths of the two cores 22a and 22b may not be equal.

また、コア22a,22bは、コア22a,22bの各部分と各空芯コイル11の各部分との相対位置関係が重複しないように、例えば、コア22aが、空芯コイル11の前半部に掛かっているときは、コア22bは、他の空芯コイル11の後半部に掛かるように配置されている。
これにより、2つのコア22a,22bからの受電に寄与しない、空芯コイル11間の隙間がコア22a,22bに掛かるのは、1ヶ所以下となり、つまり、例えば、空芯コイル11間の隙間がコア22aに掛かるときは、同時に他の空芯コイル11間の隙間がコア22bに掛かることがなく、非接触受電装置1の受電能力の低下を抑制することが出来る。
Further, the cores 22a and 22b are, for example, the core 22a is hung on the front half of the air-core coil 11 so that the relative positional relationship between each part of the cores 22a and 22b and each part of the air-core coil 11 does not overlap. The core 22b is arranged so as to be hung on the latter half of the other air-core coil 11.
As a result, the gap between the air core coils 11 that does not contribute to power reception from the two cores 22a and 22b is applied to the cores 22a and 22b in one or less places, that is, for example, the gap between the air core coils 11 is less than one. When it is applied to the core 22a, the gap between the other air-core coils 11 is not applied to the core 22b at the same time, and the decrease in the power receiving capability of the non-contact power receiving device 1 can be suppressed.

本非接触給電システム7aの非接触給電部2aは、コイル21a、補償コンデンサ、コイル21b及び補償コンデンサが、高周波電源装置24に直列に接続されている。本非接触給電システム7aのその他の構成及び動作は、上述した本発明に係る非接触給電システムの実施の形態1の構成(図1〜5,7)及び動作と同様であるので、説明を省略する。   In the non-contact power feeding unit 2 a of the non-contact power feeding system 7 a, a coil 21 a, a compensation capacitor, a coil 21 b, and a compensation capacitor are connected in series to the high frequency power supply device 24. Other configurations and operations of the non-contact power feeding system 7a are the same as the configurations (FIGS. 1 to 5 and 7) and operations of the first embodiment of the non-contact power feeding system according to the present invention described above, and thus description thereof is omitted. To do.

(実施の形態3)
図9(a)は、本発明に係る非接触給電システムの実施の形態3の非接触受電装置の空芯コイルと非接触給電部のコアとの関係を示す説明図である。本非接触給電システム7bでは、非接触受電装置1は、搬送方向の長さaを有する各空芯コイル11が隙間dを隔てて設けられており、非接触給電部2bは、上記搬送方向の長さbを有する3つのコア22c,22d,22eが設けられている。3つのコア22c,22d,22eは、それぞれコイル21c,21d,21eが巻装され、図9(b)に示すように、長さbの合計3bが、各空芯コイル11の長さa以下になるように設定されている。尚、3つのコア22c,22d,22eの長さは等しくなくても良い。
(Embodiment 3)
Fig.9 (a) is explanatory drawing which shows the relationship between the air-core coil of the non-contact power receiving apparatus of Embodiment 3 of the non-contact electric power feeding system which concerns on this invention, and the core of a non-contact electric power feeding part. In the non-contact power supply system 7b, the non-contact power receiving apparatus 1 includes air core coils 11 having a length a in the transport direction with a gap d therebetween, and the non-contact power supply unit 2b is connected in the transport direction. Three cores 22c, 22d and 22e having a length b are provided. The three cores 22c, 22d, and 22e are wound with coils 21c, 21d, and 21e, respectively. As shown in FIG. 9B, the total length 3b is equal to or less than the length a of each air-core coil 11. It is set to be. Note that the lengths of the three cores 22c, 22d, and 22e may not be equal.

また、コア22c,22d,22eは、コア22c,22d,22eの各部分と各空芯コイル11の各部分との相対位置関係が重複しないように配置されている。例えば、コア22cが、空芯コイル11の前半の1/3に掛かっているときは、コア22dは、他の空芯コイル11の中央の1/3に掛かり、コア22eは、更に別の空芯コイル11の後半の1/3に掛かるように配置されている。
これにより、3つのコア22c,22d,22eからの受電に寄与しない、空芯コイル11間の隙間がコア22c,22d,22eに掛かるのは、1ヶ所以下となり、つまり、例えば、空芯コイル11間の隙間がコア22cに掛かるときは、同時に他の空芯コイル11間の隙間がコア22d,22eに掛かることがなく、非接触受電装置1の受電能力の低下を抑制することが出来る。
The cores 22c, 22d, and 22e are arranged so that the relative positional relationship between each part of the cores 22c, 22d, and 22e and each part of each air-core coil 11 does not overlap. For example, when the core 22c is engaged with 1/3 of the first half of the air-core coil 11, the core 22d is engaged with 1/3 of the center of the other air-core coil 11, and the core 22e is further separated with another air-core coil 11. It arrange | positions so that it may apply to 1/3 of the second half of the core coil 11. FIG.
As a result, the gap between the air core coils 11 that does not contribute to power reception from the three cores 22c, 22d, and 22e is applied to the cores 22c, 22d, and 22e in one or less places, that is, for example, the air core coil 11 When the gap between them is applied to the core 22c, the gap between the other air-core coils 11 is not applied to the cores 22d and 22e at the same time, and the reduction in the power receiving capability of the non-contact power receiving apparatus 1 can be suppressed.

本非接触給電システム7bの非接触給電部2bは、コイル21c、補償コンデンサ、コイル21d、補償コンデンサ、コイル21e及び補償コンデンサが、高周波電源装置24に直列に接続されている。本非接触給電システム7bのその他の構成及び動作は、上述した本発明に係る非接触給電システムの実施の形態1の構成(図1〜5,7)及び動作と同様であるので、説明を省略する。   In the non-contact power feeding unit 2b of the non-contact power feeding system 7b, a coil 21c, a compensation capacitor, a coil 21d, a compensation capacitor, a coil 21e, and a compensation capacitor are connected in series to the high frequency power supply device 24. Other configurations and operations of the non-contact power feeding system 7b are the same as the configurations (FIGS. 1 to 5 and 7) and operations of the first embodiment of the non-contact power feeding system according to the present invention described above, and thus description thereof is omitted. To do.

(実施の形態4)
図10は、本発明に係る非接触給電システムの実施の形態4の非接触受電装置の空芯コイルと非接触給電部のコアとの関係を示す説明図である。本非接触給電システム7cでは、非接触受電装置1は、搬送方向の長さaを有する各空芯コイル11が隙間dを隔てて設けられており、非接触給電部2cは、上記搬送方向の長さbを有するコア22fが設けられている。コア22fには、コイル21fが巻装され、コア22fの長さbは、空芯コイル11の長さaと隙間dとの和に等しくなるように設定されている。
(Embodiment 4)
FIG. 10 is an explanatory diagram showing the relationship between the air-core coil of the contactless power receiving device of Embodiment 4 of the contactless power feeding system according to the present invention and the core of the contactless power feeding unit. In the non-contact power feeding system 7c, the non-contact power receiving apparatus 1 includes the air-core coils 11 having a length a in the transport direction with a gap d therebetween, and the non-contact power feeding unit 2c is connected in the transport direction. A core 22f having a length b is provided. A coil 21f is wound around the core 22f, and the length b of the core 22f is set to be equal to the sum of the length a of the air-core coil 11 and the gap d.

これにより、コア22fからの受電に寄与しない、空芯コイル11間の隙間がコア22fに掛かる部分の長さの和は、常にdとなり、非接触受電装置1の受電能力が安定する。本非接触給電システム7cのその他の構成及び動作は、上述した本発明に係る非接触給電システムの実施の形態1の構成(図1〜5,7)及び動作と同様であるので、説明を省略する。   As a result, the sum of the lengths of the portions where the gap between the air-core coils 11 does not contribute to power reception from the core 22f and is applied to the core 22f is always d, and the power reception capability of the non-contact power reception device 1 is stabilized. Other configurations and operations of the non-contact power feeding system 7c are the same as the configurations (FIGS. 1 to 5 and 7) and operations of the first embodiment of the non-contact power feeding system according to the present invention described above, and thus description thereof is omitted. To do.

(実施の形態5)
図11(a)は、本発明に係る非接触給電システムの実施の形態5の非接触受電装置の空芯コイルと非接触給電部のコアとの関係を示す説明図である。本非接触給電システム7dでは、非接触受電装置1は、搬送方向の長さaを有する各空芯コイル11が隙間dを隔てて設けられており、非接触給電部2dは、上記搬送方向の長さbを有する2つのコア22g,22hが設けられている。2つのコア22g,22hは、それぞれコイル21g,21hが巻装され、図11(b)に示すように、長さbの合計2bが、空芯コイル11の長さaと隙間dとの和に等しくなるように設定されている。尚、2つのコア22g,22hの長さは等しくなくても良い。
(Embodiment 5)
Fig.11 (a) is explanatory drawing which shows the relationship between the air-core coil of the non-contact electric power receiving apparatus of Embodiment 5 of the non-contact electric power feeding system which concerns on this invention, and the core of a non-contact electric power feeding part. In the non-contact power feeding system 7d, the non-contact power receiving apparatus 1 includes the air-core coils 11 having a length a in the transport direction with a gap d therebetween, and the non-contact power feeding unit 2d Two cores 22g and 22h having a length b are provided. The two cores 22g and 22h are respectively wound with coils 21g and 21h. As shown in FIG. 11B, the total length 2b is the sum of the length a of the air-core coil 11 and the gap d. Is set to be equal to. Note that the lengths of the two cores 22g and 22h may not be equal.

また、コア22g,22hは、コア22g,22hの各部分と各空芯コイル11の各部分との相対位置関係が重複しないように、例えば、コア22gが、空芯コイル11の前半部、及び隣接する空芯コイル11との隙間に掛かっているときは、コア22hは、他の空芯コイル11の後半部に掛かるように配置されている。
これにより、2つのコア22g,22hからの受電に寄与しない、空芯コイル11間の隙間がコア22g,22hに掛かる部分の長さの和は、常にdとなり、非接触受電装置1の受電能力が安定する。
Further, the cores 22g and 22h have, for example, the core 22g so that the relative positional relationship between each part of the cores 22g and 22h and each part of each air core coil 11 does not overlap, The core 22h is disposed so as to be hung on the rear half of another air-core coil 11 when it is hung in the gap between the adjacent air-core coils 11.
As a result, the sum of the lengths of the portions where the gaps between the air-core coils 11 do not contribute to power reception from the two cores 22g and 22h and the cores 22g and 22h are applied is always d, and the power reception capability of the non-contact power reception device 1 Is stable.

本非接触給電システム7dの非接触給電部2dは、コイル21g、補償コンデンサ、コイル21h及び補償コンデンサが、高周波電源装置24に直列に接続されている。本非接触給電システムのその他の構成及び動作は、上述した本発明に係る非接触給電システムの実施の形態1の構成(図1〜5,7)及び動作と同様であるので、説明を省略する。   In the non-contact power feeding unit 2d of the non-contact power feeding system 7d, a coil 21g, a compensation capacitor, a coil 21h, and a compensation capacitor are connected in series to the high frequency power supply device 24. Other configurations and operations of the contactless power supply system are the same as the configurations (FIGS. 1 to 5 and 7) and operation of the first embodiment of the contactless power supply system according to the present invention described above, and thus the description thereof is omitted. .

(実施の形態6)
図12(a)は、本発明に係る非接触給電システムの実施の形態6の非接触受電装置の空芯コイルと非接触給電部のコアとの関係を示す説明図である。本非接触給電システム7eでは、非接触受電装置1は、搬送方向の長さaを有する各空芯コイル11が隙間dを隔てて設けられており、非接触給電部2eは、上記搬送方向の長さbを有する3つのコア22i,22j,22kが設けられている。3つのコア22i,22j,22kは、それぞれコイル21i,21j,21kが巻装され、図12(b)に示すように、長さbの合計3bが、空芯コイル11の長さaと隙間dとの和に等しくなるように設定されている。尚、3つのコア22i,22j,22kの長さは等しくなくても良い。
(Embodiment 6)
FIG. 12 (a) is an explanatory view showing the relationship between the air-core coil of the non-contact power receiving device of Embodiment 6 of the non-contact power feeding system according to the present invention and the core of the non-contact power feeding unit. In the non-contact power feeding system 7e, the non-contact power receiving device 1 includes the air-core coils 11 having a length a in the transport direction with a gap d therebetween, and the non-contact power feeding unit 2e Three cores 22i, 22j, 22k having a length b are provided. The three cores 22i, 22j, and 22k are wound with coils 21i, 21j, and 21k, respectively. As shown in FIG. 12 (b), the total 3b of the length b is equal to the length a of the air-core coil 11 and the gap. It is set to be equal to the sum of d. Note that the lengths of the three cores 22i, 22j, and 22k may not be equal.

また、コア22i,22j,22kは、コア22i,22j,22kの各部分と各空芯コイル11の各部分との相対位置関係が重複しないように配置されている。例えば、コア22iが、空芯コイル11の前半の1/3、及び隣接する空芯コイル11との隙間に掛かっているときは、コア22jは、他の空芯コイル11の中央の1/3に掛かり、コア22kは、更に別の空芯コイル11の後半の1/3に掛かるように配置されている。
これにより、3つのコア22i,22j,22kからの受電に寄与しない、空芯コイル11間の隙間がコア22i,22j,22kに掛かる部分の長さの和は、常にdとなり、非接触受電装置1の受電能力が安定する。
The cores 22i, 22j, and 22k are arranged so that the relative positional relationship between each part of the cores 22i, 22j, and 22k and each part of each air-core coil 11 does not overlap. For example, when the core 22 i is in the first half of the air core coil 11 and in the gap between the adjacent air core coils 11, the core 22 j is 1/3 of the center of the other air core coils 11. The core 22k is arranged so as to be applied to the third half of the second half of the other air-core coil 11.
As a result, the sum of the lengths of the portions where the gaps between the air-core coils 11 do not contribute to the power reception from the three cores 22i, 22j, 22k and the cores 22i, 22j, 22k is always d, and the non-contact power reception device 1 power receiving ability is stable.

本非接触給電システム7eの非接触給電部2eは、コイル21i、補償コンデンサ、コイル21j、補償コンデンサ、コイル21k及び補償コンデンサが、高周波電源装置24に直列に接続されている。本非接触給電システム7eのその他の構成及び動作は、上述した本発明に係る非接触給電システムの実施の形態1の構成(図1〜5,7)及び動作と同様であるので、説明を省略する。   In the non-contact power feeding unit 2e of the non-contact power feeding system 7e, a coil 21i, a compensation capacitor, a coil 21j, a compensation capacitor, a coil 21k, and a compensation capacitor are connected in series to the high frequency power supply device 24. Other configurations and operations of the non-contact power feeding system 7e are the same as the configurations (FIGS. 1 to 5 and 7) and operations of the first embodiment of the non-contact power feeding system according to the present invention described above, and thus description thereof is omitted. To do.

(実施の形態7)
図13は、本発明に係る非接触給電システムの実施の形態7の非接触受電装置の空芯コイルと非接触給電部のコアとの関係を示す説明図である。この非接触受電装置1では、例えば40個の空芯コイル11を略等分に複数組(例えば4組)に分割してある。分割された各組では、2個の共振コンデンサが、5個の空芯コイル11毎に直列に接続されて、直列共振回路を構成している。各組の直列共振回路の出力側には、それぞれダイオードブリッジを用いた整流回路122aが接続され、各整流回路122の出力側は、抵抗126及び平滑コンデンサ123に並列に接続されている。平滑コンデンサ123が平滑した電力は、ヒューズ124を介して、モータドライバ等の負荷125に与えられる。
(Embodiment 7)
FIG. 13 is an explanatory diagram showing the relationship between the air-core coil of the contactless power receiving device of Embodiment 7 of the contactless power feeding system according to the present invention and the core of the contactless power feeding unit. In the non-contact power receiving device 1, for example, 40 air-core coils 11 are divided into a plurality of sets (for example, 4 sets) approximately equally. In each divided group, two resonance capacitors are connected in series for each of the five air-core coils 11 to form a series resonance circuit. A rectifier circuit 122 a using a diode bridge is connected to the output side of each set of series resonant circuits, and the output side of each rectifier circuit 122 is connected in parallel to the resistor 126 and the smoothing capacitor 123. The electric power smoothed by the smoothing capacitor 123 is given to a load 125 such as a motor driver through a fuse 124.

非接触給電システム7(図2)の各給電区間S(図4)には、コア22及びコイル21が例えば2組設置され、それぞれ隣り合う空芯コイル11の組と誘導結合する。
各給電区間Sのコイル21は、1つの補償コンデンサ23及び高周波電源装置24に直列に接続されている。
In each power feeding section S (FIG. 4) of the non-contact power feeding system 7 (FIG. 2), for example, two sets of the core 22 and the coil 21 are installed and inductively coupled to the pair of adjacent air-core coils 11, respectively.
The coil 21 in each power feeding section S is connected in series to one compensation capacitor 23 and a high frequency power supply device 24.

このような構成の非接触給電システムでは、空芯コイル11の直列回路を分割して、電流の流れる区間の抵抗を小さくしている(4分割した場合は1/4になる)ので、空芯コイル11の抵抗の影響が低減される。
また、給電区間S毎のコア22及びコイル21は、図13が示す構成では、2セット必要であるが、空芯コイル11からの漏れ磁束を遮蔽するカバーは、給電区間Sに掛かる空芯コイル11の組のみに必要となり、給電区間S側に設ければ良い。本非接触給電システムのその他の構成及び動作は、上述した本発明に係る非接触給電システムの実施の形態1の構成(図1〜5,7)及び動作と同様であるので、説明を省略する。
In the non-contact power feeding system having such a configuration, the series circuit of the air-core coil 11 is divided to reduce the resistance in the current flowing section (when it is divided into four, it becomes 1/4). The influence of the resistance of the coil 11 is reduced.
Further, in the configuration shown in FIG. 13, two sets of the core 22 and the coil 21 for each power feeding section S are necessary. However, the cover that shields the leakage magnetic flux from the air core coil 11 is an air core coil applied to the power feeding section S. It is necessary only for 11 groups and may be provided on the power feeding section S side. Other configurations and operations of the contactless power supply system are the same as the configurations (FIGS. 1 to 5 and 7) and operation of the first embodiment of the contactless power supply system according to the present invention described above, and thus the description thereof is omitted. .

本発明に係る非接触給電システムの実施の形態を用いた搬送システムの例を示す説明図である。It is explanatory drawing which shows the example of the conveyance system using embodiment of the non-contact electric power feeding system which concerns on this invention. 図1に示す搬送システムの搬送体の構成例を示す正面図である。It is a front view which shows the structural example of the conveyance body of the conveyance system shown in FIG. 図1に示す搬送システムの搬送体の構成例を示す側面図である。It is a side view which shows the structural example of the conveyance body of the conveyance system shown in FIG. 本発明に係る非接触給電システムが備える非接触給電部及び非接触受電装置の構成例を示す斜視図である。It is a perspective view which shows the structural example of the non-contact electric power feeding part with which the non-contact electric power feeding system which concerns on this invention is provided, and a non-contact power receiving apparatus. 図4に示す非接触受電装置の空芯コイル、非接触給電部が有するコア、及びコアに巻装されたコイルの関係を示す説明図である。It is explanatory drawing which shows the relationship between the air core coil of the non-contact power receiving apparatus shown in FIG. 4, the core which a non-contact electric power feeding part has, and the coil wound around the core. 本発明に係る非接触給電システムの非接触受電装置の空芯コイルと非接触給電部のコアとの搬送方向の長さの関係を示す説明図である。It is explanatory drawing which shows the relationship of the length of the conveyance direction of the air-core coil of the non-contact electric power receiving apparatus of the non-contact electric power feeding system which concerns on this invention, and the core of a non-contact electric power feeding part. 非接触給電部及び非接触受電装置の回路構成例を示すブロック図である。It is a block diagram which shows the circuit structural example of a non-contact electric power feeding part and a non-contact power receiving apparatus. 本発明に係る非接触給電システムの非接触受電装置の空芯コイルと非接触給電部のコアとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the air-core coil of the non-contact electric power receiving apparatus of the non-contact electric power feeding system which concerns on this invention, and the core of a non-contact electric power feeding part. 本発明に係る非接触給電システムの非接触受電装置の空芯コイルと非接触給電部のコアとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the air-core coil of the non-contact electric power receiving apparatus of the non-contact electric power feeding system which concerns on this invention, and the core of a non-contact electric power feeding part. 本発明に係る非接触給電システムの非接触受電装置の空芯コイルと非接触給電部のコアとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the air-core coil of the non-contact electric power receiving apparatus of the non-contact electric power feeding system which concerns on this invention, and the core of a non-contact electric power feeding part. 本発明に係る非接触給電システムの非接触受電装置の空芯コイルと非接触給電部のコアとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the air-core coil of the non-contact electric power receiving apparatus of the non-contact electric power feeding system which concerns on this invention, and the core of a non-contact electric power feeding part. 本発明に係る非接触給電システムの非接触受電装置の空芯コイルと非接触給電部のコアとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the air-core coil of the non-contact electric power receiving apparatus of the non-contact electric power feeding system which concerns on this invention, and the core of a non-contact electric power feeding part. 本発明に係る非接触給電システムの非接触受電装置の空芯コイルと非接触給電部のコアとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the air-core coil of the non-contact electric power receiving apparatus of the non-contact electric power feeding system which concerns on this invention, and the core of a non-contact electric power feeding part. 従来の非接触給電システムの動作の例を示す説明図である。It is explanatory drawing which shows the example of operation | movement of the conventional non-contact electric power feeding system. 非接触受電装置の電力−電圧の出力特性を示す特性図である。It is a characteristic view which shows the output characteristic of the electric power-voltage of a non-contact power receiving apparatus.

符号の説明Explanation of symbols

1 非接触受電装置
2,2a〜2e 非接触給電部
6 搬送システム
7,7a〜7e 非接触給電システム
11 空芯コイル
21,21a〜21k コイル
22,22a〜22k コア
23 補償コンデンサ
24 高周波電源装置
41 レール(搬送路)
120 直列共振回路
121 共振コンデンサ
122,122a 整流回路
S 給電区間
N 非給電区間
DESCRIPTION OF SYMBOLS 1 Non-contact power receiving apparatus 2,2a-2e Non-contact electric power feeding part 6 Conveyance system 7,7a-7e Non-contact electric power feeding system 11 Air core coil 21,21a-21k Coil 22,22a-22k Core 23 Compensation capacitor 24 High frequency power supply 41 Rail (conveyance path)
120 Series Resonant Circuit 121 Resonant Capacitor 122, 122a Rectifier Circuit S Power Supply Section N Non-Power Supply Section

Claims (4)

交流電流が供給されるコイルが巻装されたコアを有する非接触給電部と、搬送路に沿って搬送され、前記コイルに誘導結合する複数の空芯コイルを有し、前記非接触給電部から受電する非接触受電装置とを備え、前記コアが設置されており、前記コイルの周囲に生じる磁束が、搬送されてきた前記非接触受電装置の空芯コイルに鎖交する給電区間と、前記コアが設置されていない非給電区間とが前記搬送路に設けてある非接触給電システムであって、
前記搬送路の長さ方向の前記コアの長さは、前記空芯コイルの前記長さ方向の長さ以下であることを特徴とする非接触給電システム。
A non-contact power feeding unit having a core around which a coil to which an alternating current is supplied is wound, and a plurality of air-core coils that are transported along the transport path and inductively coupled to the coil, from the non-contact power feeding unit A non-contact power receiving device for receiving power, wherein the core is installed, and a magnetic flux generated around the coil interlinks with an air-core coil of the non-contact power receiving device, and the core Is a non-contact power feeding system provided in the conveyance path and a non-power feeding section in which is not installed,
The length of the said core of the length direction of the said conveyance path is below the length of the said length direction of the said air-core coil, The non-contact electric power feeding system characterized by the above-mentioned.
交流電流が供給されるコイルが巻装された複数のコアを有する非接触給電部と、搬送路に沿って搬送され、前記コイルに誘導結合する等間隔に設けられた複数の空芯コイルを有し、前記非接触給電部から受電する非接触受電装置とを備え、前記コアが設置されており、前記コイルの周囲に生じる磁束が、搬送されてきた前記非接触受電装置の空芯コイルに鎖交する給電区間と、前記コアが設置されていない非給電区間とが前記搬送路に設けてある非接触給電システムであって、
前記搬送路の長さ方向の前記複数のコアの長さの合計は、前記空芯コイルの前記長さ方向の長さ以下であり、前記複数のコアは、該コアの各部分と前記空芯コイルの各部分との相対位置関係が重複しないように設置されていることを特徴とする非接触給電システム。
A non-contact power feeding unit having a plurality of cores around which a coil to which an alternating current is supplied is wound, and a plurality of air-core coils which are transported along the transport path and are inductively coupled to the coil. And a non-contact power receiving device that receives power from the non-contact power feeding unit, wherein the core is installed, and magnetic flux generated around the coil is chained to the air-core coil of the non-contact power receiving device that has been conveyed. A non-contact power feeding system in which a feeding section intersecting and a non-feeding section where the core is not installed are provided in the conveyance path,
The total length of the plurality of cores in the length direction of the transport path is equal to or less than the length in the length direction of the air-core coil, and the plurality of cores includes each part of the core and the air core. A non-contact power feeding system which is installed so that the relative positional relationship with each part of the coil does not overlap.
交流電流が供給されるコイルが巻装されたコアを有する非接触給電部と、搬送路に沿って搬送され、前記コイルに誘導結合する等間隔に設けられた複数の空芯コイルを有し、前記非接触給電部から受電する非接触受電装置とを備え、前記コアが設置されており、前記コイルの周囲に生じる磁束が、搬送されてきた前記非接触受電装置の空芯コイルに鎖交する給電区間と、前記コアが設置されていない非給電区間とが前記搬送路に設けてある非接触給電システムであって、
前記搬送路の長さ方向の前記コアの長さは、前記空芯コイルの前記長さ方向の長さと、該空芯コイル間の距離との和に等しいことを特徴とする非接触給電システム。
A non-contact power feeding unit having a core around which a coil to which an alternating current is supplied is wound, and a plurality of air-core coils that are transported along a transport path and are inductively coupled to the coil, A non-contact power receiving device that receives power from the non-contact power supply unit, the core is installed, and magnetic flux generated around the coil is linked to the air-core coil of the non-contact power receiving device that has been conveyed A non-contact power feeding system in which a power feeding section and a non-power feeding section where the core is not installed are provided in the conveyance path,
The length of the said core of the length direction of the said conveyance path is equal to the sum of the length of the said length direction of the said air-core coil, and the distance between these air-core coils, The non-contact electric power feeding system characterized by the above-mentioned.
交流電流が供給されるコイルが巻装された複数のコアを有する非接触給電部と、搬送路に沿って搬送され、前記コイルに誘導結合する等間隔に設けられた複数の空芯コイルを有し、前記非接触給電部から受電する非接触受電装置とを備え、前記コアが設置されており、前記コイルの周囲に生じる磁束が、搬送されてきた前記非接触受電装置の空芯コイルに鎖交する給電区間と、前記コアが設置されていない非給電区間とが前記搬送路に設けてある非接触給電システムであって、
前記搬送路の長さ方向の前記複数のコアの長さの合計は、前記空芯コイルの前記長さ方向の長さと、該空芯コイル間の距離との和に等しく、前記複数のコアは、該コアの各部分と前記空芯コイルの各部分との相対位置関係が重複しないように設置されていることを特徴とする非接触給電システム。
A non-contact power feeding unit having a plurality of cores around which a coil to which an alternating current is supplied is wound, and a plurality of air-core coils which are transported along the transport path and are inductively coupled to the coil. And a non-contact power receiving device that receives power from the non-contact power feeding unit, wherein the core is installed, and magnetic flux generated around the coil is chained to the air-core coil of the non-contact power receiving device that has been conveyed. A non-contact power feeding system in which a feeding section intersecting and a non-feeding section where the core is not installed are provided in the conveyance path,
The total length of the plurality of cores in the length direction of the transport path is equal to the sum of the length in the length direction of the air-core coil and the distance between the air-core coils. The non-contact power feeding system is installed so that the relative positional relationship between each part of the core and each part of the air-core coil does not overlap.
JP2005019544A 2005-01-27 2005-01-27 Noncontact power supply system Pending JP2006211804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019544A JP2006211804A (en) 2005-01-27 2005-01-27 Noncontact power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019544A JP2006211804A (en) 2005-01-27 2005-01-27 Noncontact power supply system

Publications (1)

Publication Number Publication Date
JP2006211804A true JP2006211804A (en) 2006-08-10

Family

ID=36968039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019544A Pending JP2006211804A (en) 2005-01-27 2005-01-27 Noncontact power supply system

Country Status (1)

Country Link
JP (1) JP2006211804A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071909A (en) * 2007-09-11 2009-04-02 Showa Aircraft Ind Co Ltd Mobile noncontact power feeder
JP2009118556A (en) * 2007-11-02 2009-05-28 Daifuku Co Ltd Non-contact point feeder
JP2020048407A (en) * 2019-11-07 2020-03-26 株式会社Fuji Substrate production line
US11005295B2 (en) 2015-09-18 2021-05-11 Fuji Corporation Non-contact power feeding device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071909A (en) * 2007-09-11 2009-04-02 Showa Aircraft Ind Co Ltd Mobile noncontact power feeder
JP2009118556A (en) * 2007-11-02 2009-05-28 Daifuku Co Ltd Non-contact point feeder
US11005295B2 (en) 2015-09-18 2021-05-11 Fuji Corporation Non-contact power feeding device
US11223238B2 (en) 2015-09-18 2022-01-11 Fuji Corporation Non-contact power feeding device
JP2020048407A (en) * 2019-11-07 2020-03-26 株式会社Fuji Substrate production line

Similar Documents

Publication Publication Date Title
JP4208757B2 (en) Contactless power supply system
JP5437650B2 (en) Non-contact power feeding device
EP2884504B1 (en) Wireless power transmission device with power feeding coil unit
JP2006136197A (en) Contactless power feeding type run truck
US20170043668A1 (en) Wireless power supply system and wireless power transmission system
JP2009044918A (en) Non-contact power feeder
JP5490385B2 (en) Non-contact power feeding device
JP2006211804A (en) Noncontact power supply system
JP2010035300A (en) Non-contact power supply apparatus
CN114803331A (en) Automatic conveying equipment
JP2007082383A (en) Noncontact power supply system
JP3491179B2 (en) Non-contact power receiving device
JP2005170380A (en) Non-contact current feed system
JP3522413B2 (en) Non-contact power supply device for ground moving objects
JPH05207606A (en) Noncontact power supply for moving object
JP3303686B2 (en) Non-contact power supply system for mobile object and pickup coil unit
JPH08308150A (en) Noncontact power distribution system
JP2008154342A (en) Non-contact power feeding device
JP5497374B2 (en) Three-dimensional parking device
JP5170451B2 (en) Induction power receiving circuit
JP2006287988A (en) Pickup unit and contactless power supply facility equipped with pickup unit
JP4999443B2 (en) Non-contact power feeding device
JP3380886B2 (en) Contactless power supply system for mobile objects
TW201924184A (en) Non-contact power supply facility
JP7078007B2 (en) Contactless power supply equipment