JPS61147570A - Schottky barrier semiconductor device - Google Patents

Schottky barrier semiconductor device

Info

Publication number
JPS61147570A
JPS61147570A JP26985584A JP26985584A JPS61147570A JP S61147570 A JPS61147570 A JP S61147570A JP 26985584 A JP26985584 A JP 26985584A JP 26985584 A JP26985584 A JP 26985584A JP S61147570 A JPS61147570 A JP S61147570A
Authority
JP
Japan
Prior art keywords
voltage
type silicon
surge
schottky barrier
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26985584A
Other languages
Japanese (ja)
Other versions
JPH0476218B2 (en
Inventor
Shigeto Maruo
丸尾 成人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP26985584A priority Critical patent/JPS61147570A/en
Publication of JPS61147570A publication Critical patent/JPS61147570A/en
Publication of JPH0476218B2 publication Critical patent/JPH0476218B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Abstract

PURPOSE:To improve the surge strength at the cost of a bit of breakdown voltage in the inverse direction by a method where in P<+> type silicon regions in a Schottky barrier semiconductor device are formed deeper. CONSTITUTION:P<+> type silicon regions 4 are diffused deeper than conventional ones to lower the punchthrough voltage directly below the regions 4 remarkably comparing with conventional punchthrough voltage. On the other hand, the conventional surge strength at the low barrier height part formed of a metallic layer 7 and an N-type silicon region 2 is around 80V. The regions 4 are deeply diffused so that the punchthrough voltage directly below the regions 4 may be set up at the voltage not exceeding 80V. Resultantly even if any surge volt age exceeding the surge breakdown voltage is impressed on the part between the layer 7 and an electrode 8, the punchthrough voltage may be generated below the regions 4 to pass any excessive surge voltage through the intermedi ary of the layers 2 and electrode 8. Through these procedures, any surge break down voltage in the Schottky barrier may be prevented from being generated.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は改良されたサージ耐圧特性を有するショットキ
)<’I)7半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a Schottky)<'I)7 semiconductor device having improved surge withstand voltage characteristics.

(ロ)従来の技術 ショットキバリア半導体装置は順方向電圧が低く、順方
向の電力損失が小さいという特徴を有し、スイッチング
電源回路の出力整流ダイオード等への応用が?r入引、
でいる一駈ムスイッチング璽源回路の出力整流ダイオー
ドに適用する罠は、逆方向降伏電圧が高いこと及び破壊
耐量(サージ耐圧)が犬ぎいことが要求される。
(b) Conventional technology Schottky barrier semiconductor devices have the characteristics of low forward voltage and low forward power loss, and can they be applied to output rectifier diodes of switching power supply circuits, etc.? r input,
The trap applied to the output rectifier diode of the single-speed switching power source circuit is required to have a high reverse breakdown voltage and a high breakdown withstand voltage (surge withstand voltage).

従来のショットキバリア半導体装置では特公昭59−3
5183号公報(HOIL29/48)に示す如く、逆
方向降伏電圧を高くする改良が採られている。即ちガー
ドリング構造又はフィールドプレート構造である。しか
しガードリング構造は金属−半導体接触の周辺部の逆電
流を小さくするのみであり、金属−半導体接触の中央部
の逆電流を小さくすることができない。またフィールド
プレート構造も金属−半導体接触の周辺部の特性改善に
他ならない。従っていずれの構造でもショットキバリア
半導体装置の降伏電圧を大幅に上昇させることはできな
かった。
In the conventional Schottky barrier semiconductor device, the
As shown in Publication No. 5183 (HOIL29/48), improvements have been made to increase the reverse breakdown voltage. That is, it is a guard ring structure or a field plate structure. However, the guard ring structure only reduces the reverse current at the periphery of the metal-semiconductor contact, but cannot reduce the reverse current at the center of the metal-semiconductor contact. The field plate structure also improves the characteristics of the peripheral area of the metal-semiconductor contact. Therefore, in either structure, it was not possible to significantly increase the breakdown voltage of the Schottky barrier semiconductor device.

特公昭59−35183号公報に開示されたショットキ
バリア半導体装置は逆電流を低減させ且つ逆方向降伏電
圧を高めることを可能にしている。
The Schottky barrier semiconductor device disclosed in Japanese Patent Publication No. 59-35183 makes it possible to reduce reverse current and increase reverse breakdown voltage.

第3図及び第4図を参照して詳述すると、N 型シリコ
ン層Qllの上にエピタキシャル成長したN型シリコン
領域a2を有するシリコン基板03を用意し、ここに複
数のP 型シリコン領域Iを形成し、酸化膜住ツの開口
四を利用してクロムからなる金属層aηを設けている。
To explain in detail with reference to FIGS. 3 and 4, a silicon substrate 03 having an N-type silicon region a2 epitaxially grown on an N-type silicon layer Qll is prepared, and a plurality of P-type silicon regions I are formed here. A metal layer aη made of chromium is provided using the opening 4 of the oxide film.

クロム金属層αDは蒸着後350℃〜500℃の範囲で
6分間〜9000分間の熱処理を施して形成することが
望ましく、これにより0.65±0.015eVの安定
したバリアハイドを得ることができる。シリコン基板(
1310表面状態を示す第4図から明らかなようにP 
型シリコン領域(14は4本の帯状部分(14a)と上
下の結合部(14b)、(14c)  とから成る。従
りて平面的にはP+型シリコン領域Iの中に複数の短冊
形N型シリコン領域α3が配置され、P 型シリコン領
域IとN型シリコン領域α4とが交互に表面に露呈して
いる。
It is desirable to form the chromium metal layer αD by performing heat treatment for 6 minutes to 9000 minutes at a temperature of 350° C. to 500° C. after vapor deposition, whereby a stable barrier hydride of 0.65 ± 0.015 eV can be obtained. . Silicon substrate (
As is clear from Figure 4 showing the 1310 surface condition, P
The type silicon region (14) consists of four strip-shaped portions (14a) and upper and lower connecting portions (14b) and (14c).Therefore, in plan view, there are a plurality of rectangular shapes N in the P+ type silicon region I. A type silicon region α3 is arranged, and P type silicon regions I and N type silicon regions α4 are alternately exposed on the surface.

+ P 型シリコン領域a4の相互間の距離は、金属層αη
に負、下部の金属電極αのに正の電圧を印加したとぎに
生じる空間電荷領域によってP 型シリコン領域α滲の
相互に結ばれる大きさとする。この場合更にN型シリコ
ン領域α2と金属層αηとで形成されるシl ットキバ
リアの逆方向降伏電圧よりも低い電圧で上述の如くP 
型シリコン領域−の相互間が結ばれるようにする2゜ 斯上の構造のショットキバリア半導体装置では高い逆方
向電圧が印加されると、P 型シリコン領域IとN型シ
リコン領域aaとから成るPN接合により形成される空
間電荷領域が広がってP 型シリコン領域(141の相
互間が空間電荷領域によって結ばれた状態となり、シリ
コン基板αJに接触する金属層(17)の下部全領域に
空間電荷領域が分布する。
+ The distance between the P-type silicon regions a4 is the metal layer αη
The size is such that the P type silicon regions α are connected to each other by a space charge region generated when a negative voltage is applied to the lower metal electrode α and a positive voltage is applied to the lower metal electrode α. In this case, the voltage lower than the reverse breakdown voltage of the Schittky barrier formed by the N-type silicon region α2 and the metal layer αη is
In a Schottky barrier semiconductor device having the above structure, when a high reverse voltage is applied, a PN consisting of a P-type silicon region I and an N-type silicon region aa is connected to each other. The space charge region formed by the bonding expands, and the P-type silicon regions (141) are connected by the space charge region, and a space charge region is formed in the entire lower region of the metal layer (17) in contact with the silicon substrate αJ. is distributed.

この結果空間電荷領域によって逆方向電流が遮断され、
高い逆方向降伏電圧を実現できる。
As a result, the space charge region blocks the reverse current,
High reverse breakdown voltage can be achieved.

el  発明が解決しようとする問題点斯る従来のショ
ットキバリア半導体装置では逆方向降伏電圧の向上を実
現できるが、スイッチング電源回路等で要求される破壊
耐量の向上は得られない欠点があった。
el Problems to be Solved by the Invention Although the conventional Schottky barrier semiconductor device can achieve an improvement in reverse breakdown voltage, it has the drawback that it cannot achieve an improvement in breakdown strength required for switching power supply circuits and the like.

即ち従来のショットキバリア半導体装置ではN盤シリコ
ン領域鰺な約11μm厚とするとP 裂シリコン領域I
は高々約3μmの深さに形成していたので、第2図に示
す如く逆方向降伏電圧の最も高い範囲で作動させていた
。しかしこの範囲ではサージ耐量は第2図から明らかな
様に最も低い範囲で使用することになり、従来のショッ
トキバリア半導体装置はサージ耐量が極め℃弱い欠点を
有していた。
That is, in a conventional Schottky barrier semiconductor device, if the N-cavity silicon region is approximately 11 μm thick, the P-cavity silicon region I is approximately 11 μm thick.
was formed to a depth of about 3 μm at the most, so it was operated in the range where the reverse breakdown voltage was highest, as shown in FIG. However, within this range, the surge withstand capability is used at its lowest range, as is clear from FIG. 2, and the conventional Schottky barrier semiconductor device has the disadvantage that the surge withstand capability is extremely weak in degrees centigrade.

に)問題点を解決するための手段 本発明は斯点に鑑み℃なされ、ショットキバリア半導体
装置のP 型シリコン領域を床く拡散して逆方向降伏電
圧を犠牲にする反面サージ耐量を大巾に改善したショッ
トキバリア半導体装置を実現するものである。
In view of the above, the present invention was devised by diffusing the P-type silicon region of the Schottky barrier semiconductor device, thereby sacrificing the reverse breakdown voltage, while greatly increasing the surge resistance. An improved Schottky barrier semiconductor device is realized.

(ホ)作用 本発明に依るショットキバリア半導体装置はP+型シリ
コン領域(4)を従来より深く拡散し℃、ショットキバ
リアのサージ耐量よりP 型シリコン領域(4)とN型
シリコン領域(2)により形成されるPN接合下のパン
チスルー電圧を小さく設定してスイッチング電源等で要
求されるサージ耐量を向上させている。
(E) Function The Schottky barrier semiconductor device according to the present invention has a P+ type silicon region (4) diffused deeper than the conventional one. The punch-through voltage under the formed PN junction is set low to improve the surge resistance required for switching power supplies and the like.

(へ)実施例 本発明に依るショットキバリア半導体装置を第1図及び
第2図を参照して詳述する。
(F) Embodiment A Schottky barrier semiconductor device according to the present invention will be described in detail with reference to FIGS. 1 and 2.

本発明に依るショットキバリア半導体装置はN+型シリ
コン層(11の上にエピタキシャル成長した第10半導
体領域となるN型シリコン領域(2)を有するシリコン
基板(3)を準備し、ここに第2の半導体領域となる複
数のP 型シリコン領域(4)を形成し、酸化膜(5)
の開口(6)を利用してモリブデンからなるショットキ
バリアを形成する金属層(7)を設けている。この金属
層(力は蒸着後350℃〜500℃で熱処理をして0.
65±0.015eVのバリアハイドな形成する。P 
型シリコン領域(4)は第4図に示す従来のものと同様
に4本の帯状部分(14a)と上下の結合部(14b)
、(14C)から成り、平面的に+ はP 型シリコン領域(4)の中に複数の短冊形N型シ
リコン領域(2)が配置され、P 屋シリコン領域(4
)とN型シリコン領域(2)とが交互に表面に配列され
ている。金属層(力はP 型シリコン領域(4)とそれ
に囲まれたN型シリコ/領域(2)と接触し、N凰シリ
コン領域(2)間でショットキバリアを形成している。
In the Schottky barrier semiconductor device according to the present invention, a silicon substrate (3) having an N-type silicon region (2) which is epitaxially grown on an N+-type silicon layer (11 and serving as a tenth semiconductor region) is prepared, and a second semiconductor layer (3) is prepared. A plurality of P-type silicon regions (4) are formed, and an oxide film (5) is formed.
A metal layer (7) that forms a Schottky barrier made of molybdenum is provided using the opening (6). This metal layer (with a strength of 0.00000.
A barrier hydride of 65±0.015 eV is formed. P
The mold silicon region (4) has four strip-shaped parts (14a) and upper and lower joint parts (14b) as in the conventional one shown in FIG.
, (14C), in which a plurality of rectangular N-type silicon regions (2) are arranged in a P-type silicon region (4), and a P-type silicon region (4) is formed in a plane.
) and N-type silicon regions (2) are alternately arranged on the surface. The metal layer (force) contacts the P-type silicon region (4) and the surrounded N-type silicon region (2), forming a Schottky barrier between the N-type silicon regions (2).

本発明の特徴はP 型シリコン領域(4)にある。The feature of the present invention lies in the P type silicon region (4).

+ P 型シリコン領域(4)を従来のものより深く拡散す
る。具体的にはN型シリコン領域(2)を約11μm厚
に設計した場合、従来のP 型シリコン領域(4)を高
々3μm以下に拡散していたものを本発明+ のPiシリコン領域(4)を3.5μmから4.5μm
の深さに拡散している。P 型シリコン領域(4)の深
さは第2図から明らかな様に逆方向降伏電圧が低下する
が、サージ耐量が増加する範囲を設定している。具体的
には逆方向降伏電圧が最高約130■得られるものを本
発明では約110Vで使用している。
+ The P-type silicon region (4) is diffused deeper than the conventional one. Specifically, when the N-type silicon region (2) is designed to have a thickness of approximately 11 μm, the conventional P-type silicon region (4), which is diffused to a thickness of at most 3 μm or less, becomes the Pi silicon region (4) of the present invention+. from 3.5μm to 4.5μm
is diffused to a depth of As is clear from FIG. 2, the depth of the P-type silicon region (4) is set within a range where the reverse breakdown voltage decreases but the surge resistance increases. Specifically, in the present invention, a material with a maximum reverse breakdown voltage of about 130V is used at about 110V.

斯上の構造に依ればP 型シリコン領域(4)を深く形
成するのでP 型シリコン領域(4)直下のパンチスル
ー電圧を従来のものに比べて大巾に低下できる。−万金
属層(7)とN型シリコン領域(2)とで形成されるバ
リアハイドの低い部分での従来のサージ耐量は第2図よ
り約80v程度である。そこで本発明はP 型シリコン
領域(4)直下のパンチスルー電圧を80v以下に設定
できる様にP 型シリコン領域(4)を深く拡散してい
る。この結果金属層(力と裏面の金属電極(8)間にシ
ョットキバリアのサージ破壊電圧を超えるサージ電圧が
印加されても+ P 型シリコン領域(4)下でパンチスルーを発生して
サージ電圧はN 型シリコン層(2)および金属電極(
8)を介して逃げる。このためショットキバリアでのサ
ージ破壊は未然に防止でき、サージ電圧はすべてP 型
シリコン領域(4)下の空乏層により吸収できるのであ
る。従ってサージ耐量は第2図から明らかな様に、従来
の80vから大巾に向上してIKVまで上昇できる。
According to the above structure, since the P type silicon region (4) is formed deeply, the punch-through voltage directly under the P type silicon region (4) can be greatly reduced compared to the conventional structure. - The conventional surge resistance at the low part of the barrier hide formed by the metal layer (7) and the N-type silicon region (2) is about 80V as shown in FIG. Therefore, in the present invention, the P type silicon region (4) is deeply diffused so that the punch-through voltage directly under the P type silicon region (4) can be set to 80 V or less. As a result, even if a surge voltage exceeding the surge breakdown voltage of the Schottky barrier is applied between the metal layer (force) and the metal electrode (8) on the back surface, punch-through occurs under the +P type silicon region (4) and the surge voltage N-type silicon layer (2) and metal electrode (
8) Escape via. Therefore, surge breakdown in the Schottky barrier can be prevented, and all the surge voltage can be absorbed by the depletion layer under the P-type silicon region (4). Therefore, as is clear from FIG. 2, the surge resistance can be greatly improved from the conventional 80V to IKV.

(ト)発明の効果 本発明に依ればP 型シリコン領域(4)を従来より深
く形成することにより、逆方向降伏電圧を若干犠牲にす
るがサージ耐量を従来より10倍以上に向上できる利点
を有する。この結果スイッチング電源回路等に最適のシ
1ットキパリアダイオードを得られ、電源回路の小型化
軽量化に寄与できるのである。
(G) Effects of the Invention According to the present invention, by forming the P-type silicon region (4) deeper than before, the surge resistance can be improved by more than 10 times than before, although the reverse breakdown voltage is slightly sacrificed. has. As a result, it is possible to obtain a shut-chip parrier diode that is most suitable for switching power supply circuits, etc., and contributes to the reduction in size and weight of power supply circuits.

また本発明は従来のショットキバリア半導体装置のP 
型シリコン領域(4)を深く拡散するのみで実現でき、
何ら工程を増加することなく導入できる利点を有する。
Further, the present invention provides P of the conventional Schottky barrier semiconductor device.
This can be achieved simply by deeply diffusing the mold silicon region (4).
It has the advantage that it can be introduced without any increase in process steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のショットキバリア半導体装置を説明す
る断面図、第2図は本発明および従来のショットキバリ
ア半導体装置の逆方向降伏電圧特性およびサージ耐量を
説明する特性図、第3図および第4図は従来のショット
キバリア半導体装置を説明する断面図および上面図であ
る。 (1)はNuシリコン層、 (2)はN型シリコン層+ 域、 ■は半導体基板、 (4)はP 型シリコン領域
、 (5)は酸化膜、 (6)は開口、 (7)は金属
層、(8)は金属電極である。 出願人 三洋電機株式会社 外1名 代理人 弁理士  佐 野 靜゛夫 第1図
FIG. 1 is a sectional view illustrating the Schottky barrier semiconductor device of the present invention, FIG. 2 is a characteristic diagram illustrating the reverse breakdown voltage characteristics and surge withstand capacity of the Schottky barrier semiconductor device of the present invention and the conventional Schottky barrier semiconductor device, and FIGS. FIG. 4 is a cross-sectional view and a top view illustrating a conventional Schottky barrier semiconductor device. (1) is Nu silicon layer, (2) is N-type silicon layer + region, (2) is semiconductor substrate, (4) is P-type silicon region, (5) is oxide film, (6) is opening, (7) is The metal layer (8) is a metal electrode. Applicant Sanyo Electric Co., Ltd. and one other agent Patent attorney Seiji Sano Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)一導電型の第1の半導体領域と該第1の半導体領
域表面に設けた逆導電型の第2の半導体領域とショット
キバリア用金属層とを具備するショットキバリア半導体
装置に於いて、前記第2の半導体領域を深く形成してシ
ョットキバリアのサージ耐圧より前記第2の半導体領域
直下のパンチスルー電圧を小さく設定することを特徴と
するショットキバリア半導体装置。
(1) In a Schottky barrier semiconductor device comprising a first semiconductor region of one conductivity type, a second semiconductor region of the opposite conductivity type provided on the surface of the first semiconductor region, and a Schottky barrier metal layer, A Schottky barrier semiconductor device, characterized in that the second semiconductor region is formed deeply and a punch-through voltage directly under the second semiconductor region is set to be lower than a surge breakdown voltage of the Schottky barrier.
JP26985584A 1984-12-20 1984-12-20 Schottky barrier semiconductor device Granted JPS61147570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26985584A JPS61147570A (en) 1984-12-20 1984-12-20 Schottky barrier semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26985584A JPS61147570A (en) 1984-12-20 1984-12-20 Schottky barrier semiconductor device

Publications (2)

Publication Number Publication Date
JPS61147570A true JPS61147570A (en) 1986-07-05
JPH0476218B2 JPH0476218B2 (en) 1992-12-03

Family

ID=17478134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26985584A Granted JPS61147570A (en) 1984-12-20 1984-12-20 Schottky barrier semiconductor device

Country Status (1)

Country Link
JP (1) JPS61147570A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148241A (en) * 1989-12-15 1992-09-15 Kabushiki Kaisha Toshiba Method of manufacturing a schottky diode device
JPH06121513A (en) * 1992-10-06 1994-04-28 Sumitomo Metal Mining Co Ltd Magnetic actuator
JP2002076371A (en) * 2000-06-12 2002-03-15 Fuji Electric Co Ltd Semiconductor device
JP2006210690A (en) * 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Semiconductor device for surge protection
JP2008519448A (en) * 2004-11-08 2008-06-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Semiconductor device and manufacturing method of semiconductor device
KR20140099879A (en) * 2011-12-01 2014-08-13 로베르트 보쉬 게엠베하 High-voltage trench junction barrier schottky diode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168183A (en) * 1974-12-10 1976-06-12 Nippon Electric Co SHOTSUTOKI SEIRYUSOSHI
JPS5224465A (en) * 1975-08-20 1977-02-23 Sanken Electric Co Ltd Schottky barrier semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168183A (en) * 1974-12-10 1976-06-12 Nippon Electric Co SHOTSUTOKI SEIRYUSOSHI
JPS5224465A (en) * 1975-08-20 1977-02-23 Sanken Electric Co Ltd Schottky barrier semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148241A (en) * 1989-12-15 1992-09-15 Kabushiki Kaisha Toshiba Method of manufacturing a schottky diode device
JPH06121513A (en) * 1992-10-06 1994-04-28 Sumitomo Metal Mining Co Ltd Magnetic actuator
JP2002076371A (en) * 2000-06-12 2002-03-15 Fuji Electric Co Ltd Semiconductor device
JP2008519448A (en) * 2004-11-08 2008-06-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Semiconductor device and manufacturing method of semiconductor device
US8816467B2 (en) 2004-11-08 2014-08-26 Robert Bosch Gmbh Semiconductor device and method for manufacturing same
JP2006210690A (en) * 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Semiconductor device for surge protection
KR20140099879A (en) * 2011-12-01 2014-08-13 로베르트 보쉬 게엠베하 High-voltage trench junction barrier schottky diode
JP2015504610A (en) * 2011-12-01 2015-02-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh High voltage trench junction Schottky barrier diode

Also Published As

Publication number Publication date
JPH0476218B2 (en) 1992-12-03

Similar Documents

Publication Publication Date Title
US6979874B2 (en) Semiconductor device and method of manufacturing thereof
US7304356B2 (en) IGBT or like semiconductor device of high voltage-withstanding capability
JP3751463B2 (en) High voltage semiconductor element
CA1175953A (en) Planar structure for high voltage semiconductor devices with gaps in glassy layer over high field regions
US6426541B2 (en) Schottky diode having increased forward current with improved reverse bias characteristics and method of fabrication
JP2689047B2 (en) Insulated gate bipolar transistor and manufacturing method
US6404033B1 (en) Schottky diode having increased active surface area with improved reverse bias characteristics and method of fabrication
JPH10335679A (en) Diode and manufacture thereof
JPH08306937A (en) High-breakdown strength semiconductor device
GB1568586A (en) Field controlled thyristor
US11184001B2 (en) Power switching devices with high dV/dt capability and methods of making such devices
US3280386A (en) Semiconductor a.c. switch device
JPS6362111B2 (en)
JP2003258271A (en) Silicon carbide schottky diode and manufacturing method of the same
JPS5935183B2 (en) Shock barrier semiconductor device
JP2014045211A (en) SiC SEMICONDUCTOR DEVICE
US4236169A (en) Thyristor device
JPS61147570A (en) Schottky barrier semiconductor device
JP4416288B2 (en) Reverse conduction thyristor
JP2012248736A (en) Semiconductor device
JPS6146066B2 (en)
JP3221673B2 (en) High voltage semiconductor device
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JP2004303927A (en) Semiconductor device
JP3297087B2 (en) High voltage semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term