JP2006210690A - Semiconductor device for surge protection - Google Patents

Semiconductor device for surge protection Download PDF

Info

Publication number
JP2006210690A
JP2006210690A JP2005021406A JP2005021406A JP2006210690A JP 2006210690 A JP2006210690 A JP 2006210690A JP 2005021406 A JP2005021406 A JP 2005021406A JP 2005021406 A JP2005021406 A JP 2005021406A JP 2006210690 A JP2006210690 A JP 2006210690A
Authority
JP
Japan
Prior art keywords
type semiconductor
semiconductor layer
concentration
low
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005021406A
Other languages
Japanese (ja)
Other versions
JP4863430B2 (en
Inventor
Kazuhiro Onishi
一洋 大西
Tomohiro Haginoe
友博 荻野江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005021406A priority Critical patent/JP4863430B2/en
Publication of JP2006210690A publication Critical patent/JP2006210690A/en
Application granted granted Critical
Publication of JP4863430B2 publication Critical patent/JP4863430B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surge protecting semiconductor device which has a low terminal-to-terminal capacity and high surge restraint by eliminating deterioration of surge restraint due to rise of a breakdown voltage of the semiconductor device caused for realizing the low terminal-to-terminal capacity in the surge protecting semiconductor device. <P>SOLUTION: A plurality of p-type semiconductor layers 3, 4, 5 are formed in a line holding a low concentration n-type semiconductor layer 2 therebetween in a portion inside the low concentration n-type semiconductor layer 2 formed on the n-type semiconductor substrate 1 not to come into contact with the n-type semiconductor substrate 1. An anode electrode 7 is formed in the surface of the p-type semiconductor layer 3 of one line end, and a cathode electrode 8 is formed in the surface of the p-type semiconductor layer 5 of the other line end. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、サージ保護用半導体装置に関する。   The present invention relates to a semiconductor device for surge protection.

サージ保護用半導体装置として、定電圧ダイオードのブレークダウン電圧に達するサージが加わった際に定電圧ダイオードがサージ電流をグランド方向へ流す事によってサージを抑制させることが広く知られている。   As a semiconductor device for surge protection, it is widely known that when a surge reaching the breakdown voltage of the constant voltage diode is applied, the constant voltage diode causes the surge current to flow in the ground direction to suppress the surge.

従来のサージ保護用半導体装置として、サージが加わった際に機器が破壊されることのない高いサージ抑制力(クランプ電圧が低い)と、機器の特性に影響を及ぼさない低端子間容量の構造としているものがあった(例えば、特許文献1参照)。   As a conventional semiconductor device for surge protection, it has a high surge suppression (clamp voltage is low) that does not destroy the device when a surge is applied, and a low terminal capacitance that does not affect the characteristics of the device. (For example, refer to Patent Document 1).

図2は前記特許文献1に記載された従来のサージ保護用半導体装置を示すものである。図2において110は高濃度N型半導体基板、111は低濃度N型半導体層、112はP型半導体層、113は高濃度N型半導体層、114はカソード電極、115はアノード電極、116は絶縁皮膜、J11は低濃度N型半導体層111とP型半導体層112との界面、J12は高濃度N型半導体層113とP型半導体層112との界面である。   FIG. 2 shows a conventional surge protection semiconductor device described in Patent Document 1. In FIG. In FIG. 2, 110 is a high concentration N type semiconductor substrate, 111 is a low concentration N type semiconductor layer, 112 is a P type semiconductor layer, 113 is a high concentration N type semiconductor layer, 114 is a cathode electrode, 115 is an anode electrode, and 116 is an insulating material. J11 is an interface between the low-concentration N-type semiconductor layer 111 and the P-type semiconductor layer 112, and J12 is an interface between the high-concentration N-type semiconductor layer 113 and the P-type semiconductor layer 112.

高濃度N型半導体基板110の上層に低濃度N型半導体層111を有し、低濃度N型半導体層111表面から層内へP型半導体層112の領域が選択的に形成されている。P型半導体層112の表面から層内へ高濃度N型半導体層113の領域が選択的に形成され、低濃度N型半導体層111の表面領域とP型半導体層112の表面領域と高濃度N型半導体層113の表面領域とから成る半導体基板の第一主面上に、高濃度N型半導体層113の表面領域中央部に窓明けされた絶縁皮膜116が形成され、絶縁露出した高濃度N型半導体層113の表面から絶縁皮膜116の表面の一部を覆うようにカソード電極114が形成され、高濃度N型半導体基板110の表面から成る半導体基板の第二主面上にアノード電極115が形成されていた。
特開2003−110119号公報
A low-concentration N-type semiconductor layer 111 is provided above the high-concentration N-type semiconductor substrate 110, and a region of the P-type semiconductor layer 112 is selectively formed from the surface of the low-concentration N-type semiconductor layer 111 into the layer. A region of the high-concentration N-type semiconductor layer 113 is selectively formed from the surface of the P-type semiconductor layer 112 into the layer, and the surface region of the low-concentration N-type semiconductor layer 111, the surface region of the P-type semiconductor layer 112, and the high-concentration N On the first main surface of the semiconductor substrate composed of the surface region of the type semiconductor layer 113, an insulating film 116 opened in the center of the surface region of the high concentration N type semiconductor layer 113 is formed, and the high concentration N exposed by insulation is exposed. The cathode electrode 114 is formed so as to cover a part of the surface of the insulating film 116 from the surface of the type semiconductor layer 113, and the anode electrode 115 is formed on the second main surface of the semiconductor substrate composed of the surface of the high concentration N type semiconductor substrate 110. Was formed.
JP 2003-110119 A

しかしながら、前記従来の構成では、その寄生容量とサージ抑制力はP型半導体層112と低濃度N型半導体層111とで形成される半導体接合部(J11)と、高濃度N型半導体層113とP型半導体層112とで形成される半導体接合部(J12)の降伏電圧に依存する。寄生容量を低減させるためには、低濃度N型半導体層111の比抵抗を高くすることが有効であるが、低濃度N型半導体層111の比抵抗を高くすると半導体接合部J11,J12の降伏電圧が大きくなる。しかし、半導体接合部J11,J12の降伏電圧を大きくするとサージの抑制電圧(クランプ電圧)が上昇するため、サージ抑制力が低下する。上述の機構により、寄生容量とサージ抑制力はトレードオフとなり、両者の要求を満たすサージ保護用半導体装置は出来なかった。   However, in the above-described conventional configuration, the parasitic capacitance and surge suppression power are such that the semiconductor junction (J11) formed by the P-type semiconductor layer 112 and the low-concentration N-type semiconductor layer 111, and the high-concentration N-type semiconductor layer 113 It depends on the breakdown voltage of the semiconductor junction (J12) formed with the P-type semiconductor layer 112. In order to reduce the parasitic capacitance, it is effective to increase the specific resistance of the low-concentration N-type semiconductor layer 111, but if the specific resistance of the low-concentration N-type semiconductor layer 111 is increased, the breakdown of the semiconductor junctions J11 and J12 The voltage increases. However, if the breakdown voltage of the semiconductor junctions J11 and J12 is increased, the surge suppression voltage (clamp voltage) is increased, so that the surge suppression power is reduced. Due to the above-described mechanism, the parasitic capacitance and the surge suppression power are traded off, and a semiconductor device for surge protection that satisfies both requirements cannot be achieved.

本発明は前記従来の課題を解決するもので、低端子間容量でサージの抑制電圧(クランプ電圧)を低くした高いサージ抑制力を有するサージ保護用半導体装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a semiconductor device for surge protection having a high surge suppression power with a low inter-terminal capacitance and a reduced surge suppression voltage (clamp voltage).

前記従来の課題を解決するために、本発明のサージ保護用半導体装置は第1導電型半導体基板に低濃度第1導電型半導体層を形成し、低濃度第1導電型半導体層内の一部に、第1導電型半導体基板に接触しないように、第2導電型半導体層を、低濃度第1導電型半導体層を挟んで列状に複数個形成する。その後、低濃度第1導電型半導体層と、複数個ある第2導電型半導体層の表面上に、絶縁皮膜を形成し、複数個から成る第2導電型半導体層列の端部の第2導電型半導体層にアノードコンタクト窓を、列の他端部の第2導電型半導体層にカソードコンタクト窓をそれぞれ形成し、コンタクト窓を覆うように表面アノード電極と、表面カソード電極をそれぞれ形成された構成とする。   In order to solve the above-described conventional problems, a semiconductor device for surge protection according to the present invention forms a low-concentration first conductive semiconductor layer on a first conductive-type semiconductor substrate, and a part of the low-concentration first conductive-type semiconductor layer. In addition, a plurality of second conductivity type semiconductor layers are formed in a row with the low-concentration first conductivity type semiconductor layer interposed therebetween so as not to contact the first conductivity type semiconductor substrate. Thereafter, an insulating film is formed on the surfaces of the low-concentration first conductive type semiconductor layer and the plurality of second conductive type semiconductor layers, and the second conductive at the end of the plurality of second conductive type semiconductor layer sequences. The anode contact window is formed in the type semiconductor layer, the cathode contact window is formed in the second conductive type semiconductor layer at the other end of the column, and the surface anode electrode and the surface cathode electrode are formed so as to cover the contact window. And

前記低容量サージ保護用半導体装置は低濃度第1導電型半導体層と、複数個の第2導電型半導体層によって、半導体接合部をそれぞれ形成し、半導体接合部の側面部の降伏電圧がパンチスルー型で決定されるように、複数個の第2導電型半導体層で挟まれている低濃度第1導電型半導体層の幅を決める。また、半導体接合部それぞれの底部の降伏電圧はアバランシェ型で決定され、且つパンチスルー型で決定されている側面部の降伏電圧よりも高くなるように、低濃度第1導電型半導体層の濃度と層の厚みを決める。   In the semiconductor device for low-capacity surge protection, a semiconductor junction is formed by a low-concentration first conductive semiconductor layer and a plurality of second conductive semiconductor layers, and the breakdown voltage at the side portion of the semiconductor junction is punch-through. As determined by the type, the width of the low-concentration first conductive semiconductor layer sandwiched between the plurality of second conductive semiconductor layers is determined. The breakdown voltage at the bottom of each semiconductor junction is determined by the avalanche type, and the concentration of the low-concentration first conductivity type semiconductor layer is set so as to be higher than the breakdown voltage of the side surface determined by the punch-through type. Determine the thickness of the layer.

かかる構成では、隣り合う第2導電型半導体層に挟まれた低濃度第1導電型半導体層の幅を狭くし、空乏層の伸びを制限し、サージ保護用半導体装置の降伏電圧をパンチスルー型で決定することで、降伏電圧を増大させることなく、低濃度第1導電型半導体層の比抵抗を高くして、容量を低減できる。また、アノード電極とカソード電極の間で低濃度第1導電型半導体層と第2導電型半導体層との界面が複数存在し、等価回路的に複数個のダイオードが直列的に配線された形となるため、その寄生容量をCとすると、端子間容量Ctは(1)式で表現されるように

Figure 2006210690
となり、端子間容量を低減することができる。これによって降伏電圧を大きくせずに寄生容量を低減できる。 In such a configuration, the width of the low-concentration first conductive type semiconductor layer sandwiched between the adjacent second conductive type semiconductor layers is narrowed, the extension of the depletion layer is limited, and the breakdown voltage of the semiconductor device for surge protection is reduced to the punch-through type. Therefore, the specific resistance of the low-concentration first conductivity type semiconductor layer can be increased and the capacitance can be reduced without increasing the breakdown voltage. In addition, there are a plurality of interfaces between the low-concentration first conductive semiconductor layer and the second conductive semiconductor layer between the anode electrode and the cathode electrode, and a plurality of diodes are wired in series in an equivalent circuit. Therefore, when the parasitic capacitance is C, the inter-terminal capacitance C t is expressed by the equation (1).
Figure 2006210690
Thus, the inter-terminal capacitance can be reduced. This can reduce parasitic capacitance without increasing the breakdown voltage.

上述のように本発明のサージ保護用半導体装置では、装置の降伏電圧を大きくせずに端子間容量を低減できるため、低端子間容量でサージの抑制電圧(クランプ電圧)を低くしたサージ抑制力の高いサージ保護用半導体装置を提供できる。   As described above, in the semiconductor device for surge protection according to the present invention, the inter-terminal capacitance can be reduced without increasing the breakdown voltage of the device, so that the surge suppression power that lowers the surge suppression voltage (clamp voltage) with the low inter-terminal capacitance. High surge protection semiconductor device can be provided.

以下本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1(a)は本発明の実施の形態におけるサージ保護用半導体装置の正面図であり、図1(b)は図1(a)のA−B線に沿った断面図である。図1(a)、(b)において、第1導電型半導体基板であるN型半導体基板1の上層に、エピタキシャル成長により低濃度第1導電型半導体層である低濃度N型半導体層2が形成されている。そして、低濃度N型半導体層2表面から内部にかけて、PN接合を形成する第2導電型領域としてP型半導体層3、4、5がN型半導体基板1に接触しないように、各々一定間隔に正面視ストライプ状に形成されている。ここで低濃度N型半導体層2と第1のP型半導体層3との界面をJ1とし、低濃度N型半導体層2と第2のP型半導体層4との界面をJ2とし、低濃度N型半導体層2と第3のP型半導体層5との界面をJ3とする。   FIG. 1A is a front view of a semiconductor device for surge protection according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line AB in FIG. 1A and 1B, a low-concentration N-type semiconductor layer 2 that is a low-concentration first conductive semiconductor layer is formed by epitaxial growth on an N-type semiconductor substrate 1 that is a first conductive-type semiconductor substrate. ing. The P-type semiconductor layers 3, 4, 5 are arranged at regular intervals from the surface of the low-concentration N-type semiconductor layer 2 to the inside so that the P-type semiconductor layers 3, 4, 5 do not contact the N-type semiconductor substrate 1 as the second conductivity type region for forming the PN junction. It is formed in a stripe shape when viewed from the front. Here, the interface between the low-concentration N-type semiconductor layer 2 and the first P-type semiconductor layer 3 is J1, and the interface between the low-concentration N-type semiconductor layer 2 and the second P-type semiconductor layer 4 is J2. The interface between the N-type semiconductor layer 2 and the third P-type semiconductor layer 5 is J3.

また低濃度N型半導体層2の表面には低濃度N型半導体層2の一部と、P型半導体層3、5を露出した状態となるように熱酸化膜による絶縁皮膜6が形成され、P型半導体層3にはアルミからなるアノード電極7が形成され、P型半導体層5にはアルミからなるカソード電極8が形成されている。   An insulating film 6 made of a thermal oxide film is formed on the surface of the low-concentration N-type semiconductor layer 2 so that a part of the low-concentration N-type semiconductor layer 2 and the P-type semiconductor layers 3 and 5 are exposed. An anode electrode 7 made of aluminum is formed on the P-type semiconductor layer 3, and a cathode electrode 8 made of aluminum is formed on the P-type semiconductor layer 5.

かかる構成によれば、半導体装置は低濃度N型半導体層2と、複数個のP型半導体層3、4、5によって、PN接合部をそれぞれ形成し、PN接合部の側面部の降伏電圧がパンチスルー型で決定されるように、複数個のP型半導体層3、4、5で挟まれている低濃度N型半導体層2の幅を決める。また、PN接合部それぞれの底部の降伏電圧はアバランシェ型で決定され、且つパンチスルー型で決定されている側面部の降伏電圧よりも高くなるように、低濃度N型半導体層2の濃度と層の厚みを決める。かかる構成では、隣り合うP型半導体層3、4、5に挟まれた低濃度N型半導体層2の幅を狭くし、空乏層の伸びを制限し、半導体装置の降伏電圧をパンチスルー型で決定することで、降伏電圧を増大させることなく、低濃度N型半導体層2の比抵抗を高くして、寄生容量を低減できる。   According to this configuration, the semiconductor device forms a PN junction by the low-concentration N-type semiconductor layer 2 and the plurality of P-type semiconductor layers 3, 4, and 5, and the breakdown voltage of the side surface of the PN junction is low. As determined by the punch-through type, the width of the low-concentration N-type semiconductor layer 2 sandwiched between the plurality of P-type semiconductor layers 3, 4, and 5 is determined. The breakdown voltage of the low-concentration N-type semiconductor layer 2 is determined so that the breakdown voltage at the bottom of each PN junction is determined by the avalanche type and higher than the breakdown voltage of the side surface determined by the punch-through type. Determine the thickness. In such a configuration, the width of the low-concentration N-type semiconductor layer 2 sandwiched between adjacent P-type semiconductor layers 3, 4, and 5 is narrowed, the extension of the depletion layer is limited, and the breakdown voltage of the semiconductor device is a punch-through type. By determining, the specific resistance of the low-concentration N-type semiconductor layer 2 can be increased and the parasitic capacitance can be reduced without increasing the breakdown voltage.

例えばこのとき、N型半導体基板1の不純物濃度を1020[cm-3]、低濃度N型半導体層2の不純物濃度を1014[cm-3]、厚みを20[μm]、P型半導体層3、4、5の不純物濃度を1020[cm-3]、厚みを5[μm]、隣り合うP型半導体層に挟まれた低濃度N型半導体層2の幅を1[μm]とすると、低濃度N型半導体層2と第1のP型半導体層3との界面J1の底部の降伏電圧は200[V]程度であるが、側面部の降伏電圧は7[V]程度に出来る。これによれば、低濃度N型半導体層2と第1のP型半導体層3との界面J1のもつ寄生容量CはC=2×10-4[pF/μm2]となる。これは低濃度N型半導体層2と第2のP型半導体層4との界面J2、低濃度N型半導体層2と第3のP型半導体層5との界面J3についても同様である。 For example, at this time, the impurity concentration of the N-type semiconductor substrate 1 is 10 20 [cm −3 ], the impurity concentration of the low-concentration N-type semiconductor layer 2 is 10 14 [cm −3 ], the thickness is 20 [μm], and the P-type semiconductor The impurity concentration of the layers 3, 4 and 5 is 10 20 [cm −3 ], the thickness is 5 [μm], and the width of the low-concentration N-type semiconductor layer 2 sandwiched between adjacent P-type semiconductor layers is 1 [μm]. Then, the breakdown voltage at the bottom of the interface J1 between the low-concentration N-type semiconductor layer 2 and the first P-type semiconductor layer 3 is about 200 [V], but the breakdown voltage at the side surface can be about 7 [V]. . According to this, the parasitic capacitance C of the interface J1 between the low-concentration N-type semiconductor layer 2 and the first P-type semiconductor layer 3 is C = 2 × 10 −4 [pF / μm 2 ]. The same applies to the interface J2 between the low-concentration N-type semiconductor layer 2 and the second P-type semiconductor layer 4 and the interface J3 between the low-concentration N-type semiconductor layer 2 and the third P-type semiconductor layer 5.

従来構造で降伏電圧を7V、サージ耐量を10kVとした場合、必要なPN接合面積SはS=2000[μm2]となり、その寄生容量は6[pF]となるが、かかる構成では同じ面積でP型半導体層3の寄生容量C3を計算すると、以下の(2)式で表すように

Figure 2006210690
となり、また直列に接続することで更なる寄生容量の低減が図れる。実施例の場合、PN接合が直列に4個接続されているため、端子間容量Ctは(3)式で表すように
Figure 2006210690
となり、これによって降伏電圧を大きくせずに寄生容量を低減できるものである。上記の実施形態では形成する第2導電型半導体層の数を3個としたが、第2導電型半導体層の数は3個以上であってもよい。なお、本実施の形態による半導体装置は従来から用いられている製造方法により製造できるため、製造方法の説明は省略する。 When the breakdown voltage is 7 V and the surge withstand voltage is 10 kV in the conventional structure, the required PN junction area S is S = 2000 [μm 2 ], and the parasitic capacitance is 6 [pF]. When the parasitic capacitance C 3 of the P-type semiconductor layer 3 is calculated, as expressed by the following equation (2):
Figure 2006210690
Further, the parasitic capacitance can be further reduced by connecting them in series. In the case of the embodiment, since four PN junctions are connected in series, the inter-terminal capacitance C t is expressed by equation (3).
Figure 2006210690
Thus, the parasitic capacitance can be reduced without increasing the breakdown voltage. In the above embodiment, the number of second conductive semiconductor layers to be formed is three, but the number of second conductive semiconductor layers may be three or more. Since the semiconductor device according to the present embodiment can be manufactured by a conventionally used manufacturing method, description of the manufacturing method is omitted.

低端子間容量でサージの抑制電圧(クランプ電圧)を低くした高いサージ抑制力の改善に有用であり、特にサージ保護用半導体装置に適用できる。   This is useful for improving high surge suppression power by reducing the surge suppression voltage (clamp voltage) with low terminal capacitance, and is particularly applicable to semiconductor devices for surge protection.

(a)本発明の実施の形態に係るサージ保護用半導体装置の正面図(b)図1(a)のA−B線に沿った断面図(A) Front view of a semiconductor device for surge protection according to an embodiment of the present invention (b) Cross-sectional view taken along line AB in FIG. 1 (a) 従来の半導体装置の全体構造を示す断面図Sectional view showing the overall structure of a conventional semiconductor device

符号の説明Explanation of symbols

1 第1導電型半導体基板
2 低濃度第1導電型半導体層
3、4、5 P型半導体層
6、116 絶縁皮膜
7 アノード電極
8 カソード電極
114 カソード電極
115 アノード電極
110 高濃度N型半導体基板
111 低濃度N型半導体層
112 P型半導体層
113 高濃度N型半導体層
J1 低濃度N型半導体層2とP型半導体層3との界面
J2 低濃度N型半導体層2とP型半導体層4との界面
J3 低濃度N型半導体層2とP型半導体層5との界面
J11 P型半導体層112と低濃度N型半導体層111との界面
J12 高濃度N型半導体層113とP型半導体層112との界面

DESCRIPTION OF SYMBOLS 1 1st conductivity type semiconductor substrate 2 Low concentration 1st conductivity type semiconductor layer 3, 4, 5 P type semiconductor layer 6, 116 Insulating film 7 Anode electrode 8 Cathode electrode 114 Cathode electrode 115 Anode electrode 110 High concentration N type semiconductor substrate 111 Low-concentration N-type semiconductor layer 112 P-type semiconductor layer 113 High-concentration N-type semiconductor layer J1 Interface J2 between low-concentration N-type semiconductor layer 2 and P-type semiconductor layer 3 Low-concentration N-type semiconductor layer 2 and P-type semiconductor layer 4 Interface J3 interface J11 between low-concentration N-type semiconductor layer 2 and P-type semiconductor layer 5 interface J12 interface P-type semiconductor layer 112 and low-concentration N-type semiconductor layer 111 J12 high-concentration N-type semiconductor layer 113 and P-type semiconductor layer 112 Interface with

Claims (1)

第1導電型半導体基板の上層に低濃度第1導電型半導体層が形成され、前記低濃度第1導電型半導体層表面から内部にかけてPN接合を形成する第2導電型領域が各々一定間隔の列状に複数個形成され、前記低濃度N型半導体層2の表面には前記低濃度第1導電型半導体層の一部と、前記第2導電型半導体領域とを露出した状態に絶縁皮膜が形成され、前記第2導電型半導体領域の少なくとも2箇所に電極が形成されたことを特徴とするサージ保護用半導体装置。
A low-concentration first conductive semiconductor layer is formed on the upper layer of the first conductive semiconductor substrate, and second conductive-type regions forming PN junctions from the surface of the low-concentration first conductive semiconductor layer to the inside thereof are arranged at regular intervals. The insulating film is formed on the surface of the low-concentration N-type semiconductor layer 2 so as to expose a part of the low-concentration first conductive semiconductor layer and the second conductive-type semiconductor region. A surge protection semiconductor device, wherein electrodes are formed in at least two places of the second conductivity type semiconductor region.
JP2005021406A 2005-01-28 2005-01-28 Surge protection semiconductor device Expired - Fee Related JP4863430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005021406A JP4863430B2 (en) 2005-01-28 2005-01-28 Surge protection semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005021406A JP4863430B2 (en) 2005-01-28 2005-01-28 Surge protection semiconductor device

Publications (2)

Publication Number Publication Date
JP2006210690A true JP2006210690A (en) 2006-08-10
JP4863430B2 JP4863430B2 (en) 2012-01-25

Family

ID=36967180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005021406A Expired - Fee Related JP4863430B2 (en) 2005-01-28 2005-01-28 Surge protection semiconductor device

Country Status (1)

Country Link
JP (1) JP4863430B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5310947B2 (en) * 2010-06-02 2013-10-09 株式会社村田製作所 ESD protection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128960A (en) * 1981-02-04 1982-08-10 Nippon Denso Co Ltd Semiconductor device
JPS6136979A (en) * 1984-07-30 1986-02-21 Nec Corp Constant-voltage diode
JPS61147570A (en) * 1984-12-20 1986-07-05 Sanyo Electric Co Ltd Schottky barrier semiconductor device
JPH0715010A (en) * 1993-06-15 1995-01-17 Nissan Motor Co Ltd Protective circuit of semiconductor device
JP2001358302A (en) * 2000-06-14 2001-12-26 Nec Microsystems Ltd Semiconductor device
JP2003060045A (en) * 2001-06-07 2003-02-28 Sony Corp Semiconductor device including protection diode and method of fabricating the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128960A (en) * 1981-02-04 1982-08-10 Nippon Denso Co Ltd Semiconductor device
JPS6136979A (en) * 1984-07-30 1986-02-21 Nec Corp Constant-voltage diode
JPS61147570A (en) * 1984-12-20 1986-07-05 Sanyo Electric Co Ltd Schottky barrier semiconductor device
JPH0715010A (en) * 1993-06-15 1995-01-17 Nissan Motor Co Ltd Protective circuit of semiconductor device
JP2001358302A (en) * 2000-06-14 2001-12-26 Nec Microsystems Ltd Semiconductor device
JP2003060045A (en) * 2001-06-07 2003-02-28 Sony Corp Semiconductor device including protection diode and method of fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5310947B2 (en) * 2010-06-02 2013-10-09 株式会社村田製作所 ESD protection device

Also Published As

Publication number Publication date
JP4863430B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
US7863682B2 (en) SIC semiconductor having junction barrier Schottky diode
US10297593B2 (en) Semiconductor device
US9570630B2 (en) Schottky diode structure
US20130248882A1 (en) Semiconductor device
US8785972B2 (en) Semiconductor electrostatic protection circuit device
JP6653461B2 (en) Semiconductor device
KR20190055756A (en) Semiconductor device with buffer region
JP2010232335A (en) Insulated gate bipolar transistor
JP5055907B2 (en) Semiconductor device
WO2016039070A1 (en) Semiconductor device and production method for semiconductor device
JP4631268B2 (en) Semiconductor device
JP4642767B2 (en) Surge protection semiconductor device
JP5957171B2 (en) Semiconductor device and manufacturing method thereof
JP6278549B2 (en) Semiconductor device
JP2012248736A (en) Semiconductor device
JP2018006360A (en) Semiconductor device
JP4863430B2 (en) Surge protection semiconductor device
JP7257912B2 (en) semiconductor equipment
JP2012004466A (en) Semiconductor device
US11342435B2 (en) Wide-gap semiconductor device
JP6658560B2 (en) Semiconductor device
JP4029549B2 (en) Semiconductor device
JP4383250B2 (en) Schottky barrier diode and manufacturing method thereof
JP2014165317A (en) Semiconductor device
JP6856727B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees