JP2006207668A - Asymmetrical fluid bearing - Google Patents

Asymmetrical fluid bearing Download PDF

Info

Publication number
JP2006207668A
JP2006207668A JP2005019127A JP2005019127A JP2006207668A JP 2006207668 A JP2006207668 A JP 2006207668A JP 2005019127 A JP2005019127 A JP 2005019127A JP 2005019127 A JP2005019127 A JP 2005019127A JP 2006207668 A JP2006207668 A JP 2006207668A
Authority
JP
Japan
Prior art keywords
bearing
fluid bearing
fluid
asymmetric
notch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005019127A
Other languages
Japanese (ja)
Other versions
JP4484109B2 (en
Inventor
Makoto Okano
眞 岡野
Shinichi Sogo
晋一 十合
Tomohiko Ise
智彦 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005019127A priority Critical patent/JP4484109B2/en
Publication of JP2006207668A publication Critical patent/JP2006207668A/en
Application granted granted Critical
Publication of JP4484109B2 publication Critical patent/JP4484109B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an asymmetrical fluid bearing having simple construction for increasing the load capacity of the fluid bearing and reducing the loss of the bearing. <P>SOLUTION: The radial fluid bearing has a cutout portion on part of a single side for bearing an asymmetrical shaft which gives asymmetrical load thereto during rotation. The fluid bearing also has a cutout portion which gives asymmetrical load thereto, on the bearing surface. The bearing surface on the counter load side where a cutout is provided is formed narrower than the bearing surface on the load side where the cutout is not provided. In this case, the cutout is formed extending from the side of the fluid bearing into the bearing surface of the fluid bearing, or the cutout is formed at the middle of the fluid bearing. The asymmetrical fluid bearing is used for a precise control steady seismic source. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、主に地震の早期発見のため地下の構造や状態を監視、観測するために人工的に弾性波を発生し、地中に送信するための精密制御定常震源(Accurately Controlled Routine Operated Seismic Source, ACROSS)のように、大負荷で作動する機器や加振器のような大きな衝撃負荷を発生する機器のラジアル軸受として適切に使用可能な非対称流体軸受に関するものである。   The present invention is a precision controlled steady-state source (Accurately Controlled Routine Operated Seismic) for artificially generating elastic waves and transmitting them underground, mainly for monitoring and observing underground structures and conditions for early detection of earthquakes. The present invention relates to an asymmetric fluid bearing that can be appropriately used as a radial bearing of a device that generates a large impact load, such as a device that operates with a large load, such as a source, ACROSS).

地球科学分野において、地震の波を用い地下構造を解明するには、自然地震で発生する弾性波を用いるのが従来の方法であった。しかし発生時刻が不定期で、震源の位置も望ましいところになく、また、その位置も正確にはわからなかった。火薬爆発などのノウレス的な人工震源も用いられてきたが、この方法は定常的に使えるものではなかった。地下の状態変化を常時モニターすることが重要な課題となっており、この目的のために精密制御定常震源(ACROSS)が開発された。   In the earth science field, the conventional method has been to use elastic waves generated by natural earthquakes to elucidate underground structures using earthquake waves. However, the time of occurrence was irregular, the location of the epicenter was not desirable, and the location was not exactly known. Knowles-type artificial seismic sources such as explosive explosions have been used, but this method has not been used regularly. The constant monitoring of subsurface conditions has become an important issue, and a precisely controlled steady-state source (ACROSS) has been developed for this purpose.

ACROSSによる地下構造の連続モニタリングシステムは、ACROSSによりサイン状の定常弾性波を24時間365日地下に連続送信し、これを遠隔地に設置した受信機で常時受信することにより地下の監視、観測を行うものである。   The ACROSS underground structure continuous monitoring system continuously transmits sine-like stationary elastic waves to the basement for 24 hours 365 days using ACROSS, and constantly receives and monitors them in a remote receiver. Is what you do.

連続弾性波発生に際しては、偏心質量を持つ回転体をデジタルサーボモータにより回転させ、偏心質量により遠心力を発生させる。現在使用されているACROSSは、回転周波数50Hzでの信号振幅は20tonfで、偏心質量は転がり軸受で支持する構造になっている。このような回転震源装置は、例えば特開平10−142345号公報(特許文献1)等に記載されている。しかしながら、この装置はシャフトの回転による軸受摩擦がおよそ15kWで、著しく大きい発熱を伴うため、各軸受に水冷管を設け、さらに潤滑管理を厳しくする等の対策を講じている。   When generating a continuous elastic wave, a rotating body having an eccentric mass is rotated by a digital servo motor, and a centrifugal force is generated by the eccentric mass. The ACROSS currently used has a signal amplitude of 20 tons at a rotation frequency of 50 Hz and a structure in which the eccentric mass is supported by a rolling bearing. Such a rotary source device is described in, for example, Japanese Patent Laid-Open No. 10-142345 (Patent Document 1). However, this apparatus has a bearing friction of about 15 kW due to the rotation of the shaft and is accompanied by a remarkably large heat generation. Therefore, measures such as providing water-cooled pipes for each bearing and stricter lubrication management are taken.

その対策として、従来のACROSSで用いられている転がり軸受に代えて静圧流体軸受等の流体軸受とすることが考えられている。流体軸受を用いると加圧流体を供給する設備が必要となるものの、(1)軸受摩擦が小さく、発熱、潤滑管理の問題がなくなる (2)転がり軸受に見られる転動がないため、運転精度が高く、きれいな信号が得られる (3)滑り面間で固体接触を行わないため、運転中の負荷の繰り返しによるフレーキングの心配がなく長寿命である (4)軸受給気により本体の冷却が可能である、という各種の効果が期待できる。   As a countermeasure, it is considered that a fluid bearing such as a hydrostatic fluid bearing is used instead of the rolling bearing used in the conventional ACROSS. The use of hydrodynamic bearings requires equipment to supply pressurized fluid, but (1) bearing friction is small and heat generation and lubrication management problems are eliminated. (2) Operation accuracy is eliminated because there is no rolling found in rolling bearings. (3) Since there is no solid contact between the sliding surfaces, there is no risk of flaking due to repeated load during operation, and the service life is long. Various effects can be expected.

そこで実際に、流体軸受を用いたACROSSの開発研究が本発明者等によりなされている。実際に製作した装置は200kgf級の精密制御定常震源であり、図7に示すような構造のものであって、一部に切り欠き41を設けた非対称シャフト42をカップリング43を介してモータ44で回転させるに際して、上部ラジアル流体軸受45と下部流体軸受46とでラジアル方向を支持し、各流体軸受間にはスペーサ47を配置している。   Therefore, the present inventors have actually conducted research on the development of ACROSS using fluid bearings. The actually manufactured device is a 200 kgf-class precision controlled steady-state earthquake source having a structure as shown in FIG. 7, and an asymmetric shaft 42 provided with a notch 41 in part is connected to a motor 44 via a coupling 43. , The radial direction is supported by the upper radial fluid bearing 45 and the lower fluid bearing 46, and a spacer 47 is disposed between the fluid bearings.

各ラジアル流体軸受はケーシング48内に収納され、シャフト下端部はスラスト流体軸受50で支持し、ケーシング48の上下端部は各々上部プレート51と下部プレート52で閉じている。また、ケーシング48はその周囲を固定用ボルト53によってホルダー54に固定支持され、ホルダー54の下端を加震部材55に固定し、ロードセル56で監視しながらモータ44の回転により非対称シャフトを精密制御して所定の回転をさせることによって生じる振動を加震部材54に与え、地中に振動を与えて震源として利用するものである。このような流体軸受を用いることにより、所望の効果が得られている。
特開平10−142345号公報
Each radial fluid bearing is housed in a casing 48, the lower end of the shaft is supported by a thrust fluid bearing 50, and the upper and lower ends of the casing 48 are closed by an upper plate 51 and a lower plate 52, respectively. Further, the casing 48 is fixedly supported by a holder 54 with fixing bolts 53, the lower end of the holder 54 is fixed to a vibration member 55, and the asymmetric shaft is precisely controlled by the rotation of the motor 44 while being monitored by the load cell 56. Thus, the vibration generated by the predetermined rotation is given to the shaking member 54, and the vibration is given to the ground to be used as a hypocenter. By using such a fluid bearing, a desired effect is obtained.
Japanese Patent Laid-Open No. 10-142345

上記のような流体軸受を用いた精密制御定常震源においては、流体軸受を用いることによる種々の効果を奏することができるものであるが、通常の流体軸受は負荷容量に限界があり、現在運転している20tonf級のACROSSと同程度のものを製造するのは困難であった。また、摩擦損失の少ない流体軸受であっても、更に摩擦損失の少ない、しかも安定して超寿命の流体軸受の開発が望まれている。   The precision controlled steady-state earthquake source using fluid bearings as described above can achieve various effects by using fluid bearings. However, ordinary fluid bearings have limited load capacity and are currently operated. It was difficult to manufacture a product equivalent to the 20 tonf class ACROSS. In addition, it is desired to develop a hydrodynamic bearing having a smaller friction loss and a lower friction loss and having a stable and long life.

このような課題は、前記のような精密制御定常震源装置に限らず、大負荷で作動する機器や加振器のような大きな衝撃負荷を発生する機器においても、大きな負荷を受けるラジアル軸受では全て共通の課題として存在する。   Such problems are not limited to the above-described precision controlled steady-state seismic source device, but all of the radial bearings that receive a large load, such as a device that operates with a large load and a device that generates a large impact load such as a vibrator. It exists as a common issue.

そこで本発明は、従来の非対称負荷を支持する機械式ラジアル軸受の寿命を流体潤滑により長寿命化するとともに、一般的な流体軸受では支持することができないような大きな負荷でも安定して支持することができ、また、回転時における流体軸受の軸受損失を大幅に軽減させることができるとともに、小さな偏心で大きな負荷を支持できる非対称流体軸受を提供することにある。   Therefore, the present invention extends the life of conventional mechanical radial bearings that support asymmetric loads by fluid lubrication, and stably supports even large loads that cannot be supported by general fluid bearings. Another object of the present invention is to provide an asymmetric fluid bearing that can significantly reduce bearing loss of a fluid bearing during rotation and can support a large load with a small eccentricity.

そのために、本発明では、非対称負荷を与えるために片側の一部に切り欠き部を設ける回転軸の性質を利用し、その切り欠き部を軸受面の一部にも存在するように設け、回転することによって負荷が加わる側の軸受面面積を大きくし、反負荷側の軸受面積を小さくした非対称流体軸受を形成することによって、流体軸受の負荷の加わる側の軸受面積を反負荷側の軸受面積より大きくし、軸受面積を負荷方向に対し非対称とすることにより大きな負荷を支持でき、あわせて、回転時の軸受損失を低減することできる。   Therefore, in the present invention, in order to apply an asymmetric load, the property of the rotating shaft provided with a notch part on one side is used, and the notch part is provided so as to exist also on a part of the bearing surface. By forming an asymmetric fluid bearing that increases the bearing surface area on the load application side and reduces the bearing area on the antiload side, the bearing area on the load application side of the fluid bearing is reduced to the bearing area on the antiload side. By making it larger and making the bearing area asymmetric with respect to the load direction, a large load can be supported, and at the same time, bearing loss during rotation can be reduced.

より具体的には、本発明の非対称流体軸受は、片側の一部に切り欠き部を設けることにより、回転時に非対称負荷を与える非対称シャフトを軸支するラジアル流体軸受において、前記非対称負荷を与える切り欠き部を前記流体軸受の軸受面内にも設け、切り欠きを設けない負荷側の軸受面より切り欠きを設ける反負荷側の軸受面を狭く形成したことを特徴とする。   More specifically, the asymmetric fluid bearing according to the present invention is a radial fluid bearing that supports an asymmetric shaft that applies an asymmetric load during rotation by providing a notch on a part of one side. The notched portion is also provided in the bearing surface of the fluid dynamic bearing, and the non-load side bearing surface provided with the notch is formed narrower than the load side bearing surface not provided with the notch.

また、本発明による他の非対称流体軸受は、前記切り欠きが、流体軸受の側方から該流体軸受の軸受面内に延びていることを特徴とする。   Another asymmetric fluid bearing according to the present invention is characterized in that the notch extends from a side of the fluid bearing into a bearing surface of the fluid bearing.

また、本発明による他の非対称流体軸受は、前記切り欠きは、流体軸受の中間部に形成したことを特徴とする。   Another asymmetric fluid bearing according to the present invention is characterized in that the notch is formed in an intermediate portion of the fluid bearing.

また、本発明による他の非対称流体軸受は、前記非対称流体軸受が、精密制御定常震源に用いることを特徴とする。   In addition, another asymmetric fluid bearing according to the present invention is characterized in that the asymmetric fluid bearing is used for a precision controlled stationary earthquake source.

本発明によると、以上の構成によれば、回転によって負荷の加わる側の流体軸受面積は、非対称負荷を発生させるために設ける回転軸の切り欠き部を単に軸受面内に拡張するのみで、負荷側の軸受面積を反負荷側の軸受面面積に比してより大きくすることができ、したがって負荷側と反負荷側との圧力の差によって支持力を発生する流体軸受は、反負荷側の圧力を発生する面積が小さことによる圧力の差がより大きくなり、高い負荷容量の流体軸受とすることができる。さらに、流体摩擦によって起こる軸受損失も反負荷側の軸受面面積の減少により低下させることができ、前記効果と相まって高負荷容量、低損失の流体軸受つすることができる。   According to the present invention, according to the configuration described above, the fluid bearing area on the side to which the load is applied by the rotation can be obtained by simply extending the notch portion of the rotating shaft provided for generating the asymmetric load within the bearing surface. The bearing area on the side can be made larger than the bearing surface area on the anti-load side, and therefore a hydrodynamic bearing that generates bearing force due to the pressure difference between the load side and the anti-load side The difference in pressure due to the small area for generating the pressure increases, and a fluid bearing having a high load capacity can be obtained. Furthermore, bearing loss caused by fluid friction can be reduced by reducing the bearing surface area on the anti-load side, and combined with the above effects, a fluid bearing with high load capacity and low loss can be achieved.

本発明は、流体軸受の負荷容量を簡単な構成により増加させ、軸受損失を減少する課題を、片側の一部に切り欠き部を設けることにより、回転時に非対称負荷を与える非対称シャフトを軸支するラジアル流体軸受において、前記非対称負荷を与える切り欠き部を前記流体軸受の軸受面内にも設け、切り欠きを設けない負荷側の軸受面より切り欠きを設ける反負荷側の軸受面を狭く形成することにより実現する。   The present invention has the object of increasing the load capacity of a fluid bearing with a simple configuration and reducing the bearing loss, and by providing a notch in a part of one side to support an asymmetric shaft that applies an asymmetric load during rotation. In the radial fluid bearing, a notch for applying the asymmetric load is also provided in the bearing surface of the fluid bearing, and the bearing surface on the non-load side where the notch is provided is narrower than the bearing surface on the load side where the notch is not provided. This is realized.

本発明による非対称流体軸受を前記精密制御定常震源(ACROSS)に適用した例に基づいて説明する。図1は前記従来例として示したACROSSと同様の全体構成をなす装置を示しており、その概要は前記のとおりであるので、詳細な説明は省略するが、特に流体軸受部分の構成について述べると、この非対称シャフト11には上方から順に第1切り欠き12、第2切り欠き13、第3切り欠き14を形成しており、この非対称シャフト11をカップリング15を介してモータ16で回転させるようにしている。この非対称シャフト11は、その上部において第1切り欠き12と第2切り欠き13との間における、これらの切り欠きが設けられていない第1ランド部17を中心として第1ラジアル流体軸受18で支持され、その下部において第2切り欠き13と第3切り欠き14との間における、これらの切り欠きが設けられていない第2ランド部19を中心として第2ラジアル流体軸受20で支持されていると共に、各流体軸受間にはスペーサ21を配置している。   The asymmetric fluid bearing according to the present invention will be described based on an example in which it is applied to the above-mentioned precision controlled steady-state source (ACROSS). FIG. 1 shows an apparatus having an overall configuration similar to that of ACROSS shown as the conventional example, and the outline thereof is as described above. Therefore, detailed description is omitted, but particularly the configuration of a fluid bearing portion will be described. The asymmetric shaft 11 is formed with a first notch 12, a second notch 13, and a third notch 14 in this order from above, and the asymmetric shaft 11 is rotated by a motor 16 via a coupling 15. I have to. The asymmetric shaft 11 is supported by the first radial fluid bearing 18 around the first land portion 17 between the first notch 12 and the second notch 13 where the notch is not provided. At the lower part thereof, the second radial fluid bearing 20 is supported around the second land portion 19 between the second notch 13 and the third notch 14 where these notches are not provided. A spacer 21 is disposed between the fluid bearings.

各ラジアル流体軸受はケーシング22内に収納され、非対称シャフト11の下端部はスラスト流体軸受23で支持している。また、ケーシング22はその周囲を固定用ボルト24によってホルダー25に固定支持され、ホルダー25の下端を加震部材26に固定し、モータ16の回転を精密制御し非対称シャフト11を所定の回転数で回転をさせ、ロードセル27で監視しながらその回転によって生じる振動を加震部材26に与え、地中に振動を与えて震源として利用する点において、前記従来例と同様の構成をなしている。   Each radial fluid bearing is housed in a casing 22, and the lower end portion of the asymmetric shaft 11 is supported by a thrust fluid bearing 23. The casing 22 is fixedly supported around the holder 25 by fixing bolts 24, the lower end of the holder 25 is fixed to the vibration member 26, the rotation of the motor 16 is precisely controlled, and the asymmetric shaft 11 is rotated at a predetermined rotational speed. The structure is the same as that of the above-described conventional example in that it is rotated, and the vibration generated by the rotation is applied to the seismic member 26 while being monitored by the load cell 27, and the vibration is applied to the ground and used as an earthquake source.

本発明はこのようなACROSSにおいて、例えば上部の第1ラジアル流体軸受18についてみると、第1切り欠き12の下端部28を第1ラジアル流体軸受18の軸受面29内まで下方に延長し、また第2切り欠き13の上端部30を軸受面29内まで上方に延長しており、それによりこれらの切り欠きが形成されていない第1ランド部17は従来のものより幅が狭くなっている。   In the ACROSS of the present invention, for example, when viewing the upper first radial fluid bearing 18, the lower end portion 28 of the first notch 12 extends downward into the bearing surface 29 of the first radial fluid bearing 18, and The upper end 30 of the second notch 13 extends upward to the inside of the bearing surface 29, so that the first land portion 17 in which these notches are not formed is narrower than the conventional one.

下部の第2ラジアル流体軸受20についても同様に、第2切り欠き13の下端部31を第2ラジアル流体軸受20の軸受面32内まで下方に延長し、また第3切り欠き14の上端部33を軸受面32内まで上方に延長しており、それによりこれらの切り欠きが形成されていない第2ランド部19は従来のものより幅が狭くなっている。   Similarly for the lower second radial fluid bearing 20, the lower end 31 of the second notch 13 extends downward into the bearing surface 32 of the second radial fluid bearing 20, and the upper end 33 of the third notch 14. Is extended upward into the bearing surface 32, so that the second land portion 19 in which these notches are not formed is narrower than the conventional one.

このようなラジアル流体軸受においては、非対称シャフト11の回転時に負荷の小さなランド部が形成されている部分の軸受面積が狭く、反対側の切り欠きが設けられていない高負荷側の軸受面積が広い、非対称流体軸受が構成される。この非対称流体軸受において、第1ラジアル流体軸受18部分を拡大し、模式的に示したのが図2であり、この構成は第2ラジアル流体軸受20についても同様である。   In such a radial fluid bearing, when the asymmetric shaft 11 rotates, the bearing area of the portion where the land portion with a small load is formed is narrow, and the bearing area on the high load side where the notch on the opposite side is not provided is wide. An asymmetric fluid bearing is configured. In this asymmetric fluid bearing, the first radial fluid bearing 18 is enlarged and schematically shown in FIG. 2, and this configuration is the same for the second radial fluid bearing 20.

図2において、非対称シャフト11の図中左側の第1切り欠き12が軸受面29の内部にLcだけ延びており、第2切り欠き13が同様に軸受面29の内部にLcだけ延びていて、それにより低負荷側に形成される第1ランド部17の表面としての軸受面の幅Laは、その反対側の高負荷側の軸受面の幅Lbより狭く形成されて、非対称流体軸受となっている。このように、非対称流体軸受の軸受面の幅の調整、即ち軸受面積の調整は、各切り欠きが軸受面に入り込む長さLcを調節することにより行うことができる。   In FIG. 2, the first notch 12 on the left side of the asymmetric shaft 11 extends in the bearing surface 29 by Lc, and the second notch 13 similarly extends in the bearing surface 29 by Lc. Thereby, the width La of the bearing surface as the surface of the first land portion 17 formed on the low load side is formed narrower than the width Lb of the bearing surface on the high load side on the opposite side to form an asymmetric fluid bearing. Yes. As described above, the adjustment of the width of the bearing surface of the asymmetric fluid bearing, that is, the adjustment of the bearing area, can be performed by adjusting the length Lc in which each notch enters the bearing surface.

この非対称流体軸受においては、環状に形成された流体供給路34から複数個の孔35により軸受面に圧力流体を供給するようにしている。この非対称流体軸受においては、負荷の状態に応じて切り欠きの深さ(R−Rc)、切り欠きが軸受面に入り込む長さ(Lc)、及び周方向の幅(切り欠き範囲の角度)を調節する。   In this asymmetric fluid bearing, a pressure fluid is supplied to the bearing surface through a plurality of holes 35 from an annular fluid supply passage 34. In this asymmetrical fluid bearing, the notch depth (R-Rc), the length of the notch entering the bearing surface (Lc), and the width in the circumferential direction (angle of the notch range) according to the load state. Adjust.

図1及び図2に示す実施例においては、本発明による非対称流体軸受を形成するに際して、流体軸受の両側に配置される非対称シャフト形成用の切り欠きを延長することによって形成した例を示したが、それ以外に例えば図3に示すように、非対称シャフト35における幅Ldの流体軸受の中心部に、幅Leの切り欠き36を設け、それによりこの切り欠き36の両側に軸受面を形成している。このような軸受構成によっても、非対称シャフトを形成するための切り欠き36を用いて、低負荷側が高負荷側より軸受面積の小さな、非対称軸受を構成することができ、各軸受面に給気孔37から加圧流体を供給し、中央の排気孔38から排気することによって所定の流体軸受の作動を行わせることができる。   In the embodiment shown in FIG. 1 and FIG. 2, when forming the asymmetric fluid bearing according to the present invention, an example in which the asymmetric shaft forming notches arranged on both sides of the fluid bearing are extended is shown. In addition, as shown in FIG. 3, for example, a notch 36 having a width Le is provided at the center of a fluid bearing having a width Ld in the asymmetric shaft 35, thereby forming bearing surfaces on both sides of the notch 36. Yes. Even with such a bearing configuration, the notch 36 for forming the asymmetric shaft can be used to form an asymmetric bearing having a smaller bearing area on the low load side than on the high load side. A predetermined fluid bearing can be operated by supplying a pressurized fluid from the center and exhausting from the central exhaust hole 38.

図4は上記のような非対称流体軸受の軸方向圧力分布を模式的に示したもので、実線は負荷側の圧力分布、破線は反負荷側の圧力分布である。軸受反力は軸受面に作用する圧力に依存するから、反負荷側の軸受面積が小さく、圧力も低い非対称軸受の負荷容量は通常の対称形軸受に比べ飛躍的に向上する。また、軸受損失は軸受面積に比例するから、切り欠きを設けることにより、切り欠き面積に比例して軸受損失は減少する。   FIG. 4 schematically shows the axial pressure distribution of the asymmetric fluid bearing as described above. The solid line represents the pressure distribution on the load side, and the broken line represents the pressure distribution on the anti-load side. Since the bearing reaction force depends on the pressure acting on the bearing surface, the load capacity of an asymmetric bearing having a small bearing area on the anti-load side and a low pressure is dramatically improved as compared with a normal symmetrical bearing. Since the bearing loss is proportional to the bearing area, providing the notch reduces the bearing loss in proportion to the notch area.

図5には従来の対称流体軸受と本発明の非対称流体軸受との偏心率に対する負荷容量の計算結果の比較を示す。この計算においては、本発明の非対称軸受として、給気構造はスロットル絞り形式で軸受面長さの半分が切り欠きになっている構造のものを用い、直径60mm、軸受長さ120mm、給気圧力6kgf/cm2、軸受すきま30μmである。非対称軸受の無回転状態では、軸受面積の差で生じる負荷容量分だけ切り欠きを設けた軸受面側に回転軸が偏って停止している。回転上昇により非対称構造を持つ回転軸に遠心力が働くため回転軸は、軸受中心を通り負荷側(切り欠きの無い側)に向かって移動していき、通常の対称軸受より偏心量を大きくとれるため大きな負荷を支持できることが分かる。   FIG. 5 shows a comparison of the calculation results of the load capacity with respect to the eccentricity between the conventional symmetric fluid bearing and the asymmetric fluid bearing of the present invention. In this calculation, as the asymmetric bearing of the present invention, the air supply structure is a throttle throttle type and has a structure in which half of the bearing surface length is notched, and has a diameter of 60 mm, a bearing length of 120 mm, and an air supply pressure. 6 kgf / cm @ 2 and bearing clearance 30 .mu.m. In the non-rotating state of the asymmetric bearing, the rotating shaft is biased and stopped on the bearing surface side provided with a notch corresponding to the load capacity caused by the difference in bearing area. Since the centrifugal force acts on the rotating shaft with an asymmetric structure due to the rotation rise, the rotating shaft moves toward the load side (the side without the notch) through the bearing center, and can take a larger amount of eccentricity than a normal symmetrical bearing. Therefore, it turns out that a big load can be supported.

図6に従来の対称流体軸受と本発明の非対称流体軸受との偏心率に対する負荷容量の計算結果の比較を示す。計算における本発明の非対称軸受では、給気構造はスロットル絞り形式で軸受面長さの半分が切り欠きになっている構造で、直径60mm、軸受長さ120mm、給気圧力6kgf/cm2、軸受すきま30μmである。非対称軸受の無回転状態では、軸受面積の差で生じる負荷容量分だけ切り欠きを設けた軸受面側に回転軸が偏って停止している。回転上昇により非対称構造を持つ回転軸に遠心力が働くため回転軸は、軸受中心を通り負荷側(切り欠きのない側)に向かって移動していき、通常の対称軸受より偏心量を大きくとれるため大きな負荷を支持できることが分かる。   FIG. 6 shows a comparison of the calculation results of the load capacity with respect to the eccentricity between the conventional symmetric fluid bearing and the asymmetric fluid bearing of the present invention. In the calculation of the asymmetrical bearing according to the present invention, the air supply structure is a throttle throttle type with half of the bearing surface length notched, with a diameter of 60 mm, a bearing length of 120 mm, an air supply pressure of 6 kgf / cm2, and a bearing clearance. 30 μm. In the non-rotating state of the asymmetric bearing, the rotating shaft is biased and stopped on the bearing surface side provided with a notch corresponding to the load capacity caused by the difference in bearing area. Centrifugal force acts on the rotating shaft with an asymmetrical structure due to the rotation rise, so the rotating shaft moves toward the load side (the side without notches) through the center of the bearing, and can take a larger amount of eccentricity than a normal symmetrical bearing. Therefore, it turns out that a big load can be supported.

図6として示す表に20tf級の精密制御定常震源について概略計算した本発明の非対称流体軸受と従来の対称流体軸受の負荷容量をほぼ同一としたときの軸受一個あたりの特性比較を示す。負荷容量を同一とすると、軸受流量で60%の減少、軸受摩擦で49%の減少であり、総動力でほぼ50%低下できることがわかる。   The table shown as FIG. 6 shows a characteristic comparison per bearing when the load capacities of the asymmetric fluid bearing of the present invention and the conventional symmetric fluid bearing, which are roughly calculated for a 20 tf-class precision controlled steady-state earthquake source, are almost the same. It can be seen that if the load capacity is the same, the bearing flow rate is reduced by 60%, the bearing friction is reduced by 49%, and the total power can be reduced by almost 50%.

上記実施例は本発明を精密制御定常震源に適用した例を示したが、それ以外に、大負荷で作動する機器や加振器のような大きな衝撃負荷を発生する機器のラジアル軸受として広範囲に用いることができる。   In the above embodiment, the present invention is applied to a precision controlled steady-state epicenter, but in addition to this, it is widely used as a radial bearing for equipment that generates a large impact load such as equipment that operates with a large load or a vibrator. Can be used.

本発明による非対称流体軸受の実施例を適用した精密制御定常震源の断面図である。従来試作された流体軸受支持の200kg級精密制御定常震源の構造。説明図である。1 is a cross-sectional view of a precision controlled stationary earthquake source to which an embodiment of an asymmetric fluid bearing according to the present invention is applied. The structure of a 200 kg class precision controlled steady-state epicenter with a hydrodynamic bearing that was previously prototyped. It is explanatory drawing. 同実施例による非対称流体軸受の説明図である。It is explanatory drawing of the asymmetrical fluid bearing by the Example. 本発明による非対称流体軸受の他の実施例の説明図である。It is explanatory drawing of the other Example of the asymmetrical fluid bearing by this invention. 本発明による非対称流体軸受の軸方向面内圧力の模式図である。It is a schematic diagram of the axial in-plane pressure of the asymmetrical fluid bearing by this invention. 本発明の非対称流体軸受と従来の対称流体軸受の偏心率に対する負荷容量の比較を示すグラフである。It is a graph which shows the comparison of the load capacity with respect to the eccentricity of the asymmetrical fluid bearing of this invention, and the conventional symmetrical fluid bearing. 20tonf級ACROSSに、従来型軸受と本発明による非対称軸受を適用した際の比較結果を示す表である。It is a table | surface which shows the comparison result at the time of applying the conventional type bearing and the asymmetrical bearing by this invention to 20tonf class ACROSS. 従来製作された200kgf級精密制御定常震源の断面図である。It is sectional drawing of the 200kgf class precision control stationary seismic source manufactured conventionally.

符号の説明Explanation of symbols

11 非対称シャフト
12 第1切り欠き
13 第2切り欠き
14 第3切り欠き
15 カップリング
16 モータ
17 第1ランド部
18 第1ラジアル流体軸受
19 第2ランド部
20 第2ラジアル流体軸受
21 スペーサ
22 ケーシング
23 スラスト流体軸受
24 固定用ボルト
25 ホルダー
26 加震部材
27 ロードセル
28 第1切り欠き12の下端部
29 軸受面
30 第2切り欠き13の上端部
31 第2切り欠き13の下端部
32 軸受面
33 第3切り欠き13の上端部
DESCRIPTION OF SYMBOLS 11 Asymmetric shaft 12 1st notch 13 2nd notch 14 3rd notch 15 Coupling 16 Motor 17 1st land part 18 1st radial fluid bearing 19 2nd land part 20 2nd radial fluid bearing 21 Spacer 22 Casing 23 Thrust fluid bearing 24 Fixing bolt 25 Holder 26 Seismic member 27 Load cell 28 Lower end portion of first notch 12 29 Bearing surface 30 Upper end portion of second notch 13 31 Lower end portion of second notch 13 32 Bearing surface 33 First Upper end of 3 notches 13

Claims (4)

片側の一部に切り欠き部を設けることにより、回転時に非対称負荷を与える非対称シャフトを軸支するラジアル流体軸受において、
前記非対称負荷を与える切り欠き部を前記流体軸受の軸受面内にも設け、切り欠きを設けない負荷側の軸受面より切り欠きを設ける反負荷側の軸受面を狭く形成したことを特徴とする非対称流体軸受。
In a radial fluid bearing that supports an asymmetric shaft that gives an asymmetric load during rotation by providing a notch on a part of one side,
The notched portion for providing the asymmetric load is also provided in the bearing surface of the fluid dynamic bearing, and the bearing surface on the non-load side where the notch is provided is narrower than the bearing surface on the load side where the notch is not provided. Asymmetric fluid bearing.
前記切り欠きは、流体軸受の側方から該流体軸受の軸受面内に延びていることを特徴とする請求項1記載の非対称流体軸受。   The asymmetric fluid bearing according to claim 1, wherein the notch extends from a side of the fluid bearing into a bearing surface of the fluid bearing. 前記切り欠きは、流体軸受の中間部に形成したことを特徴とする請求項1記載の非対称流体軸受。   The asymmetric fluid bearing according to claim 1, wherein the notch is formed in an intermediate portion of the fluid bearing. 前記非対称流体軸受は、精密制御定常震源に用いることを特徴とする請求項1記載の非対称流体軸受。   2. The asymmetric fluid bearing according to claim 1, wherein the asymmetric fluid bearing is used for a precision controlled stationary earthquake source.
JP2005019127A 2005-01-27 2005-01-27 Asymmetric fluid bearing Expired - Fee Related JP4484109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019127A JP4484109B2 (en) 2005-01-27 2005-01-27 Asymmetric fluid bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019127A JP4484109B2 (en) 2005-01-27 2005-01-27 Asymmetric fluid bearing

Publications (2)

Publication Number Publication Date
JP2006207668A true JP2006207668A (en) 2006-08-10
JP4484109B2 JP4484109B2 (en) 2010-06-16

Family

ID=36964765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019127A Expired - Fee Related JP4484109B2 (en) 2005-01-27 2005-01-27 Asymmetric fluid bearing

Country Status (1)

Country Link
JP (1) JP4484109B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092195A (en) * 2007-10-11 2009-04-30 Daiya Seiki Co Ltd Static pressure fluid bearing
CN104155684A (en) * 2014-08-25 2014-11-19 中国矿业大学 Self-compensating controlled seismic source for seismic wave CT detection of underground coal seam working face impact danger zone and seismic source generation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142345A (en) * 1996-11-08 1998-05-29 Fuji Electric Co Ltd Rotary seismic source unit
JP2000146748A (en) * 1998-11-17 2000-05-26 Shinken:Kk Vibration generator
JP2003301841A (en) * 2002-04-11 2003-10-24 Ntn Corp Hydrostatic gas bearing, and spindle device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142345A (en) * 1996-11-08 1998-05-29 Fuji Electric Co Ltd Rotary seismic source unit
JP2000146748A (en) * 1998-11-17 2000-05-26 Shinken:Kk Vibration generator
JP2003301841A (en) * 2002-04-11 2003-10-24 Ntn Corp Hydrostatic gas bearing, and spindle device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092195A (en) * 2007-10-11 2009-04-30 Daiya Seiki Co Ltd Static pressure fluid bearing
CN104155684A (en) * 2014-08-25 2014-11-19 中国矿业大学 Self-compensating controlled seismic source for seismic wave CT detection of underground coal seam working face impact danger zone and seismic source generation method

Also Published As

Publication number Publication date
JP4484109B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
US5613781A (en) Hanging spring supported squeeze film damping system for shaft bearing
RU2372535C2 (en) Device of increasing of thrust capacity in bearing system of rotor
Chasalevris et al. A journal bearing with variable geometry for the suppression of vibrations in rotating shafts: Simulation, design, construction and experiment
US20150362012A1 (en) Foil bearing assembly
San Andrés et al. Damping and inertia coefficients for two end sealed squeeze film dampers with a central groove: measurements and predictions
Swanson et al. Performance of a foil-magnetic hybrid bearing
Liu et al. Experimental study on the lubrication characteristics of water-lubricated rubber bearings at high rotating speeds
Hong et al. Theoretical and experimental study on dynamic coefficients and stability for a hydrostatic/hydrodynamic conical bearing
Xiang et al. Investigation on the nonlinear dynamic behaviors of water-lubricated bearings considering mixed thermoelastohydrodynamic performances
Rohmer et al. Static load performance of a water-lubricated hydrostatic thrust bearing
Santos et al. Feasibility of applying active lubrication to reduce vibration in industrial compressors
JP4484109B2 (en) Asymmetric fluid bearing
Bently et al. Active controlled hydrostatic bearings for a new generation of machines
San Andrés et al. Effect of lubricant supply pressure on SFD performance: ends sealed with O-rings and piston rings
US7465097B2 (en) Fluid dynamic bearing system
JP2006177268A (en) Rotatably supporting device for wind power generator
Siew et al. Evaluation of various fluid-film models for use in the analysis of squeeze film dampers with a central groove
Deepak et al. Experimental verification of subcritical whirl bifurcation of a rotor supported on a fluid film bearing
Childs et al. Static destabilizing behavior for gas annular seals at high eccentricity ratios
Zou et al. Feasibility of contact elimination of a mechanical face seal through clearance adjustment
Zhang et al. Numerical and experimental study on dynamic characteristics of tilting-pad journal bearings considering pivot stiffness in a vertical rotor system
Zhu et al. Experimental response of a rotor supported on Rayleigh step gas bearings
Ise et al. Vibration reduction of large unbalanced rotor supported by externally pressurized gas journal bearings with asymmetrically arranged gas supply holes (Verification of the effectiveness of a supply gas pressure control system)
Wilde et al. Comparison of Rotordynamic Analysis Predictions with the test response of simple gas hybrid Bearings for oil free Turbomachinery
Yuan et al. Theoretical and experimental results of water-lubricated, high-speed, short-capillary-compensated hybrid journal bearings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees