JP2019099388A - Solution, electrolyte and lithium ion battery containing the same - Google Patents

Solution, electrolyte and lithium ion battery containing the same Download PDF

Info

Publication number
JP2019099388A
JP2019099388A JP2017228257A JP2017228257A JP2019099388A JP 2019099388 A JP2019099388 A JP 2019099388A JP 2017228257 A JP2017228257 A JP 2017228257A JP 2017228257 A JP2017228257 A JP 2017228257A JP 2019099388 A JP2019099388 A JP 2019099388A
Authority
JP
Japan
Prior art keywords
solution
mass ppm
electrolyte
mass
lifsi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017228257A
Other languages
Japanese (ja)
Inventor
弘行 水野
Hiroyuki Mizuno
弘行 水野
好洋 森田
Yoshihiro Morita
好洋 森田
幸宏 深田
Yukihiro Fukada
幸宏 深田
慎弥 柴田
Shinya Shibata
慎弥 柴田
直彦 板山
Naohiko Itayama
直彦 板山
裕大 勝山
Yuudai Katsuyama
裕大 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2017228257A priority Critical patent/JP2019099388A/en
Priority to EP18208702.3A priority patent/EP3489193A1/en
Priority to CN201811425380.8A priority patent/CN109911870A/en
Priority to US16/201,078 priority patent/US20190165417A1/en
Priority to KR1020180149428A priority patent/KR20190062299A/en
Publication of JP2019099388A publication Critical patent/JP2019099388A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide an electrolyte excellent in high temperature properties.SOLUTION: The present invention provides an electrolyte containing a compound represented by the following formula (1) of 0.1 mass ppm-180000 mass ppm (where, R, R, Rmay be the same or different to denote fluorine or a C1-6 fluorinated alkyl group, M denotes an alkali metal).SELECTED DRAWING: None

Description

本発明は、溶液、電解液、及びそれを含むリチウムイオン電池に関する。   The present invention relates to a solution, an electrolyte, and a lithium ion battery including the same.

フルオロスルホニルイミドの塩又はその誘導体は、N(SOF)基又はN(SOF)基を有する化合物の中間体として有用である。また、電解質、電池又はキャパシタの電解液への添加物、選択的求電子フッ素化剤、光酸発生剤、熱酸発生剤、近赤外線吸収色素等として使用されるなど、様々な用途において有用な化合物である(特許文献1)。 The fluorosulfonyl imide salt or a derivative thereof is useful as an intermediate of a compound having an N (SO 2 F) group or an N (SO 2 F) 2 group. In addition, it is useful in various applications such as being used as additives to electrolytes of electrolytes, batteries or capacitors, selective electrophilic fluorinating agents, photo acid generators, thermal acid generators, near infrared absorption dyes, etc. It is a compound (patent document 1).

国際公開第2011/149095号International Publication No. 2011/149095

しかしながら、電池又はキャパシタに含まれる電解液は、使用中に頻繁に高温にさらされる。そのため、電解液には良好な高温特性が求められるが、フルオロスルホニルイミドの塩又はその誘導体を用いた電解液には高温特性の観点から改善の余地がある。   However, the electrolyte contained in the battery or capacitor is frequently subjected to high temperatures during use. Therefore, the electrolytic solution is required to have good high-temperature characteristics, but the electrolytic solution using a fluorosulfonylimide salt or a derivative thereof has room for improvement from the viewpoint of high-temperature characteristics.

本発明は、このような事情に鑑みてなされたものであり、高温での用途に適した溶液、高温特性に優れる電解液、及びそれを用いたリチウムイオン電池を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a solution suitable for use at high temperature, an electrolytic solution excellent in high temperature characteristics, and a lithium ion battery using the same.

本発明の溶液は、下記式(1)で表される化合物を0.1質量ppm〜180000質量ppm含む。

Figure 2019099388

(一般式(1)中、R、R、Rはそれぞれフッ素又は炭素数1〜6のフッ化アルキル基を表す。) The solution of the present invention contains 0.1 mass ppm to 180,000 mass ppm of a compound represented by the following formula (1).
Figure 2019099388

(In general formula (1), R 1 , R 2 and R 3 each represent fluorine or a fluorinated alkyl group having 1 to 6 carbon atoms.)

本発明の溶液は、さらにLiFSOを0.1質量ppm〜10000質量ppm含むと好ましい。 The solution of the present invention preferably further contains 0.1 mass ppm to 10,000 mass ppm of LiFSO 3 .

本発明の溶液は、LiPF、LiBF、及びLiN(SO2n+1(n=0〜6の整数)からなる群から選択される少なくとも1種の化合物をさらに含むと好ましい。 The solution of the present invention preferably further comprises at least one compound selected from the group consisting of LiPF 6 , LiBF 4 , and LiN (SO 2 C n F 2n + 1 ) 2 (n is an integer of 0 to 6).

本発明の溶液は、リチウムビス(フルオロスルホニル)イミドを1質量ppm〜90質量%含むと好ましい。   The solution of the present invention preferably contains 1 mass ppm to 90 mass% of lithium bis (fluorosulfonyl) imide.

本発明の溶液において、上記式(1)のR、R、Rがいずれもフッ素原子であると好ましい。 In the solution of the present invention, it is preferable that all of R 1 , R 2 and R 3 in the above formula (1) are a fluorine atom.

本発明の電解液は上記の溶液を含む。   The electrolyte of the present invention contains the above solution.

本発明のリチウムイオン電池は、上記電解液を含む。   The lithium ion battery of the present invention contains the above-mentioned electrolytic solution.

本発明によれば、高温での用途に適した溶液、高温特性に優れる電解液、及びそれを用いたリチウムイオン電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the solution suitable for the use in high temperature, the electrolyte solution which is excellent in high temperature characteristics, and a lithium ion battery using the same can be provided.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本実施形態の溶液は、下記式(1)で表される化合物を0.1質量ppm〜180000質量ppm含む。なお、本明細書において、溶液における各成分の含有量は、溶液の全量に対する割合(質量ppm等)により表す。

Figure 2019099388

(一般式(1)中、R、R、Rはそれぞれフッ素又は炭素数1〜6のフッ化アルキル基を表す。) The solution of the present embodiment contains 0.1 mass ppm to 180,000 mass ppm of a compound represented by the following formula (1). In addition, in this specification, content of each component in a solution is represented by the ratio (mass ppm etc.) with respect to the whole quantity of a solution.
Figure 2019099388

(In general formula (1), R 1 , R 2 and R 3 each represent fluorine or a fluorinated alkyl group having 1 to 6 carbon atoms.)

上記溶液の用途としては、電池又はキャパシタ等の電解液、選択的求電子フッ素化剤、光酸発生剤、熱酸発生剤、近赤外線吸収色素、帯電防止剤等が挙げられる。特に、上記溶液は、耐熱性に優れる成分を含むため、高温環境で使用する用途に適している。   Examples of applications of the solution include electrolytes such as batteries and capacitors, selective electrophilic fluorinating agents, photoacid generators, thermal acid generators, near infrared absorbing dyes, antistatic agents, and the like. In particular, since the solution contains a component excellent in heat resistance, it is suitable for use in a high temperature environment.

、R、及びRとして、炭素数1〜6のフッ化アルキル基は、直鎖型であってもよく、分岐鎖型であってもよい。なお、炭素数1〜6のフッ化アルキル基は、炭素数1〜6のアルキル基の水素原子を一つ以上フッ素原子に置換したものであってよく、全水素原子がフッ素原子に置換されたパーフルオロアルキル基であってよい。 As R 1 , R 2 and R 3 , the fluorinated alkyl group having 1 to 6 carbon atoms may be linear or branched. The fluorinated alkyl group having 1 to 6 carbon atoms may be one in which one or more hydrogen atoms of the alkyl group having 1 to 6 carbon atoms are substituted with a fluorine atom, and all hydrogen atoms are substituted with a fluorine atom It may be a perfluoroalkyl group.

、R、及びRのいずれもフッ素原子であるものは、下記式(2)で表されるリチウムN,N−ビス(フルオロスルホニル)イミドスルファモイルフルオリドである。

Figure 2019099388
It is lithium N, N-bis (fluorosulfonyl) imide sulfamoyl fluoride represented by following formula (2) that all of R < 1 >, R < 2 > and R < 3 > are fluorine atoms.
Figure 2019099388

溶液における上記式(1)の化合物の含有量は、さらに電池の高温特性を高める観点から、1質量ppm〜20000質量ppmであると好ましく、10ppm〜10000質量ppmであるとより好ましい。   The content of the compound of the above formula (1) in the solution is preferably 1 mass ppm to 20000 mass ppm, and more preferably 10 ppm to 10000 mass ppm, from the viewpoint of further enhancing the high temperature characteristics of the battery.

式(1)の化合物を溶媒に溶解することにより、溶液とすることができる。溶媒としては、キャパシタ、リチウムイオン電池等の電解液に用いられる溶媒であれば、特に制限はないが、例えば、ジメチルカーボネート、エチルメチルカーボネート、エチレンカーボネート、ジエチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、メチルエチルカーボネートなどのカーボネート、γ−ブチロラクトン、ギ酸メチルなどのエステル、1,2−ジメトキシエタン、テトラヒドロフランなどのエーテルなどが挙げられる。これらの溶媒は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。   It can be made into a solution by dissolving the compound of Formula (1) in a solvent. The solvent is not particularly limited as long as it is a solvent used for electrolytic solutions such as capacitors and lithium ion batteries, but, for example, dimethyl carbonate, ethyl methyl carbonate, ethylene carbonate, diethyl carbonate, propylene carbonate, butylene carbonate, methyl ethyl Examples thereof include carbonates such as carbonate, esters such as γ-butyrolactone and methyl formate, and ethers such as 1,2-dimethoxyethane and tetrahydrofuran. These solvents may be used alone or in combination of two or more.

式(1)の化合物は、単独で溶媒に溶解して電解液としてもよいが、LiFSO、LiPF、LiBF、及びLiN(SO2n+1(n=0〜6の整数)からなる群から選択される少なくとも1種の化合物と併用してもよい。これらの中でも、LiFSO、LiPF又はLiN(SOF)(リチウム(ビスフルオロスルホニル)イミド、LiFSIとも呼ぶ)が好ましい。本実施形態の溶液は、リチウムビス(フルオロスルホニル)イミドを1質量ppm〜90質量%含むと好ましい。 The compound of the formula (1) may be independently dissolved in a solvent to form an electrolytic solution, but LiFSO 3 , LiPF 6 , LiBF 4 , and LiN (SO 2 C n F 2n + 1 ) 2 (n = 0 to 6) In combination with at least one compound selected from the group consisting of Among these, LiFSO 3 , LiPF 6 or LiN (SO 2 F) 2 (lithium (bisfluorosulfonyl) imide, also called LiFSI) is preferable. It is preferable that the solution of this embodiment contains 1 mass ppm-90 mass% of lithium bis (fluoro sulfonyl) imides.

電解液がLiFSOを含む場合、電池の抵抗上昇抑制、並びにイオン電導度の低下及び電解液の粘度上昇を抑制できる観点から、その含有量は、0.1質量ppm〜10000質量ppmであると好ましく、10質量ppm〜5000質量ppmであるとより好ましく、100質量ppm〜2000質量ppmであるとさらに好ましい。 When the electrolytic solution contains LiFSO 3 , the content is 0.1 mass ppm to 10000 mass ppm from the viewpoint of suppressing the increase in resistance of the battery and suppressing the decrease in ion conductivity and the increase in viscosity of the electrolytic solution. Preferably, 10 mass ppm to 5000 mass ppm is more preferable, and 100 mass ppm to 2000 mass ppm is more preferable.

電解液がLiFSIを含む場合、イオン電導度向上、並びにアルミニウム等の集電体の腐食を抑制できる観点から、その含有量は、1質量ppm〜900000質量ppmであると好ましく、10000質量ppm〜400000質量ppmであるとより好ましく、30000質量ppm〜150000質量ppmであるとさらに好ましい。   When the electrolytic solution contains LiFSI, the content is preferably 1 mass ppm to 900000 mass ppm from the viewpoint of improving ion conductivity and suppressing corrosion of the current collector such as aluminum, and is preferably 10000 mass ppm to 400000. It is more preferable that it is mass ppm, and it is further more preferable that it is 30000 mass ppm-150,000 mass ppm.

上記式(1)の化合物は、式(XSO)(XSO)NLiで表される化合物の固体を加熱することによって得ることができる。当該化合物において、Xは、上記R、R、及びRに対応するように選択され、式(1)で表される所望の化合物の構造に応じて(XSO)(XSO)NLiで表される化合物を適宜一種又は2種以上を用いることができる。例えば、上記式(2)の化合物は、LiFSIの固体を加熱することによって得られる。加熱温度としては、150℃以上が好ましく、155℃以上であるとより好ましく、155℃〜160℃であるとより好ましい。加熱時間としては、特に制限はなく、例えば、30分以上であると好ましく、1時間〜120時間であるとより好ましい。 The compound of the above formula (1) can be obtained by heating the solid of the compound represented by the formula (XSO 2 ) (XSO 2 ) NLi. In the compound, X is selected to correspond to the above R 1 , R 2 and R 3 , and (XSO 2 ) (XSO 2 ) NLi according to the structure of the desired compound represented by the formula (1) One or two or more of the compounds represented by can be used as appropriate. For example, the compound of the above formula (2) is obtained by heating a solid of LiFSI. As heating temperature, 150 degreeC or more is preferable, It is more preferable in it being 155 degreeC or more, It is more preferable in it being 155 degreeC-160 degreeC. There is no restriction | limiting in particular as heating time, For example, it is preferable in it being 30 minutes or more, and it is more preferable in it being 1 hour-120 hours.

LiFSIの固体を加熱して、上記式(2)の化合物を合成した場合、十分に長く加熱すると、略すべてのLiFSIを上記式(2)の化合物に変換することができるが、LiFSIの固体の一部のみを上記式(2)の化合物に変換することもできる。一部のみを変換した場合、加熱後の固体はLiFSIと上記式(2)の化合物とを含む混合物(電解質組成物)であり、溶媒に溶解して電解液とすることもできる。   When a solid of LiFSI is heated to synthesize a compound of the above formula (2), substantially all of LiFSI can be converted to a compound of the above formula (2) by heating for a sufficiently long time. Only a part can also be converted to the compound of the above formula (2). When only a part is converted, the solid after heating is a mixture (electrolyte composition) containing LiFSI and the compound of the above formula (2), and can be dissolved in a solvent to form an electrolyte.

LiFSIの固体を加熱した際に上記式(2)の化合物が生成する機構は必ずしも定かではないが、本発明者らは、例えば、以下の反応式で表される反応により、式(2)の化合物が生成するものと考えている。   Although the mechanism by which the compound of the above formula (2) is generated when heating a solid of LiFSI is not necessarily clear, the present inventors, for example, have a reaction represented by the following reaction formula. It is believed that the compound is formed.

Figure 2019099388
Figure 2019099388

原料であるビス(フルオロスルホニル)イミド塩としては、市販のものを使用してもよく、合成したものを使用してもよい。アルカリ金属ビス(フルオロスルホニル)イミド塩は、例えば、アンモニアとビス(クロロスルホニル)イミドとの反応により得られたアンモニウムビス(フルオロスルホニル)イミドに、アルカリ金属の水酸化物塩等を使用してカチオン交換反応を行うことによって得ることもできる。   As bis (fluorosulfonyl) imide salt which is a raw material, a commercially available thing may be used and what was synthesize | combined may be used. The alkali metal bis (fluorosulfonyl) imide salt is, for example, a cation of an ammonium bis (fluorosulfonyl) imide obtained by the reaction of ammonia and bis (chlorosulfonyl) imide using a hydroxide salt of an alkali metal or the like. It can also be obtained by conducting an exchange reaction.

本実施形態の電解液は、高温でのサイクル容量維持率などの高温特性に優れるため、キャパシタ、リチウムイオン電池等に好適に用いることができる。   The electrolyte solution of the present embodiment is excellent in high temperature characteristics such as the cycle capacity retention ratio at high temperature, and thus can be suitably used for a capacitor, a lithium ion battery, and the like.

リチウムイオン電池の具体的構成としては特に制限はなく、一般的な構成を採用することができる。正極は、Liと遷移金属との複合酸化物等、一般的に使用される正極材料を含むことができ、負極は、グラファイト、Si又はSnの酸化物等の一般的に使用される負極材料を含むことができる。   There is no restriction | limiting in particular as a concrete structure of a lithium ion battery, A general structure is employable. The positive electrode can include a commonly used positive electrode material such as a composite oxide of Li and a transition metal, and the negative electrode can be a commonly used negative electrode material such as graphite, an oxide of Si or Sn, etc. Can be included.

以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.

19F−NMR測定]
以下では、19F−NMRの測定は、下記の条件で行われた。
測定装置:VNMRS 600(VARIAN社製)
重溶媒:アセトニトリル−d
分析濃度:試料濃度;12質量%、内部標準;3.6質量%
積算回数:16回
[ 19 F-NMR measurement]
In the following, measurement of 19 F-NMR was performed under the following conditions.
Measuring device: VNMRS 600 (manufactured by VARIAN)
Heavy solvent: acetonitrile-d 3
Analysis concentration: sample concentration; 12% by mass, internal standard: 3.6% by mass
Accumulated number of times: 16 times

<合成例1>
〔フルオロスルホニルイミド合成工程(フッ素化工程)〕
攪拌装置を備えたパイレックス(登録商標)製反応容器A(内容量5L)に、窒素気流下で酢酸ブチル990gを投入した。投入された酢酸ブチルに110g(514mmol)のビス(クロロスルホニル)イミドを室温(25℃)で滴下して加えた。
Synthesis Example 1
[Fluorosulfonylimide Synthesis Step (Fluorination Step)]
Under a nitrogen stream, 990 g of butyl acetate was charged into a Pyrex (registered trademark) reaction vessel A (having an inner volume of 5 L) equipped with a stirrer. To the charged butyl acetate, 110 g (514 mmol) of bis (chlorosulfonyl) imide was added dropwise at room temperature (25 ° C.).

得られたビス(クロロスルホニル)イミドの酢酸ブチル溶液に、室温で、フッ化亜鉛55.6g(540mmol、ビス(クロロスルホニル)イミドに対して1.05当量)を一度に加え、フッ化亜鉛が完全に溶解するまで室温で6時間攪拌した。得られた溶液を溶液Aと呼ぶ。   55.6 g (540 mmol, 1.05 equivalents relative to bis (chlorosulfonyl) imide) of zinc fluoride is added in one portion to the obtained butyl acetate solution of bis (chlorosulfonyl) imide at room temperature, and zinc fluoride Stir at room temperature for 6 hours until complete dissolution. The resulting solution is referred to as solution A.

〔カチオン交換工程1−アンモニウム塩の合成〕
攪拌装置を備えたパイレックス(登録商標)製反応容器B(内容量3L)に、25質量%アンモニア水297g(4360mmol、ビス(クロロスルホニル)イミドに対して8.49当量)を投入した。アンモニア水を攪拌しながら、室温で、反応容器Bに、溶液Aを滴下して加えた。溶液Aの滴下終了後、攪拌を停止したところ、反応系は水層と有機層の2層に分かれた。塩化亜鉛などの副生物を含む水層を除去し、有機層であるアンモニウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液を得た。
[Cation Exchange Step 1-Synthesis of Ammonium Salt]
In a Pyrex (registered trademark) reaction vessel B (3 L content) equipped with a stirrer, 297 g (4360 mmol, 8.49 equivalents relative to bis (chlorosulfonyl) imide) of 25 mass% ammonia water was charged. Solution A was added dropwise to the reaction vessel B at room temperature while stirring the ammonia water. After completion of the addition of the solution A, the stirring was stopped, and the reaction system was divided into two layers of an aqueous layer and an organic layer. The aqueous layer containing by-products such as zinc chloride was removed to obtain a butyl acetate solution of ammonium bis (fluorosulfonyl) imide which is an organic layer.

得られた有機層を試料として、19F−NMRの測定を行った(内部標準物質:トリフルオロメチルベンゼン)。得られた19F−NMRのチャートには、アンモニウムビス(フルオロスルホニル)イミドに由来するピーク(δ56.0ppm)が観測された。19F−NMRの測定結果から以下の内部標準方法により、有機層におけるアンモニウムビス(フルオロスルホニル)イミドの濃度を求めた。すなわち、内部標準物質として加えたトリフルオロメチルベンゼンの量、及びこれに由来するピークの積分値と、アンモニウムビス(フルオロスルホニル)イミドに由来するピークの積分値とを比較することにより、試料中のアンモニウムビス(フルオロスルホニル)イミドの含有量を求めた。求められたアンモニウムビス(フルオロスルホニル)イミドの含有量と、19F−NMRの測定を行ったサンプルにおける有機層の濃度(試料濃度)とから、有機層におけるアンモニウムビス(フルオロスルホニル)イミドの濃度を算出した。これにより、アンモニウムビス(フルオロスルホニル)イミドの粗収量は416mmolと算出された。 The 19 F-NMR measurement was performed using the obtained organic layer as a sample (internal standard substance: trifluoromethylbenzene). In the chart of the obtained 19 F-NMR, a peak (δ 56.0 ppm) derived from ammonium bis (fluorosulfonyl) imide was observed. From the measurement results of 19 F-NMR, the concentration of ammonium bis (fluorosulfonyl) imide in the organic layer was determined by the following internal standard method. That is, by comparing the amount of trifluoromethylbenzene added as an internal standard substance, and the integral value of the peak derived from this with the integral value of the peak derived from ammonium bis (fluorosulfonyl) imide, in the sample The content of ammonium bis (fluorosulfonyl) imide was determined. The concentration of ammonium bis (fluorosulfonyl) imide in the organic layer is determined from the determined content of ammonium bis (fluorosulfonyl) imide and the concentration (sample concentration) of the organic layer in the sample for which 19 F-NMR measurement was performed. Calculated. Thus, the crude yield of ammonium bis (fluorosulfonyl) imide was calculated to be 416 mmol.

〔カチオン交換工程2−リチウム塩の合成〕
得られた有機層に含まれるアンモニウムビス(フルオロスルホニル)イミドに対して、リチウムの量が2当量となるように、15質量%の水酸化リチウム水溶液133g(Li換算で834mmol)を加え、室温で10分間攪拌した。その後、反応系から水層を除去して、有機層であるリチウムビス(フルオロスルホニル)イミドの酢酸ブチル溶液を得た。なお、以下、リチウムビス(フルオロスルホニル)イミドをLiFSIとも呼ぶ。
[Cation Exchange Step 2-Synthesis of Lithium Salt]
Add 133 g (834 mmol in terms of Li) of a 15% by mass aqueous solution of lithium hydroxide so that the amount of lithium is 2 equivalents with respect to ammonium bis (fluorosulfonyl) imide contained in the obtained organic layer, and Stir for 10 minutes. Thereafter, the aqueous layer was removed from the reaction system to obtain a butyl acetate solution of lithium bis (fluorosulfonyl) imide which is an organic layer. Hereinafter, lithium bis (fluorosulfonyl) imide is also referred to as LiFSI.

得られた有機層を試料として、ICP発光分光分析法により、フルオロスルホニルイミドのプロトンがリチウムイオンに交換されていることを確認した。
また、得られた有機層を試料として、19F−NMR測定を行った(内部標準物質:トリフルオロメチルベンゼン)。得られた19F−NMRのチャートには、LiFSIのピークが観測された。上述の内部標準法により、有機層におけるLiFSIの濃度を求めた。有機層中のLiFSIの濃度は7質量%であった(有機層の収量:994g、LiFSIの収量:69.6g)。
Using the obtained organic layer as a sample, it was confirmed by ICP emission spectrometry that the proton of fluorosulfonylimide was exchanged to a lithium ion.
In addition, 19 F-NMR measurement was performed using the obtained organic layer as a sample (internal standard substance: trifluoromethylbenzene). The peak of LiFSI was observed in the chart of the obtained 19 F-NMR. The concentration of LiFSI in the organic layer was determined by the internal standard method described above. The concentration of LiFSI in the organic layer was 7% by mass (yield of organic layer: 994 g, yield of LiFSI: 69.6 g).

〔濃縮工程〕
ロータリーエバポレーター(「REN−1000」、IWAKI社製)を使用して、減圧下で、上記カチオン交換工程2で得られた有機層から溶媒を一部留去し、LiFSIの濃縮溶液162gを得た(濃度:43質量%)。
[Concentration step]
A portion of the solvent was distilled off from the organic layer obtained in the above-mentioned cation exchange step 2 under reduced pressure using a rotary evaporator ("REN-1000", manufactured by IWAKI) to obtain 162 g of a concentrated solution of LiFSI (Concentration: 43% by mass).

滴下ロート及び冷却管と溜出受器を備えた500mLセパラブルフラスコに、上記濃縮溶液162gを加えた。真空ポンプを使用して、上記セパラブルフラスコ内を667Paまで減圧し、55℃に加温したオイルバスにセパラブルフラスコを浸漬させた。次いで、セパラブルフラスコ内の濃縮溶液を攪拌しながらゆっくりと加熱することで、フルオロスルホニルイミド合成工程からの反応溶媒である酢酸ブチルを溜出させた。溜出が始まってから10分間の間に溜出受器に回収した液の総量と同体積量の1,2,4−トリメチルベンゼンを貧溶媒としてセパラブルフラスコに添加した。その後、10分毎に溜出液と同体積量の1,2,4−トリメチルベンゼンをセパラブルフラスコ内に添加し続けることで、反応溶液をさらに濃縮しつつ、系内の酢酸ブチル(反応溶媒)と1,2,4−トリメチルベンゼンとの混合比率を変化させて、LiFSIの結晶を析出させた。セパラブルフラスコ内の上澄み液が透明になるまで上記操作を繰り返した後、フラスコを室温まで冷却し、得られたLiFSI結晶の懸濁液を濾過し、LiFSIの結晶を得た。なお、上記濃縮溶液の加熱開始から濃縮工程終了するまでの時間は6時間であり、結晶析出開始までに要した時間は2時間であった。   The above concentrated solution (162 g) was added to a 500 mL separable flask equipped with a dropping funnel and a condenser and a receiver. The pressure in the separable flask was reduced to 667 Pa using a vacuum pump, and the separable flask was immersed in an oil bath heated to 55 ° C. Next, the concentrated solution in the separable flask was slowly heated with stirring to distill the reaction solvent from the fluorosulfonylimide synthesis step, which is the reaction solvent. The total volume of 1,2,4-trimethylbenzene as a poor solvent was added to the separable flask as a poor solvent in the same amount as the total amount of liquid collected in the distillation receiver within 10 minutes after the start of distillation. Thereafter, by continuing to add the same volume of 1,2,4-trimethylbenzene to the separable flask every 10 minutes, the reaction solution is further concentrated, and the butyl acetate in the system (reaction solvent (reaction solvent is removed). Crystals of LiFSI were precipitated by changing the mixing ratio of (1) and 1,2,4-trimethylbenzene. After repeating the above operation until the supernatant in the separable flask became clear, the flask was cooled to room temperature, and the obtained suspension of LiFSI crystals was filtered to obtain crystals of LiFSI. The time from the start of heating of the concentrated solution to the end of the concentration step was 6 hours, and the time required for the start of crystal precipitation was 2 hours.

次いで、得られた結晶を少量のヘキサンで洗浄した後、平底バットに移し、55℃、667Paで12時間減圧乾燥を行い、LiFSIの白色結晶を得た(収量:65.4g)。   Next, the obtained crystals were washed with a small amount of hexane, and then transferred to a flat bottom vat, and dried under reduced pressure at 667 Pa at 55 ° C. for 12 hours to obtain white crystals of LiFSI (yield: 65.4 g).

得られたLiFSIの白色結晶のアセトニトリル溶液を調製した。当該アセトニトリル溶液を測定試料として、ガスクロマトグラフ質量分析計を使用して、生成したフルオロスルホニルイミド塩に含まれる化合物を測定した。測定の結果、上記結晶には、残留溶媒として、539質量ppmの酢酸ブチル、136質量ppmの1,2,4−トリメチルベンゼンが含まれていた。   An acetonitrile solution of the obtained LiFSI white crystals was prepared. The compound contained in the produced | generated fluoro sulfonyl imide salt was measured using the said acetonitrile solution as a measurement sample using a gas chromatograph mass spectrometer. As a result of measurement, the crystals contained 539 ppm by weight of butyl acetate and 136 ppm by weight of 1,2,4-trimethylbenzene as a residual solvent.

また、得られたLiFSIの白色結晶0.1gを超純水9.9gと混合して濃度1質量%の水溶液を調製した。当該水溶液を測定試料としてICP発光分光分析装置(ICPE−9000:島津製作所製)を使用して、測定試料に含まれるハロゲン化炭化水素由来の塩素含有量を測定した。なお、上記ICP発光分光分析装置の定量限界(下限値)は0.1質量ppmである。   Further, 0.1 g of the obtained LiFSI white crystal was mixed with 9.9 g of ultrapure water to prepare an aqueous solution having a concentration of 1 mass%. The chlorine content derived from the halogenated hydrocarbon contained in the measurement sample was measured using the aqueous solution as a measurement sample using an ICP emission spectrophotometer (ICPE-9000: manufactured by Shimadzu Corporation). The quantitative limit (lower limit value) of the above-mentioned ICP emission spectrometer is 0.1 mass ppm.

上記ガスクロマトグラフ質量分析計による分析により、ICP発光分光分析装置により検出された塩素がハロゲン化炭化水素に由来するものであることが、同位体ピーク、分子量、及びフラグメントから判断できる。ガスクロマトグラフ質量分析計による測定結果からにより構造を確認したところ、ハロゲン化炭化水素の含有量は35質量ppm以下であり、ハロゲン化炭化水素由来の塩素含有量は10質量ppm以下であった。   It can be judged from the isotope peak, the molecular weight and the fragment that the chlorine detected by the ICP emission spectrometer is derived from the halogenated hydrocarbon by the analysis by the gas chromatograph mass spectrometer. When the structure was confirmed from the measurement result by the gas chromatograph mass spectrometer, the content of the halogenated hydrocarbon was 35 mass ppm or less, and the content of chlorine derived from the halogenated hydrocarbon was 10 mass ppm or less.

<合成例2>
LiF14.3g(0.55mol)を量り取り、PFA(フッソ樹脂製)反応容器に投入した。反応容器を氷冷しながら、液体のビス(フルオロスルホニル)イミド(HFSI)90.47g(0.50mol)を投入し、スラリー状の反応混合物を調製した。当該反応混合物を140℃に加熱したところ、フッ化リチウムが溶解して液状の反応溶液が得られた。反応溶液の温度を140℃で保持し、15分間反応を行った。さらに反応溶液を10hPa、140℃〜145℃で2時間減圧加熱し、その後、常圧において窒素吹き流し環境で140℃24時間加熱した。この結果、電解質組成物を72g得た。
Synthesis Example 2
14.3 g (0.55 mol) of LiF was weighed and charged into a PFA (made of fluorine resin) reaction vessel. While cooling the reaction vessel with ice, 90.47 g (0.50 mol) of liquid bis (fluorosulfonyl) imide (HFSI) was added to prepare a slurry reaction mixture. The reaction mixture was heated to 140 ° C., and lithium fluoride was dissolved to obtain a liquid reaction solution. The temperature of the reaction solution was maintained at 140 ° C., and the reaction was carried out for 15 minutes. The reaction solution was further heated under reduced pressure at 10 hPa and 140 ° C. to 145 ° C. for 2 hours, and then heated at 140 ° C. for 24 hours in a nitrogen blowing environment at normal pressure. As a result, 72 g of an electrolyte composition was obtained.

<実施例1>
合成例1の方法で得られたLiFSI100gを、PFA(フッ素樹脂製)反応容器に投入した。内部に温度計を挿入し、窒素吹き流し状態で内部の融液温度が150℃になるまで加熱し、2時間、150℃を維持した状態で加熱した。その後、自然冷却し、電解質組成物95.4gを得た。かかる電解質組成物を試料として、19F−NMRにより分析した(内部標準物質:ベンゼンスルホニルフルオリド、δ68.9ppm、singlet、以降、内部標準としてベンゼンスルホニルフルオリドを使用した。)。その結果、LiFSIに由来するピーク(δ55.4ppm、singlet)及びLiFSOに由来するピーク(δ40.1ppm、singlet)に加えて、ピークがそれぞれδ64.67ppm(triplet:J=7.6Hz)、δ58.77ppm(doublet:J=7.6Hz、)に観測された。δ64.67ppmのピークとδ58.77ppmのピークとの面積比は1:2であった。これらのことから、δ64.67ppmのピーク及びδ58.77ppmのピークは、上記式(1)で表される化合物の一つであるリチウムN,N−ビス(フルオロスルホニル)イミドスルファモイルフルオリド(以下、LiFSISFとも呼ぶ。)の中央のSに結合しているフッ素、及び両端のSに結合しているフッ素にそれぞれ由来すると考えられる。上述の内部標準法により求めた上記電解質組成物におけるLiFSISFの含有量は1400質量ppmであった。また、同様にして求めたLiFSOの含有量は6900質量ppmであった。
Example 1
100 g of LiFSI obtained by the method of Synthesis Example 1 was charged into a PFA (made of fluorine resin) reaction vessel. A thermometer was inserted into the interior, and heated in a nitrogen-blowing state until the internal melt temperature reached 150 ° C., and heated while maintaining 150 ° C. for 2 hours. Thereafter, the mixture was naturally cooled to obtain 95.4 g of an electrolyte composition. The electrolyte composition was analyzed by 19 F-NMR as a sample (internal standard substance: benzenesulfonyl fluoride, δ 68.9 ppm, singlet, hereinafter, benzenesulfonyl fluoride was used as an internal standard). As a result, in addition to the peak derived from LiFSI (δ 55.4 ppm, singlet) and the peak derived from LiFSO 3 (δ 4 0.1 ppm, singlet), the peak is δ 64.67 ppm (triplet: J = 7.6 Hz), δ 58 respectively It was observed at .77 ppm (doublet: J = 7.6 Hz). The area ratio of the peak at δ 64.67 ppm to the peak at δ 58.77 ppm was 1: 2. From these facts, the peak at δ 64.67 ppm and the peak at δ 58.77 ppm are lithium N, N-bis (fluorosulfonyl) imidosulfamoyl fluoride (one of the compounds represented by the above formula (1) Hereinafter, it is considered to be derived respectively from the fluorine bonded to the central S of LiFSISF) and the fluorine bonded to S at both ends. The content of LiFSISF in the above-mentioned electrolyte composition determined by the above-mentioned internal standard method was 1,400 mass ppm. In addition, the content of LiFSO 3 determined in the same manner was 6900 mass ppm.

分子構造同定のために実施例1の電解質組成物を超純水に溶かして0.5質量%水溶液とし、当該水溶液に対してLC−MSにより分析を行った。分析条件は以下のとおりである。
HPLC:LC 30A System(島津製作所製)
移動相:溶媒A(0.1質量%ギ酸水溶液)、溶媒B(メタノール)、A:B=20:80(体積比)
流量速度:0.1ml/min
カラム温度:40℃
検出器:吸光度検出器(190nm〜800nm)
注入量:1μL
MS:Q Exactive (Thermo Fisher Scientific製)
イオン化方法:エレクトロスプレーイオン化法(ESI)
プローブヒーター温度:330℃
キャピラリー温度:330℃
なお、LC−MSでは、ピーク分離を行わず、全てをイオン化した。一段目でイオン化したものの内、主要なピークにつきMS/MS測定を行い、フラグメントイオンのパターンからLiFSISFのアニオン部を同定した。
In order to identify the molecular structure, the electrolyte composition of Example 1 was dissolved in ultrapure water to form a 0.5 mass% aqueous solution, and the aqueous solution was analyzed by LC-MS. The analysis conditions are as follows.
HPLC: LC 30A System (manufactured by Shimadzu Corporation)
Mobile phase: solvent A (0.1 mass% formic acid aqueous solution), solvent B (methanol), A: B = 20: 80 (volume ratio)
Flow rate: 0.1 ml / min
Column temperature: 40 ° C
Detector: Absorbance detector (190 nm to 800 nm)
Injection volume: 1 μL
MS: Q Exactive (Thermo Fisher Scientific)
Ionization method: Electrospray ionization (ESI)
Probe heater temperature: 330 ° C
Capillary temperature: 330 ° C
In LC-MS, all were ionized without performing peak separation. Among the ones ionized in the first step, MS / MS measurement was performed on the main peak, and the anion part of LiFSISF was identified from the pattern of fragment ions.

ESI法による質量分析の結果、m/z=260.89に分子イオンピークが検出された。また、MS/MS測定の結果、m/z=96.96(ONFS)及びm/z=177.93(O)にフラグメントイオンが検出された。これらのフラグメントイオン生成を満足する構造式は式(2)に示すアニオンである。 As a result of mass spectrometry by ESI method, a molecular ion peak was detected at m / z = 260.89. In addition, as a result of MS / MS measurement, fragment ions were detected at m / z = 96.96 (O 2 NFS) and m / z = 177.93 (O 3 N 2 F 2 S 2 ). The structural formula satisfying the formation of these fragment ions is the anion shown in formula (2).

<実施例2>
合成例1の方法で得られたLiFSI100gを、PFA(フッ素樹脂製)反応容器に投入した。内部に温度計を挿入し、窒素吹き流し状態で内部の融液温度が150℃になるまで加熱し、さらに108時間、150℃を維持した状態で加熱した。その後、自然冷却し、電解質組成物95.2gを得た。
Example 2
100 g of LiFSI obtained by the method of Synthesis Example 1 was charged into a PFA (made of fluorine resin) reaction vessel. A thermometer was inserted inside, and the temperature was maintained until the internal melt temperature reached 150 ° C. in a nitrogen-blowing state, and heating was continued for an additional 108 hours at 150 ° C. Thereafter, the mixture was naturally cooled to obtain 95.2 g of an electrolyte composition.

<比較例1>
合成例1の方法で得られたLiFSI100gを、PFA(フッソ樹脂製)反応容器投入した。内部に温度計を挿入し、窒素吹き流し状態で内部の融液温度が145℃になるまで加熱し、さらに10分145℃を維持した状態で加熱した。その後、自然冷却し、電解質組成物95.6gを得た。
Comparative Example 1
100 g of LiFSI obtained by the method of Synthesis Example 1 was charged into a PFA (made of fluorine resin) reaction vessel. A thermometer was inserted inside, and the temperature was maintained until the internal melt temperature reached 145 ° C. in a nitrogen-blowing state, and heating was continued for a further 10 minutes at 145 ° C. Thereafter, the mixture was naturally cooled to obtain 95.6 g of an electrolyte composition.

実施例1、2、及び比較例1の電解質組成物をそれぞれ19F−NMRで分析し、上述の内部標準法により各成分の含有量を求めた。結果を表1に示す。なお、表1では、比較例2として、合成例1の方法で得られたLiFSIに対して、加熱処理を行わずにそのまま19F−NMR分析を行った。 The electrolyte compositions of Examples 1 and 2 and Comparative Example 1 were each analyzed by 19 F-NMR, and the content of each component was determined by the internal standard method described above. The results are shown in Table 1. In Table 1, as Comparative Example 2, with respect to LiFSI obtained by the method of Synthesis Example 1, 19 F-NMR analysis was carried out without heat treatment.

Figure 2019099388
Figure 2019099388

LiPF、並びに実施例1、2、比較例1及び2の電解質組成物をそれぞれ溶媒(EC:MEC=3:7(体積比))に溶解して10mLの電解液1、2、C1及びC2を調製した。電解液1、2、C1及びC2におけるLiPFの濃度は0.6Mであり、実施例1、2、比較例1及び2の電解質組成物を、それぞれFSIアニオンの濃度が0.6Mとなるように各電解液に添加した。なお、LiPFは市販品を使用した。
実際の電解質組成物の秤量値と、表1の分析結果から算出される電解液中のLiFSISF及びLiFSOの含有量を表2に示す。
LiPF 6 and the electrolyte compositions of Examples 1 and 2 and Comparative Examples 1 and 2 were respectively dissolved in a solvent (EC: MEC = 3: 7 (volume ratio)) to 10 mL of electrolytes 1, 2 and C1 and C2 Was prepared. The concentration of LiPF 6 in the electrolytes 1, 2, C1 and C2 is 0.6 M, and the concentrations of FSI anions in the electrolyte compositions of Examples 1, 2 and Comparative Examples 1 and 2 are 0.6 M respectively. Were added to each electrolyte solution. In addition, LiPF 6 used the commercial item.
Table 2 shows the actual weight values of the electrolyte composition and the contents of LiFSISF and LiFSO 3 in the electrolytic solution calculated from the analysis results of Table 1.

Figure 2019099388
Figure 2019099388

電解液2を試料として、19F−NMRの測定を行った。測定結果を用いて、上述の内部標準法によりLiFSISFの含有量を求めたところ、6800質量ppmとなり、表2の計算値とほぼ同じ値を示した。 The 19 F-NMR measurement was performed using the electrolytic solution 2 as a sample. When the content of LiFSISF was determined by the above-mentioned internal standard method using the measurement results, it became 6800 mass ppm, and showed almost the same value as the calculated value in Table 2.

電解液1、2、C1及びC2を用いて、それぞれ電池1、2、C1及びC2を作製し、電池の高温性能評価を実施した。高温性能評価に用いるセルとしては、LiNi0.5Co0.2Mn0.3を正極に、グラファイトを負極に、ポリエチレン(PE)のセパレーターを用いた1000mAh設計のラミネート電池を用いた。
上記仕様のセルを下記条件でエージングを行い、電池1、2、C1及びC2を完成させた。
Batteries 1, 2 and C1, and C2 were produced using electrolytes 1, 2 and C1, and C2, respectively, and the high temperature performance evaluation of the battery was performed. As a cell used for high temperature performance evaluation, a laminate battery of 1000 mAh design using LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a positive electrode, graphite as a negative electrode, and a polyethylene (PE) separator was used.
The cells of the above specification were aged under the following conditions to complete batteries 1, 2 and C1 and C2.

[エージング条件1]
上記セルに電解液1、2、C1及びC2の各電解液を注液してから1時間経過後、セルに4.2V及び200mAの定電流定電圧充電を90分間行った。その後72時間放置した。その後余分なラミネートを開放し、再度真空溶着することでガス抜きを行った。ガス抜き後、4.2V及び500mAの定電流定電圧充電を5時間行い、10分間の休止の後、200mAで閉路電圧2.75Vまで定電流放電を行った。10分間の休止後、さらに4.2V及び500mAの定電流定電圧充電を5時間行った。10分間の休止後、1000mAで閉路電圧2.75Vまで定電流放電を行った。エージングはすべて25℃環境で実施した。
[Aging condition 1]
One hour after pouring each electrolyte solution of electrolytes 1, 2 and C1 and C2 into the cell, constant current constant voltage charge of 4.2 V and 200 mA was applied to the cell for 90 minutes. Then left for 72 hours. After that, the excess laminate was released, and degassing was performed by vacuum welding again. After degassing, constant current constant voltage charging of 4.2 V and 500 mA was performed for 5 hours, and after 10 minutes of rest, constant current discharge was performed at 200 mA to a closed circuit voltage of 2.75 V. After 10 minutes of rest, constant current constant voltage charging of 4.2 V and 500 mA was further performed for 5 hours. After 10 minutes of rest, constant current discharge was performed at 1000 mA to a closed circuit voltage of 2.75V. All aging was performed in a 25 ° C. environment.

[45℃サイクル特性1]
電池1、2、C1及びC2のそれぞれに、以下の条件で500サイクルの充放電サイクル試験を行った。
充電条件:45℃で、4.2V及び1000mAの定電圧定電流充電を電流値が20mAとなるまで行った。その後、45℃で10分間休止した。
放電条件:45℃で、1000mAの定電流放電を閉路電圧が2.75Vとなるまで行った。その後、45℃で10分間休止した。
[45 ° C cycle characteristic 1]
The charge and discharge cycle test of 500 cycles was performed under the following conditions for each of Batteries 1, 2 and C1 and C2.
Charge conditions: Constant voltage charge of 4.2 V and 1000 mA was performed at 45 ° C. until the current value became 20 mA. Then, it rested at 45 ° C. for 10 minutes.
Discharge conditions: A constant current discharge of 1000 mA was performed at 45 ° C. until the closed circuit voltage was 2.75V. Then, it rested at 45 ° C. for 10 minutes.

500サイクル終了後、25℃環境下で4.2V及び1000mAの定電流定電圧で電流値が20mAとなるまで充電を行った。25℃で10分間休止した。その後、25℃において抵抗が無視できるレベルの20mAで閉路電圧が2.75Vとなるまで放電を行った。放電終了後、得られた放電容量の初期放電容量(エージング後の最初の放電容量)に対する比を容量維持率として算出した。表3に結果を示す。   After completion of the 500 cycles, charging was performed at a constant current constant voltage of 4.2 V and 1000 mA under a 25 ° C. environment until the current value became 20 mA. Rest for 10 minutes at 25 ° C. Thereafter, the battery was discharged at 25 ° C. at a level of 20 mA at which the resistance can be ignored until the closed circuit voltage becomes 2.75V. After the end of the discharge, the ratio of the obtained discharge capacity to the initial discharge capacity (initial discharge capacity after aging) was calculated as a capacity retention rate. Table 3 shows the results.

Figure 2019099388
Figure 2019099388

LiFSISFを含む電池1及び2は、LiFSISFを含まない電池C1及びC2よりも、高温サイクルの容量維持率が高かった。また、電池1及び2のほうが、電池C1及びC2よりもサイクル後の20mA放電容量が高いことから、負極に堆積して失活しているLiが少ない事がわかる。
LiFSOを含む電池C1と、LiFSOを含まない電池C2とでは、容量維持率及び20mA放電容量についてほぼ同等であった。また、LiFSISFの含有量が大きい電池2のほうが、電池1よりも容量維持率及び20mA放電容量に優れていた。このことから、電解液がLiFSISFを含むことにより、高温でのサイクル容量維持率を改善する効果が得られたと考えられる。
Batteries 1 and 2 containing LiFSISF had higher capacity retention of high temperature cycle than batteries C1 and C2 not containing LiFSISF. In addition, since the batteries 1 and 2 have a higher 20 mA discharge capacity after cycling than the batteries C1 and C2, it can be seen that there is less Li which is deposited and deactivated on the negative electrode.
The battery C1 containing LiFSO 3 and the battery C 2 not containing LiFSO 3 were almost the same in capacity retention rate and 20 mA discharge capacity. In addition, the battery 2 having a large LiFSISF content was superior to the battery 1 in the capacity retention rate and the 20 mA discharge capacity. From this, it is considered that the effect of improving the cycle capacity retention rate at high temperature was obtained by containing LiFSISF in the electrolytic solution.

<実施例3>
合成例1の方法で得られたLiFSI100gを、PFA(フッ素樹脂製)反応容器に投入した。内部に温度計を挿入し、窒素吹き流し状態で内部の融液温度が150℃になるまで加熱し、10分間、150℃を維持した状態で加熱した。その後、自然冷却し、電解質組成物95.6gを得た。
Example 3
100 g of LiFSI obtained by the method of Synthesis Example 1 was charged into a PFA (made of fluorine resin) reaction vessel. A thermometer was inserted into the interior, and heated in a nitrogen-blowing state until the internal melt temperature reached 150 ° C., and heated at a temperature maintained at 150 ° C. for 10 minutes. Thereafter, the mixture was naturally cooled to obtain 95.6 g of an electrolyte composition.

<実施例4>
合成例1の方法で得られたLiFSI100gを、PFA(フッ素樹脂製)反応容器に投入した。内部に温度計を挿入し、窒素吹き流し状態で内部の融液温度が150℃になるまで加熱し、30分間、150℃を維持した状態で加熱した。その後、自然冷却し、電解質組成物95.5gを得た。
Example 4
100 g of LiFSI obtained by the method of Synthesis Example 1 was charged into a PFA (made of fluorine resin) reaction vessel. A thermometer was inserted into the interior, and heated in a nitrogen-blowing state until the internal melt temperature reached 150 ° C., with heating maintained at 150 ° C. for 30 minutes. Thereafter, the mixture was naturally cooled to obtain 95.5 g of an electrolyte composition.

<実施例5>
合成例1の方法で得られたLiFSI100gを、PFA(フッ素樹脂製)反応容器に投入した。内部に温度計を挿入し、窒素吹き流し状態で内部の融液温度が150℃になるまで加熱し、17時間、150℃を維持した状態で加熱した。その後、自然冷却し、電解質組成物95.4gを得た。
Example 5
100 g of LiFSI obtained by the method of Synthesis Example 1 was charged into a PFA (made of fluorine resin) reaction vessel. A thermometer was inserted inside, and the temperature was maintained until the internal melt temperature reached 150 ° C. in a nitrogen-blowing state, and the state was maintained at 150 ° C. for 17 hours. Thereafter, the mixture was naturally cooled to obtain 95.4 g of an electrolyte composition.

<実施例6>
合成例1の方法で得られたLiFSI100gを、PFA(フッ素樹脂製)反応容器に投入した。内部に温度計を挿入し、窒素吹き流し状態で内部の融液温度が150℃になるまで加熱し、36.5時間、150℃を維持した状態で加熱した。その後、自然冷却し、電解質組成物95.0gを得た。
Example 6
100 g of LiFSI obtained by the method of Synthesis Example 1 was charged into a PFA (made of fluorine resin) reaction vessel. A thermometer was inserted inside, and the temperature was maintained until the temperature of the internal melt reached 150 ° C. in a nitrogen-blowing state, and maintained at 150 ° C. for 36.5 hours. Thereafter, the mixture was naturally cooled to obtain 95.0 g of an electrolyte composition.

実施例3〜6の電解質組成物をそれぞれ19F−NMRで分析し、上述の内部標準法により各成分の含有量を求めた。結果を表4に示す。 The electrolyte compositions of Examples 3 to 6 were each analyzed by 19 F-NMR, and the content of each component was determined by the internal standard method described above. The results are shown in Table 4.

Figure 2019099388
Figure 2019099388

LiPF、並びに実施例3〜6の電解質組成物を、それぞれを溶媒(EC:MEC=3:7(体積比))に溶解して10mLの電解液3〜6を調製した。電解液3〜6におけるLiPFの濃度は0.6Mであり、実施例3〜6の電解質組成物を、それぞれFSIアニオンの濃度が0.6Mとなるように各電解液に添加した。なお、LiPFは市販品を使用した。
実際の電解質組成物の秤量値と、表4の分析結果から算出される電解液中のLiFSISF及びLiFSOの含有量を表5に示す。
Each of LiPF 6 and the electrolyte compositions of Examples 3 to 6 was dissolved in a solvent (EC: MEC = 3: 7 (volume ratio)) to prepare 10 mL of electrolytes 3 to 6, respectively. The concentration of LiPF 6 in the electrolytic solution 3-6 is 0.6M, the electrolyte compositions of Examples 3-6, the concentration of the FSI anion is added to the electrolyte solution so that 0.6M, respectively. In addition, LiPF 6 used the commercial item.
The measured values of the actual electrolyte composition and the contents of LiFSISF and LiFSO 3 in the electrolyte solution calculated from the analysis results of Table 4 are shown in Table 5.

Figure 2019099388
Figure 2019099388

電解液6を試料として、19F−NMRの測定を行った。測定結果を用いて、上述の内部標準法によりLiFSISFの含有量を求めたところ、2200質量ppmとなり、表5の計算値とほぼ同じ値を示した。 The 19 F-NMR measurement was performed using the electrolytic solution 6 as a sample. When the content of LiFSISF was determined by the above-mentioned internal standard method using the measurement results, it became 2200 mass ppm, and showed almost the same value as the calculated value of Table 5.

電解液3〜6及び電解液C2を用いて、それぞれ電池3〜6及びC3を作製し、電池の高温性能評価を実施した。高温性能評価に用いるセルとしては、LiNi1/3Co1/3Mn1/3を正極に、グラファイトを負極に、ポリエチレン(PE)のセパレーターを用いた30mAh設計のラミネート電池を用いた。
上記仕様のセルを下記条件でエージングを行い、電池3〜6及びC3を完成させた。
Batteries 3 to 6 and C3 were produced using electrolytic solutions 3 to 6 and electrolytic solution C2, respectively, and high temperature performance evaluation of the batteries was performed. As a cell used for high temperature performance evaluation, a 30 mAh design laminate battery using LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode, graphite as a negative electrode, and a polyethylene (PE) separator was used.
The cells of the above specification were aged under the following conditions to complete batteries 3 to 6 and C3.

[エージング条件2]
上記セルに電解液3〜6及びC2の各電解液を注液してから1時間経過後、セルに4.2V及び6mAの定電流定電圧充電を90分間行った。その後72時間放置した。その後余分なラミネートを開放し、再度真空溶着することでガス抜きを行った。ガス抜き後、4.2V及び15mAの定電流定電圧充電を5時間行い、10分間の休止の後、6mAで閉路電圧2.75Vまで定電流放電を行った。10分間の休止後、さらに4.2V及び15mAの定電流定電圧充電を5時間行った。10分間の休止後、30mAで閉路電圧2.75Vまで定電流放電を行った。エージングはすべて25℃で実施した。
[Aging Condition 2]
One hour after pouring each electrolyte solution of electrolyte solution 3-6 and C2 into the cell, constant current constant voltage charge of 4.2 V and 6 mA was performed on the cell for 90 minutes. Then left for 72 hours. After that, the excess laminate was released, and degassing was performed by vacuum welding again. After degassing, constant current constant voltage charging of 4.2 V and 15 mA was performed for 5 hours, and after 10 minutes of rest, constant current discharge was performed at 6 mA to a closed circuit voltage of 2.75 V. After 10 minutes of rest, constant current constant voltage charging of 4.2 V and 15 mA was further performed for 5 hours. After 10 minutes of rest, constant current discharge was performed at 30 mA to a closed circuit voltage of 2.75V. All aging was performed at 25 ° C.

[45℃サイクル特性2]
電池3〜6及びC3のそれぞれに、以下の条件で1000サイクルの充放電サイクル試験を行った。
充電条件:45℃で、4.2V及び30mAの定電圧定電流充電を電流値が0.6mAとなるまで行った。その後、45℃で10分間休止した。
放電条件:45℃で、30mAの定電流放電を閉路電圧が2.75Vとなるまで行った。その後、45℃で10分間休止した。
第1サイクルの放電容量に対する第1000サイクルの放電容量の比を計算し、容量維持率とした。
[45 ° C cycle characteristic 2]
The charge and discharge cycle test of 1000 cycles was performed on each of the batteries 3 to 6 and C3 under the following conditions.
Charge conditions: Constant voltage charge of 4.2 V and 30 mA was performed at 45 ° C. until the current value became 0.6 mA. Then, it rested at 45 ° C. for 10 minutes.
Discharge conditions: A constant current discharge of 30 mA was performed at 45 ° C. until the closed circuit voltage became 2.75V. Then, it rested at 45 ° C. for 10 minutes.
The ratio of the discharge capacity of the 1000th cycle to the discharge capacity of the 1st cycle was calculated and used as the capacity retention rate.

Figure 2019099388
Figure 2019099388

電池3〜6は、この順に電解液に含まれるLiFSISFの含有量が大きく、この順に1000サイクル後の容量維持率が高かった。また、電池3と4とを比較すると、LiFSO含有量が同等であるが、LiFSISFの多い電池4の方が容量維持率について良好な結果を示している。これらのことから、LiFSISFを含むことにより、高温でのサイクル容量維持率を改善する効果が得られたと考えられる。 In the batteries 3 to 6, the content of LiFSISF contained in the electrolytic solution was large in this order, and the capacity retention rate after 1000 cycles was high in this order. Further, comparing the batteries 3 and 4, the battery 4 having the same LiFSO 3 content but having a large amount of LiFSISF shows a better result regarding the capacity retention rate. From these facts, it is considered that the inclusion of LiFSISF has an effect of improving the cycle capacity retention rate at high temperature.

[初期放電容量の測定]
エージング完了後の電池について、25℃において、以下条件で容量確認を行った。
放電:閉路電圧が2.75Vとなるまで、6mAで定電流放電を行った後、10分間休止した。
充電:電流値が0.6mAとなるまで、4.2V及び30mAで定電流定電圧充電を行った後、10分間休止した。
放電:閉路電圧2.75V止まるまで30mAで定電流放電を行い、放電容量を測定した。
このようにして得られた放電容量を初期放電容量とした。
[Measurement of initial discharge capacity]
The capacity of the battery after aging was checked at 25 ° C. under the following conditions.
Discharge: A constant current discharge was performed at 6 mA until the closed circuit voltage was 2.75 V, and then rested for 10 minutes.
Charging: After performing constant current constant voltage charging at 4.2 V and 30 mA until the current value reached 0.6 mA, it was rested for 10 minutes.
Discharge: A constant current discharge was performed at 30 mA until the closed circuit voltage stopped at 2.75 V, and the discharge capacity was measured.
The discharge capacity obtained in this manner was taken as the initial discharge capacity.

[45℃トリクル充電サイクル]
電池3〜6及びC3について、初期放電容量を測定した後、以下の条件で合計300サイクルのトリクル充電サイクルを行った。
<1〜100サイクルまでのサイクル条件>
充電:45℃で、電流値が6mAとなるまで4.2V及び30mAで定電流定電圧充電を行った後、3時間休止した。
放電:45℃で、15mAで10分間定電流放電を行った後、5分間休止した。
<101〜300サイクルまでのサイクル条件>
充電:45℃で、電流値が6mAとなるまで4.35V及び30mAで定電流定電圧充電を行った後、3時間休止した。
放電:45℃で、15mAで10分間定電流放電を行った後、5分間休止した。
[45 ° C trickle charge cycle]
After the initial discharge capacity was measured for batteries 3 to 6 and C3, a total of 300 trickle charge cycles were performed under the following conditions.
<Cycle conditions up to 1 to 100 cycles>
Charging: constant current constant voltage charging at 4.2 V and 30 mA until the current value became 6 mA at 45 ° C., and then rested for 3 hours.
Discharge: A constant current discharge was performed at 45 ° C. for 15 minutes at 15 mA, and then rested for 5 minutes.
<Cycle conditions up to 101 to 300 cycles>
Charging: constant current constant voltage charging at 4.35 V and 30 mA until the current value became 6 mA at 45 ° C., and then rested for 3 hours.
Discharge: A constant current discharge was performed at 45 ° C. for 15 minutes at 15 mA, and then rested for 5 minutes.

上記の条件で、45℃で300サイクルのトリクル充電サイクルを行った後、初期容量測定と同様の手順で300サイクル後の放電容量を測定した。
300サイクル後の容量維持率を表7に示す。
After performing the trickle charge cycle of 300 cycles at 45 ° C. under the above conditions, the discharge capacity after 300 cycles was measured in the same procedure as the initial capacity measurement.
The capacity retention ratio after 300 cycles is shown in Table 7.

Figure 2019099388
Figure 2019099388

電池3〜6は、この順に電解液に含まれるLiFSISFの含有量が大きく、この順にトリクル充電サイクル後の容量維持率が高かった。また、電池3と4とを比較すると、電解液に含まれるLiFSO含有量が同等であるが、LiFSISFの多い電池4の方が容量維持率について良好な結果を示している。これらのことから、電解液にLiFSISFが含まれることにより、高温でのトリクル充電サイクル後の容量維持率が改善されたと考えられる。 In the batteries 3 to 6, the content of LiFSISF contained in the electrolytic solution was large in this order, and the capacity retention rate after the trickle charge cycle was high in this order. Further, comparing the batteries 3 and 4, the batteries 4 having the same LiFSO 3 content in the electrolytic solution but having a large amount of LiFSISF show better results in terms of capacity retention. From these facts, it is considered that the capacity retention rate after the trickle charge cycle at high temperature is improved by containing LiFSISF in the electrolytic solution.

LiPF、並びに実施例3〜6及び比較例2の電解質組成物をそれぞれ溶媒(EC:MEC=3:7(体積比))に溶解して10mLの電解液7〜10及びC4を調製した。電解液7〜10及びC4におけるLiPFの濃度は0.95Mであり、実施例3〜6及び比較例2の電解質組成物を、それぞれFSIアニオンの濃度が0.05Mとなるように各電解液に添加した。なお、LiPFは市販品を使用した。
実際の電解質組成物の秤量値と、表4の分析結果から算出される電解液中のLiFSISF及びLiFSOの含有量を表8に示す。
LiPF 6 and the electrolyte compositions of Examples 3 to 6 and Comparative Example 2 were respectively dissolved in a solvent (EC: MEC = 3: 7 (volume ratio)) to prepare 10 mL of electrolytes 7 to 10 and C4. The concentration of LiPF 6 in the electrolytes 7 to 10 and C 4 is 0.95 M, and each of the electrolyte compositions of Examples 3 to 6 and Comparative Example 2 has a concentration of 0.05 M of FSI anion. Added to In addition, LiPF 6 used the commercial item.
Table 8 shows the measured values of the actual electrolyte composition and the contents of LiFSISF and LiFSO 3 in the electrolytic solution calculated from the analysis results of Table 4.

Figure 2019099388
Figure 2019099388

電解液7〜10及びC4を用いて、電池3と同様にセルを組み立てた。これらのセルに上記エージング条件2の条件でエージングを行い、電池7〜10及びC4を完成させた。
電池7〜10及びC4に45℃サイクル特性2の条件で試験を行い、容量維持率を求めた。結果を表9に示す。
A cell was assembled in the same manner as the battery 3 using the electrolytes 7 to 10 and C4. These cells were aged under the condition of the above-mentioned aging condition 2 to complete batteries 7 to 10 and C4.
The batteries 7 to 10 and C4 were tested under the conditions of 45 ° C. cycle characteristic 2 to determine the capacity retention rate. The results are shown in Table 9.

Figure 2019099388
Figure 2019099388

電池7〜10は、この順に電解液に含まれるLiFSISFの含有量が大きく、この順にトリクル充電サイクル後の容量維持率が高かった。また、電池7と8とを比較すると、電解液に含まれるLiFSO含有量が同等であるが、LiFSISFの多い電池8の方が容量維持率について良好な結果を示している。これらのことから、電解液にLiFSISFが含まれることにより、高温でのサイクル試験後の容量維持率が改善されたと考えられる。 In the batteries 7 to 10, the content of LiFSISF contained in the electrolytic solution was large in this order, and the capacity retention rate after the trickle charge cycle was high in this order. Further, comparing the batteries 7 and 8, the battery 8 having the same LiFSO 3 content in the electrolytic solution but having a large amount of LiFSISF shows a better result regarding the capacity retention rate. From these facts, it is considered that the capacity retention ratio after the cycle test at high temperature is improved by the inclusion of LiFSISF in the electrolytic solution.

以上のようにFSISFを所定量含んだ電解質組成物を用いる事で、電池の高温サイクル特性が改善した。
この理由としては、必ずしも定かではないが、本発明者は以下のように考えている。FSISFアニオンが分解及び吸着して正負極表面に被膜を形成する事によって高温状態での電解液の酸化還元分解を抑制している事によって分解生成物の発生と負極への堆積が抑えられているためと考える。
As described above, the use of the electrolyte composition containing a predetermined amount of FSISF improved the high temperature cycle characteristics of the battery.
Although this is not necessarily clear as this reason, the present inventor thinks as follows. The formation of a coating on the surface of the positive and negative electrodes by decomposition and adsorption of the FSISF anion suppresses the oxidation / reduction decomposition of the electrolyte at high temperatures, thereby suppressing the generation of decomposition products and the deposition on the negative electrode. I think for the sake of.

Claims (7)

下記式(1)で表される化合物を0.1質量ppm〜180000質量ppm含む、溶液。
Figure 2019099388

(一般式(1)中、R、R、Rはそれぞれフッ素又は炭素数1〜6のフッ化アルキル基を表す。)
The solution which contains 0.1 mass ppm-180,000 mass ppm of compounds represented by following formula (1).
Figure 2019099388

(In general formula (1), R 1 , R 2 and R 3 each represent fluorine or a fluorinated alkyl group having 1 to 6 carbon atoms.)
さらにLiFSOを0.1質量ppm〜10000質量ppm含む、請求項1に記載の溶液。 The solution according to claim 1, further comprising 0.1 mass ppm to 10000 mass ppm of LiFSO 3 . LiPF、LiBF、及びLiN(SO2n+1(n=0〜6の整数)からなる群から選択される少なくとも1種の化合物をさらに含む、請求項1又は2に記載の溶液。 The compound according to claim 1 or 2, further comprising at least one compound selected from the group consisting of LiPF 6 , LiBF 4 , and LiN (SO 2 C n F 2n + 1 ) 2 (n is an integer of 0 to 6). solution. さらに、リチウムビス(フルオロスルホニル)イミドを1質量ppm〜90質量%含む、請求項1〜3のいずれか一項に記載の溶液。   Furthermore, the solution as described in any one of Claims 1-3 containing 1 mass ppm-90 mass% of lithium bis (fluoro sulfonyl) imides. 、R、Rがいずれもフッ素原子である、請求項1〜4のいずれか一項に記載の溶液。 R 1, R 2, R 3 is either a fluorine atom, a solution according to any one of claims 1-4. 請求項1〜5のいずれか一項に記載の溶液を含む、電解液。   The electrolyte solution containing the solution as described in any one of Claims 1-5. 請求項6に記載の電解液を含む、リチウムイオン電池。   A lithium ion battery comprising the electrolytic solution according to claim 6.
JP2017228257A 2017-11-28 2017-11-28 Solution, electrolyte and lithium ion battery containing the same Pending JP2019099388A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017228257A JP2019099388A (en) 2017-11-28 2017-11-28 Solution, electrolyte and lithium ion battery containing the same
EP18208702.3A EP3489193A1 (en) 2017-11-28 2018-11-27 Sulfonylimide compound, production method thereof, electrolyte composition, electrolytic solution and lithium ion battery
CN201811425380.8A CN109911870A (en) 2017-11-28 2018-11-27 Sulfimine compound, its manufacturing method, electrolyte composition, electrolyte and lithium ion battery
US16/201,078 US20190165417A1 (en) 2017-11-28 2018-11-27 Sulfonylimide Compound, Production Method Thereof, Electrolyte Composition, Electrolytic Solution and Lithium Ion Battery
KR1020180149428A KR20190062299A (en) 2017-11-28 2018-11-28 Sulfonylimide compound, production method thereof, electrolyte composition, electrolytic solution and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017228257A JP2019099388A (en) 2017-11-28 2017-11-28 Solution, electrolyte and lithium ion battery containing the same

Publications (1)

Publication Number Publication Date
JP2019099388A true JP2019099388A (en) 2019-06-24

Family

ID=66975813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017228257A Pending JP2019099388A (en) 2017-11-28 2017-11-28 Solution, electrolyte and lithium ion battery containing the same

Country Status (1)

Country Link
JP (1) JP2019099388A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544457A (en) * 2005-06-23 2008-12-04 エボニック デグサ ゲーエムベーハー Electrolyte-separator system free of film formers and its use in electrochemical energy storage systems
CN102816096A (en) * 2011-06-10 2012-12-12 华中科技大学 Imine alkali metal salt and ion liquid and application of same as non water electrolyte
JP2015205815A (en) * 2011-05-24 2015-11-19 アルケマ フランス Method for producing lithium or sodium bis(fluorosulfonyl)imide
CN105914399A (en) * 2016-05-04 2016-08-31 宁德新能源科技有限公司 Electrolyte and lithium-ion cell containing same
JP2017122058A (en) * 2016-01-05 2017-07-13 株式会社日本触媒 Aminosulfonyl imide salt

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544457A (en) * 2005-06-23 2008-12-04 エボニック デグサ ゲーエムベーハー Electrolyte-separator system free of film formers and its use in electrochemical energy storage systems
JP2015205815A (en) * 2011-05-24 2015-11-19 アルケマ フランス Method for producing lithium or sodium bis(fluorosulfonyl)imide
CN102816096A (en) * 2011-06-10 2012-12-12 华中科技大学 Imine alkali metal salt and ion liquid and application of same as non water electrolyte
JP2017122058A (en) * 2016-01-05 2017-07-13 株式会社日本触媒 Aminosulfonyl imide salt
CN105914399A (en) * 2016-05-04 2016-08-31 宁德新能源科技有限公司 Electrolyte and lithium-ion cell containing same

Similar Documents

Publication Publication Date Title
EP3466871B1 (en) Method for producing bis(fluorosulfonyl)imide alkali metal salt and bis(fluorosulfonyl)imide alkali metal salt composition
EP3146588B1 (en) Nonaqueous electrolyte compositions comprising cyclic sulfates and lithium borates
CN111072000B (en) Alkali metal salt of fluorosulfonyl imide, method for producing same, and electrolyte
JP7005587B2 (en) Non-aqueous electrolyte composition
CA2688952C (en) Nonaqueous electrolyte for use in a lithium ion cell
JP6788661B2 (en) A non-aqueous electrolyte composition comprising lithium oxalat phosphate
EP3201209A1 (en) Functionalized silanes and electrolyte compositions and electrochemical devices containing them
JP6876040B2 (en) Non-aqueous electrolyte composition containing fluorinated solvent and 2-furanone
US9472831B2 (en) Lithium-2-methoxy-1,1,2,2-tetrafluoro-ethanesulfonate and use thereof as conductive salt in lithium-based energy accumulators
JP6101575B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and lithium secondary battery
US20190165417A1 (en) Sulfonylimide Compound, Production Method Thereof, Electrolyte Composition, Electrolytic Solution and Lithium Ion Battery
JP2022180376A (en) Electrolyte containing 6-membered cyclic sulfate
JP2020528200A (en) Modified triazine functional compound
KR102617501B1 (en) Electrolyte composition, secondary battery, and method of using the secondary battery
JP3728236B2 (en) Tetrakisfluoroalkylborate and their use as conductive salts
JP2018035059A (en) Lithium bis(fluorosulfonyl) imide composition
US6893774B2 (en) Fluoroalkylphosphate salts, and process for the preparation of these substances
JP2002249670A (en) Electrolyte
JP2018035060A (en) Lithium bis(fluorosulfonyl) imide composition
US20190027785A1 (en) Electrolyte solvents and additives for advanced battery chemistries
JP2019099388A (en) Solution, electrolyte and lithium ion battery containing the same
JP3715436B2 (en) Salt, electrolytic solution and electrochemical device using the same
JP6147847B2 (en) Lithium silicate
JP2019099389A (en) Sulfonyl imide compound, electrolyte composition containing the same, and method for producing sulfonyl imide compound
JP2009054283A (en) Electrolyte containing new fluorine compound, electrolyte solution, and electrochemical device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220104