JP2006210259A - Nonaqueous electrolytic solution - Google Patents

Nonaqueous electrolytic solution Download PDF

Info

Publication number
JP2006210259A
JP2006210259A JP2005023721A JP2005023721A JP2006210259A JP 2006210259 A JP2006210259 A JP 2006210259A JP 2005023721 A JP2005023721 A JP 2005023721A JP 2005023721 A JP2005023721 A JP 2005023721A JP 2006210259 A JP2006210259 A JP 2006210259A
Authority
JP
Japan
Prior art keywords
salt
formula
electrolytic solution
ppm
tfsi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005023721A
Other languages
Japanese (ja)
Inventor
Naoto Nagakura
直人 永倉
Tomonori Matsunaga
智徳 松永
Hitoshi Matsuoka
仁志 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2005023721A priority Critical patent/JP2006210259A/en
Publication of JP2006210259A publication Critical patent/JP2006210259A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte excelling in ion conductivity and electrochemical stability, in relation to a nonaqueous electrolytic solution used for primary and secondary lithium batteries, a dye-sensitized solar cell, an electric double-layer capacitor or the like. <P>SOLUTION: In this nonaqueous electrolytic solution containing a salt having anions represented by formula (1): Rf<SB>1</SB>SO<SB>2</SB>N<SP>-</SP>SO<SB>2</SB>Rf<SB>2</SB>(Rf<SB>1</SB>and Rf<SB>2</SB>are each a 1-12C perfluoroalkyl group) (for instance, (CF<SB>3</SB>SO<SB>2</SB>)<SB>2</SB>N<SP>-</SP>), the content of anions represented by formula (2): R<SB>1</SB>SO<SB>2</SB>N<SP>-</SP>SO<SB>2</SB>R<SB>2</SB>(R<SB>1</SB>and R<SB>2</SB>are each independently a 1-12C fluoroalkyl group, and either or both of R<SB>1</SB>and R<SB>2</SB>is/are each a fluoroalkyl group containing at least one hydrogen atom) (for instance, CF<SB>2</SB>HSO<SB>2</SB>N<SP>-</SP>SO<SB>2</SB>CF<SB>3</SB>) is not more than 50 ppm with respect to the anions represented by formula (1). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、一次もしくは二次のリチウム電池、色素増感型太陽電池、電気二重層キャパシタ、表示素子等の電気化学デバイスあるいは電析浴、更には化学合成の媒体として利用可能な非水電解液に関する。   The present invention relates to an electrochemical device such as a primary or secondary lithium battery, a dye-sensitized solar cell, an electric double layer capacitor, a display element, an electrodeposition bath, or a non-aqueous electrolyte that can be used as a chemical synthesis medium. About.

近年多く用いられるようになったリチウム一次電池、リチウム二次電池、電解コンデンサ、電気二重層キャパシタ、エレクトロクロミック表示素子、あるいは将来的な実用化に向けて種々に検討がなされている色素増感型太陽電池などの電気化学デバイスにおける非水系の電解液としては、電解質をエチレンカーボネート、プロピレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、N,N−ジメチルホルムアミド、テトラヒドロフラン、あるいはアセトニトリル等の有機溶媒に溶解させた溶液が用いられてきた。しかし、これらの電解質溶液に用いられる有機溶媒は揮発しやすく、それ自体が危険物であることから、長期の信頼性、耐久性、および安全性に問題がある。   Lithium primary batteries, lithium secondary batteries, electrolytic capacitors, electric double layer capacitors, electrochromic display elements that have been widely used in recent years, or dye-sensitized types that have been studied for various practical applications in the future As a non-aqueous electrolyte solution in an electrochemical device such as a solar battery, an electrolyte was dissolved in an organic solvent such as ethylene carbonate, propylene carbonate, dimethoxyethane, γ-butyrolactone, N, N-dimethylformamide, tetrahydrofuran, or acetonitrile. Solutions have been used. However, since the organic solvent used in these electrolyte solutions is volatile and is a dangerous substance itself, there are problems in long-term reliability, durability, and safety.

そこで電解質として有機溶媒を用いず、常温で液状である塩(イオン性液体)を電解質として応用することが提案され、種々検討されている。例えば1−メチル−3−エチルイミダゾリウムカチオンと、ビストリフルオロメタンスルホン酸アミドアニオン(CFHSOSOCF)からなるオニウム塩は、周囲温度で液状であり、高いイオン伝導率(8.8mScm−1)を示すことが示されている(特許文献1参照)。該塩は、Li+/Liに対して5.2V以下の電位では酸化を受けないという優れた電気化学安定特性は有する。しかしながら、これまでLi二次電池用電解液として広く用いられている、プロピレンカーボネート溶媒にリチウム六フッ化リン塩を溶解させた電解液や、キャパシタ用電解液として用いられている、プロピレンカーボネート溶媒に第4級アンモニウム四フッ化ホウ素塩を溶解させた電解液よりも電気化学安定性において劣るためによりいっそうの電気化学安定性の向上が望まれている。 Accordingly, it has been proposed and variously studied to apply a salt (ionic liquid) that is liquid at room temperature as an electrolyte without using an organic solvent as an electrolyte. For example, an onium salt composed of 1-methyl-3-ethylimidazolium cation and bistrifluoromethanesulfonic acid amide anion (CF 2 HSO 2 N SO 2 CF 3 ) is liquid at ambient temperature and has high ionic conductivity ( 8.8 mScm −1 ) (see Patent Document 1). The salt has an excellent electrochemical stability characteristic that it is not oxidized at a potential of 5.2 V or less with respect to Li + / Li. However, it has been widely used as an electrolyte solution for Li secondary batteries, an electrolyte solution obtained by dissolving lithium hexafluorophosphate in a propylene carbonate solvent, and a propylene carbonate solvent used as an electrolyte solution for capacitors. Since the electrochemical stability is inferior to that of an electrolytic solution in which a quaternary ammonium tetrafluoroboron salt is dissolved, further improvement in electrochemical stability is desired.

また高い電気伝導度を示す電解液として、第4級アンモウムカチオンと、ビストリフルオロメタンスルホン酸アミドアニオンとからなる塩を電解質として用いる電気二重層キャパシタ用電解液も提案されている(例えば、特許文献2)。しかしながら本発明者等の検討によれば、この電解液はグラッシーカーボン電極を用いた場合は良好な性能を示すが、実際に電気化学的キャパシタなどで用いられる活性炭などの多孔質のカーボン電極を用いた場合には、電気化学安定性に問題のあることが分かった。   In addition, as an electrolytic solution exhibiting high electrical conductivity, an electrolytic solution for an electric double layer capacitor using a salt composed of a quaternary ammonium cation and a bistrifluoromethanesulfonic acid amide anion as an electrolyte has also been proposed (for example, a patent) Reference 2). However, according to the study by the present inventors, this electrolytic solution shows good performance when a glassy carbon electrode is used, but a porous carbon electrode such as activated carbon that is actually used in an electrochemical capacitor or the like is used. If so, it was found that there was a problem with electrochemical stability.

特開平8−259543号公報JP-A-8-259543 特開平7−272982号公報JP-A-7-272882

このような背景のもと、電解質を使用する電気化学的デバイスの分野においては、より高い電気化学安定性を得る方法が課題の一つとなっている。そこで、本発明はイオン導電性および電気化学安定性の良好な電解質を提供することを目的とする。   Under such a background, in the field of electrochemical devices using an electrolyte, a method for obtaining higher electrochemical stability is one of the problems. Therefore, an object of the present invention is to provide an electrolyte having good ion conductivity and electrochemical stability.

本発明者らは上記課題を解決すべく、鋭意検討を行なった。そして、CFSOSOCFをアニオンとして有する塩に不純物として含まれるCFHSOSOCFが電気化学安定性、熱的安定性に対して極めて大きな影響を与えることを見出し、さらに検討を進めた結果、本発明を完成した。即ち本発明は、下記式(1)
RfSOSORf (1)
(上記式中、Rf及びRfは各々独立に、炭素数1〜12のパーフルオロアルキル基である)
で示されるアニオンを有する塩を電解質として含む非水電解液であって、該非水電解液中に含まれる、下記式(2)
SOSO (2)
(上記式中、R及びRは各々独立に、炭素数1〜12のフルオロアルキル基であり、かつR、Rのいずれか一方もしくは双方は、少なくとも1つの水素原子を含むフルオロアルキル基である)
で示されるアニオンの量が、上記式(1)で示されるアニオンに対して50ppm以下であることを特徴とする非水電解液である。
The present inventors have intensively studied to solve the above problems. And CF 2 HSO 2 N SO 2 CF 3 contained as an impurity in a salt having CF 3 SO 2 N SO 2 CF 3 as an anion has an extremely large influence on electrochemical stability and thermal stability. As a result of further finding out and finding out, the present invention was completed. That is, the present invention provides the following formula (1):
Rf 1 SO 2 N SO 2 Rf 2 (1)
(In the above formula, Rf 1 and Rf 2 are each independently a C 1-12 perfluoroalkyl group)
A nonaqueous electrolytic solution containing a salt having an anion represented by the following formula (2), which is contained in the nonaqueous electrolytic solution:
R 1 SO 2 N SO 2 R 2 (2)
(In the above formula, R 1 and R 2 are each independently a fluoroalkyl group having 1 to 12 carbon atoms, and either or both of R 1 and R 2 are fluoroalkyls containing at least one hydrogen atom) Base)
The amount of the anion represented by the formula (1) is 50 ppm or less with respect to the anion represented by the formula (1).

RfSO−(例えばCFSO−)で示される基を有する化合物(もしくはその原料)は、通常、対応する水素化物(例えば、CHSO−)をフッ素化することにより得られるが、該フッ素化の際に、完全にフッ素化されずに水素原子が残存した不純物(例えば、CFHSO−)が含まれ、これが電解液中にそのまま配合されることにより、残存している水素原子が電気化学安定性ならびに熱的安定性を劣化させているものと考えられる。上記本発明の電解液では、このような水素原子が残存している電解質(塩)の割合を極力少なくすることで、前記課題を解決するものである。 A compound having a group represented by Rf 1 SO 2 — (for example, CF 3 SO 2 —) (or a raw material thereof) is usually obtained by fluorinating a corresponding hydride (for example, CH 3 SO 2 —). However, during the fluorination, an impurity (for example, CF 2 HSO 2 —) in which hydrogen atoms remain without being completely fluorinated is contained, and this is mixed in the electrolytic solution as it is to remain. It is considered that the hydrogen atom contained in the material deteriorates electrochemical stability and thermal stability. In the electrolytic solution of the present invention, the above problem is solved by minimizing the proportion of the electrolyte (salt) in which such hydrogen atoms remain.

本発明の電解液を用いた電気化学デバイスによれば、電極表面における不純物の電気分解や熱的分解を起因とする経時的なデバイス特性の低下の問題を解決することができる。   According to the electrochemical device using the electrolytic solution of the present invention, it is possible to solve the problem of deterioration of device characteristics over time due to the electrolysis and thermal decomposition of impurities on the electrode surface.

本発明の電解液は、下記式(1)
RfSOSORf (1)
(上記式中、Rf及びRfは各々独立に、炭素数1〜12のパーフルオロアルキル基である)
で示されるアニオンを有する塩を電解質として含む非水電解液である。
The electrolytic solution of the present invention has the following formula (1)
Rf 1 SO 2 N SO 2 Rf 2 (1)
(In the above formula, Rf 1 and Rf 2 are each independently a C 1-12 perfluoroalkyl group)
A nonaqueous electrolytic solution containing a salt having an anion represented by

上記式(1)において、Rf、Rfは共に炭素数1〜12のパーフルオロアルキル基、即ち、完全フッ素化されたアルキル基であり、これらはいずれも水素原子を有していない。上記式(1)で示されるアニオンとしては、該式を満足する限り特に限定されないが、イオンが大きいほどその電解液の電気伝導度が小さくなる傾向があり、優れた電気伝導度を備える為にはRf、Rf(以下、どちらかを限定せずに単にRfと記載する場合がある。)は、いずれも炭素数1〜5のパーフルオロアルキル基であることが好ましい。このようなアニオンを具体的に例示すると、ビストリフルオロメタンスルホン酸イミド、トリフルオロメタンスルホン酸ペンタフルオロエタンスルホン酸イミド、ビスペンタフルオロエタンスルホン酸イミドが挙げられる。なかでも、最も小さく、また比較的安価であることからビストリフルオロメタンスルホン酸イミド(CFSOSOCF)がもっとも好適である。 In the above formula (1), Rf 1 and Rf 2 are both a C 1-12 perfluoroalkyl group, that is, a fully fluorinated alkyl group, and neither of them has a hydrogen atom. The anion represented by the above formula (1) is not particularly limited as long as the above formula is satisfied. However, the larger the ion, the smaller the electric conductivity of the electrolyte solution, and the better the electric conductivity. Are preferably a perfluoroalkyl group having 1 to 5 carbon atoms, and Rf 1 and Rf 2 (hereinafter sometimes simply referred to as Rf without limitation). Specific examples of such anions include bistrifluoromethanesulfonic acid imide, trifluoromethanesulfonic acid pentafluoroethanesulfonic acid imide, and bispentafluoroethanesulfonic acid imide. Of these, bistrifluoromethanesulfonic acid imide (CF 3 SO 2 N SO 2 CF 3 ) is most preferable because it is the smallest and relatively inexpensive.

上記アニオンに対する対カチオンとしては特に制限が無く、非水電解液の電解質における公知のカチオンを組み合わせることができるが、電気伝導度が高く、耐電位性が高いことから、有機オニウムイオンが好ましく、具体的にはトリエチルメチルアンモニウム、ジエチルジメチルアンモニウム、トリメチルプロピルアンモニウム、N−メチルエチルピロリジニウム、N−メチルプロピルピロリジニウム、1−メチル−3−エチルイミダゾリウム等が好適に用いられる。   The counter anion for the anion is not particularly limited, and a known cation in the electrolyte of the non-aqueous electrolyte can be combined, but an organic onium ion is preferred because of its high electrical conductivity and high potential resistance. Specifically, triethylmethylammonium, diethyldimethylammonium, trimethylpropylammonium, N-methylethylpyrrolidinium, N-methylpropylpyrrolidinium, 1-methyl-3-ethylimidazolium and the like are preferably used.

本発明の非水電解液は、下記式(2)
SOSO (2)
(上記式中、R及びRは各々独立に、炭素数1〜12のフルオロアルキル基であり、かつR、Rのいずれか一方もしくは双方は、少なくとも1つの水素原子を含むフルオロアルキル基である)
で示されるアニオンの量が、前記式(1)で示されるアニオンに対して50ppm以下であることを特徴とする。なお、該含有量はモル基準である。
The non-aqueous electrolyte of the present invention has the following formula (2)
R 1 SO 2 N SO 2 R 2 (2)
(In the above formula, R 1 and R 2 are each independently a fluoroalkyl group having 1 to 12 carbon atoms, and either or both of R 1 and R 2 are fluoroalkyls containing at least one hydrogen atom) Base)
The amount of the anion represented by the formula (1) is 50 ppm or less with respect to the anion represented by the formula (1). The content is on a molar basis.

上記式(2)で示されるような水素原子を有するアニオンは、前記式(1)で示される完全フッ素化されたアニオンよりも電気化学安定性と熱的安定性に劣る為に、電解液として電気化学デバイスに用いた場合に先に分解し、さらにこの分解によって、より一層分解し易い反応生成物を生じ、電気化学的、熱的な特性の劣化を引き起こすと推定される。   An anion having a hydrogen atom represented by the above formula (2) is inferior in electrochemical stability and thermal stability to the fully fluorinated anion represented by the above formula (1). It is presumed that when it is used in an electrochemical device, it decomposes first, and this decomposition generates a reaction product that is more easily decomposed, resulting in deterioration of electrochemical and thermal characteristics.

上記式(2)で示されるアニオンを具体的に例示すると、CFHSOSOCF、(CFHSO、CHSOSOなどを挙げることができる。 Specific examples of the anion represented by the formula (2), CF 2 HSO 2 N - SO 2 CF 3, (CF 2 HSO 2) 2 N -, C 2 F 4 HSO 2 N - SO 2 C 2 F 5 or the like.

通常、前記式(1)で示されるアニオンを有する塩は、RfSO−X(Xはフッ素、塩素、臭素のようなハロゲン原子。以下同じ)を原料として合成される。ここで該RfSO−X中に、完全にフッ素化されていないRSO−X(Rは、少なくとも1つの水素原子を含む炭素数1〜12のフルオロアルキル基である)が不純物として存在しており、これが上記RfSO−Xと同様に反応して、前記式(2)で示される成分が混入してくるものと考えられる。 Usually, the salt having an anion represented by the formula (1) is synthesized using RfSO 2 -X (X is a halogen atom such as fluorine, chlorine or bromine, the same shall apply hereinafter) as a raw material. Here, in RfSO 2 -X, RSO 2 -X (R is a C 1-12 fluoroalkyl group containing at least one hydrogen atom) that is not completely fluorinated is present as an impurity. It is considered that this reacts in the same manner as RfSO 2 -X, and the component represented by the formula (2) is mixed.

前記式(2)で示されるアニオン成分を含まない電解液を得る方法は特に限定されるものではないが、上記の通り、当該成分は、前記式(1)で示されるアニオンを有する塩における不純物として混入してくる。このため、式(1)で示されるアニオンを有する塩に含まれる、式(2)で示されるアニオンの割合を少なくする方法が一般的である。しかしながら、通常、前記式(1)で示されるアニオンを有する塩を再結晶することは困難である。また活性炭等による吸着でも除去され難い。従って、式(1)で示されるアニオンを有する塩の合成過程において、このような不純物が混入することを防止することが好ましい。   The method for obtaining the electrolytic solution not containing the anion component represented by the formula (2) is not particularly limited. As described above, the component is an impurity in the salt having the anion represented by the formula (1). As it comes in. For this reason, the method of reducing the ratio of the anion shown by Formula (2) contained in the salt which has an anion shown by Formula (1) is common. However, it is usually difficult to recrystallize a salt having an anion represented by the formula (1). It is also difficult to remove by adsorption with activated carbon or the like. Therefore, it is preferable to prevent such impurities from being mixed in the process of synthesizing the salt having an anion represented by the formula (1).

前記の通り式(1)で示されるアニオンを有する塩の代表的な方法では、まず、R’SO−X(但し、R’は炭素数1〜12の炭化水素基)をフッ素化してRfSO−Fを製造する。 As described above, in the representative method of the salt having an anion represented by the formula (1), first, R′SO 2 —X (where R ′ is a hydrocarbon group having 1 to 12 carbon atoms) is fluorinated to give Rf producing 1 SO 2 -F.

ついで第一の方法としては、該RfSO−Fと、無水アンモニアとM・F(Mはリチウム、ナトリウム、カリウム等のアルカリ金属類)とを反応させて、(RfSO・Mを得る方法がある。 Then as the first method, and the Rf 1 SO 2 -F, anhydrous ammonia and M + · F - to (M is lithium, sodium, alkali metals such as potassium) is reacted with, (Rf 1 SO 2 ) There is a method for obtaining 2 N · M + .

第二の方法としては、上記RfSO−FとアンモニアからRfSO−NHを合成し、次いでこれとアルカリ金属アルコラートを反応させた後、RfSO−Fを加えてRfSOSORf・Mを得る方法がある。 The second method is to synthesize Rf 1 SO 2 —NH 2 from the above Rf 1 SO 2 —F and ammonia, then react this with alkali metal alcoholate, and then add Rf 2 SO 2 —F to add Rf 2 SO 2 —F. there are SO 2 Rf 2 · M + method of obtaining - 1 SO 2 N.

また上記方法ではアルカリ金属塩が得られるため、必要に応じて塩交換法などにより、前述したような有機オニウムカチオンに交換すればよい。   In addition, since the alkali metal salt is obtained by the above method, the organic onium cation may be exchanged as described above by a salt exchange method or the like as necessary.

この工程から理解されるように、RfSO−F(及びRfSO−F)として可能な限り純度の高いもの、即ち、RSO−X(Rは、少なくとも1つの水素原子を含む炭素数1〜12のフルオロアルキル基)の混入量の少ないものを用いることが効果的である。上記工程により合成を行う場合、R’SO−Xをフッ素化することによりRfSO−Fを合成した後、不純物として含まれるRSO−Xを蒸留等の精製処理により除いてもよいが、反応条件をより厳密に設定して、フッ素化されなかった水素原子が残らないようにする方法がより簡単で経済的でもある。 As can be understood from this process, Rf 1 SO 2 -F (and Rf 2 SO 2 -F) are as pure as possible, that is, RSO 2 -X (R contains at least one hydrogen atom). It is effective to use one having a small amount of mixing of (C1-C12 fluoroalkyl group). When performing synthesis by the step, after synthesized RfSO 2 -F by fluorinating a R'SO 2 -X, although the RSO 2 -X contained as impurities may be removed by purification processes such as distillation, It is simpler and more economical to set the reaction conditions more strictly so that hydrogen atoms that have not been fluorinated remain.

一方、前記式(1)で示されるアニオンを有する塩中に存在する不純物由来以外の経路で、前記式(2)で示されるアニオン成分が本発明の電解液中に混入することは通常ない。従って、上述したような方法により、前記式(1)で示されるアニオンを有する塩中に含まれる式(2)で示されるアニオン成分の量を制御すれば、本発明の電解液を容易に得ることができる。   On the other hand, the anion component represented by the formula (2) is not usually mixed into the electrolytic solution of the present invention through a route other than the impurities derived from the salt having the anion represented by the formula (1). Therefore, if the amount of the anion component represented by the formula (2) contained in the salt having an anion represented by the formula (1) is controlled by the method as described above, the electrolytic solution of the present invention can be easily obtained. be able to.

前記式(1)で示されるアニオンを有する塩中に含まれる式(2)で示されるアニオン成分の割合は、以下の方法で求めることができる。即ち、該塩を適当な重水素化溶媒に溶解させH−NMR、もしくは、F−NMRを測定することで可能である。H−NMRスペクトルにおいてはテトラメチルシランのメチル基の化学シフト0ppmに対して6.1から6.5ppm付近にFとカップリングしている多重ピークとして検出される。F−NMRにおいてはCFH基であれば−120〜−125ppmにCFHであれば−181〜―187ppmにHとカップリングしている多重線として検出される。また、この不純物の含有量はF−NMRスペクトルにおいて主成分のピークに対してその比を測定することで定量することが可能である。また、H−NMRスペクトルにおいては適当な基準物質を秤量し添加する事によって定量可能である。 The ratio of the anion component represented by the formula (2) contained in the salt having an anion represented by the formula (1) can be determined by the following method. That is, it is possible to dissolve the salt in a suitable deuterated solvent and measure H-NMR or F-NMR. In the H-NMR spectrum, it is detected as a multiple peak coupling with F in the vicinity of 6.1 to 6.5 ppm with respect to 0 ppm of chemical shift of the methyl group of tetramethylsilane. In F-NMR, if it is a CF 2 H group, it is detected as a multiplet that is coupled to H from −120 to −187 ppm if it is CFH to −181 to −187 ppm. The impurity content can be quantified by measuring the ratio of the main component peak in the F-NMR spectrum. The H-NMR spectrum can be quantified by weighing and adding an appropriate reference substance.

上記式(1)で示されるアニオンを有する塩は、常温付近では液体の、いわゆる常温溶融塩(イオン性液体とも呼ばれる)であるものも多く、よって該常温溶融塩をそのまま電解液として使用する(即ち、溶媒を用いず電解質のみで電解液とする)こともできるが、非水溶媒に溶解して電解液とすることがより好ましい。該非水溶媒としては、非水電解液における溶媒として公知の有機溶媒を特に制限なく採用できる。通常、用いる有機溶媒は、該有機溶媒の電気化学安定性と電解質塩の溶解性から選択される。有機溶媒は1種単独でも2種以上を併用しても良い。好適な有機溶媒の例としては、鎖状エーテル類(ジエチルエーテル、ジプロピルエーテル、メチルイソブチルエーテル、エチレングリコールジメチルエーテル等)や環状エーテル類(テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,3−ジオキサラン等)やアミド類(N,N−ジメチルホルムアミド、N−メチルピロリドン等)やカルボン酸エステル(酢酸メチル、酢酸エチル等)やラクトン類(γ−ブチロラクトン等)やニトリル類(アセトニトリル、プロピオニトリル、3−メトキシプロピオニトリル等)やカーボネート類(ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート等鎖状カーボネートやエチレンカーボネート、プロピレンカーボネート等の環状カーボネート)やスルホキシド類(ジメチルスルホキシド、スルフォラン、3−メチルスルフォラン等)が挙げられる。この中で好ましいのはカーボネート類、及び、スルホシキド類、エーテル類である。   Many of the salts having an anion represented by the above formula (1) are so-called room temperature molten salts (also called ionic liquids) that are liquid near room temperature, and therefore the room temperature molten salt is used as an electrolytic solution as it is ( That is, it is possible to use an electrolyte alone without using a solvent, but it is more preferable to dissolve in a non-aqueous solvent to obtain an electrolytic solution. As the non-aqueous solvent, a known organic solvent can be employed without particular limitation as a solvent in the non-aqueous electrolyte. Usually, the organic solvent to be used is selected from the electrochemical stability of the organic solvent and the solubility of the electrolyte salt. The organic solvent may be used alone or in combination of two or more. Examples of suitable organic solvents include chain ethers (diethyl ether, dipropyl ether, methyl isobutyl ether, ethylene glycol dimethyl ether, etc.) and cyclic ethers (tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1, 3-dioxalane, etc.), amides (N, N-dimethylformamide, N-methylpyrrolidone, etc.), carboxylic acid esters (methyl acetate, ethyl acetate, etc.), lactones (γ-butyrolactone, etc.) and nitriles (acetonitrile, pro Pionitrile, 3-methoxypropionitrile, etc.) and carbonates (dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, etc.) chain carbonates, ethylene carbonate, propylene carbonate Cyclic carbonate) and sulfoxides (dimethyl sulfoxide, sulfolane, 3-methyl sulfonium run, etc.). Of these, carbonates, sulfoxides, and ethers are preferable.

本発明の非水電解液において上記のような有機溶媒を配合する場合、前記電解質(塩)と有機溶媒の割合は、特に限定されるものではなく、該非水電解質の用途等に応じて適宜設定すればよいが、通常は、電解質濃度が0.1〜2.0mol/Lとなるように設定すればよい。   When the organic solvent as described above is blended in the nonaqueous electrolytic solution of the present invention, the ratio of the electrolyte (salt) and the organic solvent is not particularly limited, and is appropriately set according to the use of the nonaqueous electrolyte. In general, the electrolyte concentration may be set to 0.1 to 2.0 mol / L.

また本発明の電解液には、上記電解質(塩)及び有機溶媒に加えて、本発明の効果を損なわない範囲で、非水電解液の配合成分として公知の他の成分を加えてもよい。   Moreover, in addition to the said electrolyte (salt) and an organic solvent, you may add the other component well-known as a mixing | blending component of nonaqueous electrolyte in the range which does not impair the effect of this invention in the electrolyte solution of this invention.

本発明の非水電解液は、一次もしくは二次のリチウム電池、色素増感型太陽電池、電気二重層キャパシタ、表示素子等の電気化学デバイス用、あるいは電析浴、化学合成の媒体として、各々公知の手段で使用することができる。   The non-aqueous electrolyte of the present invention is used as a primary or secondary lithium battery, dye-sensitized solar cell, electric double layer capacitor, display element or other electrochemical device, or as an electrodeposition bath or chemical synthesis medium, respectively. It can be used by known means.

以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。なお、各物性は以下の方法により測定した。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these. Each physical property was measured by the following method.

(1)NMR測定方法
試料0.5gを重水素化アセトニトリル0.75mlに溶解し日本電子製核磁気共鳴装置JNM−LA500によりH、19F核を測定した。走査回数はH、19F核ともに200回行った。Hのピーク位置は重水素化アセトニトリル溶媒の残存水素ピークを2.07ppmとして基準とした。19Fのピーク位置は1,4−ビストリフルオロメチルベンゼンのピークを外部基準として−64.00ppmとした場合のケミカルシフトを示した。
(1) NMR measurement method 0.5 g of a sample was dissolved in 0.75 ml of deuterated acetonitrile, and 1 H and 19 F nuclei were measured by JEOL nuclear magnetic resonance apparatus JNM-LA500. The number of scans was 200 times for both 1 H and 19 F nuclei. The peak position of 1 H was based on the residual hydrogen peak of deuterated acetonitrile solvent as 2.07 ppm. The peak position of 19 F showed a chemical shift when the peak of 1,4-bistrifluoromethylbenzene was −64.00 ppm with the external reference.

(2)充放電特性の測定
以下のように電気化学キャパシタを作製して充放電特性の評価を行った。宝泉株式会社から購入した電気化学キャパシタ用電極(アルミ箔30μm、活性炭層150μm、静電容量16F/CC)を湿度−80℃以下のグローブボックス内で100mmに切断し180℃にて24時間1Pa以下の減圧で乾燥した。次に前記電極2枚を180℃にて24時間1Pa以下の減圧で乾燥しておいたセパレータを介して対向配置し電極素子を作製した。次に前記電極素子をアルミラミネートセルに入れ、電解液を減圧下で含浸し作製した。この方法により作製した電気化学キャパシタを25℃の環境下0.5mAで所定の電圧(2.0V又は2.5V)まで定電流充電後2時間その電圧を印加し続けた後に、0.25mAで0Vまで定電流放電を行った。その後、内部抵抗を周波数1KHzで交流二端式法により測定し初期抵抗値とした。次に、80℃の環境下、所定の電圧(2.0V又は2.5V)を印加し100Hr保持した後0.25mAで0Vまで定電流放電を行い、その後、内部抵抗を周波数1KHzで交流二端式法により測定しその値を初期抵抗値で除した値を内部抵抗上昇率として算出した。
(2) Measurement of charge / discharge characteristics Electrochemical capacitors were produced as follows, and the charge / discharge characteristics were evaluated. Electrochemical capacitor electrodes (aluminum foil 30 μm, activated carbon layer 150 μm, electrostatic capacity 16 F / CC) purchased from Hosen Co., Ltd. were cut into 100 mm 2 in a glove box with a humidity of −80 ° C. or less, and then 180 ° C. for 24 hours. It dried at the reduced pressure of 1 Pa or less. Next, the two electrodes were placed opposite to each other through a separator that had been dried at 180 ° C. for 24 hours under a reduced pressure of 1 Pa or less to produce an electrode element. Next, the electrode element was placed in an aluminum laminate cell and impregnated with an electrolyte under reduced pressure. The electrochemical capacitor produced by this method was applied with a constant current to a predetermined voltage (2.0 V or 2.5 V) at 0.5 mA in an environment of 25 ° C. for 2 hours, and then applied at 0.25 mA. Constant current discharge was performed to 0V. Thereafter, the internal resistance was measured by an alternating current double-ended method at a frequency of 1 KHz to obtain an initial resistance value. Next, a predetermined voltage (2.0 V or 2.5 V) is applied in an environment of 80 ° C. and held for 100 hours, and then a constant current discharge is performed to 0 V at 0.25 mA, and then the internal resistance is AC 2 at a frequency of 1 KHz. A value obtained by measuring by the end method and dividing the value by the initial resistance value was calculated as the rate of increase in internal resistance.

実施例1
市販のメチルスルフォニル塩化物229.0gを2Mのフッ化カリウム水溶液4Lに撹拌しながら50℃で一時間撹拌した。有機層を分離し硫酸ナトリウム塩で乾燥しメチルスルフォニルフルオライド125.4gを得た。この得られたメチルスルフォニルフッ化物を液体フッ化水素を入れた電解フッ素化用の電気化学セルに入れ5.3Vで10日電解フッ素化を行った。反応終了後、ドライアイス−エタノールの寒剤を用いてガス状のトリフルオロスルフォニルフルオライド156.4gを分離、回収した。
Example 1
While stirring 229.0 g of commercially available methylsulfonyl chloride in 4 L of 2M aqueous potassium fluoride solution, the mixture was stirred at 50 ° C. for 1 hour. The organic layer was separated and dried over sodium sulfate to obtain 125.4 g of methylsulfonyl fluoride. The obtained methylsulfonyl fluoride was placed in an electrochemical cell for electrolytic fluorination containing liquid hydrogen fluoride and subjected to electrolytic fluorination at 5.3 V for 10 days. After completion of the reaction, 156.4 g of gaseous trifluorosulfonyl fluoride was separated and collected using a dry ice-ethanol cryogen.

ステンレス製オートクレーブにアセトニトリル300mlとフッ化カリウム91.4gを入れドライスアイス−エタノールで冷却し無水アンモニア7.0gを導入した。続いて、上記で合成したトリフルオロスルフォニルフルオライドを121.4g導入し撹拌しながら室温に戻した。その後、40℃に加熱し1時間保持した。その後、反応液を減圧乾燥しビストリフルオロメタンスルホン酸アミド(TFSI)−カリウム塩227.2gを得た。次にこのTFSI−カリウム塩226.2gを98%濃硫酸に加え加熱溶解した。その後減圧蒸留を行いTFSI−水素化物185.2gを得た。得られたTFSI−水素化物を純水に溶解し炭酸リチウム25gと反応後、過剰の炭酸リチウムをろ過し、濾液を濃縮してTFSI−リチウム塩185.4gを得た。   A stainless steel autoclave was charged with 300 ml of acetonitrile and 91.4 g of potassium fluoride, and cooled with dry ice-ethanol to introduce 7.0 g of anhydrous ammonia. Subsequently, 121.4 g of the trifluorosulfonyl fluoride synthesized above was introduced and returned to room temperature with stirring. Then, it heated at 40 degreeC and hold | maintained for 1 hour. Thereafter, the reaction solution was dried under reduced pressure to obtain 227.2 g of bistrifluoromethanesulfonic acid amide (TFSI) -potassium salt. Next, 226.2 g of this TFSI-potassium salt was added to 98% concentrated sulfuric acid and dissolved by heating. Thereafter, vacuum distillation was performed to obtain 185.2 g of TFSI-hydride. The obtained TFSI-hydride was dissolved in pure water, reacted with 25 g of lithium carbonate, excess lithium carbonate was filtered off, and the filtrate was concentrated to obtain 185.4 g of TFSI-lithium salt.

市販の特級トリエチルメチルアンモニウム(TEMA)塩化物75.8gを超純水500mlに溶解し、それに上記方法で得たTFSI−リチウム塩147.5gを加え10分撹拌後に市販特級塩化メチレン200mlを加え1時間静置し塩交換を行った。静置後市販特級塩化メチレン300mlを加え、塩化メチレン層と水層を分離した。得られた塩化メチレン層に超純水250mlを加え撹拌し水層を分離した。さらに得られた塩化メチレン層に超純水250mlを加え撹拌し水層を分離した。これを計5回行った。得られた塩化メチレン層を60mmHg、35℃で減圧乾燥を行い、TEMA−TFSI塩187.9gを得た。このTEMA−TFSI塩をNMRで測定したが、H−NMRスペクトルの6.3ppm付近、ならびに、F−NMRスペクトルの−125.1ppm付近にシグナルは検出されなかった。   75.8 g of commercially available special grade triethylmethylammonium (TEMA) chloride was dissolved in 500 ml of ultrapure water, 147.5 g of TFSI-lithium salt obtained by the above method was added thereto, and after stirring for 10 minutes, 200 ml of commercially available special grade methylene chloride was added. The mixture was allowed to stand for salt exchange for a time. After standing, 300 ml of commercially available special grade methylene chloride was added, and the methylene chloride layer and the aqueous layer were separated. To the resulting methylene chloride layer, 250 ml of ultrapure water was added and stirred to separate the aqueous layer. Further, 250 ml of ultrapure water was added to the obtained methylene chloride layer and stirred to separate the aqueous layer. This was done a total of 5 times. The resulting methylene chloride layer was dried under reduced pressure at 60 mmHg and 35 ° C. to obtain 187.9 g of a TEMA-TFSI salt. This TEMA-TFSI salt was measured by NMR, but no signal was detected in the vicinity of 6.3 ppm of the H-NMR spectrum and in the vicinity of -125.1 ppm of the F-NMR spectrum.

得られたTEMA−TFSI塩59.5gをエチルメチルカーボネート62.4gに溶解し1.5mol/LのTEMA−TFSI塩のエチルメチルカーボネート溶液を作製した。この電解液を用いて電気化学キャパシタを作製し、所定電圧2.5Vでの充放電特性を測定した。その結果、内部抵抗上昇率は108.1%であった。   59.5 g of the obtained TEMA-TFSI salt was dissolved in 62.4 g of ethyl methyl carbonate to prepare an ethyl methyl carbonate solution of 1.5 mol / L TEMA-TFSI salt. An electrochemical capacitor was prepared using this electrolytic solution, and charge / discharge characteristics at a predetermined voltage of 2.5 V were measured. As a result, the rate of increase in internal resistance was 108.1%.

比較例1
市販のビストリフルオロメタンスルホン酸アミド−リチウム塩を用いて、実施例1と同様にしてTEMA−TFSI塩を得た。このTEMA−TFSI塩をNMRで測定するとH−NMRスペクトルの6.32ppmにトリプレットのピークが観察され、F−NMRスペクトルの−125.1ppmにダブレットのシグナルが検出された。これらのピークはCFHSOSOCFのCFHと推定され、ピーク面積比から主成分のTFSIに対して2014ppm存在していた。
Comparative Example 1
A TEMA-TFSI salt was obtained in the same manner as in Example 1 using a commercially available bistrifluoromethanesulfonic acid amide-lithium salt. When this TEMA-TFSI salt was measured by NMR, a triplet peak was observed at 6.32 ppm in the H-NMR spectrum, and a doublet signal was detected at -125.1 ppm in the F-NMR spectrum. These peaks were estimated to be CF 2 H of CF 2 HSO 2 N SO 2 CF 3 , and were present at 2014 ppm with respect to TFSI as the main component from the peak area ratio.

上記のTEMA−TFSI塩を用いて実施例1と同様に電気化学キャパシタを作製し、充放電特性を測定した。その結果、内部抵抗上昇率は145.2%であった。   An electrochemical capacitor was produced in the same manner as in Example 1 using the above TEMA-TFSI salt, and charge / discharge characteristics were measured. As a result, the rate of increase in internal resistance was 145.2%.

実施例2
実施例1において製造したTEMA−TFSI塩58.5gと、比較例1において製造したTEMA−TFSI塩1.0gをエチルメチルカーボネート62.4gに溶解した電解液を用いて電気化学キャパシタを作製し、充放電特性を測定した。その結果、内部抵抗上昇率は106.8%であった。
Example 2
An electrochemical capacitor was prepared using an electrolyte obtained by dissolving 58.5 g of the TEMA-TFSI salt produced in Example 1 and 1.0 g of the TEMA-TFSI salt produced in Comparative Example 1 in 62.4 g of ethyl methyl carbonate, The charge / discharge characteristics were measured. As a result, the internal resistance increase rate was 106.8%.

上記の混合によって得たTEMA−TFSI塩をNMRで測定するとH−NMRスペクトルの6.32ppmにトリプレットのピークが観察され、F−NMRスペクトルの−125.1ppmにダブレットのシグナルが検出された。これらのピークはCFHSOSOCFのCFHと推定され、ピーク面積比から主成分のTFSIに対して37ppm存在していた。 When the TEMA-TFSI salt obtained by the above mixing was measured by NMR, a triplet peak was observed at 6.32 ppm of the H-NMR spectrum, and a doublet signal was detected at -125.1 ppm of the F-NMR spectrum. These peaks were estimated as CF 2 H of CF 2 HSO 2 N SO 2 CF 3 , and were present at 37 ppm with respect to TFSI as the main component from the peak area ratio.

比較例2
実施例1において製造したTEMA−TFSI塩56.5gと、比較例1において製造したTEMA−TFSI塩3.0gをエチルメチルカーボネート62.4gに溶解した電解液を用いて電気化学キャパシタを作製し、充放電特性を測定した。その結果、内部抵抗上昇率は125.3%であった。
Comparative Example 2
An electrochemical capacitor was prepared using an electrolyte obtained by dissolving 56.5 g of the TEMA-TFSI salt produced in Example 1 and 3.0 g of the TEMA-TFSI salt produced in Comparative Example 1 in 62.4 g of ethyl methyl carbonate, The charge / discharge characteristics were measured. As a result, the rate of increase in internal resistance was 125.3%.

上記の混合によって得たTEMA−TFSI塩をNMRで測定するとH−NMRスペクトルの6.32ppmにトリプレットのピークが観察され、F−NMRスペクトルの−125.1ppmにダブレットのシグナルが検出された。これらのピークはCFHSOSOCFのCFHと推定され、ピーク面積比から主成分のビストリフルオロメタンスルホン酸アミドに対して97ppm存在していた。 When the TEMA-TFSI salt obtained by the above mixing was measured by NMR, a triplet peak was observed at 6.32 ppm of the H-NMR spectrum, and a doublet signal was detected at -125.1 ppm of the F-NMR spectrum. These peaks were estimated as CF 2 H of CF 2 HSO 2 N SO 2 CF 3 , and 97 ppm was present with respect to the main component bistrifluoromethanesulfonic acid amide from the peak area ratio.

以上の実施例1、2及び比較例1、2における電解液組成と内部抵抗上昇率の評価結果を併せて以下の表1に記載した。   The electrolytic solution compositions and the evaluation results of the internal resistance increase rate in Examples 1 and 2 and Comparative Examples 1 and 2 are listed in Table 1 below.

Figure 2006210259
Figure 2006210259

実施例3
市販の特級1−メチル−3−エチルイミダゾリウム(EMI)臭化物95.4gを超純水500mlに溶解し、それに実施例1と同様にして製造したTFSI−リチウム塩147.9gを加え10分撹拌後に市販特級塩化メチレン200mlを加え1時間静置し塩交換を行った。静置後市販特級塩化メチレン300mlを加え、塩化メチレン層と水層を分離した。得られた塩化メチレン層に超純水250mlを加え撹拌し水層を分離した。さらに得られた塩化メチレン層に超純水250mlを加え撹拌し水層を分離した。これを計5回行った。得られた塩化メチレン層を60mmHg、35℃で減圧乾燥を行い、EMI−TFSI塩176.9gを得た。このEMI−TFSI塩をNMRで測定したが、H−NMRスペクトルの6.3ppm付近、ならびに、F−NMRスペクトルの−125.1ppm付近にシグナルは検出されなかった。
Example 3
95.4 g of commercially available special grade 1-methyl-3-ethylimidazolium (EMI) bromide was dissolved in 500 ml of ultrapure water, and 147.9 g of TFSI-lithium salt produced in the same manner as in Example 1 was added thereto, followed by stirring for 10 minutes. Later, 200 ml of commercially available special grade methylene chloride was added and the mixture was allowed to stand for 1 hour for salt exchange. After standing, 300 ml of commercially available special grade methylene chloride was added, and the methylene chloride layer and the aqueous layer were separated. To the resulting methylene chloride layer, 250 ml of ultrapure water was added and stirred to separate the aqueous layer. Further, 250 ml of ultrapure water was added to the obtained methylene chloride layer and stirred to separate the aqueous layer. This was done a total of 5 times. The obtained methylene chloride layer was dried under reduced pressure at 60 mmHg and 35 ° C. to obtain 176.9 g of an EMI-TFSI salt. This EMI-TFSI salt was measured by NMR, but no signal was detected in the vicinity of 6.3 ppm of the H-NMR spectrum and in the vicinity of -125.1 ppm of the F-NMR spectrum.

得られたEMI−TFSI塩55.7gをエチルメチルカーボネート62.4gに溶解し1.5mol/LのEMI−TFSI塩のエチルメチルカーボネート溶液を作製した。この電解液を用いて電気化学キャパシタを作製し、所定電圧2.0Vでの充放電特性を測定した。その結果、内部抵抗上昇率は108.7%であった。   55.7 g of the obtained EMI-TFSI salt was dissolved in 62.4 g of ethyl methyl carbonate to prepare an ethyl methyl carbonate solution of 1.5 mol / L of EMI-TFSI salt. An electrochemical capacitor was prepared using this electrolytic solution, and charge / discharge characteristics at a predetermined voltage of 2.0 V were measured. As a result, the rate of increase in internal resistance was 108.7%.

比較例3
市販のビストリフルオロメタンスルホン酸アミド−リチウム塩を用いて、実施例3と同様にしてEMI−TFSI塩を得た。このEMI−TFSI塩をNMRで測定するとH−NMRスペクトルの6.32ppmにトリプレットのピークが観察され、F−NMRスペクトルの−125.1ppmにダブレットのシグナルが検出された。これらのピークはCFHSOSOCFのCFHと推定され、ピーク面積比から主成分のTFSIに対して2160ppm存在していた。
Comparative Example 3
An EMI-TFSI salt was obtained in the same manner as in Example 3 using a commercially available bistrifluoromethanesulfonic acid amide-lithium salt. When this EMI-TFSI salt was measured by NMR, a triplet peak was observed at 6.32 ppm in the H-NMR spectrum, and a doublet signal was detected at -125.1 ppm in the F-NMR spectrum. These peaks were estimated as CF 2 H of CF 2 HSO 2 N SO 2 CF 3 , and were found to be 2160 ppm with respect to TFSI as the main component from the peak area ratio.

上記、EMI−TFSI塩を用いて電気化学キャパシタを作製し、充放電特性を測定した。その結果、内部抵抗上昇率は172.9%であった。   The electrochemical capacitor was produced using the said EMI-TFSI salt, and the charge / discharge characteristic was measured. As a result, the rate of increase in internal resistance was 172.9%.

実施例4
実施例3において製造したEMI−TFSI塩54.7gと、比較例3において製造したEMI−TFSI塩1.0gをエチルメチルカーボネート62.4gに溶解した電解液を用いて電気化学キャパシタを作製し、充放電特性を測定した。その結果、内部抵抗上昇率は109.4%であった。
Example 4
An electrochemical capacitor was prepared using an electrolytic solution obtained by dissolving 54.7 g of the EMI-TFSI salt produced in Example 3 and 1.0 g of the EMI-TFSI salt produced in Comparative Example 3 in 62.4 g of ethyl methyl carbonate, The charge / discharge characteristics were measured. As a result, the rate of increase in internal resistance was 109.4%.

上記の混合によって得たEMI−TFSI塩をNMRで測定するとH−NMRスペクトルの6.32ppmにトリプレットのピークが観察され、F−NMRスペクトルの−125.1ppmにダブレットのシグナルが検出された。これらのピークはCFHSOSOCFのCFHと推定され、ピーク面積比から主成分のTFSIに対して42ppm存在していた。 When the EMI-TFSI salt obtained by the above mixing was measured by NMR, a triplet peak was observed at 6.32 ppm in the H-NMR spectrum, and a doublet signal was detected at -125.1 ppm in the F-NMR spectrum. These peaks were estimated as CF 2 H of CF 2 HSO 2 N SO 2 CF 3 , and were present at 42 ppm relative to TFSI as the main component from the peak area ratio.

比較例4
実施例3において製造したEMI−TFSI塩53.7gと、比較例3において製造したEMI−TFSI塩2.0gをエチルメチルカーボネート62.4gに溶解した電解液を用いて電気化学キャパシタを作製し、充放電特性を測定した。その結果、内部抵抗上昇率は131.6%であった。
Comparative Example 4
An electrochemical capacitor was produced using an electrolytic solution obtained by dissolving 53.7 g of the EMI-TFSI salt produced in Example 3 and 2.0 g of the EMI-TFSI salt produced in Comparative Example 3 in 62.4 g of ethyl methyl carbonate, The charge / discharge characteristics were measured. As a result, the internal resistance increase rate was 131.6%.

上記の混合によって得たEMI−TFSI塩をNMRで測定するとH−NMRスペクトルの6.32ppmにトリプレットのピークが観察され、F−NMRスペクトルの−125.1ppmにダブレットのシグナルが検出された。これらのピークはCFHSOSOCFのCFHと推定され、ピーク面積比から主成分のTFSIに対して68ppm存在していた。 When the EMI-TFSI salt obtained by the above mixing was measured by NMR, a triplet peak was observed at 6.32 ppm in the H-NMR spectrum, and a doublet signal was detected at -125.1 ppm in the F-NMR spectrum. These peaks were estimated to be CF 2 H of CF 2 HSO 2 N SO 2 CF 3 , and were present at 68 ppm with respect to TFSI as the main component from the peak area ratio.

以上の実施例3、4及び比較例3、4における電解液組成と内部抵抗上昇率の評価結果を併せて以下の表2に記載した。   The electrolytic solution composition and the evaluation results of the rate of increase in internal resistance in Examples 3 and 4 and Comparative Examples 3 and 4 are shown in Table 2 below.

Figure 2006210259
Figure 2006210259

表1、2に示すように、電解液中に含まれる完全フッ素化されていない不純物の割合が、完全フッ素化物である電解質に対して50ppm以下である場合には、内部抵抗の上昇率が110%以下であり、50ppm以上含まれる場合に比べて極めて抑制されていることがわかる。
As shown in Tables 1 and 2, when the ratio of impurities that are not completely fluorinated in the electrolytic solution is 50 ppm or less with respect to the electrolyte that is completely fluorinated, the rate of increase in internal resistance is 110. It can be seen that it is extremely suppressed as compared with the case where the content is 50% or more.

Claims (2)

下記式(1)
RfSOSORf (1)
(上記式中、Rf及びRfは各々独立に、炭素数1〜12のパーフルオロアルキル基である)
で示されるアニオンを有する塩を電解質として含む非水電解液であって、該非水電解液中に含まれる、下記式(2)
SOSO (2)
(上記式中、R及びRは各々独立に、炭素数1〜12のフルオロアルキル基であり、かつR、Rのいずれか一方もしくは双方は、少なくとも1つの水素原子を含むフルオロアルキル基である)
で示されるアニオンの量が、上記式(1)で示されるアニオンに対して50ppm以下であることを特徴とする非水電解液。
Following formula (1)
Rf 1 SO 2 N SO 2 Rf 2 (1)
(In the above formula, Rf 1 and Rf 2 are each independently a C 1-12 perfluoroalkyl group)
A nonaqueous electrolytic solution containing a salt having an anion represented by the following formula (2), which is contained in the nonaqueous electrolytic solution:
R 1 SO 2 N SO 2 R 2 (2)
(In the above formula, R 1 and R 2 are each independently a fluoroalkyl group having 1 to 12 carbon atoms, and either or both of R 1 and R 2 are fluoroalkyls containing at least one hydrogen atom) Base)
The amount of the anion represented by the formula (1) is 50 ppm or less with respect to the anion represented by the above formula (1).
請求項1記載の非水電解液を用いた電気化学デバイス。
An electrochemical device using the nonaqueous electrolytic solution according to claim 1.
JP2005023721A 2005-01-31 2005-01-31 Nonaqueous electrolytic solution Pending JP2006210259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005023721A JP2006210259A (en) 2005-01-31 2005-01-31 Nonaqueous electrolytic solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005023721A JP2006210259A (en) 2005-01-31 2005-01-31 Nonaqueous electrolytic solution

Publications (1)

Publication Number Publication Date
JP2006210259A true JP2006210259A (en) 2006-08-10

Family

ID=36966842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005023721A Pending JP2006210259A (en) 2005-01-31 2005-01-31 Nonaqueous electrolytic solution

Country Status (1)

Country Link
JP (1) JP2006210259A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324554A (en) * 2005-05-20 2006-11-30 Asahi Kasei Electronics Co Ltd Fluorine-containing organic sulfonyl imido salt electrolyte, and electrolytic solution and electrochemical component using same
JP2012084374A (en) * 2010-10-12 2012-04-26 Sony Corp Photoelectric conversion element, manufacturing method therefor, electrolyte layer for photoelectric conversion element and electronic apparatus
WO2023220857A1 (en) * 2022-05-16 2023-11-23 宁德时代新能源科技股份有限公司 Electrolyte, secondary battery comprising same, battery module, battery pack, and electric apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272982A (en) * 1994-03-30 1995-10-20 Mitsubishi Chem Corp Electrolyte for electric double-layer capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272982A (en) * 1994-03-30 1995-10-20 Mitsubishi Chem Corp Electrolyte for electric double-layer capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324554A (en) * 2005-05-20 2006-11-30 Asahi Kasei Electronics Co Ltd Fluorine-containing organic sulfonyl imido salt electrolyte, and electrolytic solution and electrochemical component using same
JP4684006B2 (en) * 2005-05-20 2011-05-18 旭化成株式会社 Fluorine-containing organic sulfonylimide salt electrolyte, electrolytic solution and electrochemical element using the same
JP2012084374A (en) * 2010-10-12 2012-04-26 Sony Corp Photoelectric conversion element, manufacturing method therefor, electrolyte layer for photoelectric conversion element and electronic apparatus
WO2023220857A1 (en) * 2022-05-16 2023-11-23 宁德时代新能源科技股份有限公司 Electrolyte, secondary battery comprising same, battery module, battery pack, and electric apparatus

Similar Documents

Publication Publication Date Title
US9985317B2 (en) Alkali metal salt of fluorosulfonyl imide, and production method therefor
JP6205451B2 (en) Electrolytic solution, method for producing the same, and power storage device using the same
JP6645855B2 (en) Method for producing fluorosulfonylimide compound
JP3542762B2 (en) Lithium fluoroalkyl phosphate compounds and use of these compounds as electrolyte salts
JP4684006B2 (en) Fluorine-containing organic sulfonylimide salt electrolyte, electrolytic solution and electrochemical element using the same
JP2017052689A (en) Granules or powder of disulfonyl amide salt
JPWO2013145890A1 (en) Electrolytic solution for electrochemical devices, aluminum electrolytic capacitor and electric double layer capacitor
JP5074817B2 (en) BF3 complex and method for producing BF3 complex
JP2005104845A (en) Quaternary ammonium ambient-temperature molten salt and manufacturing method
JP2016091808A (en) Method for purifying liquid electrolyte, and method for manufacturing liquid electrolyte
JP2004175666A (en) Onium salt
JP2006210259A (en) Nonaqueous electrolytic solution
JPWO2005123656A1 (en) NOVEL METHYL CARBONATES, PROCESS FOR PRODUCING THE SAME, NON-AQUEOUS ELECTROLYTE SOLUTION
JP2004123631A (en) Onium salt
Zafarani-Moattar et al. Effect of choline chloride based deep eutectic solvents on lithium perchlorate+ propylene carbonate solutions: Thermodynamic, transport, electrochemical and computational study
JP3715436B2 (en) Salt, electrolytic solution and electrochemical device using the same
JP2003040885A (en) Glycerol dicarbonate derivative, non-aqueous electrolyte solution produced by using the same, polymer electrolyte and cell
JP2017122058A (en) Aminosulfonyl imide salt
JP2016069277A (en) Method for producing fluorosulfonylimide compound
JP2019099389A (en) Sulfonyl imide compound, electrolyte composition containing the same, and method for producing sulfonyl imide compound
JP2009054283A (en) Electrolyte containing new fluorine compound, electrolyte solution, and electrochemical device
JP2023036880A (en) composite electrolyte
WO2020025502A1 (en) New components for electrolyte compositions
JP2019099388A (en) Solution, electrolyte and lithium ion battery containing the same
JP2023036567A (en) Ionic liquid, and composite electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315