JP2006177268A - Rotatably supporting device for wind power generator - Google Patents

Rotatably supporting device for wind power generator Download PDF

Info

Publication number
JP2006177268A
JP2006177268A JP2004372424A JP2004372424A JP2006177268A JP 2006177268 A JP2006177268 A JP 2006177268A JP 2004372424 A JP2004372424 A JP 2004372424A JP 2004372424 A JP2004372424 A JP 2004372424A JP 2006177268 A JP2006177268 A JP 2006177268A
Authority
JP
Japan
Prior art keywords
preload
wind
rolling bearing
wind speed
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004372424A
Other languages
Japanese (ja)
Inventor
Tetsuo Watanabe
哲雄 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004372424A priority Critical patent/JP2006177268A/en
Publication of JP2006177268A publication Critical patent/JP2006177268A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wind Motors (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure capable of preventing a scope of wind velocity for generating electric power by a wind power generator from becoming narrow and ensuring the life of durability of tapered roller bearings 2, 2 for supporting a main shaft 1 connected with and fixed on a rotor. <P>SOLUTION: Pre-load load to be given to each tapered roller bearing 2, 2 is freely adjusted by a hydraulic cylinder 10. When wind velocity around the wind power generator is less than cut-in wind velocity, pre-load load is set to zero. Consequently, start torque of each tapered roller bearing 2, 2 is reduced to improve start property of the rotor. When the wind velocity is above cut-in wind velocity, pre-load load is increased in accordance with the wind velocity to ensure rigidity required in each tapered roller bearing 2, 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明に係る風力発電装置用回転支持装置は、風力発電装置を構成するロータ(ブレード等の羽付きの回転体)の回転中心部に結合固定した主軸、或はこの主軸と発電機との間に設けた変速機を構成する回転軸を、転がり軸受により、ハウジングに対して回転自在に支持する為に利用する。   A rotation support device for a wind turbine generator according to the present invention includes a main shaft coupled and fixed to a rotation center portion of a rotor (a rotating body with blades such as blades) constituting the wind power generator, or between the main shaft and a generator. The rotating shaft that constitutes the transmission provided in the above is utilized for rotatably supporting the housing with a rolling bearing.

近年、二酸化炭素の削減等により地球環境を改善する事を目的として、自然エネルギを利用する発電方法である風力発電が注目される様になっている。風力発電装置は、風の運動エネルギを利用してロータを回転させ、このロータの回転中心部にその端部を結合固定した主軸により、発電機を回転駆動するものである。この様な風力発電装置として従来から、例えば特許文献1〜3に記載されたものが知られている。何れの風力発電装置の場合も、発電効率を確保する為に、上記主軸と上記発電機との間に変速機を設け、この主軸の回転速度を増加させた状態で上記発電機を回転駆動する様に構成している。   In recent years, wind power generation, which is a power generation method using natural energy, has been attracting attention for the purpose of improving the global environment by reducing carbon dioxide. The wind turbine generator rotates a rotor by using kinetic energy of wind and rotationally drives a generator by a main shaft whose end is coupled and fixed to the rotation center of the rotor. Conventionally, for example, those described in Patent Documents 1 to 3 are known as such wind power generators. In any wind power generator, in order to ensure power generation efficiency, a transmission is provided between the main shaft and the power generator, and the power generator is rotationally driven with the rotational speed of the main shaft increased. It is configured like this.

又、風力発電装置は、水平軸型(上記主軸が水平に配置されているタイプ)のものが多く使用されており、一般的には、上記ロータを風上に向けた状態で使用される。又、一般に、この様な風力発電装置は、周囲の風速(上記ロータへの向かい風の速さ)が、カットイン風速と呼ばれる所定の下限風速以上で、且つ、カットアウト風速と呼ばれる所定の上限風速以下の場合にのみ、上記発電機を回転駆動する様に構成している。即ち、安定した電力を得る為、周囲の風速がカットイン風速未満の場合には、上記主軸と上記発電機との接続をクラッチ装置等により断ち、この発電機を回転駆動しない様にしている。又、上記主軸が過回転して装置が故障するのを防止する為、周囲の風速がカットアウト風速を越える場合には、ブレードの姿勢を風の力を受けにくい状態にすると共に、上記主軸の回転をブレーキ装置により止めて、上記発電機を回転駆動しない様にしている。   Further, a wind turbine generator of a horizontal axis type (a type in which the main shaft is disposed horizontally) is often used, and is generally used with the rotor facing upwind. In general, such a wind turbine generator has a surrounding wind speed (speed of the wind toward the rotor) equal to or higher than a predetermined lower limit wind speed called a cut-in wind speed and a predetermined upper limit wind speed called a cut-out wind speed. The generator is configured to rotate only in the following cases. That is, in order to obtain stable power, when the surrounding wind speed is lower than the cut-in wind speed, the main shaft and the generator are disconnected by a clutch device or the like so that the generator is not driven to rotate. In order to prevent the main shaft from over-rotating and failure of the device, when the surrounding wind speed exceeds the cut-out wind speed, the blade posture is made less susceptible to wind force and the main shaft The rotation is stopped by a brake device so that the generator is not rotationally driven.

又、この様な風力発電装置の場合、上記ロータの回転中心部にその端部を結合固定した主軸は、転がり軸受により、ハウジングに対し片持ち式で支持している。そして、この転がり軸受により、上記ロータに加わる荷重(重量並びに風による押し付け力等)を支承している。一方、このロータに加わる荷重は、周囲の風の状態(風速、風向)が変化する事に伴って様々に変化し、特に、強風時には、上記ロータ部分で、ブレードの振動やブレードの荷重の不均衡等が生じる場合もある。この為、上記転がり軸受は、厳しい負荷条件の下で使用される事になる。一方、風力発電装置は鉄塔の上等の高所に設けられており、上記転がり軸受の交換等のメンテナンス作業を行ないにくい為、上述の様な厳しい負荷条件の下で上記転がり軸受が早期に寿命に達してしまう事は、好ましくない。従って、上記メンテナンス作業を長期間(最低でも20年間、好ましくは、より長期間)行なわなくても済む様にする為、上記転がり軸受の耐久寿命を十分に確保できる様にする事が望まれる。   In the case of such a wind power generator, the main shaft, whose end is coupled and fixed to the rotation center of the rotor, is supported in a cantilever manner on the housing by a rolling bearing. The rolling bearing supports the load applied to the rotor (weight, pressing force by wind, etc.). On the other hand, the load applied to the rotor varies in various ways as the surrounding wind conditions (wind speed, wind direction) change. Especially in the case of strong winds, the rotor part is not subject to blade vibration or blade load. Equilibrium may occur. Therefore, the rolling bearing is used under severe load conditions. On the other hand, since the wind turbine generator is installed at a high place on the top of the steel tower, it is difficult to perform maintenance work such as replacement of the rolling bearing, so that the rolling bearing has an early life under severe load conditions as described above. It is not preferable to reach this. Therefore, it is desirable to ensure a sufficient durable life of the rolling bearing so that the maintenance work does not have to be performed for a long time (at least 20 years, preferably longer).

一般に、転がり軸受の耐久寿命は、この転がり軸受に予圧を付与して(この転がり軸受の内部隙間を0又は負にして)使用する事により、向上させる事ができる。この理由は、予圧を付与する事によって、転がり軸受の負荷圏を広くする事ができ、この結果、運転中、この負荷圏と非負荷圏とを交互に通過する各転動体に加わる荷重の変動幅を小さく(最大荷重を低く)できる為である。更には、当該転がり軸受の剛性を高める事ができ、外力が作用した場合の変形や振動を抑える事ができる為である。ところが、上記主軸を支持する転がり軸受の場合には、従来から知られている定位置予圧の方法や定圧予圧の方法で予圧を付与する構成を採用するのが難しい。この理由は、次の通りである。   In general, the durability life of a rolling bearing can be improved by applying a preload to the rolling bearing (with the internal clearance of the rolling bearing set to 0 or negative). The reason for this is that by applying preload, the load area of the rolling bearing can be widened. As a result, during operation, the fluctuation of the load applied to each rolling element that alternately passes through this load area and non-load area This is because the width can be reduced (maximum load can be reduced). Furthermore, the rigidity of the rolling bearing can be increased, and deformation and vibration when an external force is applied can be suppressed. However, in the case of a rolling bearing that supports the main shaft, it is difficult to adopt a configuration in which preload is applied by a conventionally known method of constant position preload or constant pressure preload. The reason for this is as follows.

即ち、風力発電装置は自然環境の中で使用される為、例えば冬場等に長時間停止していた状態から急に運転が開始されると、上記転がり軸受を構成する内輪と外輪との間に、大きな温度差が生じる。従って、定位置予圧の方法で予圧を付与しておくと、上述の様に内輪と外輪との間に大きな温度差が生じた場合に、上記転がり軸受の予圧が過大となる可能性がある。この様に予圧が過大になると、かえって転がり軸受の耐久寿命が低下する可能性がある。この為、定位置予圧の方法で予圧を付与する構成を採用するのは難しい。これに対し、定圧予圧の方法で予圧を付与する場合には、転がり軸受の予圧を常に一定に保てる為、上述の様に内輪と外輪との間に大きな温度差が生じた場合でも、上記転がり軸受の予圧が過大となる事はない。ところが、定圧予圧の方法で予圧を付与すると、上記転がり軸受の起動トルクが大きくなる為、微風時のロータの始動性が損なわれる(カットイン風速が大きくなる)可能性がある。この様にロータの始動性が損なわれると、風力発電装置の発電可能な風速範囲(カットイン風速からカットアウト風速までの幅)が狭まる。この為、定圧予圧の方法で予圧を付与する構成を採用する事も難しい。   That is, since the wind turbine generator is used in a natural environment, for example, when the operation is suddenly started from a state where it has been stopped for a long time in winter, for example, between the inner ring and the outer ring constituting the rolling bearing. A large temperature difference occurs. Therefore, if the preload is applied by the fixed position preload method, the preload of the rolling bearing may become excessive when a large temperature difference occurs between the inner ring and the outer ring as described above. If the preload becomes excessive in this way, the durability life of the rolling bearing may be reduced. For this reason, it is difficult to adopt a configuration in which a preload is applied by a fixed position preload method. On the other hand, when preload is applied by the constant pressure preload method, the preload of the rolling bearing can be kept constant at all times, so even if a large temperature difference occurs between the inner ring and the outer ring as described above, The bearing preload is never excessive. However, when preload is applied by the constant pressure preload method, the starting torque of the rolling bearing is increased, so that the startability of the rotor in a slight wind may be impaired (cut-in wind speed is increased). When the startability of the rotor is impaired in this way, the wind speed range (the width from the cut-in wind speed to the cut-out wind speed) that can be generated by the wind turbine generator is narrowed. For this reason, it is difficult to adopt a configuration in which preload is applied by the constant pressure preload method.

この様な事情に鑑みて従来は、上記主軸を支持する転がり軸受に就いては、初期隙間を設けて(予圧を付与せずに)使用する様にしている。即ち、この転がり軸受を使用個所に組み付ける際の嵌め合い、組み付けた状態での内輪と外輪との軸方向に関する相対位置、これら内輪及び外輪をナットにより軸方向に締め付けて使用する場合には締め付けに伴う膨張量、更には使用時の負荷荷重及び温度変化等を考慮して、使用時に最悪の場合でも上記転がり軸受に過大な予圧が加わらない様に、この転がり軸受の初期隙間を設定し、使用する様にしている。従って、この転がり軸受は、使用時に正の内部隙間を持ったまま運転される場合が多い。   In view of such circumstances, conventionally, a rolling bearing that supports the main shaft is used with an initial clearance (without applying preload). That is, when the rolling bearing is assembled at the place where it is used, the relative position in the axial direction of the inner ring and outer ring in the assembled state, and when these inner ring and outer ring are tightened in the axial direction with nuts, tightening is required. Considering the amount of expansion involved, and the load and temperature changes during use, the initial clearance of this rolling bearing is set so that excessive preload is not applied to the rolling bearing even in the worst case. I try to do it. Therefore, this rolling bearing is often operated with a positive internal gap during use.

ところが、この様に転がり軸受が正の内部隙間を持ったまま運転されると、0又は負の内部隙間を持って運転(予圧を付与された状態で運転)される場合に比べ、上記転がり軸受の負荷圏が狭くなり、運転中、この負荷圏と非負荷圏とを交互に通過する各転動体に加わる荷重の変動幅が大きく(最大荷重が高く)なる。更には、上記転がり軸受の剛性が低くなり、例えば強風時、ロータに加わる荷重が激しく変動した場合に、転動面や軌道面に衝撃荷重が加わったり、或は上記転がり軸受で発生する振動が大きくなる可能性がある。これらの事は、この転がり軸受の耐久寿命を確保する上で、好ましくない。   However, when the rolling bearing is operated with a positive internal gap in this way, the rolling bearing is compared with a case where the rolling bearing is operated with a zero or negative internal gap (operated with a preload applied). The load range is narrowed, and the fluctuation range of the load applied to each rolling element that alternately passes through the load range and the non-load range is increased during operation (the maximum load is high). Furthermore, the rigidity of the rolling bearing is reduced. For example, when the load applied to the rotor fluctuates drastically in a strong wind, an impact load is applied to the rolling surface or the raceway surface, or vibration generated in the rolling bearing is generated. It can grow. These are not preferable in securing the durable life of the rolling bearing.

又、以上の説明では、主軸を支持する転がり軸受に就いて生じる問題を取り上げたが、この様な問題は、前記変速機を構成する回転軸を支持する転がり軸受に就いても、同様に生じる。
尚、本発明に関連する先行技術文献として、前述した特許文献1〜3の他に、以下の特許文献4〜7がある。
In the above description, the problem that occurs with the rolling bearing that supports the main shaft has been taken up. However, such a problem also occurs with the rolling bearing that supports the rotating shaft that constitutes the transmission. .
As prior art documents related to the present invention, there are the following patent documents 4 to 7 in addition to the aforementioned patent documents 1 to 3.

特開平2−157483号公報JP-A-2-157383 特開平10−96463号公報Japanese Patent Laid-Open No. 10-96463 特開2002−221263号公報JP 2002-221263 A 特開平9−108903号公報JP-A-9-108903 特開平6−58329号公報JP-A-6-58329 特開平8−166018号公報JP-A-8-166018 特開2001−289295号公報JP 2001-289295 A

本発明の風力発電装置用回転支持装置は、上述の様な事情に鑑み、微風時の転がり軸受の起動トルクを小さくでき、しかもこの転がり軸受の耐久寿命を十分に確保できる構造を実現すべく発明したものである。   In view of the circumstances as described above, the rotation support device for wind power generators of the present invention is an invention for realizing a structure that can reduce the starting torque of a rolling bearing in a slight wind and can sufficiently ensure the durable life of the rolling bearing. It is a thing.

本発明の風力発電装置用回転支持装置は、風を受けて回転するロータの回転中心部に結合固定した主軸、又は、この主軸と発電機との間に設けられた変速機を構成する回転軸と、ハウジングと、この回転軸又は上記主軸をこのハウジングに対し回転自在に支持する転がり軸受とを備える。
特に、本発明の風力発電装置用回転支持装置に於いては、風力発電装置の周囲の風の状態(風速、風向)と、この風力発電装置の運転状態とのうちの少なくとも一方の状態に応じて、上記転がり軸受に付与する予圧荷重の大きさを変化させる予圧制御手段を備えている。
A rotation support device for a wind power generator according to the present invention includes a main shaft coupled and fixed to a rotation center portion of a rotor that rotates by receiving wind, or a rotation shaft constituting a transmission provided between the main shaft and a generator. And a housing and a rolling bearing that rotatably supports the rotating shaft or the main shaft with respect to the housing.
In particular, in the rotation support device for a wind turbine generator according to the present invention, it depends on at least one of the state of wind around the wind turbine generator (wind speed, wind direction) and the operating state of the wind turbine generator. Thus, preload control means for changing the magnitude of the preload applied to the rolling bearing is provided.

上述の様に構成する本発明の風力発電装置用回転支持装置によれば、風力発電装置の周囲の風の状態や運転状態に応じて、常に、その状態で転がり軸受に必要な(過大とならない)予圧荷重を与える事ができる。この為、無風時乃至微風時には、転がり軸受の起動トルクを小さくする事ができる。この結果、風力発電装置を構成するロータの始動性を良好にでき、この風力発電装置による発電が可能な風速範囲が狭くなる事を防止できる。又、それ以外の運転時には、必要に応じて、転がり軸受の内部隙間を0又は負にする事ができる。この結果、この転がり軸受の負荷圏の幅を広くでき、運転中、この負荷圏と非負荷圏とを交互に通過する各転動体に加わる荷重の変動幅を小さくし、この荷重の最大値を低く抑える事ができる。これと共に、上記転がり軸受の剛性を高める事ができ、例えば、強風時でも、転動面や軌道面に衝撃荷重が加わったり、或は上記転がり軸受で発生する振動が大きくなる事を防止できる。従って、上記転がり軸受の耐久寿命を向上させる事ができる。   According to the rotation support device for a wind power generator of the present invention configured as described above, it is always necessary for the rolling bearing in that state according to the wind state and the operation state around the wind power generator (does not become excessive). ) Preload can be applied. For this reason, it is possible to reduce the starting torque of the rolling bearing during no wind or light wind. As a result, the startability of the rotor constituting the wind power generator can be improved, and the wind speed range in which power generation by the wind power generator can be prevented from being narrowed. In other operations, the internal clearance of the rolling bearing can be set to 0 or negative as necessary. As a result, the width of the load area of the rolling bearing can be increased, and during operation, the fluctuation range of the load applied to each rolling element that alternately passes through the load area and the non-load area is reduced, and the maximum value of this load is increased. It can be kept low. At the same time, the rigidity of the rolling bearing can be increased. For example, it is possible to prevent an impact load from being applied to the rolling surface or the raceway surface or an increase in vibration generated in the rolling bearing even in a strong wind. Therefore, the durability life of the rolling bearing can be improved.

又、本発明の場合には、転がり軸受を使用個所に組み付けた状態で、この転がり軸受の予圧荷重を変化させる事ができる。この為、この転がり軸受の製造時の初期隙間管理や、使用個所に組み付ける際の嵌め合い管理、軌道輪をナットにより軸方向に締め付ける構成を採用する場合の締め付け量管理等を、厳密に行なわなくて済む。従って、転がり軸受の製造コストと、回転支持装置の組立コストとを、それぞれ十分に抑える事ができる。   Moreover, in the case of this invention, the preload of this rolling bearing can be changed in the state which assembled | attached the rolling bearing to the use place. For this reason, the initial clearance management at the time of manufacture of this rolling bearing, the fitting management when assembling at the place of use, and the tightening amount management when adopting the configuration in which the race ring is tightened in the axial direction by the nut are not strictly performed. I'll do it. Therefore, the manufacturing cost of the rolling bearing and the assembly cost of the rotation support device can be sufficiently suppressed.

又、本発明の場合、回転支持装置を構成する回転軸として、変速機を構成する回転軸を採用する場合には、上述した効果に加えて、トルク変動中でも上記変速機を構成する複数の歯車同士の歯当たりを安定させる事ができる。この為、これら各歯車の耐久寿命を向上させる事ができる。   In addition, in the case of the present invention, when the rotation shaft constituting the transmission is adopted as the rotation shaft constituting the rotation support device, in addition to the above-described effects, a plurality of gears constituting the transmission even during torque fluctuation The tooth contact between each other can be stabilized. For this reason, the durable life of each gear can be improved.

本発明を実施する場合に、具体的には、請求項2に記載した構成を採用する事ができる。即ち、この請求項2に記載した構成の場合、予圧制御手段は、予圧付与手段と、予圧測定手段と、予圧調整手段とを備える。
このうちの予圧付与手段は、転がり軸受を構成する外輪又は内輪を軸方向に押圧する事に基づき、当該転がり軸受に予圧荷重を付与するものである。
又、上記予圧測定手段は、この転がり軸受に付与されている予圧荷重を測定するものである。
又、上記予圧調整手段は、風力発電装置の周囲の風速と、同じく風向と、主軸又は回転軸の回転速度と、上記転がり軸受の温度とのうちの少なくとも1つの情報に基づいて、この転がり軸受に付与すべき予圧荷重の大きさを決定し、更にこの様に決定した予圧荷重の大きさと上記予圧測定手段により測定した予圧荷重の大きさとの差を少なくする方向に(好ましくは0になる様に)、上記予圧付与手段に対して運転指令を行なうものである。
Specifically, when carrying out the present invention, the configuration described in claim 2 can be adopted. That is, in the case of the configuration described in claim 2, the preload control means includes preload applying means, preload measuring means, and preload adjusting means.
Among these, the preload applying means applies a preload to the rolling bearing based on pressing the outer ring or the inner ring constituting the rolling bearing in the axial direction.
The preload measuring means measures the preload applied to the rolling bearing.
Further, the preload adjusting means is based on at least one of the following information: wind speed around the wind power generator, wind direction, rotational speed of the main shaft or rotating shaft, and temperature of the rolling bearing. In the direction of reducing the difference between the preload load determined in this way and the preload load measured by the preload measuring means (preferably zero) In addition, an operation command is issued to the preload applying means.

又、本発明を実施する場合、より具体的には、請求項3に記載した構成を採用する事ができる。
即ち、この請求項3に記載した構成の場合、対象となる風力発電装置は、周囲の風速(例えば、風力発電装置を構成する前記ロータへの向かい風の速さ)が、所定の下限風速(カットイン風速)以上で、且つ、所定の上限風速(カットアウト風速)以下の場合にのみ、発電機を回転駆動するものである。
そして、予圧制御手段は、転がり軸受に付与する予圧荷重の大きさを、上記周囲の風速が上記下限風速未満の場合には0に、同じくこの下限風速以上で且つ上記上限風速以下の場合には上記転がり軸受の内部隙間が0又は負となる大きさに、同じく上記上限風速を越える場合にはこの内部隙間が負となる大きさに、それぞれ変化させる。
Moreover, when implementing this invention, the structure described in Claim 3 can be employ | adopted more specifically.
That is, in the case of the configuration described in claim 3, the target wind turbine generator has an ambient wind speed (for example, the speed of the head wind toward the rotor constituting the wind turbine generator) at a predetermined lower limit wind speed (cut). The generator is rotationally driven only when it is equal to or higher than the in-wind speed and is equal to or lower than a predetermined upper limit wind speed (cut-out wind speed).
The preload control means sets the magnitude of the preload applied to the rolling bearing to 0 when the ambient wind speed is less than the lower wind speed, and when the wind speed is equal to or higher than the lower wind speed and equal to or lower than the upper wind speed. When the internal clearance of the rolling bearing is 0 or negative, the internal clearance is changed to a negative size when the upper wind speed is exceeded.

図1〜3は、本発明の実施例1を示している。本実施例の場合、風力発電装置を構成する主軸1は、軸方向に関して互いに間隔をあけて設けた1対の円すいころ軸受2、2により、ハウジング(図示せず)の内側に回転自在に支持している。これら各円すいころ軸受2、2はそれぞれ、外周面に部分円すい凸面状の内輪軌道3を有する内輪4と、内周面に部分円すい凹面状の外輪軌道5を有する外輪6と、これら内輪軌道3と外輪軌道5との間に保持器(図示せず)により保持した状態で転動自在に設けた複数個の円すいころ7、7とから成る。この様な1対の円すいころ軸受2、2は、背面組合わせの状態で、それぞれの内輪4、4を上記主軸1に締り嵌めで外嵌すると共に、それぞれの外輪6、6を上記ハウジングに隙間嵌めで内嵌している。   1-3 show Example 1 of the present invention. In the case of the present embodiment, the main shaft 1 constituting the wind power generator is rotatably supported inside a housing (not shown) by a pair of tapered roller bearings 2 and 2 that are spaced apart from each other in the axial direction. is doing. Each of these tapered roller bearings 2 and 2 has an inner ring 4 having a partially tapered convex inner ring raceway 3 on an outer peripheral surface, an outer ring 6 having a partially tapered concave outer ring raceway 5 on an inner peripheral surface, and these inner ring raceways 3. And a plurality of tapered rollers 7, 7 provided so as to be able to roll while being held by a cage (not shown) between the outer ring raceway 5 and the outer ring raceway 5. In such a pair of tapered roller bearings 2 and 2, the inner rings 4 and 4 are externally fitted onto the main shaft 1 by being fitted together on the back surface, and the outer rings 6 and 6 are attached to the housing. It is fitted with a gap fit.

又、上記主軸1の外周面のうち、上記各内輪4、4の互いに反対側の端面に隣接する部分には、それぞれ抑え環8、8を、螺合、焼き嵌め等の手段により軸方向の変位を阻止した状態で固定している。そして、これら各抑え環8、8により、上記各内輪4、4の互いに反対側の端面を抑える事で、これら各内輪4、4が軸方向に関して互いに離れる方向に変位するのを防止している。   Further, on the part of the outer peripheral surface of the main shaft 1 adjacent to the opposite end surfaces of the inner rings 4, 4, the holding rings 8, 8 are respectively attached in the axial direction by means such as screwing or shrink fitting. It is fixed in a state that prevents displacement. Then, by restraining the end surfaces of the inner rings 4 and 4 opposite to each other by the restraining rings 8 and 8, the inner rings 4 and 4 are prevented from being displaced in directions away from each other in the axial direction. .

又、上記各外輪6、6の互いに対向する端面同士の間には、予圧付与手段9を構成する油圧シリンダ10を設けている。この油圧シリンダ10は、シリンダ11とピストン12とを備える。このうちのシリンダ11は、断面コ字形で全体を円筒状に構成しており、内部に円筒状の圧油空間13を設けている。そして、この圧油空間13に圧油を、この圧油空間13と上記シリンダ11の径方向外側の空間とを連通する状態で設けた圧油通路14を通じて給排自在としている。又、上記ピストン12は、全体を円環状に構成しており、その基端部(図1の右端部)を上記圧油空間13の内側に油密に嵌装している。そして、この状態で、上記予圧付与手段9を構成する油圧ポンプ(図示せず)により、上記圧油空間13への圧油の給排量を調節する事で、上記ピストン12を上記シリンダ11に対して軸方向に変位させられる様にしている。   A hydraulic cylinder 10 constituting a preload applying means 9 is provided between the end faces of the outer rings 6, 6 facing each other. The hydraulic cylinder 10 includes a cylinder 11 and a piston 12. Among these, the cylinder 11 has a U-shaped cross section and is formed in a cylindrical shape as a whole, and a cylindrical pressure oil space 13 is provided therein. The pressure oil can be supplied to and discharged from the pressure oil space 13 through a pressure oil passage 14 provided in a state where the pressure oil space 13 communicates with the space outside the cylinder 11 in the radial direction. The piston 12 has an annular shape as a whole, and a base end portion (right end portion in FIG. 1) is oil-tightly fitted inside the pressure oil space 13. In this state, the piston 12 is moved to the cylinder 11 by adjusting the supply / discharge amount of the pressure oil to the pressure oil space 13 by a hydraulic pump (not shown) constituting the preload applying means 9. On the other hand, it can be displaced in the axial direction.

この様な油圧シリンダ10は、上記各外輪6、6の互いに対向する端面同士の間に配置した状態で、上記シリンダ11の基端面(図1の右端面)を一方(図1の右方)の外輪6の端面に、上記ピストン12の先端面(図1の左端面)を他方(図1の左方)の外輪6の端面に、それぞれ当接させている。そして、この状態で、上記圧油空間13への圧油の供給量を増やす事に基づき、上記シリンダ11と上記ピストン12とを軸方向に関して互いに離れる方向に変位させる事により、上記各外輪6、6を軸方向に押圧している。そして、この様に各外輪6、6を軸方向に押圧する事に基づき、上記各円すいころ軸受2、2に予圧荷重を付与している。   In such a hydraulic cylinder 10, one of the base end surfaces (the right end surface in FIG. 1) of the cylinder 11 (right side in FIG. 1) is disposed between the end surfaces facing each other of the outer rings 6, 6. The end surface of the piston 12 (the left end surface in FIG. 1) is brought into contact with the end surface of the outer ring 6 on the other side (the left end surface in FIG. 1). And in this state, based on increasing the amount of pressure oil supplied to the pressure oil space 13, the cylinder 11 and the piston 12 are displaced in directions away from each other in the axial direction, whereby the outer rings 6, 6 is pressed in the axial direction. A preload is applied to the tapered roller bearings 2 and 2 based on pressing the outer rings 6 and 6 in the axial direction.

この様に各円すいころ軸受2、2に付与する予圧荷重の大きさは、上記圧油空間13への圧油の給排量を調節する事により、適宜変化させる事ができる。本実施例の場合には、この様な圧油の給排量の調節指令(上記予圧付与手段9の運転制御)を、図2に示す様な、予圧調整手段である制御装置15により行なう構成を採用している。   As described above, the magnitude of the preload applied to each tapered roller bearing 2, 2 can be changed as appropriate by adjusting the amount of pressure oil supplied to and discharged from the pressure oil space 13. In the case of the present embodiment, such a pressure oil supply / discharge amount adjustment command (operation control of the preload applying means 9) is performed by a control device 15 which is a preload adjusting means as shown in FIG. Is adopted.

この制御装置15には、風力発電装置の周囲の風速(ロータへの向かい風の速さ)に関する情報S1 と、前記主軸1の回転速度に関する情報S2 と、上記各円すいころ軸受2、2を構成する内輪4及び外輪6の温度に関する情報S3 と、これら各円すいころ軸受2、2に付与されている予圧荷重に関する情報S4 とを、それぞれリアルタイムで入力している。尚、上記風速に関する情報S1 は、風力発電装置に付属の風向・風速計16(図1には図示せず)により、上記主軸1の回転速度に関する情報S2 は、この主軸1に組み付けた回転速度検出装置17(図1には図示せず)により、上記内輪4及び外輪6の温度に関する情報S3 は、これら内輪4及び外輪6に組み付けた温度センサ18(図1には図示せず)により、それぞれ測定している。又、上記各円すいころ軸受2、2の予圧荷重に関する情報S4 は、上記油圧シリンダ10を含んで構成する予圧測定手段19により、この油圧シリンダ10内の油圧を測定する事に基づいて(予め実験により調べておいた、予圧荷重と油圧との関係を利用して)測定している。尚、この様な予圧荷重に関する情報S4 の測定は、従来から知られている、歪みゲージを利用した荷重変換器(例えば特許文献4参照)等を使用して行なう事もできる。 The control device 15 includes information S 1 relating to the wind speed around the wind power generator (speed of heading toward the rotor), information S 2 relating to the rotational speed of the main shaft 1, and the tapered roller bearings 2 and 2. Information S 3 related to the temperature of the inner ring 4 and the outer ring 6 and information S 4 related to the preload applied to the tapered roller bearings 2 and 2 are input in real time. The information S 1 about the wind speed, the wind direction and wind speed meter 16 supplied with the wind turbine generator (not shown in FIG. 1), information S 2 related to the rotation speed of the spindle 1, assembled to the main shaft 1 By means of a rotational speed detector 17 (not shown in FIG. 1), information S 3 relating to the temperature of the inner ring 4 and outer ring 6 is sent to a temperature sensor 18 (not shown in FIG. 1) assembled to the inner ring 4 and outer ring 6. ) To measure each. The information S 4 regarding the preload of the tapered roller bearings 2 and 2 is based on the preload measuring means 19 including the hydraulic cylinder 10 and measuring the oil pressure in the hydraulic cylinder 10 (in advance). It is measured using the relationship between preload and hydraulic pressure, which was investigated by experiment. Note that the measurement of the information S 4 regarding the preload can be performed using a conventionally known load converter using a strain gauge (see, for example, Patent Document 4).

風力発電装置の使用時に、上記制御装置15は、上述の様にリアルタイムで入力される、風速に関する情報S1 と、回転速度に関する情報S2 と、温度に関する情報S3 とに基づき、各時点に於いて上記各円すいころ軸受2、2に付与すべき予圧荷重の大きさを決定する。この場合に、基本的には、上記風速に関する情報S1 に基づき、付与すべき予圧荷重の大きさを次の様に決定する。 At the time of use of the wind power generator, the control device 15 at each time point based on the information S 1 about the wind speed, the information S 2 about the rotational speed, and the information S 3 about the temperature, which are inputted in real time as described above. Therefore, the magnitude of the preload to be applied to the tapered roller bearings 2 and 2 is determined. In this case, basically, the magnitude of the preload to be applied is determined as follows based on the information S 1 regarding the wind speed.

即ち、図3に示す様に、上記風速が0(無風)以上で且つカットイン風速未満の場合には、付与すべき予圧荷重の大きさを0と決定する。これにより、上記各円すいころ軸受2、2の起動トルクを最小化し、当該風速範囲に於ける上記ロータの始動性を良好にして、風力発電装置の発電可能な風速範囲が狭まる事を防止する。又、上記風速がカットイン風速以上で且つ定格風速(カットイン風速とカットアウト風速との間に存在する風速で、風力発電装置が最も効率良く発電を行なえる風速)未満の場合には、付与すべき予圧荷重の大きさを、上記風速に応じて、上記各円すいころ軸受2、2の内部隙間が0又は負となる大きさ(軽予圧)に決定する。これにより、当該風速範囲に於いて必要とされる、上記各円すいころ軸受2、2の剛性を確保する。又、上記風速が定格風速以上で且つカットアウト風速未満の場合には、付与すべき予圧荷重の大きさを、やはり上記風速に応じて、上記各円すいころ軸受2、2の内部隙間が負となる大きさ{中予圧(>軽予圧)}に決定する。これにより、当該風速範囲に於いて必要とされる、上記各円すいころ軸受2、2の剛性を確保する。更に、上記風速がカットアウト風速以上の場合には、付与すべき予圧荷重の大きさを、やはり上記風速に応じて、より大きい値{重予圧(>中予圧)}に決定する。これにより、上記各円すいころ軸受2、2の剛性をより大きく確保し、強風下の停止状態で上記ロータに加わる荷重が激しく変動する状況でも、上記各円すいころ軸受2、2の転動面及び軌道面に衝撃荷重が加わったり、或はこれら各円すいころ軸受2、2で発生する振動が大きくなる事を防止する。   That is, as shown in FIG. 3, when the wind speed is 0 (no wind) or more and less than the cut-in wind speed, the magnitude of the preload to be applied is determined to be 0. As a result, the starting torque of the tapered roller bearings 2 and 2 is minimized, the startability of the rotor in the wind speed range is improved, and the wind speed range in which the wind power generator can generate power is prevented from being narrowed. Also, if the wind speed is above the cut-in wind speed and less than the rated wind speed (the wind speed that exists between the cut-in wind speed and the cut-out wind speed and the wind power generator can generate power most efficiently) The magnitude of the preload to be determined is determined to be a magnitude (light preload) at which the internal gap between the tapered roller bearings 2 and 2 becomes 0 or negative according to the wind speed. As a result, the rigidity of the tapered roller bearings 2 and 2 required in the wind speed range is ensured. Further, when the wind speed is equal to or higher than the rated wind speed and less than the cut-out wind speed, the magnitude of the preload to be applied is set so that the internal clearance between the tapered roller bearings 2 and 2 is negative depending on the wind speed. Is determined to be {medium preload (> light preload)}. As a result, the rigidity of the tapered roller bearings 2 and 2 required in the wind speed range is ensured. Further, when the wind speed is equal to or higher than the cut-out wind speed, the magnitude of the preload to be applied is determined to a larger value {heavy preload (> medium preload)} according to the wind speed. Thus, the rigidity of the tapered roller bearings 2 and 2 is ensured to be larger, and the rolling surfaces of the tapered roller bearings 2 and 2 and It is possible to prevent an impact load from being applied to the raceway surface or a vibration generated by each of these tapered roller bearings 2 and 2 from increasing.

但し、上述した何れの風速範囲に於いても、上記回転速度に関する情報S2 と、上記温度に関する情報S3 とを、それぞれ十分に考慮しつつ、具体的な予圧荷重の大きさを決定する。即ち、上記風速に関する情報S1 のみに基づいて付与すべき予圧荷重の大きさを決定すると、例えば急激なトルク変動や過大な内外輪温度差が生じた様な場合に、上記各円すいころ軸受2、2の転動体荷重が過大となる可能性がある。従って、運転中に急激なトルク変動や過大な内外輪温度差等が生じた場合には、上記回転速度に関する情報S2 や上記温度に関する情報S3 に基づいてこれらの事態を検知し、上述の様に転動体荷重が過大にならない様に、具体的に付与すべき予圧荷重の大きさを決定する。 However, in any of the above-described wind speed ranges, a specific magnitude of the preload is determined while sufficiently considering the information S 2 regarding the rotational speed and the information S 3 regarding the temperature. That is, when the magnitude of the preload to be applied is determined based only on the information S 1 relating to the wind speed, the tapered roller bearings 2 are used when, for example, sudden torque fluctuations or excessive inner / outer ring temperature differences occur. The rolling element load of 2 may be excessive. Therefore, when a sudden torque fluctuation or an excessive inner / outer ring temperature difference occurs during operation, these situations are detected based on the information S 2 on the rotational speed and the information S 3 on the temperature, and In this way, the magnitude of the preload to be specifically applied is determined so that the rolling element load does not become excessive.

そして、前記制御装置15は、上述の様にして決定した予圧荷重の大きさと、前記予圧荷重に関する情報S4 (現時点での予圧荷重の大きさ)との差が0になる様に、前記予圧付与手段9に対して運転指令を行なう(この予圧付与手段9の運転制御を、フィードバック制御で行なう)。 Then, the control device 15 makes the preload so that the difference between the magnitude of the preload determined as described above and the information S 4 (the current magnitude of the preload) regarding the preload is zero. An operation command is given to the applying means 9 (operation control of the preload applying means 9 is performed by feedback control).

上述の様に、本実施例の風力発電装置用回転支持装置によれば、無風時乃至微風時に、ロータの始動性を良好にして、この風力発電装置の発電可能な風速範囲が狭まる事を防止できる。又、如何なる風の状態及び運転状態に於いても、必要に応じて、上記各円すいころ軸受2、2の内部隙間を0又は負にする事ができる。この結果、これら各円すいころ軸受2、2の負荷圏の幅を広くでき、運転中、この負荷圏と非負荷圏とを交互に通過する各円すいころ7、7に加わる荷重の変動幅を小さくし、この荷重の最大値を低く抑える事ができる。これと共に、これら各円すいころ軸受7、7の剛性を高める事ができ、例えば、強風時でも、転動面や軌道面に衝撃荷重が加わったり、或は上記各円すいころ軸受2、2で発生する振動が大きくなる事を防止できる。尚、勿論、これらの場合でも、上記各円すいころ軸受2、2の予圧荷重が過大となる事を防止できる。従って、これら各円すいころ軸受2、2の耐久寿命を向上させる事ができる。   As described above, according to the rotation support device for a wind power generator of this embodiment, the startability of the rotor is improved during no wind or light wind, and the wind speed range in which the wind power generator can generate power is prevented from being narrowed. it can. Further, in any wind condition and operating condition, the internal clearance between the tapered roller bearings 2 and 2 can be set to 0 or negative as necessary. As a result, the width of the load zone of each of these tapered roller bearings 2 and 2 can be widened, and the fluctuation range of the load applied to each of the tapered rollers 7 and 7 that alternately pass through the load zone and the non-load zone during operation is reduced. In addition, the maximum value of this load can be kept low. At the same time, the rigidity of the tapered roller bearings 7 and 7 can be increased. For example, an impact load is applied to the rolling surface and the raceway surface even in a strong wind, or the tapered roller bearings 2 and 2 are generated. It is possible to prevent the vibration to be increased. Of course, even in these cases, it is possible to prevent the preload of the tapered roller bearings 2 and 2 from becoming excessive. Therefore, the durable life of each tapered roller bearing 2 and 2 can be improved.

又、本実施例の場合には、上記各円すいころ軸受2、2を使用個所に組み付けた状態で、これら各円すいころ軸受2、2の予圧荷重を変化させる事ができる。この為、これら各円すいころ軸受2、2の製造時の初期隙間管理や、使用個所に組み付ける際の嵌め合い管理等を、厳密に行なわなくて済む。従って、上記各円すいころ軸受2、2の製造コストと、回転支持装置の組立コストとを、それぞれ十分に抑える事ができる。   In the case of the present embodiment, the preload of the tapered roller bearings 2 and 2 can be changed in a state in which the tapered roller bearings 2 and 2 are assembled at the place of use. For this reason, it is not necessary to strictly perform the initial clearance management at the time of manufacture of each of these tapered roller bearings 2 and 2 and the fitting management at the time of assembling at the place of use. Therefore, the manufacturing cost of the tapered roller bearings 2 and 2 and the assembly cost of the rotation support device can be sufficiently suppressed.

次に、図4は、本発明の実施例2を示している。本実施例の場合、予圧荷重の調整を行なう円すいころ軸受2の数を、1個としている。これに伴い、油圧シリンダ10を構成するシリンダの基端面(図4の右端面)は、固定の部材であるハウジング20の端面に当接させている。その他の構成及び作用は、上述した実施例1の場合と同様である。   Next, FIG. 4 shows Embodiment 2 of the present invention. In the case of this embodiment, the number of tapered roller bearings 2 for adjusting the preload is set to one. Accordingly, the base end face (the right end face in FIG. 4) of the cylinder constituting the hydraulic cylinder 10 is brought into contact with the end face of the housing 20 which is a fixed member. Other configurations and operations are the same as those of the first embodiment described above.

尚、本発明を実施する場合、転がり軸受としては、上述した各実施例で採用した円すいころ軸受に限らず、アンギュラ型玉軸受等の他の種類の転がり軸受を採用する事もできる。又、予圧付与手段としては、上述した各実施例の構造に限らず、例えば特許文献5、6に記載された構造等、各種の構造を採用できる。この場合、予圧荷重を付与する装置は、油圧式に限らず、機械式や電磁式、更には圧電素子を使用したものであっても良い。又、予圧制御手段による制御は、例えば特許文献7に記載されている様に、ニューロコンピュータを用いて行なう事もできる。   In the case of carrying out the present invention, the rolling bearing is not limited to the tapered roller bearing employed in each of the embodiments described above, and other types of rolling bearings such as an angular ball bearing can also be employed. Further, the preload applying means is not limited to the structures of the above-described embodiments, and various structures such as the structures described in Patent Documents 5 and 6 can be employed. In this case, the device for applying the preload is not limited to a hydraulic type, but may be a mechanical type, an electromagnetic type, or a device using a piezoelectric element. Further, the control by the preload control means can be performed using a neurocomputer as described in Patent Document 7, for example.

本発明の実施例1を示す、回転支持部分の断面図。Sectional drawing of the rotation support part which shows Example 1 of this invention. 制御装置と他の装置との関係を示すブロック図。The block diagram which shows the relationship between a control apparatus and another apparatus. 風力発電装置の周囲の風速と円すいころ軸受に付与する予圧荷重との関係を示す図。The figure which shows the relationship between the wind speed around a wind power generator, and the preload applied to a tapered roller bearing. 本発明の実施例2を示す、回転支持部分の断面図。Sectional drawing of the rotation support part which shows Example 2 of this invention.

符号の説明Explanation of symbols

1 主軸
2 円すいころ軸受
3 内輪軌道
4 内輪
5 外輪軌道
6 外輪
7 円すいころ
8 抑え環
9 予圧付与手段
10 油圧シリンダ
11 シリンダ
12 ピストン
13 圧油空間
14 圧油通路
15 制御装置
16 風向・風速計
17 回転速度検出装置
18 温度センサ
19 予圧測定手段
20 ハウジング
DESCRIPTION OF SYMBOLS 1 Main shaft 2 Tapered roller bearing 3 Inner ring raceway 4 Inner ring 5 Outer ring raceway 6 Outer ring 7 Tapered roller 8 Retaining ring 9 Preloading means 10 Hydraulic cylinder 11 Cylinder 12 Piston 13 Pressure oil space 14 Pressure oil passage 15 Controller 16 Wind direction and anemometer 17 Rotational speed detector 18 Temperature sensor 19 Preload measuring means 20 Housing

Claims (3)

風を受けて回転するロータの回転中心部に結合固定した主軸又はこの主軸と発電機との間に設けられた変速機を構成する回転軸と、ハウジングと、この回転軸又は上記主軸をこのハウジングに対し回転自在に支持する転がり軸受とを備えた風力発電装置用回転支持装置に於いて、風力発電装置の周囲の風の状態とこの風力発電装置の運転状態とのうちの少なくとも一方の状態に応じて上記転がり軸受に付与する予圧荷重の大きさを変化させる予圧制御手段を備えた事を特徴とする風力発電装置用回転支持装置。   A main shaft that is coupled and fixed to a rotation center of a rotor that rotates by receiving wind, or a rotation shaft that constitutes a transmission provided between the main shaft and a generator, a housing, and the rotation shaft or the main shaft. In a rotation support device for a wind power generator provided with a rolling bearing that is rotatably supported with respect to the wind power generation device, the wind power generation device has at least one of a state of wind around the wind power generation device and an operation state of the wind power generation device. A wind power generator rotation support device comprising preload control means for changing the magnitude of the preload applied to the rolling bearing accordingly. 予圧制御手段は、予圧付与手段と、予圧測定手段と、予圧調整手段とを備え、このうちの予圧付与手段は、転がり軸受を構成する外輪又は内輪を軸方向に押圧する事に基づき当該転がり軸受に予圧荷重を付与するものであり、上記予圧測定手段は、この転がり軸受に付与されている予圧荷重を測定するものであり、上記予圧調整手段は、風力発電装置の周囲の風速と、同じく風向と、主軸又は回転軸の回転速度と、上記転がり軸受の温度とのうちの少なくとも1つの情報に基づいて、この転がり軸受に付与すべき予圧荷重の大きさを決定し、更にこの様に決定した予圧荷重の大きさと上記予圧測定手段により測定した予圧荷重の大きさとの差を少なくする方向に、上記予圧付与手段に対して運転指令を行なうものである、請求項1に記載した風力発電装置用回転支持装置。   The preload control means includes a preload applying means, a preload measuring means, and a preload adjusting means, and the preload applying means includes a rolling bearing based on pressing an outer ring or an inner ring constituting the rolling bearing in the axial direction. The preload measuring means measures the preload applied to the rolling bearing, and the preload adjusting means has the same wind direction as the wind speed around the wind turbine generator. And the magnitude of the preload to be applied to the rolling bearing based on at least one of the information on the rotational speed of the main shaft or the rotating shaft and the temperature of the rolling bearing. The operation command is given to the preload applying means in a direction to reduce the difference between the preload load and the preload load measured by the preload measuring means. Force power generation system for a rotary support device. 風力発電装置は、周囲の風速が、所定の下限風速以上で且つ所定の上限風速以下の場合にのみ、発電機を回転駆動するものであり、予圧制御手段は、転がり軸受に付与する予圧荷重の大きさを、上記周囲の風速が上記下限風速未満の場合には0に、同じくこの下限風速以上で且つ上記上限風速以下の場合には上記転がり軸受の内部隙間が0又は負となる大きさに、同じく上記上限風速を越える場合にはこの内部隙間が負となる大きさに、それぞれ変化させる、請求項1〜2の何れか1項に記載した風力発電装置用回転支持装置。   The wind turbine generator rotates the generator only when the surrounding wind speed is equal to or higher than a predetermined lower limit wind speed and lower than a predetermined upper limit wind speed, and the preload control means is configured to apply a preload load applied to the rolling bearing. The size is set to 0 when the ambient wind speed is less than the lower limit wind speed, and when the wind speed is equal to or higher than the lower limit wind speed and less than or equal to the upper limit wind speed, the internal clearance of the rolling bearing is 0 or negative. The rotation support device for a wind turbine generator according to any one of claims 1 to 2, wherein when the upper wind speed is exceeded, the internal gap is changed to a negative size.
JP2004372424A 2004-12-24 2004-12-24 Rotatably supporting device for wind power generator Pending JP2006177268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004372424A JP2006177268A (en) 2004-12-24 2004-12-24 Rotatably supporting device for wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372424A JP2006177268A (en) 2004-12-24 2004-12-24 Rotatably supporting device for wind power generator

Publications (1)

Publication Number Publication Date
JP2006177268A true JP2006177268A (en) 2006-07-06

Family

ID=36731596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372424A Pending JP2006177268A (en) 2004-12-24 2004-12-24 Rotatably supporting device for wind power generator

Country Status (1)

Country Link
JP (1) JP2006177268A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249018A (en) * 2007-03-30 2008-10-16 Jtekt Corp Rolling bearing device
WO2010035549A1 (en) * 2008-09-24 2010-04-01 三菱重工業株式会社 Speed-up device for wind-driven generator and support mechanism for rotating shaft
CN101963178A (en) * 2009-07-21 2011-02-02 Skf公司 Method and device for axially securing a machine element
DE102009058355A1 (en) 2009-12-15 2011-06-16 Aktiebolaget Skf Antifriction bearing device for bearing arrangement, has inner ring with inner ring carrier, outer ring with outer ring carrier, and rolling unit shifting between inner ring carrier and outer ring carrier
WO2011135703A1 (en) * 2010-04-28 2011-11-03 三菱重工業株式会社 Direct drive wind turbine and bearing structure
JP2012013109A (en) * 2010-06-29 2012-01-19 Toyota Motor Corp Conical roller bearing device
JP2016523333A (en) * 2013-06-07 2016-08-08 スタトイル・ペトロリウム・アーエスStatoil Petroleum As Wind turbine control
CN112594141A (en) * 2020-11-12 2021-04-02 北京金风慧能技术有限公司 Bearing fault monitoring method, system, device, controller and storage medium
CN115213703A (en) * 2022-07-01 2022-10-21 常州工学院 Pre-pressing type super-large load positioner
CN115585187A (en) * 2022-09-23 2023-01-10 洛阳轴承研究所有限公司 Bearing supported transmission shaft system and transmission equipment thereof
WO2024090496A1 (en) * 2022-10-28 2024-05-02 日本精工株式会社 Rotation assistance device, and support mechanism position adjusting mechanism for shaft support device
WO2024090497A1 (en) * 2022-10-28 2024-05-02 日本精工株式会社 Rotational support device, and support mechanism position adjustment mechanism of shaft support device
WO2024090500A1 (en) * 2022-10-28 2024-05-02 日本精工株式会社 Rotation support device, and support mechanism position adjustment mechanism for shaft support device
WO2024090498A1 (en) * 2022-10-28 2024-05-02 日本精工株式会社 Rotation assistance device, and assistance mechanism position adjustment mechanism for shaft support device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249018A (en) * 2007-03-30 2008-10-16 Jtekt Corp Rolling bearing device
EP2343461A4 (en) * 2008-09-24 2012-12-05 Mitsubishi Heavy Ind Ltd Speed-up device for wind-driven generator and support mechanism for rotating shaft
WO2010035549A1 (en) * 2008-09-24 2010-04-01 三菱重工業株式会社 Speed-up device for wind-driven generator and support mechanism for rotating shaft
JP2010078003A (en) * 2008-09-24 2010-04-08 Mitsubishi Heavy Ind Ltd Speed-up device for wind-driven generator and support mechanism for rotating shaft
CN102112760A (en) * 2008-09-24 2011-06-29 三菱重工业株式会社 Speed-up device for wind-driven generator and support mechanism for rotating shaft
EP2343461A1 (en) * 2008-09-24 2011-07-13 Mitsubishi Heavy Industries, Ltd. Speed-up device for wind-driven generator and support mechanism for rotating shaft
CN101963178A (en) * 2009-07-21 2011-02-02 Skf公司 Method and device for axially securing a machine element
EP2278180A3 (en) * 2009-07-21 2013-05-22 Aktiebolaget SKF Method and device for axially securing a machine element
DE102009058355A1 (en) 2009-12-15 2011-06-16 Aktiebolaget Skf Antifriction bearing device for bearing arrangement, has inner ring with inner ring carrier, outer ring with outer ring carrier, and rolling unit shifting between inner ring carrier and outer ring carrier
US8436484B2 (en) 2010-04-28 2013-05-07 Mitsubishi Heavy Industries, Ltd. Direct-drive wind turbine generator
US8178988B2 (en) 2010-04-28 2012-05-15 Mitsubishi Heavy Industries, Ltd. Direct-drive wind turbine generator and bearing structure
CN102439302A (en) * 2010-04-28 2012-05-02 三菱重工业株式会社 Direct drive wind turbine and bearing structure
WO2011135703A1 (en) * 2010-04-28 2011-11-03 三菱重工業株式会社 Direct drive wind turbine and bearing structure
KR101290922B1 (en) * 2010-04-28 2013-07-29 미츠비시 쥬고교 가부시키가이샤 Direct-drive wind turbine generator and bearing structure
JP5325228B2 (en) * 2010-04-28 2013-10-23 三菱重工業株式会社 Direct drive type wind power generator and bearing structure
JP2012013109A (en) * 2010-06-29 2012-01-19 Toyota Motor Corp Conical roller bearing device
US8882360B2 (en) 2010-06-29 2014-11-11 Toyota Jidosha Kabushiki Kaisha Conical roller bearing device
US10378515B2 (en) 2013-06-07 2019-08-13 Statoil Petroleum As Wind turbine control
JP2016523333A (en) * 2013-06-07 2016-08-08 スタトイル・ペトロリウム・アーエスStatoil Petroleum As Wind turbine control
GB2514845B (en) * 2013-06-07 2019-11-13 Equinor Energy As Wind turbine control
CN112594141A (en) * 2020-11-12 2021-04-02 北京金风慧能技术有限公司 Bearing fault monitoring method, system, device, controller and storage medium
CN115213703A (en) * 2022-07-01 2022-10-21 常州工学院 Pre-pressing type super-large load positioner
CN115585187A (en) * 2022-09-23 2023-01-10 洛阳轴承研究所有限公司 Bearing supported transmission shaft system and transmission equipment thereof
WO2024090496A1 (en) * 2022-10-28 2024-05-02 日本精工株式会社 Rotation assistance device, and support mechanism position adjusting mechanism for shaft support device
WO2024090497A1 (en) * 2022-10-28 2024-05-02 日本精工株式会社 Rotational support device, and support mechanism position adjustment mechanism of shaft support device
WO2024090500A1 (en) * 2022-10-28 2024-05-02 日本精工株式会社 Rotation support device, and support mechanism position adjustment mechanism for shaft support device
WO2024090498A1 (en) * 2022-10-28 2024-05-02 日本精工株式会社 Rotation assistance device, and assistance mechanism position adjustment mechanism for shaft support device

Similar Documents

Publication Publication Date Title
US9803692B2 (en) Bearing for wind turbine
JP5412516B2 (en) Wind power generator
EP1745221B1 (en) Locating bearing assembly for wind turbine gearbox shaft
JP2006177268A (en) Rotatably supporting device for wind power generator
JP5017259B2 (en) Bearing unit for a rotor blade of a wind power generator, a wind power generator equipped with such a rotor blade bearing, and a method for operating such a wind power generator
US20190113073A1 (en) Bearing arrangement for fluid machinery application
KR100967640B1 (en) Slewing bearing structure
US8517671B2 (en) Wind turbine generator
US10385822B2 (en) Wind turbine rotor shaft arrangement
JP6267826B2 (en) HYBRID BEARING, WIND GENERATOR WITH HYBRID BEARING, USING HYBRID BEARING, AND HYBRID BEARING OPERATION METHOD
WO2010035549A1 (en) Speed-up device for wind-driven generator and support mechanism for rotating shaft
JP2010159710A (en) Monitoring device for main shaft bearing of wind power generator
EP2871377B1 (en) Bearing unit for fluid machinery application
JP2011174614A (en) Bearing system used for wind turbine rotor
JP4522266B2 (en) Double row roller bearing
CA2974337A1 (en) Bearing module for adjusting a rotor blade angle of attack in an underwater power plant
JP6144287B2 (en) Wind power generator
JP2007024112A (en) Self-aligning roller bearing and planetary gear support structure
JP2006177447A (en) Double-row rolling bearing
JP2006177504A (en) Direct drive motor
JP2008281121A (en) Tapered roller bearing
JP6255792B2 (en) Rotation transmission device and wind power generator equipped with the same
JP2006090346A (en) Double row automatic aligning roller bearing and main shaft supporting structure of wind power generator
JP6237116B2 (en) Joint structure and wind power generator
JP2006177445A (en) Double-row automatic aligned roller bearing

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070420