JP2009092195A - Static pressure fluid bearing - Google Patents

Static pressure fluid bearing Download PDF

Info

Publication number
JP2009092195A
JP2009092195A JP2007265600A JP2007265600A JP2009092195A JP 2009092195 A JP2009092195 A JP 2009092195A JP 2007265600 A JP2007265600 A JP 2007265600A JP 2007265600 A JP2007265600 A JP 2007265600A JP 2009092195 A JP2009092195 A JP 2009092195A
Authority
JP
Japan
Prior art keywords
bearing
bearing member
annular
concave
radial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007265600A
Other languages
Japanese (ja)
Other versions
JP4908372B2 (en
Inventor
Mochi Takei
持 武井
Toshihiro Tanaka
俊宏 田中
Shinichi Sogo
晋一 十合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIYA SEIKI CO Ltd
Original Assignee
DAIYA SEIKI CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIYA SEIKI CO Ltd filed Critical DAIYA SEIKI CO Ltd
Priority to JP2007265600A priority Critical patent/JP4908372B2/en
Publication of JP2009092195A publication Critical patent/JP2009092195A/en
Application granted granted Critical
Publication of JP4908372B2 publication Critical patent/JP4908372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel structure by which a static fluid bearing can easily manufactured and constituted with high precision. <P>SOLUTION: A bearing body 200 of the static pressure bearing comprises a first bearing member 210 integrally having a first rugged end 211, and a second bearing member 220 integrally having a second rugged end 221 fittable in the axial direction with respect to the first rugged end. The first bearing member and the second bearing member are fitted in the axial direction in such a manner that the first rugged end and the second rugged end are combined with each other. A plurality of recessed groove 221g extending radially and communicating with a bearing gap G are radially formed at least at one of a first bearing side 211t and a second bearing side 221t. The first bearing side and the second bearing side abut on each other so that a plurality of throttles P are dispersed around an axis by a recessed groove. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は気体、油等の液体その他の流体の圧力で軸受する静圧流体軸受に係り、さらに詳しく言えば、電子記憶媒体に用いるディスクの検査用や精密加工用などのスピンドルの軸受に用いる場合に好適な静圧流体軸受の構造に関する。   The present invention relates to a hydrostatic bearing that is supported by the pressure of a liquid such as gas, oil or the like, and more specifically, when used for a spindle bearing for inspection or precision machining of a disk used in an electronic storage medium. The present invention relates to a structure of a hydrostatic bearing suitable for the above.

高圧流体を絞りを通して軸受隙間に供給し、その流体の有する静圧によって軸に加わる負荷を支持する静圧流体軸受はすでに数多く実用化されている。とくに、高剛性、高精度を必要とする静圧流体軸受にあっては、軸受隙間を小さくし、それに相応して絞りの流体抵抗を大きくすることが求められている。そのため、静圧流体軸受は高い精度で加工することが必要で、さらに複数個の静圧流体軸受を用いるスピンドルにあっては静圧流体軸受自体及びその間の同心度、円筒度、真直度を高い精度で維持することが必要とされている。   Many hydrostatic fluid bearings that supply a high pressure fluid to a bearing gap through a throttle and support a load applied to the shaft by the static pressure of the fluid have already been put into practical use. In particular, in a hydrostatic fluid bearing that requires high rigidity and high accuracy, it is required to reduce the bearing clearance and increase the fluid resistance of the throttle accordingly. For this reason, hydrostatic bearings need to be machined with high accuracy. Furthermore, in a spindle using a plurality of hydrostatic fluid bearings, the hydrostatic bearings themselves and the concentricity, cylindricity and straightness between them are high. There is a need to maintain accuracy.

図3は2個の静圧流体軸受2,2を用いて半径方向の負荷を受ける軸1を支持する従来の技術によるスピンドルの一例を模式的に示す概略断面図である。2個の静圧流体軸受2,2は、それぞれ第1軸受部材2Aと第2軸受部材2Bとが軸線方向に突き合わされた状態で固定されてなる。これらの内径21は高い精度で加工され、真円度、円筒度、真直度、および外径22との同心度、ならびに内径21に対する端面23の直角度は必要精度を十分達成している必要がある。スピンドルを構成するには、スピンドルの構造体となるホルダー(ハウジング)3を用意し、一組の軸受部材2A,2Bをホルダー3に挿入し、スペーサー4を挿入しさらに他方の組の軸受部材2A,2Bを挿入する。ホルダー3の内径31の真円度、円筒度、真直度は必要精度を満足する必要があり、内径31の絶対寸法は第1軸受部材2A、第2軸受部材2Bの挿入を可能にするため、これらの外径22より数マイクロメータ大きく仕上げられている。スペーサー4の両端面41、41の平行度は第1軸受部材2A、第2軸受部材2Bが傾くことを防ぐため十分な精度に仕上げられている。また、スペーサー4の外径42の絶対寸法はホルダー3への挿入を可能にするためホルダー3の内径31より小さく仕上げられている。   FIG. 3 is a schematic cross-sectional view schematically showing an example of a conventional spindle that supports a shaft 1 that receives a load in the radial direction by using two hydrostatic fluid bearings 2 and 2. The two hydrostatic fluid bearings 2 and 2 are fixed in a state where the first bearing member 2A and the second bearing member 2B are abutted in the axial direction. These inner diameters 21 are machined with high accuracy, and the roundness, cylindricity, straightness, concentricity with the outer diameter 22, and the perpendicularity of the end face 23 with respect to the inner diameter 21 need to sufficiently achieve the required accuracy. is there. In order to configure the spindle, a holder (housing) 3 serving as a spindle structure is prepared, a pair of bearing members 2A and 2B is inserted into the holder 3, a spacer 4 is inserted, and the other pair of bearing members 2A is inserted. , 2B are inserted. The roundness, cylindricity, and straightness of the inner diameter 31 of the holder 3 must satisfy the required accuracy, and the absolute dimension of the inner diameter 31 enables insertion of the first bearing member 2A and the second bearing member 2B. It is finished several micrometers larger than these outer diameters 22. The parallelism of both end faces 41, 41 of the spacer 4 is finished with sufficient accuracy to prevent the first bearing member 2A and the second bearing member 2B from being inclined. Further, the absolute dimension of the outer diameter 42 of the spacer 4 is finished smaller than the inner diameter 31 of the holder 3 in order to enable insertion into the holder 3.

上記のような静圧流体軸受2の具体例若しくは改良例はたとえば以下の特許文献1に記載されている。また、静圧流体軸受の他の従来例としては、以下の特許文献2乃至4に示す構造が知られている。
特許第3779186号公報 特公昭46−8044号公報(特に図1及び図2に示される構造) 特公昭49−29526号公報(特に図1及び図2に示される構造) 実開平3−112121号公報
Specific examples or improvements of the hydrostatic fluid bearing 2 as described above are described in, for example, Patent Document 1 below. As other conventional examples of hydrostatic fluid bearings, structures shown in the following Patent Documents 2 to 4 are known.
Japanese Patent No. 3779186 Japanese Examined Patent Publication No. 46-8044 (particularly the structure shown in FIGS. 1 and 2) Japanese Patent Publication No. 49-29526 (particularly the structure shown in FIGS. 1 and 2) Japanese Utility Model Publication No. 3-112121

従来の技術による静圧流体軸受2を複数個用いてスピンドルを構成するには、図3に示すように、静圧流体軸受2を構成する第1軸受部材2A及び第2軸受部材2Bをホルダー3に隙間嵌めで挿入しなければならないため、静圧流体軸受の内径21と外径22の同心度をたとえ0に仕上げても、複数個の静圧流体軸受間の内径の同心度、すなわち、内径の調心度(アライメント)はホルダー内径31と流体軸受外径22の差、すなわち、隙間嵌めの隙間の値だけの誤差を生じることになる。これは軸受隙間を小さくすることを求められる高剛性、高精度スピンドルでは大きな問題となる。また、工作に当たっても、静圧流体軸受2の内径21/外径22の同心度、端面23の内径21に対する直角度、ホルダー内径31の真円度、円筒度、同心度および絶対寸法、さらに、スペーサー4の両端面41の平行度を高い精度で加工することが必要となる。   In order to construct a spindle using a plurality of conventional hydrostatic fluid bearings 2, as shown in FIG. 3, the first bearing member 2 </ b> A and the second bearing member 2 </ b> B constituting the hydrostatic fluid bearing 2 are attached to a holder 3. Therefore, even if the concentricity of the inner diameter 21 and the outer diameter 22 of the hydrostatic fluid bearing is finished to 0, the concentricity of the inner diameters of the plurality of hydrostatic fluid bearings, that is, the inner diameter The degree of alignment (alignment) causes an error corresponding to the difference between the holder inner diameter 31 and the fluid bearing outer diameter 22, that is, the gap fitting value. This is a big problem in a high rigidity and high precision spindle which is required to reduce the bearing clearance. Further, even when working, the concentricity of the inner diameter 21 / outer diameter 22 of the hydrostatic bearing 2, the perpendicularity to the inner diameter 21 of the end face 23, the roundness of the holder inner diameter 31, the cylindricity, the concentricity and the absolute dimension, It is necessary to process the parallelism of the both end faces 41 of the spacer 4 with high accuracy.

すなわち、従来の技術を用いた静圧流体軸受を用いてスピンドルを構成するには、部品点数が多く、しかも前記したように各部品を高い精度で加工することが必要である。それにもかかわらず、最終的に複数個の静圧流体軸受の同心度(アライメント)は隙間嵌めの隙間の値だけ誤差を生じるということになる。   That is, in order to configure a spindle using a hydrostatic bearing using a conventional technique, it is necessary to have a large number of parts and to process each part with high accuracy as described above. Nevertheless, the concentricity (alignment) of the plurality of hydrostatic fluid bearings will eventually cause an error by the gap fitting clearance value.

そこで、本発明の目的は、静圧流体軸受を容易に製造できると同時に高精度に構成可能な新規構造を実現することにある。特に、静圧流体軸受を複数個用いる場合、複数個の静圧流体軸受間の内径の同心度、すなわち、内径の調心度の誤差をかぎりなく0に近づけ、しかも部品点数を少なくし、さらに部品の精度を寛容にし工作を容易にすることを可能とする際に好適な構造若しくは製法を提供することを目的とする。   Accordingly, an object of the present invention is to realize a novel structure that can easily manufacture a hydrostatic fluid bearing and can be constructed with high accuracy. In particular, when a plurality of hydrostatic fluid bearings are used, the concentricity of the inner diameters between the plurality of hydrostatic fluid bearings, that is, the error of the inner diameter alignment is as close to 0 as possible, and the number of parts is reduced. It is an object of the present invention to provide a structure or a manufacturing method suitable for allowing tolerance of parts and facilitating work.

前記目的を達成するために本発明の静圧流体軸受は、回転体と、該回転体との間に軸受隙間を介して対向する軸受面を備えた軸受体とを具備し、前記軸受隙間に加圧した流体を絞りを通して導くことにより前記回転体を回転可能に支持する静圧流体軸受において、前記軸受体は、前記軸受面の一部を構成する第1軸受面部、及び、半径方向に見て凹凸状に設けられた第1凹凸端部を一体に有する第1軸受部材と、前記第1軸受面部に隣接し前記軸受面の他の一部を構成する第2軸受面部、及び、半径方向に見て凹凸状に設けられ、前記第1凹凸端部に対して軸線方向に嵌合可能に構成された第2凹凸端部を一体に有する第2軸受部材とを具備し、前記第1軸受部材と前記第2軸受部材が前記第1凹凸端部と前記第2凹凸端部とが組み合わされる態様で軸線方向に嵌合し、前記第1凹凸端部のうち半径方向の前記第1軸受面部とは反対側に設けられた第1反軸受側部分と、前記第2凹凸端部のうち半径方向の前記第2軸受面部とは反対側に設けられた第2反軸受側部分の対向面間が密接して全周に亘り気密に構成され、前記第1凹凸端部のうち半径方向の前記第1軸受面部の側に設けられた第1軸受側部分と、前記第2凹凸端部のうち半径方向の前記第2軸受面部の側に設けられた第2軸受側部分の少なくとも一方には半径方向に伸び前記軸受隙間に連通する複数の凹溝が放射状に形成され、前記第1軸受側部分と前記第2軸受側部分とが突き合わされることで前記凹溝により前記絞りが軸線周りに複数分散して構成され、前記第1軸受部材と前記第2軸受部材の間に画成され、前記複数の絞りに共通に連通する流体供給用の環状の圧力室が構成されることを特徴とする。   In order to achieve the above object, a hydrostatic fluid bearing of the present invention comprises a rotating body and a bearing body having a bearing surface facing the rotating body with a bearing gap interposed therebetween. In a hydrostatic fluid bearing that rotatably supports the rotating body by introducing a pressurized fluid through a throttle, the bearing body includes a first bearing surface portion that forms a part of the bearing surface, and a radial direction. A first bearing member integrally including a first uneven end portion provided in an uneven shape, a second bearing surface portion adjacent to the first bearing surface portion and constituting another part of the bearing surface, and a radial direction And a second bearing member integrally provided with a second concavo-convex end portion that is provided in a concavo-convex shape and is configured to be fitted in the axial direction with respect to the first concavo-convex end portion. The member and the second bearing member are a combination of the first uneven end portion and the second uneven end portion. The first non-bearing side portion provided on the opposite side to the first bearing surface portion in the radial direction among the first uneven end portions, and the radius of the second uneven end portions. The opposing surfaces of the second anti-bearing side portion provided on the opposite side of the second bearing surface portion in the direction are closely intimately configured over the entire circumference, and the radial direction of the first uneven end portion is At least one of the first bearing side portion provided on the first bearing surface portion side and the second bearing side portion provided on the second bearing surface portion in the radial direction among the second uneven end portions has a radius. A plurality of concave grooves that extend in the direction and communicate with the bearing gap are formed radially, and the first bearing side portion and the second bearing side portion abut each other so that a plurality of the diaphragms are formed around the axis by the concave grooves. Distributed and defined between the first bearing member and the second bearing member, An annular pressure chamber for the fluid supply in communication with the common aperture number, characterized in that it is configured.

本発明によれば、第1軸受部材と第2軸受部材とが第1凹凸端部と第2凹凸端部とにおいて軸線方向に嵌合することで、第1軸受面部と第2軸受面部とが隣接して軸受面を構成するとともに、凹溝によって圧力室に連通する複数の絞りが構成される一方、第1反軸受側部分と第2反軸受側部分とが密接して気密に構成されるため、各軸受部材を嵌合端部より軸線方向に伸びる構造とすれば、第1軸受部材と第2軸受部材の嵌合構造で軸受体を構成することが可能になることから、ホルダー(ハウジング)が不要となって組立作業の容易化及び部品点数の削減を図ることができるとともに、第1軸受部材及び第2軸受部材をホルダーの内部に隙間嵌めによって組み込む必要がなくなるため、当該隙間嵌めによる第1軸受部材及び第2軸受部材の位置ずれ等を防止でき、真円度、円筒度、同心度等への影響を低減できる。   According to the present invention, the first bearing member and the second bearing member are fitted in the axial direction at the first concavo-convex end and the second concavo-convex end so that the first bearing surface and the second bearing surface are While constituting the bearing surface adjacent to each other and forming a plurality of throttles communicating with the pressure chamber by the concave groove, the first anti-bearing side portion and the second anti-bearing side portion are closely and airtightly constituted. Therefore, if each bearing member has a structure extending in the axial direction from the fitting end portion, the bearing body can be configured by the fitting structure of the first bearing member and the second bearing member. ) Is not necessary, and the assembly work can be facilitated and the number of parts can be reduced, and it is not necessary to incorporate the first bearing member and the second bearing member into the holder by gap fitting. Of the first bearing member and the second bearing member Prevents location shift, etc., circularity, cylindricity, it is possible to reduce the influence of the concentricity or the like.

なお、本明細書において、「Aのうち半径方向のa1とは反対側に設けられたa2」の意味は、Aにおいて(或いはAに対して)a1が半径方向内側にある場合には、a2がAの半径方向外側に設けられた部分であることを示し、Aにおいて(或いはAに対して)a1が半径方向外側にある場合には、a2がAの半径方向内側に設けられた部分であることを示すこととする。また、「Bのうち半径方向のb1の側に設けられたb2」の意味は、Bにおいて(或いはBに対して)b1が半径方向内側にある場合には、b2がBの半径方向内側に設けられた部分であることを示し、Bにおいて(或いはBに対して)b1が半径方向外側にある場合には、b2がBの半径方向外側に設けられた部分であることを示す。   In the present specification, the meaning of “a2 provided on the side opposite to a1 in the radial direction of A” means that, in A (or with respect to A), when a1 is radially inward, a2 Is a portion provided on the radially outer side of A, and in A (or with respect to A), when a1 is on the radially outer side, a2 is a portion provided on the radially inner side of A. Let's show that there is. Also, the meaning of “b2 provided on the b1 side in the radial direction of B” means that when B1 is inward in the radial direction in B (or with respect to B), b2 is inward in the radial direction of B. In B (or with respect to B), when b1 is on the radially outer side, it indicates that b2 is a portion provided on the radially outer side of B.

特に、前記第1凹凸端部と前記第2凹凸端部とが相互に圧入状態とされていることにより、組立時における第1軸受部材と第2軸受部材の相対的な位置ずれを確実に防止できるとともに、組立後の経時的な位置変化も抑制できるため、軸受隙間等の精度低下等の不具合の発生を防止できる。すなわち、軸受部材間を締まり嵌めで位置決めすることで、従来の隙間嵌めによる位置ずれ等を回避しつつ、各部の精度を高めることができる。なお、第1軸受部材と第2軸受部材はボルト等の固定手段により軸線方向に互いに固定されることが好ましい。なお、「第2軸受部材と同様に嵌合する」とは、嵌合形状が同様であるという意味ではなく、第1軸受部材と第2軸受部材が圧入状態で嵌合している場合には第1軸受部材と第3軸受部材も圧入状態で嵌合しているという意味である。   In particular, the first concave and convex end portions and the second concave and convex end portions are pressed into each other, thereby reliably preventing relative displacement between the first bearing member and the second bearing member during assembly. In addition, since the position change with time after assembly can be suppressed, it is possible to prevent the occurrence of problems such as a decrease in accuracy such as a bearing gap. That is, by positioning the bearing members with an interference fit, it is possible to improve the accuracy of each part while avoiding a positional shift or the like due to a conventional gap fit. The first bearing member and the second bearing member are preferably fixed to each other in the axial direction by a fixing means such as a bolt. Note that “fitting in the same manner as the second bearing member” does not mean that the fitting shape is the same, but when the first bearing member and the second bearing member are fitted in a press-fit state. This means that the first bearing member and the third bearing member are also fitted in a press-fit state.

本発明において、前記第1軸受部材には前記第1凹凸端部の軸線方向反対側に半径方向に見て凹凸状に構成された第1凹凸反端部が形成されるとともに、前記第1軸受部材の前記第1凹凸反端部に対し前記第2軸受部材と同様に嵌合する第3凹凸端部を備えた第3軸受部材が設けられ、前記第1軸受部材と前記第3軸受部材との間に前記絞り及び前記圧力室が同様に構成されることが好ましい。   In the present invention, the first bearing member is formed with a first concave and convex opposite end portion configured to be concave and convex when viewed in the radial direction on the opposite side to the axial direction of the first concave and convex end portion, and the first bearing. A third bearing member provided with a third uneven end portion that fits in the same manner as the second bearing member to the first uneven opposite end portion of the member is provided; the first bearing member and the third bearing member; It is preferable that the throttle and the pressure chamber are configured in the same manner.

これによれば、第1軸受部材の両側に第2軸受部材と第3軸受部材とが嵌合して軸受体を構成するので、軸線方向の少なくとも二箇所に静圧流体軸受を構成する場合に、スペーサ等の余分な構成部材が不要になるため、さらに製造の容易化及び部品点数の削減を図ることができる。また、二箇所の静圧流体軸受が一体に構成された第1軸受部材の両端部に嵌合した状態(圧入状態で)固定されるので、二箇所の静圧流体軸受間の整合性(調芯度等)を高めることができる。   According to this, since the second bearing member and the third bearing member are fitted to both sides of the first bearing member to constitute the bearing body, when the hydrostatic fluid bearing is constituted in at least two places in the axial direction. Further, since extra components such as spacers are not necessary, the manufacturing can be facilitated and the number of parts can be reduced. In addition, since the two hydrostatic bearings are fixed (in a press-fit state) at both ends of the integrally formed first bearing member, the consistency (adjustment) between the two hydrostatic bearings is fixed. Coreness, etc.) can be increased.

この場合に、前記第1凹凸反端部の凹凸形状が前記第1凹凸端部の凹凸形状に対して軸線方向と直交する対称面に対して対称に形成されている場合があり、また、前記第1凹凸反端部の凹凸形状が前記第1凹凸端部の凹凸形状に対する嵌合可能な形状に形成されている場合もある。また、前記第1軸受部材には、前記第1軸受部材の両端部にそれぞれ設けられた一対の前記絞りの軸線方向中間部において前記軸受隙間若しくはこれらに連通する内部空間に開口する流体排出経路が構成されている場合(一対の一列軸受構造が軸線方向に設けられる場合)と、前記第1軸受部材の両端部にそれぞれ設けられた一対の前記絞りの間に連続する軸受隙間が設けられるとともに当該軸受隙間には流体排出経路が開口せず、前記一対の絞りの軸線方向両側において前記軸受隙間若しくはこれらに連通する内部空間に開口する流体排出経路がそれぞれ構成されている場合(二列軸受構造が設けられる場合)とがある。   In this case, the concavo-convex shape of the first concavo-convex opposite end portion may be formed symmetrically with respect to a symmetry plane orthogonal to the axial direction with respect to the concavo-convex shape of the first concavo-convex end portion, The concave / convex shape of the first concave / convex end portion may be formed into a shape that can be fitted to the concave / convex shape of the first concave / convex end portion. Further, the first bearing member has a fluid discharge path that opens to the bearing gap or an internal space that communicates with the bearing gap at an axially intermediate portion of the pair of throttles respectively provided at both ends of the first bearing member. When it is configured (when a pair of one-row bearing structures are provided in the axial direction), a continuous bearing gap is provided between the pair of throttles respectively provided at both ends of the first bearing member. When a fluid discharge path does not open in the bearing gap, and a fluid discharge path that opens to the bearing gap or an internal space communicating with the bearing gap is formed on both sides of the pair of throttles in the axial direction (the two-row bearing structure is If provided).

次に、本発明の別の静圧流体軸受は、回転体と、該回転体との間に軸受隙間を介して対向する軸受面を備えた軸受体とを具備し、前記軸受隙間に加圧した流体を絞りを通して導くことにより前記回転体を回転可能に支持する静圧流体軸受において、前記軸受体は、前記軸受面の一部を構成する第1軸受面部、及び、軸線方向の端部における半径方向の前記第1軸受面部の側において軸線方向に環状に突出する環状凸部を一体に有する第1軸受部材と、前記第1軸受面部に隣接し前記軸受面の他の一部を構成する第2軸受面部、及び、軸線方向の端部における半径方向の前記第2軸受面部の側において軸線方向に環状に凹入する環状凹部を一体に有する第2軸受部材とを具備し、前記第1軸受部材の端部と前記第2軸受部材の端部が前記環状凸部と前記環状凹部とが組み合わされる態様で軸線方向に嵌合し、前記環状凸部のうち半径方向の前記第1軸受面部とは反対側に設けられた第1側面部と、前記環状凹部のうち半径方向の前記第2軸受面部とは反対側に設けられた第2側面部との対向面間、或いは、前記環状凸部のうち半径方向の前記第1軸受面部とは反対側に設けられた第1端面部と、前記環状凹部のうち半径方向の前記第2軸受面部とは反対側に設けられた第2端面部との対向面間の少なくとも一方が密接して全周に亘り気密に構成され、前記環状凸部の軸線方向の先端面と、前記環状凹部の軸線方向の奥底面の少なくとも一方には半径方向に伸び前記軸受隙間に連通する複数の凹溝が放射状に形成され、前記先端面と前記奥底面とが突き合わされることで前記凹溝により前記絞りが軸線周りに複数分散して構成され、前記第1軸支部材と前記第2軸支部材との間に画成され、前記複数の絞りに共通に連通する流体供給用の環状の圧力室が構成されることを特徴とする。   Next, another hydrostatic fluid bearing of the present invention includes a rotating body and a bearing body having a bearing surface facing the rotating body via a bearing gap, and pressurizes the bearing gap. In the hydrostatic fluid bearing that rotatably supports the rotating body by guiding the fluid through the restriction, the bearing body includes a first bearing surface portion that constitutes a part of the bearing surface, and an axial end portion. A first bearing member integrally including an annular convex portion projecting annularly in the axial direction on the side of the first bearing surface portion in the radial direction, and another part of the bearing surface adjacent to the first bearing surface portion are configured. And a second bearing member integrally including a second bearing surface portion and an annular recess that is annularly recessed in the axial direction on the side of the second bearing surface portion in the radial direction at an end portion in the axial direction. The end of the bearing member and the end of the second bearing member are And the annular recess are fitted together in the axial direction, and a first side surface portion provided on the opposite side of the annular bearing from the first bearing surface portion in the radial direction, and the annular recess Provided between the opposed surface to the second side surface provided on the opposite side to the second bearing surface portion in the radial direction or on the opposite side of the annular convex portion from the first bearing surface portion in the radial direction. At least one of the opposing surfaces of the first end surface portion and the second end surface portion provided on the opposite side to the second bearing surface portion in the radial direction in the annular recess is in close contact and airtight over the entire circumference. A plurality of grooves extending in the radial direction and communicating with the bearing gap are formed radially on at least one of the axial front end surface of the annular convex portion and the axial bottom surface of the annular concave portion, The surface and the back bottom face each other so that the concave groove A plurality of throttles distributed around the axis, defined between the first and second pivot members, and an annular pressure for fluid supply that communicates in common with the plurality of throttles A chamber is constructed.

本発明によれば、第1軸受部材と第2軸受部材とが環状凸部と環状凹部とにおいて軸線方向に嵌合することで、第1軸受面部と第2軸受面部とが隣接して軸受面を構成するとともに、凹溝によって圧力室に連通する複数の絞りが構成される一方、環状凸部の第1側面部若しくは第1軸受部材の第1端面部と、環状凹部の第2側面部若しくは第2軸受部材の第2端面部とが密接して気密に構成されるため、第1軸受部材と第2軸受部材の嵌合構造で軸受体を構成することが可能になることから、ホルダー(ハウジング)が不要となって組立作業の容易化及び部品点数の削減を図ることができる。特に、第1軸受部材及び第2軸受部材を圧入状態とすることで、ホルダーの内部に隙間嵌めによって組み込む必要がなくなるため、当該隙間嵌めによる第1軸受部材及び第2軸受部材の位置ずれ等を防止でき、真円度、円筒度、同心度等への影響を低減できる。   According to the present invention, the first bearing member and the second bearing member are fitted in the axial direction in the annular convex portion and the annular concave portion, so that the first bearing surface portion and the second bearing surface portion are adjacent to each other. And a plurality of throttles communicating with the pressure chamber by the concave groove, the first side surface portion of the annular convex portion or the first end surface portion of the first bearing member, and the second side surface portion of the annular concave portion or Since the second end surface portion of the second bearing member is closely and airtightly configured, the bearing body can be configured by the fitting structure of the first bearing member and the second bearing member. A housing) is not required, and the assembly work can be facilitated and the number of parts can be reduced. In particular, since the first bearing member and the second bearing member are in a press-fit state, it is not necessary to incorporate the holder into the holder by a gap fit, so that the first bearing member and the second bearing member are displaced due to the gap fit. Can be prevented, and the influence on roundness, cylindricity, concentricity, etc. can be reduced.

本発明において、前記第1軸受部材と前記第2軸受部材のうちの一方の軸受部材の前記環状凸部若しくは前記環状凹部が設けられた端部とは反対側の端部に別の環状凸部若しくは環状凹部が形成されるとともに、当該別の環状凸部若しくは環状凹部に対し前記第2軸受部材と同様に嵌合する第3軸受部材がさらに設けられ、前記一方の軸受部材と前記第3軸受部材との間に前記絞り及び前記圧力室が同様に構成されることが好ましい。   In the present invention, another annular convex portion is provided at the end opposite to the annular convex portion or the end portion provided with the annular concave portion of one of the first bearing member and the second bearing member. Alternatively, an annular recess is formed, and a third bearing member that fits in the same manner as the second bearing member with respect to the other annular projection or annular recess is further provided, and the one bearing member and the third bearing It is preferable that the throttle and the pressure chamber are similarly configured between the members.

本発明によれば、軸受部を構成する第1軸受部材と第2軸受部材とがそれぞれ嵌合可能な凹凸状に構成された端部同士で軸線方向に嵌合してなることから、ホルダーを不要とすることができるため、容易に製造できると同時に高精度に構成可能な静圧流体軸受を実現することができる。特に、静圧流体軸受を複数個用いる場合、複数個の静圧流体軸受自体の構造精度だけでなく、当該軸受間の内径の同心度、すなわち、内径の調心度の誤差をかぎりなく0に近づけ、しかも部品点数を少なくし、さらに部品の精度を寛容にし工作を容易にすることを可能とすることができるという優れた効果を奏し得る。   According to the present invention, since the first bearing member and the second bearing member constituting the bearing portion are fitted in the axial direction between the end portions configured to be rugged so that the holder can be attached to the holder. Since it can be made unnecessary, a hydrostatic bearing that can be easily manufactured and can be configured with high accuracy can be realized. In particular, when a plurality of hydrostatic fluid bearings are used, not only the structural accuracy of the hydrostatic fluid bearings themselves, but also the concentricity of the inner diameters between the bearings, that is, the error in the alignment of the inner diameters is reduced to zero. It is possible to obtain an excellent effect that it is possible to reduce the number of parts, and to allow the precision of the parts to be made easier and make the work easier.

次に、添付図面を参照して本発明の実施形態について説明する。最初に図1を参照して本発明の実施形態の基本構成例について説明する。図1は本発明の基本構成例(ただし、静圧流体軸受を複数個用いてスピンドルを構成する点、軸体で構成される回転体を取り囲む軸受体を構成する点等で具体化されている。)を模式的に示す概略断面図である。図1に示すように、本基本構成例では、回転体100を軸支する軸受体200が、第1軸受部材210と、この第1軸受部材210の軸線X方向の一方の端部211に嵌合する第2軸受部材220と、第1軸受部材210の他方の端部212に嵌合する第3軸受部材230とを有する。なお、特に限定されるものではないが、図示例の場合、回転体100が円柱状の軸体として構成され、軸受体200が回転体100を挿入可能な円筒状に構成される。   Next, embodiments of the present invention will be described with reference to the accompanying drawings. First, a basic configuration example of an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a basic configuration example of the present invention (however, it is embodied in that a spindle is formed by using a plurality of hydrostatic fluid bearings, a bearing body that surrounds a rotating body composed of a shaft body, etc.). It is a schematic sectional drawing which shows typically. As shown in FIG. 1, in this basic configuration example, the bearing body 200 that pivotally supports the rotating body 100 is fitted to the first bearing member 210 and one end 211 in the axis X direction of the first bearing member 210. A second bearing member 220 that fits together, and a third bearing member 230 that fits into the other end 212 of the first bearing member 210. Although not particularly limited, in the illustrated example, the rotating body 100 is configured as a columnar shaft body, and the bearing body 200 is configured in a cylindrical shape into which the rotating body 100 can be inserted.

第1軸受部材210の両端部211、212はそれぞれ半径方向に見て凹凸状に構成され、第1凹凸端部211及び第1凹凸反端部212となっている。また、第2軸受部材220の一方の端部は第1凹凸端部211に嵌合可能に、しかも半径方向に見て凹凸状に構成された第2凹凸端部221となっている。さらに、第3軸受部材230の一方の端部は第1凹凸反端部212に嵌合可能な、半径方向に見て凹凸状に構成された第3凹凸端部231となっている。   Both end portions 211 and 212 of the first bearing member 210 are configured to be uneven when viewed in the radial direction, and constitute a first uneven end portion 211 and a first uneven opposite end portion 212. In addition, one end of the second bearing member 220 is a second uneven end 221 that can be fitted to the first uneven end 211 and is configured to be uneven when viewed in the radial direction. Further, one end portion of the third bearing member 230 is a third uneven end portion 231 configured to be uneven as viewed in the radial direction, which can be fitted to the first uneven opposite end portion 212.

上記各端部の凹凸形状は少なくとも半径方向に見て凹凸状に構成されていればよいが、特に、軸線Xの周り全周に亘って凸部及び凹部がそれぞれ環状に連続した形状となっていることが好ましい。図示例の場合には、第1凹凸端部211のうち半径方向の内側部分に環状凸部211Aが形成され、同半径方向の外側部分に第1端面部211Bが設けられている。第1端面部211Bは特に限定されないが、図示例では(軸線Xに直交する)平坦面とされている。また、上記第1凹凸端部211と嵌合可能な態様で、第2凹凸端部221のうち半径方向の内側部分に環状凹部221Aが形成され、同半径方向の外側部分に第2端面部221Bが設けられている。この第2端面部221Bも特に限定されないが、図示例では(軸線Xに直交する)平坦面となっている。さらに、第1凹凸反端部212のうち半径方向の内側部分には環状凸部212Aが、半径方向の外側部分には第1反端面部212Bがそれぞれ設けられ、これらに嵌合可能な態様で、第3凹凸端部231のうち半径方向の内側部分には環状凹部231Aが、半径方向の外側部分には第3端面部231Bがそれぞれ設けられている。図示例では、第1反端面部212B及び第3端面部231Bは、上記第1端面部211Bと第2端面部221Bと同様に、それぞれ相互に密接する平坦面となっている。   The concavo-convex shape of each of the end portions only needs to be configured to be concavo-convex when viewed at least in the radial direction, and in particular, the convex portion and the concave portion are each formed in an annular shape over the entire circumference around the axis X. Preferably it is. In the case of the illustrated example, an annular convex portion 211A is formed in the radially inner portion of the first uneven end portion 211, and a first end surface portion 211B is provided in the radially outer portion. The first end surface portion 211B is not particularly limited, but is a flat surface (perpendicular to the axis X) in the illustrated example. Further, an annular recess 221A is formed in the radially inner portion of the second uneven end portion 221, and the second end face portion 221B is formed in the radially outer portion of the second uneven end portion 221 in a manner that can be fitted to the first uneven end portion 211. Is provided. The second end surface portion 221B is not particularly limited, but is a flat surface (perpendicular to the axis X) in the illustrated example. Further, an annular convex portion 212A is provided on the radially inner portion of the first concave and convex opposite end portion 212, and a first opposite end surface portion 212B is provided on the radially outer portion, respectively. The third concave and convex end portion 231 is provided with an annular recess 231A in the radially inner portion and the third end face portion 231B in the radially outer portion. In the illustrated example, the first opposite end surface portion 212B and the third end surface portion 231B are flat surfaces that are in close contact with each other, like the first end surface portion 211B and the second end surface portion 221B.

環状凸部211Aの軸線方向の先端面211tは環状凹部221Aの軸線方向の奥底面221tに突き当てられた状態とされ、また、環状凸部211Aの第1側面部211s(半径方向外側の外側面部分)は環状凹部221Aの第2側面部221s(半径方向外側の内側面部分)と密接し、気密に構成される。さらに、第1端面部211Bは第2端面部221Bと密接し、気密に構成される。この場合、第1側面部211sと第2側面部221sのみが密接して気密に構成されていてもよく、或いはまた、第1端面部211Bと第2端面部221Bのみが密接して気密に構成されていてもよい。ここで、第1側面部211sと第1端面部211Bは上記の第1反軸受側部分に相当し、第2側面部221sと第2端面部221Bは上記の第2反軸受側部分に相当している。なお、このような構成は第1凹凸反端部212と第3凹凸端部231の嵌合部においても同様に構成される。   The tip surface 211t of the annular convex portion 211A in the axial direction is brought into contact with the inner bottom surface 221t of the annular concave portion 221A, and the first side surface portion 211s (the outer surface on the radially outer side) of the annular convex portion 211A. The portion) is in close contact with the second side surface portion 221s (the radially inner side surface portion) of the annular recess 221A, and is configured to be airtight. Further, the first end surface portion 211B is in close contact with the second end surface portion 221B and is airtight. In this case, only the first side surface portion 211s and the second side surface portion 221s may be closely and airtightly configured, or only the first end surface portion 211B and the second end surface portion 221B may be closely and airtightly configured. May be. Here, the first side surface portion 211s and the first end surface portion 211B correspond to the first anti-bearing side portion, and the second side surface portion 221s and the second end surface portion 221B correspond to the second anti-bearing side portion. ing. In addition, such a structure is similarly comprised also in the fitting part of the 1st uneven | corrugated anti-end part 212 and the 3rd uneven | corrugated edge part 231. FIG.

環状凹部221Aの奥底面221tの表面には半径方向に伸び上記軸受隙間Gに連通する凹溝221gが形成され、この凹溝221gと先端面211tで絞りPが構成される。ここで、絞りPとしては凹溝221gを幅広の溝形状とすることでスロット絞りを構成するものであることが好ましいが、絞りPの流路の断面形状は特に限定されず、たとえば自成絞りを構成するものであってもよい。いずれにしても、凹溝221gは軸線X周りに放射状に複数設けられ、複数の絞りPが軸線X周りに(望ましくは均等に)分散して形成される。なお、絞りPを形成するには奥底面221tに凹溝221gを設けるだけでなく、その代わりに先端面211tに凹溝を設けてもよく、また、奥底面221tと先端面211tの双方に凹溝を形成してもかまわない。ここで、先端面211tは上記第1軸受側部分に相当し、奥底面221tは上記第2軸受側部分に相当している。   A concave groove 221g extending in the radial direction and communicating with the bearing gap G is formed on the surface of the inner bottom surface 221t of the annular concave portion 221A, and the diaphragm P is constituted by the concave groove 221g and the tip surface 211t. Here, the diaphragm P is preferably configured to form a slot diaphragm by forming the concave groove 221g into a wide groove shape, but the cross-sectional shape of the flow path of the diaphragm P is not particularly limited. May be included. In any case, a plurality of the concave grooves 221g are provided radially around the axis X, and a plurality of apertures P are distributed around the axis X (preferably evenly). In order to form the diaphragm P, not only the concave groove 221g is provided in the back bottom surface 221t, but a concave groove may be provided in the front end surface 211t instead, and a concave groove is formed in both the back bottom surface 221t and the front end surface 211t. Grooves may be formed. Here, the tip surface 211t corresponds to the first bearing side portion, and the back bottom surface 221t corresponds to the second bearing side portion.

また、上記凹溝221gは奥底面221tの半径方向外側に形成された環状溝221hに連通している。この環状溝221hは軸線X周りに環状に構成され、先端面211tとの間に圧力室Rを構成する。この圧力室Rは上記複数の絞りPに連通して均等な圧力で流体を供給するものであり、後述する流体供給経路(給気経路Q)に連通している。ここで、上記環状溝221hの代わりに先端面211tに環状溝を形成してもよく、奥底面221tと先端面211tの双方に環状溝を形成してもかまわない。さらに、上記環状溝は第1側面部211s及び/又は第2側面部221sのうち上記先端面211t又は奥底面221t側の部分に形成されてもよい。なお、凹溝231g及び環状溝231hも上記と同様に構成される。   The concave groove 221g communicates with an annular groove 221h formed on the outer side in the radial direction of the back bottom surface 221t. The annular groove 221h is formed in an annular shape around the axis X, and forms a pressure chamber R between the tip surface 211t. The pressure chamber R communicates with the plurality of throttles P to supply fluid at an equal pressure, and communicates with a fluid supply path (air supply path Q) described later. Here, instead of the annular groove 221h, an annular groove may be formed on the tip surface 211t, or an annular groove may be formed on both the back bottom surface 221t and the tip surface 211t. Further, the annular groove may be formed in a portion of the first side surface portion 211s and / or the second side surface portion 221s on the tip surface 211t or the back bottom surface 221t side. The concave groove 231g and the annular groove 231h are configured in the same manner as described above.

第1凹凸端部211の内周部には第1軸受面部213が形成され、これに隣接して第2凹凸端部221の内周部に第2軸受面部223が形成されている。第1軸受面部213と第2軸受面部223は静圧流体軸受の軸受面201を構成し、回転体1の外周面に対して軸受隙間Gを介して対向している。軸受面201は回転体1の外周面に対応する(同軸の)円筒面を構成している。これと同様に、第1凹凸反端部212の内周部には第1反軸受面部214が形成され、これに隣接して第3凹凸端部231の内周部に第3軸受面部233が形成され、これらによって軸受面202が上記と同様に構成される。   A first bearing surface portion 213 is formed on the inner peripheral portion of the first uneven end portion 211, and a second bearing surface portion 223 is formed on the inner peripheral portion of the second uneven end portion 221 adjacent thereto. The first bearing surface portion 213 and the second bearing surface portion 223 constitute a bearing surface 201 of a hydrostatic fluid bearing, and face the outer peripheral surface of the rotating body 1 with a bearing gap G interposed therebetween. The bearing surface 201 forms a (coaxial) cylindrical surface corresponding to the outer peripheral surface of the rotating body 1. Similarly, a first anti-bearing surface portion 214 is formed on the inner peripheral portion of the first concave / convex anti-end portion 212, and a third bearing surface portion 233 is adjacent to the inner peripheral portion of the third concave / convex end portion 231. Thus, the bearing surface 202 is configured in the same manner as described above.

第1軸受部材210と第2軸受部材220は嵌合している。特に、環状凸部211Aと環状凹部221Aとが圧入された圧入状態とされている。この場合、第1側面部211sの外径に対して、第2側面部221sの内径が数マイクロメートル〜数十マイクロメートル(2〜60μm)の締め代を以って圧入されていることが好ましい。これによって両軸受部材間の位置精度(組立時及び組立後)を高めることができる。この締め代は第1軸受部材210及び第2軸受部材220の素材の剛性や部材の寸法によって適宜に設定される。特に、第1軸受部材210と第2軸受部材220を一度圧入してから取り外し、再度圧入しても軸受面201の寸法変化が許容範囲内となる程度の軽圧入であることが望ましい。なお、第1軸受部材210と第3軸受部材230の関係についても上記と同様である。   The first bearing member 210 and the second bearing member 220 are fitted. In particular, the annular convex portion 211A and the annular concave portion 221A are press-fitted. In this case, it is preferable that the inner diameter of the second side surface portion 221s is press-fitted with an interference of several micrometers to several tens of micrometers (2 to 60 μm) with respect to the outer diameter of the first side surface portion 211s. . As a result, the positional accuracy between the bearing members (during assembly and after assembly) can be increased. The tightening allowance is appropriately set depending on the rigidity of the material of the first bearing member 210 and the second bearing member 220 and the dimensions of the members. In particular, it is desirable that the first bearing member 210 and the second bearing member 220 be lightly press-fitted so that the dimensional change of the bearing surface 201 is within an allowable range even if the first bearing member 210 and the second bearing member 220 are once press-fitted and then removed and re-fitted. The relationship between the first bearing member 210 and the third bearing member 230 is the same as described above.

なお、第1軸受部材210と第2軸受部材220とはボルトB等の固定手段によって相互に固定されることが望ましい。図示例の場合、ボルトBは両軸受部材を軸線方向に固定している。第1軸受部材210と第3軸受部材230との間も同様である。   The first bearing member 210 and the second bearing member 220 are preferably fixed to each other by a fixing means such as a bolt B. In the case of the illustrated example, the bolt B fixes both bearing members in the axial direction. The same applies between the first bearing member 210 and the third bearing member 230.

この基本構成例は、上述の構成により一列給気軸受が軸線方向の二箇所においてそれぞれ構成されたものとなっている。この基本構成例において、上記圧力室Rには流体供給経路である給気経路Qが連通し、当該給気経路Qを介して圧縮空気等の気体が導入される。図示例では、第1軸受部材210、第2軸受部材220及び第3軸受部材230の内部において軸線方向に延長するように形成された共通の給気経路Qが二箇所の圧力室Rに共に連通した構造となっている。軸受構造や他の構造の都合上、給気経路Qの開口部位を軸受体の軸線方向の端部に設ける場合には、図示のように好ましくは複数の軸受部材の内部に軸線方向に伸びる給気経路Qを構成することが望ましい。ただし、本発明においては、流体供給経路は圧力室Rに流体を供給することができる構造となっていればよく、一般的には上記軸受部材のうち少なくとも一つ(たとえば、第1軸受部材210)に形成されていれば足りる。   In this basic configuration example, the single row air supply bearing is configured at two locations in the axial direction by the above-described configuration. In this basic configuration example, an air supply path Q which is a fluid supply path communicates with the pressure chamber R, and a gas such as compressed air is introduced through the air supply path Q. In the illustrated example, a common air supply path Q formed so as to extend in the axial direction inside the first bearing member 210, the second bearing member 220, and the third bearing member 230 communicates with the two pressure chambers R together. It has a structure. When the opening portion of the air supply path Q is provided at the end in the axial direction of the bearing body for the convenience of the bearing structure and other structures, it is preferable that the supply extending in the axial direction preferably extends into the plurality of bearing members as shown in the figure. It is desirable to configure the air path Q. However, in the present invention, it is sufficient that the fluid supply path has a structure capable of supplying a fluid to the pressure chamber R. Generally, at least one of the bearing members (for example, the first bearing member 210) is used. ) Is sufficient.

また、第1軸受部材210の内部には流体排出経路である排気経路Sが形成され、当該排気経路Sは二つの絞りPの中間部において軸受隙間Gに連通する内部空間Tに開口している。なお、内部空間Tは軸受面201と202の間に形成された環状凹溝よりなる。   In addition, an exhaust path S that is a fluid discharge path is formed inside the first bearing member 210, and the exhaust path S opens to an internal space T that communicates with the bearing gap G in the middle portion between the two throttles P. . The internal space T is formed by an annular groove formed between the bearing surfaces 201 and 202.

以上説明した実施形態の基本構成例では、第1軸受部材210と第2軸受部材220又は第3軸受部材230とが嵌合し、第1凹凸端部211と第2凹凸端部221、或いは、第1凹凸反端面部212と第3凹凸端部231が互いに圧入状態とされていることで、組立時及び組立後の相対的な位置決め精度を確保することができ、高精度の静圧流体軸受を構成できる。また、これらの軸受部材の嵌合部によって流体の密封性を容易に得ることができるため、ホルダー(ケーシング)を別途用いなくても軸受構造を構成することができ、部品点数の削減、製造の容易化を図ることが可能になる。   In the basic configuration example of the embodiment described above, the first bearing member 210 and the second bearing member 220 or the third bearing member 230 are fitted, and the first uneven end portion 211 and the second uneven end portion 221, or Since the first concave-convex anti-end surface portion 212 and the third concave-convex end portion 231 are in a press-fitted state, relative positioning accuracy at the time of assembly and after assembly can be ensured, and a high-precision hydrostatic bearing. Can be configured. In addition, since the fluid sealability can be easily obtained by the fitting portions of these bearing members, the bearing structure can be configured without using a holder (casing) separately, and the number of parts can be reduced. It becomes possible to facilitate.

この第1軸受部材210の両端面に第2軸受部材220及び第3軸受部材230を数〜十数マイクロメータの締め代で圧入することにより、第1軸受部材210と第2軸受部材220及び第3軸受部材230は相互に加圧状態とされるとともに、軸線方向のねじBで固定されることで、密着し気密が保持された状態とされる。このとき、第1軸受部材210の半径方向内側に軸線方向に環状に突出する環状凸部211Aと軸線方向中央部付近に軸受隙間Gを形成する第1軸受面部213の同心度、及び、第2軸受部材220の環状凹部221Aとその第2軸受面部223の同心度が高い精度で仕上げられていれば、第1軸受部材210と第2軸受部材220の圧入・密着後、軸受面201の同心度、真直度、円筒度は高い精度で確保される。これは、第1反軸受面部214と第3軸受面部233で構成される軸受面202についても同様である。さらに、必要に応じ、圧入、密着ねじ止め後、軸受面201と202を同時一体研削加工すれば、複数の静圧流体軸受の調心度(アライメント)をかぎりなく0に近づけることが可能となる。   The second bearing member 220 and the third bearing member 230 are press-fitted into both end faces of the first bearing member 210 with a tightening margin of several to several tens of micrometers, so that the first bearing member 210, the second bearing member 220, and the second bearing member 210 are inserted. The three bearing members 230 are in a pressurized state and fixed with screws B in the axial direction so that they are in close contact with each other and are kept airtight. At this time, the concentricity of the annular convex portion 211A projecting annularly in the axial direction radially inward of the first bearing member 210 and the first bearing surface portion 213 forming the bearing gap G near the central portion in the axial direction, and the second If the concentricity of the annular recess 221A of the bearing member 220 and the second bearing surface portion 223 is finished with high accuracy, the concentricity of the bearing surface 201 after the first bearing member 210 and the second bearing member 220 are press-fitted and brought into close contact with each other. Straightness and cylindricity are ensured with high accuracy. The same applies to the bearing surface 202 constituted by the first anti-bearing surface portion 214 and the third bearing surface portion 233. Furthermore, if necessary, the bearing surfaces 201 and 202 are subjected to simultaneous integral grinding after press-fitting and tight screwing, so that the alignment degree of a plurality of hydrostatic fluid bearings can be made as close to zero as possible. .

さらに、第1軸受部材210が後述するスピンドル等の構造体となるのでホルダーおよびスペーサーが不要となり、高精度加工を必要とする部品点数を削減することが可能となる。すなわち、本基本構成例の具体的な構成において、第1軸受部材210、第2軸受部材220及び第3軸受部材230がスピンドル等の構造体であるハウジングとして機能し、また、第1軸受部材210自体が2つの静圧流体軸受間のスペーサとしても機能している。   Furthermore, since the first bearing member 210 is a structure such as a spindle, which will be described later, a holder and a spacer are not necessary, and the number of parts that require high-precision machining can be reduced. That is, in the specific configuration of this basic configuration example, the first bearing member 210, the second bearing member 220, and the third bearing member 230 function as a housing that is a structure such as a spindle. It itself also functions as a spacer between two hydrostatic fluid bearings.

なお、上記実施形態では、第1軸受部材210の両端部に第1凹凸端部211と第1凹凸反端部212とが形成され、これら各端部の半径方向内側には共に環状凸部211A、212Aがそれぞれ形成されているが、これとは異なり、両端部の半径方向内側に共に環状凹部を形成し、これらに対応させて第2軸受部材220及び第3軸受部材230の端部に環状凸部を設けてもよい。さらには、両端部の一方に同環状凸部を設け、他方に同環状凹部を設けるとともに、これらに対応させて第2軸受部材220及び第3軸受部材230の端部を形成してもよい。また、上記実施形態では、各軸受部材の半径方向内側に環状凸部又は環状凹部を設けているが、半径方向に見て凹凸状に構成され、相互に嵌合しているのであれば、各凹凸端部の凹凸形状は上記態様に限定されるものではない。なお、これらの点は以下に説明する他の例においても同様である。   In the above-described embodiment, the first uneven end 211 and the first uneven opposite end 212 are formed at both ends of the first bearing member 210, and the annular protrusion 211 </ b> A is provided at the radially inner side of each end. , 212A are formed, but unlike this, annular recesses are formed on both radially inner sides of both ends, and annular ends are formed at the ends of the second bearing member 220 and the third bearing member 230 corresponding to these. A convex part may be provided. Furthermore, the end of the second bearing member 220 and the third bearing member 230 may be formed correspondingly to the same annular protrusion provided on one of both ends and the annular recess on the other. Further, in the above embodiment, an annular convex portion or an annular concave portion is provided on the inside in the radial direction of each bearing member. The uneven shape of the uneven end portion is not limited to the above embodiment. These points are the same in other examples described below.

図2は上記基本構成例とは異なる態様の軸受構造を示す変形例である。ここで、上記基本構成例と対応する部分には同一符号を付してある。この例は、第1軸受部材310の両側にそれぞれ複数の軸受部材を互いに嵌合させた場合を示している。すなわち、第1軸受部材310の両側に第2軸受部材320と第3軸受部材330とが圧入されて嵌合し、第2軸受部材320にはさらに第4軸受部材340が圧入されて嵌合し、第3軸受部材330にはさらに第5軸受部材350が圧入されて嵌合するといった具合である。この場合も上記と同様に、種々のバリエーションを適用することができる。この図示例では、軸線方向の二箇所においてそれぞれ二列給気軸受が構成され、これによって軸受剛性のより高い軸受構造が実現されている。ただし、当該例において第2軸受部材320や第3軸受部材330にもそれぞれ流体排出経路を設けることで複数の一列給気軸受が軸線方向に配列された態様で構成されたものとすることも可能である。   FIG. 2 is a modification showing a bearing structure having a different form from the basic configuration example. Here, the same reference numerals are given to portions corresponding to the basic configuration example. This example shows a case where a plurality of bearing members are fitted on both sides of the first bearing member 310. That is, the second bearing member 320 and the third bearing member 330 are press-fitted and fitted to both sides of the first bearing member 310, and the fourth bearing member 340 is further press-fitted and fitted to the second bearing member 320. The fifth bearing member 350 is further press-fitted and fitted to the third bearing member 330. In this case as well, various variations can be applied as described above. In this illustrated example, two-row air supply bearings are formed at two locations in the axial direction, thereby realizing a bearing structure with higher bearing rigidity. However, in this example, the second bearing member 320 and the third bearing member 330 may be provided with fluid discharge paths, respectively, so that a plurality of single-row air supply bearings may be configured in an axially arranged manner. It is.

次に、上記の実施形態の基本構成例の製造方法について説明する。第1軸受部材210、第2軸受部材220及び第3軸受部材230をそれぞれ用意し、一旦、これらを相互に圧入して嵌合させ、軸受体を一時的に形成する。この場合、これらの圧入状態は、予め締め代を設定しておくことで、嵌合後一旦取り外して再度嵌合させても軸受面201、202の面精度が許容範囲内となる程度の軽圧入とする。この第1嵌合工程は、複数の軸受部材を相互に完成状態となるように嵌合させる工程である。   Next, a manufacturing method of the basic configuration example of the above embodiment will be described. A first bearing member 210, a second bearing member 220, and a third bearing member 230 are respectively prepared, and once they are press-fitted together to form a bearing body temporarily. In this case, these press-fit states are set so that a tightening margin is set in advance so that the surface accuracy of the bearing surfaces 201 and 202 is within an allowable range even after the fitting is once removed and re-fitted. And This first fitting step is a step of fitting a plurality of bearing members so as to be in a completed state.

そして、この嵌合状態で、軸受面201、202を研削加工、研摩加工等によって成形し、所要の面精度を得る。この軸受面成形工程は、各軸受部材が嵌合状態にあるときに必要な軸受面精度を得るための工程である。   Then, in this fitted state, the bearing surfaces 201 and 202 are formed by grinding, polishing, or the like to obtain a required surface accuracy. This bearing surface forming step is a step for obtaining the required bearing surface accuracy when each bearing member is in a fitted state.

その後、第1軸受部材210、第2軸受部材220及び第3軸受部材230の嵌合を外してばらばらとし、上記凹溝221g及びこれに対向する先端面211tの部分等といった絞りPの軸受面201、202に対する開口縁のバリを除去したり、研摩したり、塵埃を除去したりする。この開口縁の処理工程は、上記軸受面成形工程で生じた絞りPの詰まりを防止したり、バリを除去したりといった絞りPの開口部に対する適正化処理工程である。   Thereafter, the first bearing member 210, the second bearing member 220, and the third bearing member 230 are disengaged and separated, and the bearing surface 201 of the diaphragm P such as the concave groove 221g and the tip surface 211t facing the groove 221g. , 202 are removed, polished, or dust is removed. This opening edge processing step is an optimization processing step for the opening of the aperture P, such as preventing clogging of the aperture P generated in the bearing surface forming step and removing burrs.

最後に、第1軸受部材210、第2軸受部材220及び第3軸受部材230を再び圧入して嵌合させ、一体の軸受体を構成する。この再度の(第2)嵌合工程によって軸受体が完成する。   Finally, the first bearing member 210, the second bearing member 220, and the third bearing member 230 are again press-fitted and fitted to form an integral bearing body. The bearing body is completed by this second (second) fitting process.

図4は本発明に係る静圧流体軸受の構造をスピンドルに応用した場合の主要部分を示す概略縦断面図である。このスピンドルは、上記基本構成例と同様の、スピンドル軸400を挿通する第1軸受部材510と、この第1軸受部材510の両端部に嵌合して圧入状態とされた第2軸受部材520及び第3軸受部材530とを有している。各軸受部材間には上記と同様の絞りP及び圧力室Rが構成され、スピンドル軸400をラジアル方向に軸支する。   FIG. 4 is a schematic longitudinal sectional view showing the main part when the structure of the hydrostatic bearing according to the present invention is applied to a spindle. The spindle includes a first bearing member 510 that is inserted through the spindle shaft 400, a second bearing member 520 that is fitted into both end portions of the first bearing member 510, and is press-fitted. And a third bearing member 530. A throttle P and a pressure chamber R similar to those described above are formed between the bearing members, and support the spindle shaft 400 in the radial direction.

スピンドル軸400は基本的に円柱状に構成されているが、一部に半径方向に張り出したフランジ部401を有し、当該フランジ部401が軸線方向両側にそれぞれ対向するスラスト軸受部材540と僅かな軸線方向の軸受隙間Hを介して嵌合している。スラスト軸受部材540内にはフランジ部401に対して軸線方向両側にそれぞれ対向し、上記軸受隙間Hに軸線方向に開口する絞りU及び圧力室Vが形成され、スピンドル軸400をスラスト方向に軸支する。なお、このスラスト軸受構造としては、上記構造の凹凸関係を逆にし、スピンドル軸400に環状溝を形成し、この環状溝内に軸受隙間を介して嵌入する、内側に張り出したフランジ状の部分を備えた軸受部材を設けたものであってもよい。なお、スラスト軸受部材540は一方で第2軸受部材520に固定され、他方で半径方向の環状固定部材541と軸線方向の環状固定部材542によって支持固定される。なお、各部の固定手段としては図示しないボルト等が用いられる。   The spindle shaft 400 is basically formed in a cylindrical shape, but has a flange portion 401 projecting in a radial direction in a part thereof, and the flange portion 401 is slightly different from the thrust bearing member 540 opposed to both sides in the axial direction. It is fitted via a bearing gap H in the axial direction. In the thrust bearing member 540, there are formed a throttle U and a pressure chamber V which are opposed to the flange 401 on both sides in the axial direction and open in the axial direction in the bearing gap H, and support the spindle shaft 400 in the thrust direction. To do. In this thrust bearing structure, the concave-convex relationship of the above structure is reversed, an annular groove is formed in the spindle shaft 400, and a flange-like portion projecting inward is inserted into the annular groove via a bearing gap. The provided bearing member may be provided. The thrust bearing member 540 is fixed to the second bearing member 520 on the one hand, and supported and fixed by the annular fixing member 541 in the radial direction and the annular fixing member 542 in the axial direction on the other hand. A bolt or the like (not shown) is used as a fixing means for each part.

本応用例でも第1軸受部材510、第2軸受部材520及び第3軸受部材530の少なくとも一つには流体供給経路である給気経路501が構成される。図示例の場合、流体供給経路501は第1軸受部材510、第2軸受部材520及び第3軸受部材530を軸線方向に貫通する態様で各軸受部材の内部に構成される。給気経路501は第3軸受部材530の端面に開口し、図示しない供給管等に接続される。給気経路501は上記圧力室R及びVに連通し、各絞りP及びUを介して軸受隙間G及びHに流体が供給される。また、流体排出経路である排気経路502、503、504が第1軸受部材510及びスラスト軸受部材540に形成されている。   Also in this application example, at least one of the first bearing member 510, the second bearing member 520, and the third bearing member 530 is provided with an air supply path 501 that is a fluid supply path. In the case of the illustrated example, the fluid supply path 501 is configured inside each bearing member so as to penetrate the first bearing member 510, the second bearing member 520, and the third bearing member 530 in the axial direction. The air supply path 501 opens at the end face of the third bearing member 530 and is connected to a supply pipe (not shown). The air supply path 501 communicates with the pressure chambers R and V, and fluid is supplied to the bearing gaps G and H via the throttles P and U. Further, exhaust paths 502, 503, and 504 that are fluid discharge paths are formed in the first bearing member 510 and the thrust bearing member 540.

図4に示す上記スピンドルにおいて、潤滑流体としてゲージ圧力5 kgf/cm(=490 kPa)の空気を利用し、半径方向負荷に対する剛性k=5 kgf/μm(=49 N/μm)、偏心率0.5における負荷容量W=25 kgf(=245 N)を有するように設計した。 In the spindle shown in FIG. 4, air having a gauge pressure of 5 kgf / cm 2 (= 490 kPa) is used as a lubricating fluid, rigidity against a radial load k = 5 kgf / μm (= 49 N / μm), and eccentricity. It was designed to have a load capacity W at 25 = 25 kgf (= 245 N).

一方、図5は、従来の技術による静圧流体軸受を用い、同じ設計目標の性能(半径方向負荷に対する剛性k=5 kgf/μm(=49 N/μm)、偏心率0.5における負荷容量W=25 kgf(=245 N)を有するスピンドルの設計例を示したものである。ここで、対応する部品には図3と同様の符号を付してある。従来構造では、一対の静圧流体軸受を構成するのに、二組の軸受部材2A,2Bをスペーサ4を介してホルダー3内に組み込む必要があるので、部品点数が増大し、組立作業も煩雑であるとともに、ホルダー3に対して四つの軸受部材2A、2Bを隙間嵌めで装着する必要があり、同心度、円筒度、真直度及び調芯度を高めることが難しい。   On the other hand, FIG. 5 shows the performance of the same design target (rigidity k = 5 kgf / μm (= 49 N / μm) with respect to radial load) and load capacity at an eccentricity of 0.5 using a conventional hydrostatic bearing. 3 shows a design example of a spindle having W = 25 kgf (= 245 N), where the corresponding parts are given the same reference numerals as in FIG. Since it is necessary to incorporate two sets of bearing members 2A and 2B into the holder 3 via the spacer 4 to constitute the fluid bearing, the number of parts increases, the assembly work is complicated, and the holder 3 It is necessary to mount the four bearing members 2A, 2B with a clearance fit, and it is difficult to increase the concentricity, cylindricity, straightness and alignment.

図6は、静圧流体軸受1個当たりの剛性ksおよび流量Qと軸受の半径隙間Crの関係を示したものである。この静圧流体軸受を用いて図4および図5に示すスピンドルで半径方向負荷に対する剛性k=5 kgf/μm(=49 N/μm)を得るには、半径隙間CrをCr=8〜11μm(約10μm)とする必要がある。   FIG. 6 shows the relationship between the rigidity ks and flow rate Q per hydrostatic bearing and the radial gap Cr of the bearing. In order to obtain a rigidity k = 5 kgf / μm (= 49 N / μm) against a radial load with the spindle shown in FIGS. 4 and 5 using this hydrostatic fluid bearing, the radial gap Cr is set to Cr = 8 to 11 μm ( About 10 μm).

従来の技術による静圧流体軸受を用いてスピンドルを構成するには、前記したように静圧流体軸受をホルダーに隙間数μmの隙間嵌めで挿入しなければならない。いま、隙間5μmの隙間嵌めでホルダーに静圧流体軸受を挿入したとすると、2個の静圧流体軸受の同心度(調心度、すなわち、アライメントの誤差)は、静圧流体軸受の内径と外径の同心度が0という理想的な精度で加工されていたとしても、隙間嵌めの隙間5μmの誤差を生じることになる。これは、スピンドルで半径方向負荷に対する剛性k=5 kgf/μm(=49 N/μm)を得るために必要な静圧流体軸受の半径隙間Cr=8〜11μm(約10μm)の50%、偏心率εで表すとε=0.5に達する。すなわち、偏心率ε=0.5で負荷容量WはW=0となる。設計目標の負荷容量W=25 kgf(=245 N)を発揮するためにこの状態からさらに5μm軸が変位すると、軸は軸受に接触することになる。   In order to configure a spindle using a hydrostatic bearing according to the prior art, the hydrostatic bearing must be inserted into the holder with a gap of several μm as described above. Assuming that a hydrostatic fluid bearing is inserted into the holder with a clearance fit of 5 μm, the concentricity (alignment degree, that is, alignment error) of the two hydrostatic fluid bearings is equal to the inner diameter of the hydrostatic fluid bearing. Even if the outer diameter is processed with an ideal accuracy of 0, an error of a clearance fit of 5 μm is generated. This is 50% of the radial clearance Cr = 8 to 11 μm (about 10 μm) of the hydrostatic fluid bearing required to obtain the rigidity k = 5 kgf / μm (= 49 N / μm) with respect to the radial load by the spindle. Expressed by the rate ε, ε reaches 0.5. That is, the eccentricity ε = 0.5 and the load capacity W becomes W = 0. If the shaft is further displaced from this state in order to exhibit the design target load capacity W = 25 kgf (= 245 N), the shaft comes into contact with the bearing.

本発明による静圧流体軸受を用いれば、複数個の静圧流体軸受の同心度(調心度、すなわち、アライメントの誤差)は確保され、さらに、必要に応じ、圧入、密着ねじ止め後、前記軸受面(円筒内面、図1の201、202)を同時一体研削加工すれば、前記軸受面201、202の同心度すなわち複数の静圧流体軸受の調心度はかぎりなく0に近づけることが可能となり、半径隙間Cr=8〜11(10)μmの静圧流体軸受を複数個用い、潤滑流体としてゲージ圧力5 kgf/cm(=490 kPa)の空気を利用し、半径方向負荷に対する剛性k=5 kgf/μm(=49 N/μm)、偏心率0.5における負荷容量W=25 kgf(=245 N)を有するスピンドルを実現することができる。 By using the hydrostatic fluid bearing according to the present invention, the concentricity (alignment degree, that is, alignment error) of the plurality of hydrostatic fluid bearings is ensured, and further, if necessary, after press-fitting and tight screwing, If the bearing surfaces (cylindrical inner surface, 201 and 202 in FIG. 1) are simultaneously and integrally ground, the concentricity of the bearing surfaces 201 and 202, that is, the alignment degree of a plurality of hydrostatic fluid bearings, can be as close to zero as possible. A plurality of hydrostatic bearings with a radial gap Cr = 8 to 11 (10) μm are used, air with a gauge pressure of 5 kgf / cm 2 (= 490 kPa) is used as a lubricating fluid, and rigidity k against a radial load is obtained. = 5 kgf / μm (= 49 N / μm), a spindle having a load capacity W = 25 kgf (= 245 N) at an eccentricity of 0.5 can be realized.

以上記したように、従来の技術による静圧流体軸受を用いると設計目標の性能を有するスピンドルを実現することは困難であるが、本発明による静圧流体軸受を用いることにより設計目標の性能を満足するスピンドルを実現することが可能となる。   As described above, it is difficult to realize a spindle having the performance of the design target when using the hydrostatic bearing according to the prior art, but the performance of the design target is improved by using the hydrostatic bearing according to the present invention. A satisfactory spindle can be realized.

なお、上記実施形態は流体として空気を用いているが、他の流体、たとえば、油等の液体、その他の流動性を有する物質を用いることができる。特に、潤滑性の高い流体を用いることが望ましい。また、回転体と軸受体の半径方向の内外の位置関係を逆転させた態様、すなわち、軸受体を中心部に設置し、回転体を軸受体の外周の軸受面を取り巻くように構成した場合でも、上記と同様の作用効果を奏することができる。   In the above embodiment, air is used as the fluid, but other fluids, for example, liquids such as oil, and other fluid substances can be used. In particular, it is desirable to use a fluid with high lubricity. In addition, even in a case where the positional relationship between the inner side and the outer side in the radial direction of the rotating body and the bearing body is reversed, that is, when the bearing body is installed at the center and the rotating body is configured to surround the bearing surface on the outer periphery of the bearing body. The same effects as described above can be obtained.

本発明に係る静圧流体軸受の実施形態の基本構成例を示す概略縦断面図。The schematic longitudinal cross-sectional view which shows the basic structural example of embodiment of the hydrostatic fluid bearing which concerns on this invention. 基本構成例の変形例を示す概略縦断面図。The schematic longitudinal cross-sectional view which shows the modification of a basic structural example. 従来の静圧流体軸受を用いた軸受構造の概略縦断面図。The schematic longitudinal cross-sectional view of the bearing structure using the conventional hydrostatic fluid bearing. 実施形態の静圧流体軸受を用いたスピンドル構造を示す概略縦断面図。The schematic longitudinal cross-sectional view which shows the spindle structure using the hydrostatic bearing of embodiment. 従来の静圧流体軸受を用いたスピンドル構造を示す概略縦断面図。The schematic longitudinal cross-sectional view which shows the spindle structure using the conventional hydrostatic fluid bearing. 静圧流体軸受1個当たりの剛性および流量と軸受の半径隙間Crの関係を示すグラフ。The graph which shows the relationship between the rigidity and flow volume per one hydrostatic fluid bearing, and the radial clearance Cr of a bearing.

符号の説明Explanation of symbols

100…回転体、200…軸受体、201,202…軸受面、210…第1軸受部材、211…第1凹凸端部、211A…環状凸部、211B…第1端面部、211t…先端面、211s、221s…第1側面部、212…第1凹凸反端部、212A…環状凸部、212B…第1反端面部、213…第1軸受面部、220…第2軸受部材、221…第2凹凸端部、221A…環状凹部、221B…第2端面部、221t…奥底面、223…第2軸受面部、230…第3軸受部材、231…第3凹凸端部、231A…環状凹部、231B…第3端面部、G、H…軸受隙間、P、U…絞り、R、V…圧力室 DESCRIPTION OF SYMBOLS 100 ... Rotating body, 200 ... Bearing body, 201, 202 ... Bearing surface, 210 ... 1st bearing member, 211 ... 1st uneven | corrugated edge part, 211A ... Annular convex part, 211B ... 1st end surface part, 211t ... Tip surface, 211s, 221s ... first side surface portion, 212 ... first concave / convex anti-end portion, 212A ... annular convex portion, 212B ... first anti-end surface portion, 213 ... first bearing surface portion, 220 ... second bearing member, 221 ... second Concavo-convex end portion, 221A ... annular recess, 221B ... second end face portion, 221t ... back bottom surface, 223 ... second bearing surface portion, 230 ... third bearing member, 231 ... third concavo-convex end portion, 231A ... annular recess, 231B ... Third end face, G, H: Bearing gap, P, U: Restriction, R, V: Pressure chamber

Claims (6)

回転体と、該回転体との間に軸受隙間を介して対向する軸受面を備えた軸受体とを具備し、前記軸受隙間に加圧した流体を絞りを通して導くことにより前記回転体を回転可能に支持する静圧流体軸受において、
前記軸受体は、前記軸受面の一部を構成する第1軸受面部、及び、半径方向に見て凹凸状に設けられた第1凹凸端部を一体に有する第1軸受部材と、前記第1軸受面部に隣接し前記軸受面の他の一部を構成する第2軸受面部、及び、半径方向に見て凹凸状に設けられ、前記第1凹凸端部に対して軸線方向に嵌合可能に構成された第2凹凸端部を一体に有する第2軸受部材とを具備し、
前記第1軸受部材と前記第2軸受部材が前記第1凹凸端部と前記第2凹凸端部とが組み合わされる態様で軸線方向に嵌合し、前記第1凹凸端部のうち半径方向の前記第1軸受面部とは反対側に設けられた第1反軸受側部分と、前記第2凹凸端部のうち半径方向の前記第2軸受面部とは反対側に設けられた第2反軸受側部分の対向面間が密接して全周に亘り気密に構成され、
前記第1凹凸端部のうち半径方向の前記第1軸受面部の側に設けられた第1軸受側部分と、前記第2凹凸端部のうち半径方向の前記第2軸受面部の側に設けられた第2軸受側部分の少なくとも一方には半径方向に伸び前記軸受隙間に連通する複数の凹溝が放射状に形成され、前記第1軸受側部分と前記第2軸受側部分とが突き合わされることで前記凹溝により前記絞りが軸線周りに複数分散して構成され、
前記第1軸受部材と前記第2軸受部材の間に画成され、前記複数の絞りに共通に連通する流体供給用の環状の圧力室が構成されることを特徴とする静圧流体軸受。
A rotating body and a bearing body having a bearing surface opposed to the rotating body through a bearing gap are provided, and the rotating body can be rotated by guiding a pressurized fluid through the throttle to the bearing gap. In the hydrostatic bearing supported by
The bearing body includes a first bearing member integrally forming a first bearing surface portion constituting a part of the bearing surface and a first uneven end portion provided in an uneven shape when viewed in the radial direction, and the first bearing member. A second bearing surface portion that is adjacent to the bearing surface portion and constitutes another part of the bearing surface, and is provided in a concavo-convex shape when viewed in the radial direction, and can be fitted in the axial direction with respect to the first concavo-convex end portion. A second bearing member integrally having the second uneven end portion configured,
The first bearing member and the second bearing member are fitted in the axial direction in such a manner that the first uneven end portion and the second uneven end portion are combined, and the radial direction of the first uneven end portion is A first anti-bearing side portion provided on the side opposite to the first bearing surface portion, and a second anti-bearing side portion provided on the side opposite to the second bearing surface portion in the radial direction among the second uneven end portions. The opposing surfaces of the two are closely connected and airtight over the entire circumference.
The first bearing side portion provided on the first bearing surface portion in the radial direction of the first uneven end portion, and the second bearing surface portion in the radial direction of the second uneven end portion. Further, at least one of the second bearing side portions is radially formed with a plurality of concave grooves extending in the radial direction and communicating with the bearing gap, and the first bearing side portion and the second bearing side portion are abutted with each other. And the plurality of apertures are dispersed around the axis by the concave groove,
A hydrostatic fluid bearing, wherein an annular pressure chamber for fluid supply is defined between the first bearing member and the second bearing member and communicates in common with the plurality of throttles.
前記第1軸受部材と前記第2軸受部材とが圧入状態で嵌合していることを特徴とする請求項1に記載の静圧軸受部材。   The hydrostatic bearing member according to claim 1, wherein the first bearing member and the second bearing member are fitted in a press-fitted state. 前記第1軸受部材には前記第1凹凸端部の軸線方向反対側に半径方向に見て凹凸状に構成された第1凹凸反端部が形成されるとともに、前記第1軸受部材の前記第1凹凸反端部に対し前記第2軸受部材と同様に嵌合する第3凹凸端部を備えた第3軸受部材が設けられ、前記第1軸受部材と前記第3軸受部材との間に前記絞り及び前記圧力室が同様に構成されることを特徴とする請求項1又は2に記載の静圧流体軸受。   The first bearing member is formed with a first concave and convex end opposite to the first concave and convex end portion in an axial direction opposite to the first concave and convex end portion in the radial direction, and the first concave and convex end portion of the first bearing member. A third bearing member having a third concave and convex end that fits in the same manner as the second bearing member with respect to one concave and convex end is provided, and the third bearing member is provided between the first bearing member and the third bearing member. 3. The hydrostatic bearing according to claim 1, wherein the throttle and the pressure chamber are configured similarly. 回転体と、該回転体との間に軸受隙間を介して対向する軸受面を備えた軸受体とを具備し、前記軸受隙間に加圧した流体を絞りを通して導くことにより前記回転体を回転可能に支持する静圧流体軸受において、
前記軸受体は、前記軸受面の一部を構成する第1軸受面部、及び、軸線方向の端部における半径方向の前記第1軸受面部の側において軸線方向に環状に突出する環状凸部を一体に有する第1軸受部材と、前記第1軸受面部に隣接し前記軸受面の他の一部を構成する第2軸受面部、及び、軸線方向の端部における半径方向の前記第2軸受面部の側において軸線方向に環状に凹入する環状凹部を一体に有する第2軸受部材とを具備し、
前記第1軸受部材と前記第2軸受部材が前記環状凸部と前記環状凹部とが組み合わされる態様で軸線方向に嵌合し、
前記環状凸部のうち半径方向の前記第1軸受面部とは反対側に設けられた第1側面部と、前記環状凹部のうち半径方向の前記第2軸受面部とは反対側に設けられた第2側面部との対向面間、或いは、前記環状凸部のうち半径方向の前記第1軸受面部とは反対側に設けられた第1端面部と、前記環状凹部のうち半径方向の前記第2軸受面部とは反対側に設けられた第2端面部との対向面間の少なくとも一方が密接して全周に亘り気密に構成され、
前記環状凸部の軸線方向の先端面と、前記環状凹部の軸線方向の奥底面の少なくとも一方には半径方向に伸び前記軸受隙間に連通する複数の凹溝が放射状に形成され、前記先端面と前記奥底面とが突き合わされることで前記凹溝により前記絞りが軸線周りに複数分散して構成され、
前記第1軸受部材と前記第2軸受部材の間に画成され、前記複数の絞りに共通に連通する流体供給用の環状の圧力室が構成されることを特徴とする静圧流体軸受。
A rotating body and a bearing body having a bearing surface opposed to the rotating body through a bearing gap are provided, and the rotating body can be rotated by guiding a pressurized fluid through the throttle to the bearing gap. In the hydrostatic bearing supported by
The bearing body integrally includes a first bearing surface portion constituting a part of the bearing surface, and an annular convex portion protruding annularly in the axial direction on the side of the first bearing surface portion in the radial direction at the end portion in the axial direction. A first bearing member, a second bearing surface portion adjacent to the first bearing surface portion and constituting another part of the bearing surface, and a side of the second bearing surface portion in the radial direction at the end in the axial direction And a second bearing member integrally having an annular recess that is annularly recessed in the axial direction.
The first bearing member and the second bearing member are fitted in the axial direction in a mode in which the annular convex portion and the annular concave portion are combined,
A first side surface provided on the opposite side to the first bearing surface portion in the radial direction in the annular convex portion, and a first side portion provided on the opposite side to the second bearing surface portion in the radial direction in the annular recess. A first end surface portion provided on the opposite side to the first bearing surface portion in the radial direction of the annular convex portion, and the second radial portion of the annular concave portion. At least one of the surfaces facing the second end surface portion provided on the side opposite to the bearing surface portion is in close contact and is hermetically configured over the entire circumference,
A plurality of grooves extending in the radial direction and communicating with the bearing gap are formed radially on at least one of the axial front end surface of the annular convex portion and the axial bottom surface of the annular concave portion, and the front end surface A plurality of the apertures are dispersed around the axis by the concave groove by being in contact with the back bottom surface,
A hydrostatic fluid bearing, wherein an annular pressure chamber for fluid supply is defined between the first bearing member and the second bearing member and communicates in common with the plurality of throttles.
前記第1軸受部材と前記第2軸受部材とが圧入状態で嵌合していることを特徴とする請求項4に記載の静圧軸受部材。   The hydrostatic bearing member according to claim 4, wherein the first bearing member and the second bearing member are fitted in a press-fitted state. 前記第1軸受部材と前記第2軸受部材のうちの一方の軸受部材の前記環状凸部若しくは前記環状凹部が設けられた端部とは反対側の端部に別の環状凸部若しくは環状凹部が形成されるとともに、当該別の環状凸部若しくは環状凹部に対し前記第2軸受部材と同様に嵌合する第3軸受部材がさらに設けられ、前記一方の軸受部材と前記第3軸受部材との間に前記絞り及び前記圧力室が同様に構成されることを特徴とする請求項4又は5に記載の静圧流体軸受。   Another annular convex portion or annular concave portion is provided at the end of the first bearing member and the second bearing member opposite to the end provided with the annular convex portion or the annular concave portion. A third bearing member that is formed and fitted to the other annular convex portion or the annular concave portion in the same manner as the second bearing member, and is provided between the one bearing member and the third bearing member. The hydrostatic bearing according to claim 4 or 5, wherein the throttle and the pressure chamber are configured similarly.
JP2007265600A 2007-10-11 2007-10-11 Hydrostatic fluid bearing Active JP4908372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007265600A JP4908372B2 (en) 2007-10-11 2007-10-11 Hydrostatic fluid bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007265600A JP4908372B2 (en) 2007-10-11 2007-10-11 Hydrostatic fluid bearing

Publications (2)

Publication Number Publication Date
JP2009092195A true JP2009092195A (en) 2009-04-30
JP4908372B2 JP4908372B2 (en) 2012-04-04

Family

ID=40664370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007265600A Active JP4908372B2 (en) 2007-10-11 2007-10-11 Hydrostatic fluid bearing

Country Status (1)

Country Link
JP (1) JP4908372B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929526B1 (en) * 1967-11-07 1974-08-05
JPS52115946A (en) * 1976-03-25 1977-09-28 Toshiba Corp Main shaft using spherical bearing
JPH04244623A (en) * 1991-01-30 1992-09-01 Toyoda Mach Works Ltd Static pressure gaseous bearing
JP2002174240A (en) * 2000-12-08 2002-06-21 Ntn Corp Hydrostatic gas bearing
JP2006207668A (en) * 2005-01-27 2006-08-10 National Institute Of Advanced Industrial & Technology Asymmetrical fluid bearing
JP2007247762A (en) * 2006-03-15 2007-09-27 Ntn Corp Static pressure gas bearing spindle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929526B1 (en) * 1967-11-07 1974-08-05
JPS52115946A (en) * 1976-03-25 1977-09-28 Toshiba Corp Main shaft using spherical bearing
JPH04244623A (en) * 1991-01-30 1992-09-01 Toyoda Mach Works Ltd Static pressure gaseous bearing
JP2002174240A (en) * 2000-12-08 2002-06-21 Ntn Corp Hydrostatic gas bearing
JP2006207668A (en) * 2005-01-27 2006-08-10 National Institute Of Advanced Industrial & Technology Asymmetrical fluid bearing
JP2007247762A (en) * 2006-03-15 2007-09-27 Ntn Corp Static pressure gas bearing spindle

Also Published As

Publication number Publication date
JP4908372B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
KR20160114154A (en) Main shaft device
JP6665788B2 (en) Friction roller type gearbox
JP2007002862A (en) Hydrostatic bearing
CN102179532A (en) Ultrahigh-precision aerostatic bearing main shaft system
KR102593405B1 (en) Cam device
US20020122608A1 (en) Externally pressurized gas bearing spindle assembly
KR20050039660A (en) Radial rotary transfer assembly
US20070110348A1 (en) Fluid dynamic bearing unit
JP4908372B2 (en) Hydrostatic fluid bearing
JP5122905B2 (en) Static pressure gas bearing
JP5760498B2 (en) Bearing device, rotary table of machine tool, and spindle device
US8221003B2 (en) Bearing unit and pivot device
JP4525476B2 (en) Preloading method for double row tapered roller bearing unit
JP3779186B2 (en) Static pressure gas bearing
JP2010133530A (en) Bearing structure and supercharger with the bearing structure
TWI777812B (en) Spacer and cycloid reducer with the same
CN214304498U (en) Compressor and air conditioner
WO2013183516A1 (en) Ball bearing
TWI646271B (en) Porous media aerostatic bearing
CN107869512B (en) Shaft member for fluid bearing device, method for manufacturing same, and fluid bearing device
WO2024018503A1 (en) Rotor sleeve and rotor
WO2022118665A1 (en) Spindle device
JP2013224733A (en) Rolling bearing, rolling bearing device and pivot device
JP3849416B2 (en) Hydrodynamic fluid thrust bearing device
CN117052792A (en) Surface throttling low-flow high-rigidity air bearing and working method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4908372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250