JP2006210497A - 光電変換層積層型固体撮像素子及びその信号補正方法 - Google Patents

光電変換層積層型固体撮像素子及びその信号補正方法 Download PDF

Info

Publication number
JP2006210497A
JP2006210497A JP2005018201A JP2005018201A JP2006210497A JP 2006210497 A JP2006210497 A JP 2006210497A JP 2005018201 A JP2005018201 A JP 2005018201A JP 2005018201 A JP2005018201 A JP 2005018201A JP 2006210497 A JP2006210497 A JP 2006210497A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion layer
signal
green
corrected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005018201A
Other languages
English (en)
Inventor
Toshiaki Fukunaga
敏明 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2005018201A priority Critical patent/JP2006210497A/ja
Publication of JP2006210497A publication Critical patent/JP2006210497A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

【課題】 光電変換層の膜厚を薄くして製造プロセスの簡易化を図ることを可能にした光電変換層積層型固体撮像素子を提供する。
【解決手段】 入射光を赤色(R),緑色(G),青色(B)の各色毎に光電変換する少なくとも3層の光電変換層12,16,20が基板1の上部に積層された光電変換層積層型固体撮像素子において、基板1に一番近い最下層の光電変換層12の厚さtに対し他の上層の光電変換層16,20の厚さt,tを薄くする。そして、光電変換層のうち下層の光電変換層12によって得られる信号量を、上層の光電変換層16,20によって得られる信号量で補正する。
【選択図】 図1

Description

本発明は光電変換層積層型固体撮像素子に係り、特に、製造プロセスの簡易化を図ることができる光電変換層積層型固体撮像素子とその信号補正方法に関する。
従来のCCD型イメージセンサやCMOS型イメージセンサは、電荷転送路等の信号読出回路を設ける半導体基板と同一の半導体基板上にフォトダイオード等の画素(光電変換素子)も設けている。このため、イメージセンサの高画素化に伴い,カラーフィルタでの光損失の割合が大きくなり、また、画素サイズが光の波長と同程度となり、入射光が光電変換素子に導波され難くなるという問題が生じてきている。また、R(赤)G(緑)B(青)の3色を異なる位置の画素で検出する構成のため、色分離が起こり、偽色が生じるという問題もある。
そこで、例えば下記特許文献1,2,3では、シリコンの光吸収係数の波長依存性を利用し、1画素の基板深さ方向に3つの受光部を設け、色分離を深さ方向で行うカラーセンサが提案されている。しかし、このカラーセンサは、基板深さ方向に設けた各受光部での分光感度の波長依存性がブロードであるため色分離が不十分であり、また、波長による光吸収係数が違っているため色補正が簡単でないという問題がある。
このため、下記特許文献4では、赤色,緑色,青色を夫々検出する複数層の受光層をサファイア基板上に積層した積層型多波長受光素子が提案され、下記特許文献5,6では、信号読出回路が形成された半導体基板上に3層の受光層を積層する光電変換層積層型固体撮像素子が提案されている。
受光層としては、特許文献4では、半導体によるPN接合層を用い、特許文献5,6では、光電変換層を用いている。光電変換層は、有機半導体等の有機材料で形成される場合もあり、また、無機材料で形成される場合もある。
特許文献7には、光電変換層に含まれるシリコンのナノ粒子径を制御することにより、当該光電変換層で電気信号に変換される入射光の波長領域を制御する技術が開示され、特許文献8には、無機ナノ粒子半導体により構成される光電変換層と有機半導体を用いた光電変換層とのハイブリッド構造が開示されている。
米国特許第5965875号公報 米国特許第6632701号公報 特開平7―38136号公報 特開2000―188424号公報 特開昭58―103165号公報 特開2002―83946号公報 特開2001―7381号公報 特開2003―234460号公報
基板上に受光層を積層する固体撮像素子の場合、各受光層で十分な光吸収を行うためには、受光層の膜厚を厚くしなければならない。しかし、各受光層の膜厚を厚くすると、光が斜めに入射したとき、上層の受光層のある画素に入射した光が下層の受光層では隣接画素に入射してしまう確率が増え、混色が起きてしまう。また、受光層の膜厚が厚くなるほど製造コストが嵩み、更に、段差が大きくなるため配線などのリソグラフィプロセスが困難になるという問題が生じる。
本発明の目的は、受光層の膜厚を薄くして製造プロセスの簡易化を図ることができる光電変換層積層型固体撮像素子とその信号補正方法を提供することにある。
本発明の光電変換層積層型固体撮像素子は、入射光を赤色(R),緑色(G),青色(B)の各色毎に光電変換する少なくとも3層の光電変換層が基板の上部に積層された光電変換層積層型固体撮像素子において、前記基板に一番近い最下層の前記光電変換層の厚さに対し他の上層の前記光電変換層の厚さを薄くしたことを特徴とする。
本発明の光電変換層積層型固体撮像素子は、前記最下層の光電変換層の厚さを光吸収率が90%以上の厚さとし前記上層の光電変換層の厚さを光吸収率が50%〜90%の厚さとしたことを特徴とする。
本発明の光電変換層積層型固体撮像素子は、前記3層の光電変換層のうちの少なくとも1層が無機の半導体材料で形成されることを特徴とする。
本発明の光電変換層積層型固体撮像素子の信号補正方法は、上記のいずれかに記載の光電変換層積層型固体撮像素子の信号補正方法であって、光電変換層のうち下層の光電変換層によって得られる信号量を、上層の光電変換層によって得られる信号量で補正することを特徴とする。
本発明の光電変換層積層型固体撮像素子の信号補正方法は、最上層の光電変換層/中間層の光電変換層/最下層の光電変換層を、半導体材料でなる青色(B)変換用の光電変換層/半導体材料でなる緑色(G)変換用の光電変換層/半導体材料でなる赤色(R)変換用の光電変換層とし、補正後の青色信号をBR、補正後の緑色信号をGR、補正後の赤色信号をRRとし、r,g,bを夫々赤色,緑色,青色の光吸収率と光電変換率に対する補正係数とし、R,G,Bを検出された赤色信号,緑色信号,青色信号とした場合、
BR=b×B
GR=g×(G−a×B)
RR=r×(R−a×B−a×G)
ここにa,a,aは係数
の補正式で補正することを特徴とする。
本発明の光電変換層積層型固体撮像素子の信号補正方法は、最上層の光電変換層/中間層の光電変換層/最下層の光電変換層を、有機材料でなる青色(B)変換用の光電変換層/半導体材料でなる緑色(G)変換用の光電変換層/半導体材料でなる赤色(R)変換用の光電変換層とし、補正後の青色信号をBR、補正後の緑色信号をGR、補正後の赤色信号をRRとし、r,g,bを夫々赤色,緑色,青色の光吸収率と光電変換率に対する補正係数とし、R,G,Bを検出された赤色信号,緑色信号,青色信号とした場合、
BR=b×B
GR=g×(G−a×B)
RR=r×(R−a×B−a×G)
ここにa,a,aは係数
の補正式で補正することを特徴とする。
本発明の光電変換層積層型固体撮像素子の信号補正方法は、最上層の光電変換層/中間層の光電変換層/最下層の光電変換層を、半導体材料でなる青色(B)変換用の光電変換層/有機材料でなる緑色(G)変換用の光電変換層/半導体材料でなる赤色(R)変換用の光電変換層とし、補正後の青色信号をBR、補正後の緑色信号をGR、補正後の赤色信号をRRとし、r,g,bを夫々赤色,緑色,青色の光吸収率と光電変換率に対する補正係数とし、R,G,Bを検出された赤色信号,緑色信号,青色信号とした場合、
BR=b×B
GR=g×G
RR=r×(R−a×B−a×G)
ここにa,aは係数
の補正式で補正することを特徴とする。
本発明の光電変換層積層型固体撮像素子の信号補正方法は、最上層の光電変換層/中間層の光電変換層/最下層の光電変換層を、半導体材料でなる青色(B)変換用の光電変換層/半導体材料でなる緑色(G)変換用の光電変換層/有機材料でなる赤色(R)変換用の光電変換層とし、補正後の青色信号をBR、補正後の緑色信号をGR、補正後の赤色信号をRRとし、r,g,bを夫々赤色,緑色,青色の光吸収率と光電変換率に対する補正係数とし、R,G,Bを検出された赤色信号,緑色信号,青色信号とした場合、
BR=b×B
GR=g×(G−a×B)
RR=r×R
ここにaは係数
の補正式で補正することを特徴とする。
本発明の光電変換層積層型固体撮像素子の信号補正方法は、最上層の光電変換層/中間層の光電変換層/最下層の光電変換層を、有機材料でなる青色(B)変換用の光電変換層/有機材料でなる緑色(G)変換用の光電変換層/半導体材料でなる赤色(R)変換用の光電変換層とし、または、有機材料でなる緑色(G)変換用の光電変換層/有機材料でなる青色(B)変換用の光電変換層/半導体材料でなる赤色(R)変換用の光電変換層とし、補正後の青色信号をBR、補正後の緑色信号をGR、補正後の赤色信号をRRとし、r,g,bを夫々赤色,緑色,青色の光吸収率と光電変換率に対する補正係数とし、R,G,Bを検出された赤色信号,緑色信号,青色信号とした場合、
BR=b×B
GR=g×G
RR=r×(R−a×B−a×G)
ここにa,aは係数
の補正式で補正することを特徴とする。
本発明の光電変換層積層型固体撮像素子の信号補正方法は、最上層の光電変換層/中間層の光電変換層/最下層の光電変換層を、有機材料でなる青色(B)変換用の光電変換層/半導体材料でなる緑色(G)変換用の光電変換層/有機材料でなる赤色(R)変換用の光電変換層とし、補正後の青色信号をBR、補正後の緑色信号をGR、補正後の赤色信号をRRとし、r,g,bを夫々赤色,緑色,青色の光吸収率と光電変換率に対する補正係数とし、R,G,Bを検出された赤色信号,緑色信号,青色信号とした場合、
BR=b×B
GR=g×(G−a×B)
RR=r×R
ここにaは係数
の補正式で補正することを特徴とする。
本発明の光電変換層積層型固体撮像素子の信号補正方法は、最上層の光電変換層/中間層の光電変換層/最下層の光電変換層を、有機材料でなる緑色(G)変換用の光電変換層/半導体材料でなる青色(B)変換用の光電変換層/半導体材料でなる赤色(R)変換用の光電変換層とし、補正後の青色信号をBR、補正後の緑色信号をGR、補正後の赤色信号をRRとし、r,g,bを夫々赤色,緑色,青色の光吸収率と光電変換率に対する補正係数とし、R,G,Bを検出された赤色信号,緑色信号,青色信号とした場合、
BR=b×(B−a×G)
GR=g×G
RR=r×(R−a×G−a×B)
ここにa,a,aは係数
の補正式で補正することを特徴とする。
本発明の光電変換層積層型固体撮像素子の信号補正方法は、最上層の光電変換層/中間層の光電変換層/最下層の光電変換層を、有機材料でなる青色(B)変換用の光電変換層/有機材料でなる赤色(R)変換用の光電変換層/半導体材料でなる緑色(G)変換用の光電変換層とし、補正後の青色信号をBR、補正後の緑色信号をGR、補正後の赤色信号をRRとし、r,g,bを夫々赤色,緑色,青色の光吸収率と光電変換率に対する補正係数とし、R,G,Bを検出された赤色信号,緑色信号,青色信号とした場合、
BR=b×B
GR=g×(G−a×B−a×R)
RR=r×R
ここにa,aは係数
の補正式で補正することを特徴とする。
本発明によれば、上層の光電変換層を薄くできるので製造コストの削減を図ることが可能になると共に光電変換層の厚さ低減に伴って段差が小さくなるため製造プロセスの簡易化を図ることが可能となる。また、上層の光電変換層を薄くしたため混色が回避でき、高度な色分離が可能となり偽色が低減する効果が得られる。
以下、本発明の一実施形態について、図面を参照して説明する。
図1は、本発明の一実施形態に係る光電変換層積層型固体撮像素子の1画素分の断面模式図である。半導体基板1の表面部には、信号読出回路が形成される。信号読出回路は、CMOS型イメージセンサの様にMOSトランジスタ回路で構成してもよく、また、図1に示す様に、従来のCCD型イメージセンサと同様の電荷転送路で構成してもよい。
図1に示す光電変換層積層型固体撮像素子では、n型半導体基板1の表面部にPウェル層2が形成され、更にその表面部のP領域3には、第1色電荷蓄積領域となるダイオード部41と、第2色電荷蓄積領域となるダイオード部42と、第3色電荷蓄積領域となるダイオード部43とが形成され、各ダイオード部41,42,43の間には電荷転送路51,52,53が形成される。対となるダイオード部41及び電荷転送路51と、ダイオード部42及び電荷転送路52と、ダイオード部43及び電荷転送路53との間には、p領域でなるチャネルストップ6が形成される。
半導体基板1の表面には、絶縁層7が積層され、この絶縁層7の内部の電荷転送路51,52,53の上には電荷転送電極81,82,83が形成されると共に、各ダイオード部41,42,43に接続される電極91,92,93が埋設される。
絶縁層7の上には、画素毎に区画された第1色用の画素電極膜11が積層される。この画素電極膜11は、透明材料で形成されても、また、不透明材料で形成されてもよい。
各画素電極膜11の上には、第1色の入射光を光電変換する第1層光電変換層12が全画素共通に一枚構成で積層され、この第1層光電変換層12の上に、透明の共通電極膜(画素電極膜11の対向電極膜)13が積層される。
共通電極膜13の上には、透明の絶縁膜14が積層され、更にその上に、画素毎に区画された第2色用の透明の画素電極膜15が積層される。そして、各画素電極膜15の上に、第2色の入射光を光電変換する第2層光電変換層16が全画素共通に一枚構成で積層され、第2層光電変換層16の上に、透明の共通電極膜(画素電極膜15の対向電極)17が積層される。
共通電極膜17の上には、透明の絶縁膜18が積層され、更にその上に、画素毎に区画された第3色用の透明の画素電極膜19が積層される。そして、各画素電極膜19の上に、第3色の入射光を光電変換する第3層光電変換層20が全画素共通に一枚構成で積層され、第3層光電変換層20の上に、透明の共通電極膜(画素電極膜19の対向電極)21が積層される。更にその上に保護膜が形成される場合もあるが、これは図示を省略する。
第1色用の画素電極膜11は、第1色電荷蓄積用ダイオード部41の電極91と縦配線22により電気的に接続され、第2色用の画素電極膜15は、第2色電荷蓄積用ダイオード部42の電極92と縦配線23により電気的に接続され、第3色用の画素電極膜19は、第3色電荷蓄積用ダイオード部43の電極93と縦配線24により電気的に接続される。各縦配線22,23,24は、対応する電極91,92,93及び画素電極膜11,15,19以外とは絶縁される。
各層の光電変換層12,16,20の材質としては、有機,無機を問わないが、直接遷移型の薄膜構造,微粒子構造,グレッチェル構造のものを用いることが好ましい。例えば、微粒子構造とする場合、バンドギャップ端を制御することが可能となり、CdSe,InP,ZnTe,ZnSe等のナノ粒子径を制御することにより、光電変換される波長領域を制御可能となる。
今、第1色を赤色(R)、第2色を緑色(G)、第3色を青色(B)とする。この光電変換層積層型固体撮像素子に光が入射すると、入射光の内の青色の波長領域の光は第3層光電変換層20に吸収され、吸収された光量に応じた電荷が発生し、この電荷が画素電極膜19から縦配線24及び電極93を通ってダイオード部43に流れ込む。
同様に、入射光の内の緑色の波長領域の光は、第2層光電変換層16によって吸収され、吸収された光量に応じた電荷が発生し、この電荷が画素電極膜15から縦配線23及び電極92を通ってダイオード部42に流れ込む。
同様に、入射光の内の赤色の波長領域の光は、第1層光電変換層12によって吸収され、吸収された光量に応じた電荷が発生し、この電荷が画素電極膜11から縦配線22及び電極91を通ってダイオード部41に流れ込む。
各ダイオード部41,42,43からの信号取出は、通常のシリコンの受光素子からの信号取出に準じた手法で行うことができる。例えば、一定量のバイアス電荷をダイオード部41,42,43に注入し(リフレッシュモード)ておき、光入射による電荷を蓄積(光電変換モード)後、信号電荷を読み出す。有機受光素子そのものを蓄積ダイオードとして用いることもできるし、別途、蓄積ダイオードを付設することもできる。信号電荷の読み出しには、下記のCCDやCMOSセンサの読出手法を適用することができる。
一般的に、CCDセンサやCMOSセンサ等の撮像素子は、光電変換機能を有する受光素子と、変換された信号の蓄積機能、蓄積された信号の読出機能、画素位置の選択機能などを有する。受光部で光/電気変換された信号電荷もしくは信号電流は、受光部そのもの若しくは付設されたキャパシタで蓄えられ、蓄えられた電荷は、いわゆる電荷結合素子(CCD)や、X−Yアドレス方式を用いたMOS型撮像素子(CMOSセンサ)の手法により、画素位置の選択とともに読み出される。
CCDイメージセンサは、画素の電荷信号を、転送スイッチにより、アナログシフトレジスタに転送する電荷転送部を有しており、レジスタの動作で信号を出力端に順次読み出す。ラインアドレス型、フレーム転送型、インターライン転送型、フレームインターライン転送型などがある。また、CCDには、2相構造、3相構造、4相構造、さらには埋め込みチャンネル構造などが知られるが、いずれの構造も本実施形態の光電変換層積層型の固体撮像素子に適用できる。
他には、アドレス選択方式として、1画素づつ、順次、マルチプレクサスイッチとデジタルシフトレジスタで選択し、共通の出力線に信号電圧(または電荷)として読み出す方式を採用できる。2次元にアレイ化されたX−Yアドレス操作の撮像素子がCMOSセンサとして知られる。これは、X−Yの交点に接続された画素に設けられたスイッチは垂直シフトレジスタに接続され、垂直走査シフトレジスタからの電圧でスイッチがオンすると同じ行に設けられた画素から読み出された信号は、列方向の出力線に読み出される。この信号は水平走査シフトレジスタにより駆動されるスイッチを介して順番に出力端から読み出される。出力信号の読み出しには、フローティングディフュージョン検出器や、フローティングゲート検出器を用いることができる。
また、画素部分に、信号増幅回路を設けることや、相関二重サンプリングの手法などにより、S/Nの向上をはかることができる。信号処理には、ADC回路によるガンマ補正、AD変換機によるテジタル化、輝度信号処理や、色信号処理を施すことができる。色信号処理としては、ホワイトバランス処理や、色分離処理、カラーマトリックス処理などが挙げられる。NTSC信号に用いる際は、RGB信号をYIQ信号に変換処理することができる。
光電変換層積層型固体撮像素子では、入射光のうちの赤色,緑色,青色の各波長領域の光量に応じた電荷を各光電変換層で発生させるのが好適である。しかし、各光電変換層の膜厚を十分に厚くし、各光電変換層で十分に光を吸収できる様にすると、上述した様に、混色の問題が発生し、また、光電変換層を厚くすることによる製造コストの増大や、配線などのリソグラフィプロセスの困難さが増してしまう。
例えば、無機の半導体材料で光電変換層を形成すると、その光吸収係数が3×10cm−1程度であるため、光を90%以上吸収するのに、少なくとも0.8μm以上の膜厚が必要となる。
そこで、本実施形態の光電変換層積層型固体撮像素子では、図1に示す様に、最下層となる第1層光電変換層12の膜厚tを、90%以上の光吸収が可能な厚さにすると共に、その上層である中間層の第2層光電変換層16の膜厚t及び最上層の第3層光電変換層20の膜厚tを、膜厚tより薄くする。例えば、膜厚t,tを、光吸収が50%〜90%程度となる厚さとする。これにより、混色の問題を避けることができ、また、膜厚が薄くなるため、段差が小さくなり製造プロセスが簡易化する。
しかし、上層の光電変換層の膜厚が薄くその光吸収が少ないと、上層の光電変換層を透過した光が下層の光電変換層に入射し、下層の光電変換層での光電変換に寄与してしまう。そこで、本実施形態では、上層の光電変換層の膜厚を薄くした関係で、下層の光電変換層による検出信号の補正を行うこととした。
上述した例では、第1色を赤色、第2色を緑色、第3色を青色とし、最上層の光電変換層20を短波長の青色用、中間層の光電変換層16を中間波長の緑色用、最下層の光電変換層12を長波長の赤色用とした。光電変換層12,16,20を無機の半導体層で形成した場合には、半導体の光吸収係数の波長依存性のため、上層から順に、B用,G用,R用とするのが良い。これに対し、有機層では順番は関係ない。
そこで、半導体材料による光電変換層と有機材料による光電変換層とのハイブリッド構成も考慮し、以下に述べる組み合わせと、夫々の組み合わせにおける信号補正の方法を示す。有機材料で構成した光電変換層は薄くでき、また、設定した波長領域以外の光が入射してもその光はあまり光電変換に寄与することはないので、そのことを考慮して信号補正式をつくる必要がある。
尚、以下の式中でのBR,GR,RRは補正後の青色信号,緑色信号,赤色信号を示し、B,G,Rは各光電変換層で得られた補正しない状態の青色信号,緑色信号,赤色信号を示し、小文字のb,g,rは光の吸収率と光電変換率に対する補正係数を示し、a,a,aは係数である。b,g,rは、使用する光電変換層毎に事前に計測しておき、各係数a,a,aは、事前の分光評価により決定しておく。
また、例えば、有機B/半導体G/半導体Rと標記した場合、最上層(第3層)/中間層(第2層)/最下層(第1層)の順を示し、「有機」と「半導体」は光電変換層の材料を示し、「有機」「半導体」に続くB,G,Rは、夫々の光電変換層で検出する色を示す。
(1)半導体B/半導体G/半導体Rの積層構造の場合、
BR=b×B
GR=g×(G−a×B)
RR=r×(R−a×B−a×G)
の信号補正式で補正する。
(2)有機B/半導体G/半導体Rの積層構造の場合、
BR=b×B
GR=g×(G−a×B)
RR=r×(R−a×B−a×G)
の信号補正式で補正する。
(3)半導体B/有機G/半導体Rの積層構造の場合、
BR=b×B
GR=g×G
RR=r×(R−a×B−a×G)
の信号補正式で補正する。
(4)半導体B/半導体G/有機Rの積層構造の場合、
BR=b×B
GR=g×(G−a×B)
RR=r×R
の信号補正式で補正する。
(5)有機B/有機G/半導体R または 有機G/有機B/半導体Rの積層構造の場合、
BR=b×B
GR=g×G
RR=r×(R−a×B−a×G)
の信号補正式で補正する。
(6)有機B/半導体G/有機Rの積層構造の場合、
BR=b×B
GR=g×(G−a×B)
RR=r×R
の信号補正式で補正する。
(7)有機G/半導体B/半導体Rの積層構造の場合、
BR=b×(B−a×G)
GR=g×G
RR=r×(R−a×G−a×B)
の信号補正式で補正する。
(8)有機B/有機R/半導体Gの積層構造の場合、
BR=b×B
GR=g×(G−a×B−a×R)
RR=r×R
の信号補正式で補正する。
上述した信号補正を行う回路を、図1に示す半導体基板1に形成しても良く、また、固体撮像素子から読み出したR,G,Bの信号を外部回路によって補正する構成でもよい。
尚、上述した光電変換層積層型固体撮像素子に遮光膜を形成し、混色を避ける構成とすることも可能である。例えば、図1に示す固体撮像素子の最上面に透明絶縁膜を形成し、その上に、画素毎に開口を設けた金属膜を蒸着することにより、遮光膜を形成してもよい。更にその上に、マイクロレンズアレイを形成することにより、集光効率を向上させることも可能である。
更に、最上層に紫外線カットフイルタを設けるのも好ましく、また、最下層に遮光膜を設け、不要な光が信号読出回路に入射しない構成にするのが良い。例えば、最下層の画素電極膜11を不透明膜とする。
本実施形態に係る光電変換層積層型固体撮像素子は、デジタルカメラ、ビテオカメラ、ファクシミリ、スキャナ、複写機をはじめとする撮像素子やバイオや化学センサーなどの光センサとして利用可能である。
本発明に係る光電変換層積層型固体撮像素子は、混色が少なく、また、高度の色分離が可能で偽色が少ないため、既存のCCD型やCMOS型のイメージセンサに代わる新しい構造の撮像素子として有用である。
本発明の一実施形態に係る光電変換層積層型固体撮像素子の1画素分の断面模式図である。
符号の説明
1 半導体基板
11,15,19 画素電極膜
12,16,20 光電変換層
13,17,21 共通電極膜
22,23,24 縦配線
41,42,43 ダイオード部(電荷蓄積領域)
51,52,53 電荷転送路
91,92,93 電極
第1層光電変換層の膜厚
第2層光電変換層の膜厚
第3層光電変換層の膜厚

Claims (12)

  1. 入射光を赤色(R),緑色(G),青色(B)の各色毎に光電変換する少なくとも3層の光電変換層が基板の上部に積層された光電変換層積層型固体撮像素子において、前記基板に一番近い最下層の前記光電変換層の厚さに対し他の上層の前記光電変換層の厚さを薄くしたことを特徴とする光電変換層積層型固体撮像素子。
  2. 前記最下層の光電変換層の厚さを光吸収率が90%以上の厚さとし前記上層の光電変換層の厚さを光吸収率が50%〜90%の厚さとしたことを特徴とする請求項1に記載の光電変換層積層型固体撮像素子。
  3. 前記3層の光電変換層のうちの少なくとも1層が無機の半導体材料で形成されることを特徴とする請求項1または請求項2に記載の光電変換層積層型固体撮像素子。
  4. 請求項1乃至請求項3のいずれかに記載の光電変換層積層型固体撮像素子の信号補正方法であって、光電変換層のうち下層の光電変換層によって得られる信号量を、上層の光電変換層によって得られる信号量で補正することを特徴とする光電変換層積層型固体撮像素子の信号補正方法。
  5. 最上層の光電変換層/中間層の光電変換層/最下層の光電変換層を、半導体材料でなる青色(B)変換用の光電変換層/半導体材料でなる緑色(G)変換用の光電変換層/半導体材料でなる赤色(R)変換用の光電変換層とし、補正後の青色信号をBR、補正後の緑色信号をGR、補正後の赤色信号をRRとし、r,g,bを夫々赤色,緑色,青色の光吸収率と光電変換率に対する補正係数とし、R,G,Bを検出された赤色信号,緑色信号,青色信号とした場合、
    BR=b×B
    GR=g×(G−a×B)
    RR=r×(R−a×B−a×G)
    ここにa,a,aは係数
    の補正式で補正することを特徴とする請求項4に記載の光電変換層積層型固体撮像素子の信号補正方法。
  6. 最上層の光電変換層/中間層の光電変換層/最下層の光電変換層を、有機材料でなる青色(B)変換用の光電変換層/半導体材料でなる緑色(G)変換用の光電変換層/半導体材料でなる赤色(R)変換用の光電変換層とし、補正後の青色信号をBR、補正後の緑色信号をGR、補正後の赤色信号をRRとし、r,g,bを夫々赤色,緑色,青色の光吸収率と光電変換率に対する補正係数とし、R,G,Bを検出された赤色信号,緑色信号,青色信号とした場合、
    BR=b×B
    GR=g×(G−a×B)
    RR=r×(R−a×B−a×G)
    ここにa,a,aは係数
    の補正式で補正することを特徴とする請求項4に記載の光電変換層積層型固体撮像素子の信号補正方法。
  7. 最上層の光電変換層/中間層の光電変換層/最下層の光電変換層を、半導体材料でなる青色(B)変換用の光電変換層/有機材料でなる緑色(G)変換用の光電変換層/半導体材料でなる赤色(R)変換用の光電変換層とし、補正後の青色信号をBR、補正後の緑色信号をGR、補正後の赤色信号をRRとし、r,g,bを夫々赤色,緑色,青色の光吸収率と光電変換率に対する補正係数とし、R,G,Bを検出された赤色信号,緑色信号,青色信号とした場合、
    BR=b×B
    GR=g×G
    RR=r×(R−a×B−a×G)
    ここにa,aは係数
    の補正式で補正することを特徴とする請求項4に記載の光電変換層積層型固体撮像素子の信号補正方法。
  8. 最上層の光電変換層/中間層の光電変換層/最下層の光電変換層を、半導体材料でなる青色(B)変換用の光電変換層/半導体材料でなる緑色(G)変換用の光電変換層/有機材料でなる赤色(R)変換用の光電変換層とし、補正後の青色信号をBR、補正後の緑色信号をGR、補正後の赤色信号をRRとし、r,g,bを夫々赤色,緑色,青色の光吸収率と光電変換率に対する補正係数とし、R,G,Bを検出された赤色信号,緑色信号,青色信号とした場合、
    BR=b×B
    GR=g×(G−a×B)
    RR=r×R
    ここにaは係数
    の補正式で補正することを特徴とする請求項4に記載の光電変換層積層型固体撮像素子の信号補正方法。
  9. 最上層の光電変換層/中間層の光電変換層/最下層の光電変換層を、有機材料でなる青色(B)変換用の光電変換層/有機材料でなる緑色(G)変換用の光電変換層/半導体材料でなる赤色(R)変換用の光電変換層とし、または、有機材料でなる緑色(G)変換用の光電変換層/有機材料でなる青色(B)変換用の光電変換層/半導体材料でなる赤色(R)変換用の光電変換層とし、補正後の青色信号をBR、補正後の緑色信号をGR、補正後の赤色信号をRRとし、r,g,bを夫々赤色,緑色,青色の光吸収率と光電変換率に対する補正係数とし、R,G,Bを検出された赤色信号,緑色信号,青色信号とした場合、
    BR=b×B
    GR=g×G
    RR=r×(R−a×B−a×G)
    ここにa,aは係数
    の補正式で補正することを特徴とする請求項4に記載の光電変換層積層型固体撮像素子の信号補正方法。
  10. 最上層の光電変換層/中間層の光電変換層/最下層の光電変換層を、有機材料でなる青色(B)変換用の光電変換層/半導体材料でなる緑色(G)変換用の光電変換層/有機材料でなる赤色(R)変換用の光電変換層とし、補正後の青色信号をBR、補正後の緑色信号をGR、補正後の赤色信号をRRとし、r,g,bを夫々赤色,緑色,青色の光吸収率と光電変換率に対する補正係数とし、R,G,Bを検出された赤色信号,緑色信号,青色信号とした場合、
    BR=b×B
    GR=g×(G−a×B)
    RR=r×R
    ここにaは係数
    の補正式で補正することを特徴とする請求項4に記載の光電変換層積層型固体撮像素子の信号補正方法。
  11. 最上層の光電変換層/中間層の光電変換層/最下層の光電変換層を、有機材料でなる緑色(G)変換用の光電変換層/半導体材料でなる青色(B)変換用の光電変換層/半導体材料でなる赤色(R)変換用の光電変換層とし、補正後の青色信号をBR、補正後の緑色信号をGR、補正後の赤色信号をRRとし、r,g,bを夫々赤色,緑色,青色の光吸収率と光電変換率に対する補正係数とし、R,G,Bを検出された赤色信号,緑色信号,青色信号とした場合、
    BR=b×(B−a×G)
    GR=g×G
    RR=r×(R−a×G−a×B)
    ここにa,a,aは係数
    の補正式で補正することを特徴とする請求項4に記載の光電変換層積層型固体撮像素子の信号補正方法。
  12. 最上層の光電変換層/中間層の光電変換層/最下層の光電変換層を、有機材料でなる青色(B)変換用の光電変換層/有機材料でなる赤色(R)変換用の光電変換層/半導体材料でなる緑色(G)変換用の光電変換層とし、補正後の青色信号をBR、補正後の緑色信号をGR、補正後の赤色信号をRRとし、r,g,bを夫々赤色,緑色,青色の光吸収率と光電変換率に対する補正係数とし、R,G,Bを検出された赤色信号,緑色信号,青色信号とした場合、
    BR=b×B
    GR=g×(G−a×B−a×R)
    RR=r×R
    ここにa,aは係数
    の補正式で補正することを特徴とする請求項4に記載の光電変換層積層型固体撮像素子の信号補正方法。
JP2005018201A 2005-01-26 2005-01-26 光電変換層積層型固体撮像素子及びその信号補正方法 Pending JP2006210497A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005018201A JP2006210497A (ja) 2005-01-26 2005-01-26 光電変換層積層型固体撮像素子及びその信号補正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005018201A JP2006210497A (ja) 2005-01-26 2005-01-26 光電変換層積層型固体撮像素子及びその信号補正方法

Publications (1)

Publication Number Publication Date
JP2006210497A true JP2006210497A (ja) 2006-08-10

Family

ID=36967021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005018201A Pending JP2006210497A (ja) 2005-01-26 2005-01-26 光電変換層積層型固体撮像素子及びその信号補正方法

Country Status (1)

Country Link
JP (1) JP2006210497A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541858B2 (en) 2010-05-06 2013-09-24 Kabushiki Kaisha Toshiba Solid state imaging device
JP2016063467A (ja) * 2014-09-19 2016-04-25 株式会社シグマ 画像信号処理方法及びそれを用いた撮像装置
US11317068B2 (en) 2018-11-07 2022-04-26 Samsung Electronics Co., Ltd. Signal processing apparatuses and signal processing methods
JP7442990B2 (ja) 2018-11-07 2024-03-05 三星電子株式会社 信号処理装置及び信号処理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541858B2 (en) 2010-05-06 2013-09-24 Kabushiki Kaisha Toshiba Solid state imaging device
JP2016063467A (ja) * 2014-09-19 2016-04-25 株式会社シグマ 画像信号処理方法及びそれを用いた撮像装置
US11317068B2 (en) 2018-11-07 2022-04-26 Samsung Electronics Co., Ltd. Signal processing apparatuses and signal processing methods
JP7442990B2 (ja) 2018-11-07 2024-03-05 三星電子株式会社 信号処理装置及び信号処理方法

Similar Documents

Publication Publication Date Title
US20200083276A1 (en) Solid-state image sensor, method of manufacturing the same, and electronic device
JP4839008B2 (ja) 単板式カラー固体撮像素子
JP4384198B2 (ja) 固体撮像装置およびその製造方法、電子情報機器
US7476904B2 (en) Photoelectric converting film stack type solid-state image pickup device
EP2980852B1 (en) Solid-state image sensing element and imaging system
JP4547281B2 (ja) 光電変換膜積層型固体撮像素子
JP2005268479A (ja) 光電変換膜積層型固体撮像装置
JP2006228938A (ja) 光電変換膜積層型固体撮像素子
JP2009206210A (ja) 固体撮像装置及びカメラ
US20110049333A1 (en) Solid-state imaging device and method of manufacturing the same
US8981515B2 (en) Solid-state imaging device and electronic apparatus
JP4572130B2 (ja) 固体撮像素子
US20060042677A1 (en) Solid-state image pickup device
JP2006120922A (ja) 光電変換膜積層型カラー固体撮像装置
JP4751576B2 (ja) 光電変換膜積層型固体撮像装置
JP4500702B2 (ja) 光電変換膜積層型固体撮像素子
JP2006120773A (ja) 光電変換膜積層型単板式カラー固体撮像装置
JP2005268476A (ja) 光電変換膜積層型固体撮像装置
JP2005268643A (ja) 固体撮像素子、カメラモジュール及び電子機器モジュール
JP2005347599A (ja) カラー受光素子、及び撮像素子
JP4495949B2 (ja) 2板式カラー固体撮像装置及びデジタルカメラ
JP2005303284A (ja) 光電変換膜積層型固体撮像素子
JP2006210497A (ja) 光電変換層積層型固体撮像素子及びその信号補正方法
JP2007066962A (ja) カラー固体撮像装置及びデジタルカメラ
JP2008258498A (ja) 固体撮像装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124