JP6144287B2 - Wind power generator - Google Patents

Wind power generator Download PDF

Info

Publication number
JP6144287B2
JP6144287B2 JP2014560544A JP2014560544A JP6144287B2 JP 6144287 B2 JP6144287 B2 JP 6144287B2 JP 2014560544 A JP2014560544 A JP 2014560544A JP 2014560544 A JP2014560544 A JP 2014560544A JP 6144287 B2 JP6144287 B2 JP 6144287B2
Authority
JP
Japan
Prior art keywords
bearing
load
shaft portion
auxiliary
support structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014560544A
Other languages
Japanese (ja)
Other versions
JPWO2014122719A1 (en
Inventor
智裕 沼尻
智裕 沼尻
善友 野田
善友 野田
西田 英朗
英朗 西田
小澤 豊
豊 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JPWO2014122719A1 publication Critical patent/JPWO2014122719A1/en
Application granted granted Critical
Publication of JP6144287B2 publication Critical patent/JP6144287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/02Relieving load on bearings using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • F05B2240/51Bearings magnetic
    • F05B2240/515Bearings magnetic electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • F05B2240/53Hydrodynamic or hydrostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C21/00Combinations of sliding-contact bearings with ball or roller bearings, for exclusively rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/14Large applications, e.g. bearings having an inner diameter exceeding 500 mm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Description

本発明は、例えば風力発電装置の主軸用軸受のように、回転体の軸部をモーメントが作用する片持ち梁状に単独支持可能な軸受を備えている風力発電装置に関する。 The present invention is, for example, as in the main shaft bearing of a wind power generation apparatus, a wind power generation device that provides a single support capable bearing the shaft of the rotating body cantilevered that moment acts.

従来、風力発電装置の主軸用軸受構造等の軸受は、主に設計寿命間の運転において受ける最大荷重と疲労荷重のどちらかに基づいて体格が決められている。
一般的な風力発電装置の場合、疲労荷重は最大荷重の半分程度である。しかし、例えば風車寿命が20年であるにもかかわらず、50年に1度程度あるかもしれない暴風等にも耐えうるように最大荷重を設定した設計が求められている。従って、風力発電装置の軸受構造は、設計寿命の間において1度も作用しないことも考えられる非常に大きな最大荷重による体格決定が行われている。
Conventionally, the size of a bearing such as a main shaft bearing structure of a wind turbine generator is determined based on either a maximum load or a fatigue load that is received during operation during the design life.
In the case of a general wind power generator, the fatigue load is about half of the maximum load. However, for example, there is a demand for a design in which a maximum load is set so as to withstand a storm that may be about once every 50 years even though the windmill life is 20 years. Therefore, the physique of the bearing structure of the wind power generator is determined based on a very large maximum load, which is considered to never act during the design life.

図20は、複列テーパコロ軸受を採用した風力発電装置の主軸用軸受構造を示している。複列テーパコロ軸受は、回転体の軸部をモーメントが作用する片持ち梁状に単独支持可能な軸受支持構造の一例である。
図20において、支柱2の上端に設置されたナセル3の前端部側では、風車回転翼5に風力を受けてロータヘッド(ハブ)4が回転する。ロータヘッド4は、複数の風車回転翼5を備える。
FIG. 20 shows a main shaft bearing structure of a wind turbine generator employing a double row tapered roller bearing. The double-row tapered roller bearing is an example of a bearing support structure that can independently support a shaft portion of a rotating body in a cantilever shape in which a moment acts.
In FIG. 20, on the front end side of the nacelle 3 installed at the upper end of the support 2, the rotor head (hub) 4 rotates by receiving wind power from the wind turbine rotor 5. The rotor head 4 includes a plurality of windmill rotor blades 5.

ロータヘッド4は、主軸7の軸線を中心に回転する回転体であり、ロータヘッド4の後端部と連結された発電機構の主軸前端部7aが複列テーパコロ軸受10によって回転可能に支持されている。従って、外輪側がナセル3に固定支持された複列テーパコロ軸受10は、主軸7の前端部側で回転するロータヘッド4等の回転体軸部を、1台の軸受でモーメントが作用する片持ち梁状に単独支持している。
なお、主軸7の後端部側となる他端については、図示しない増速機や油圧機構を介して発電機を駆動する発電方式、あるいは、直接発電機を駆動する発電方式がある。
The rotor head 4 is a rotating body that rotates about the axis of the main shaft 7, and the main shaft front end 7 a of the power generation mechanism connected to the rear end of the rotor head 4 is rotatably supported by the double-row tapered roller bearing 10. Yes. Therefore, the double-row tapered roller bearing 10 whose outer ring side is fixedly supported by the nacelle 3 is a cantilever beam in which a rotating body shaft portion such as the rotor head 4 rotating on the front end side of the main shaft 7 acts on a single bearing. It is supported alone in the shape.
In addition, about the other end used as the rear-end part side of the main axis | shaft 7, there exists a power generation system which drives a generator via the speed increaser and hydraulic mechanism which are not shown in figure, or a power generation system which drives a generator directly.

また、風力発電装置の主軸用軸受構造としては、たとえば図21及び図22に示すように、軸方向に所定の間隔を設けて配置した前後一対の転がり軸受Bf、Brにより主軸7を支持する軸受支持構造もある。なお、図21及び図22において、図中の符号3aはナセル3の台板(ナセル台板)、Siは増速装置、Geは発電機、Rmは補強部材、Hcはハブ中心の荷重負荷位置である。   As a main shaft bearing structure of a wind power generator, for example, as shown in FIGS. 21 and 22, a bearing that supports the main shaft 7 by a pair of front and rear rolling bearings Bf and Br arranged at a predetermined interval in the axial direction. There is also a support structure. 21 and 22, reference numeral 3 a in FIG. 21 is a base plate (nacelle base plate) of the nacelle 3, Si is a speed increasing device, Ge is a generator, Rm is a reinforcing member, and Hc is a load load position at the center of the hub. It is.

下記の特許文献1には、風力発電駆動部において、曝される荷重に対して過剰寸法とならないようにして耐える技術が開示されている。この先行技術では、遊星キャリアに支承ローラのような追加の支持部を設け、この支持部によりロータ軸に対する十分な支持を与えるものである。   The following Patent Document 1 discloses a technology that can withstand an exposed load without becoming an excessive dimension in a wind power generation drive unit. In this prior art, the planetary carrier is provided with an additional support such as a support roller, and this support provides sufficient support for the rotor shaft.

また、下記の引用文献2は、可変ピッチ翼を旋回自在に支持する風車用旋回輪軸受構造に関するもので、荷重差分布の平坦化により面圧差分布を平坦化し、複列化と面圧均等化とを同時に実現する技術が開示されている。   Reference 2 below relates to a wind turbine slewing ring bearing structure that supports a variable pitch blade so as to be capable of pivoting. The surface pressure difference distribution is flattened by flattening the load difference distribution, and the double row and the surface pressure are equalized. A technique for simultaneously realizing the above is disclosed.

特開2009−162380号公報JP 2009-162380 A 特許第4533642号Japanese Patent No. 4533642

ところで、近年の風力発電装置は大型化する傾向にあり、上述した複列テーパコロ軸受等の転がり軸受を主軸用軸受に使用する場合においても、軸受の体格決定に疲労荷重ではなく最大荷重が採用されている。
図23は、荷重サイズ(縦軸)及び時間スケール(横軸)のイメージ図であり、実線で示す風況に伴う荷重変動において、暴風などの異常時に発生するピークの荷重が静的安全率評価に用いる最大荷重Lmとなる。これに対して、寿命評価に用いる等価荷重(疲労荷重)Laは、通常発電時の荷重変動に基づく平均値(破線表示)である。
By the way, recent wind power generators tend to be larger, and even when rolling bearings such as the above-mentioned double row tapered roller bearings are used for main shaft bearings, the maximum load is adopted instead of the fatigue load to determine the size of the bearing. ing.
FIG. 23 is an image diagram of the load size (vertical axis) and time scale (horizontal axis). In the load fluctuation accompanying the wind condition shown by the solid line, the peak load that occurs at the time of abnormalities such as storms is used for the static safety factor evaluation. This is the maximum load Lm to be used. On the other hand, the equivalent load (fatigue load) La used for life evaluation is an average value (indicated by a broken line) based on load fluctuations during normal power generation.

図23から明らかなように、最大荷重Lmと等価荷重Laとを比較した場合、最大荷重Lmが2倍程度の大きな値となるので、この最大荷重Lmに基づいた主軸用軸受の体格決定は、主軸用軸受を大型化する原因となる。
しかも、風力発電装置の大型化により、主軸用軸受(複列テーパコロ軸受等の転がり軸受)の体格は、より一層大型化することが避けられない状況にある。
As is clear from FIG. 23, when the maximum load Lm and the equivalent load La are compared, the maximum load Lm becomes a large value of about twice, so the physique determination of the main shaft bearing based on the maximum load Lm is This will increase the size of the main shaft bearing.
In addition, the size of the main shaft bearing (rolling bearing such as a double-row tapered roller bearing) is inevitably increased due to the increase in the size of the wind power generator.

しかし、複列テーパコロ軸受等の主軸用軸受を大型化するためには、汎用軸受と比較してより高い工作精度が要求されるだけでなく、調質のために必要となる熱処理炉も大型化することになる。
このため、大型化した風力発電装置の主軸用軸受支持構造として複列テーパコロ軸受等の転がり軸受を採用すると、汎用軸受と比較して重量単価が高くなるという問題が指摘されている。
However, in order to increase the size of main shaft bearings such as double-row tapered roller bearings, not only higher machining accuracy is required compared to general-purpose bearings, but also the heat treatment furnace required for tempering is increased in size. Will do.
For this reason, when a rolling bearing such as a double-row tapered roller bearing or the like is employed as a bearing support structure for a main shaft of an enlarged wind turbine generator, a problem has been pointed out that the unit price of weight is higher than that of a general-purpose bearing.

また、軸方向及び径方向の荷重を1つの軸受で受け持つ1軸受構造の複列テーパコロ軸受は、ほとんどの場合、内外輪どちらかに付帯剛性を要求するためスリーブ等のリング材を必要としている。従って、軸方向及び径方向に各々専用の軸受を設ける2軸受構造と比較すれば、ナセル全体としては軽量化及びコストダウンを達成できるものの、主軸用軸受周りだけで評価すると重量単価が高いという問題があった。   Further, in most cases, a double-row tapered roller bearing having a single bearing structure in which an axial load and a radial load are received by one bearing requires a ring material such as a sleeve in order to require incidental rigidity in either the inner or outer ring. Therefore, compared with a two-bearing structure in which dedicated bearings are provided in the axial direction and the radial direction, respectively, the nacelle as a whole can be reduced in weight and cost, but the weight unit cost is high when evaluated only around the main shaft bearing. was there.

このような背景から、万が一の最大荷重に対応できるとともに、通常運転(発電)時に対応した体格決定には、一般的に最大荷重よりも小さな値となる疲労荷重を採用できる軸受支持構造が求められる。
また、前後一対の転がり軸受により主軸を支持する軸受支持構造においても、転がり軸受が負担するラジアル荷重やアキシアル荷重を低減し、軸受体格の大型化を抑制することが望まれる。
From such a background, a bearing support structure that can cope with a maximum load in the unlikely event and that can adopt a fatigue load that is generally smaller than the maximum load is required for physique determination that corresponds to normal operation (power generation). .
Further, in a bearing support structure that supports the main shaft by a pair of front and rear rolling bearings, it is desired to reduce the radial load and the axial load borne by the rolling bearing and to suppress the increase in size of the bearing body.

本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、希に発生する非常時の最大荷重に対応でき、しかも、通常運転時における軸受の体格決定に疲労荷重を採用できる軸受支持構造を備えた風力発電装置を提供することにある。
また、本発明は、転がり軸受が負担するラジアル荷重やアキシアル荷重を低減し、軸受体格の大型化を抑制できる軸受支持構造を備えた風力発電装置を提供することも目的とする。
The present invention has been made in view of the above circumstances, and the object of the present invention is to cope with a rare emergency maximum load, and to apply a fatigue load to determine the size of the bearing during normal operation. and to provide a wind turbine generator having a shaft receiving support structure that can be employed.
Further, the present invention reduces the radial load and axial load roller bearing to be borne also aims to provide a wind turbine generator having a shaft receiving support structure that can suppress an increase in the size of the bearing body size.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係る第1態様の風力発電装置は、複数の風車回転翼を備え、水平な軸線を中心に回転するロータヘッドの軸部を回転可能に片持ち支持する軸受支持構造を有する風力発電装置であって、前記軸受支持構造は、前記ロータヘッドの軸部先端側をモーメントが作用する片持ち梁状に単独支持可能な転がり軸受と、前記転がり軸受の軸部後端側を支持する補助軸受とを備え、前記転がり軸受は、所定値以下の荷重が作用する通常運転時に前記軸部を単独支持し、前記補助軸受は、前記所定値を超えた大荷重が作用する非常運転時にのみ前記軸部を前記転がり軸受と協働して支持し、前記補助軸受は、前記非常運転時に作用する最大荷重と、前記最大荷重よりも小さな値の疲労荷重の差分を受け持ち、前記通常運転時に前記軸部を単独支持する前記転がり軸受は、前記疲労荷重によって体格決定されていることを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
A wind turbine generator according to a first aspect of the present invention includes a bearing support structure that includes a plurality of wind turbine rotor blades and rotatably supports a shaft portion of a rotor head that rotates about a horizontal axis. The bearing support structure includes a rolling bearing capable of independently supporting the rotor head shaft portion in the form of a cantilever beam on which a moment acts, and an auxiliary bearing that supports the shaft rear end side of the rolling bearing. And the rolling bearing alone supports the shaft portion during normal operation in which a load of a predetermined value or less acts, and the auxiliary bearing provides the shaft only in emergency operation in which a large load exceeding the predetermined value acts. The auxiliary bearing is responsible for the difference between the maximum load acting during the emergency operation and the fatigue load having a value smaller than the maximum load, and the shaft portion during the normal operation. Supporting alone The rolling bearing is characterized in that it is physique determined by the fatigue loading.

このような第1態様の風力発電装置によれば、非常運転時の最大荷重と疲労荷重との差分を補助軸受が受け持つことにより、通常運転時に単独使用する転がり軸受の体格決定には最大荷重より小さい疲労荷重を適用することが可能になる。この場合の転がり軸受は、転がり軸受や滑り軸受など特に限定されるものではないが、複列テーパコロ軸受が最も好適である。
なお、上述した非常運転時の最大荷重は、風車寿命期間中に発生する頻度としては極めて低く、しかも、作用する継続時間の短い荷重を主に対象としている。
According to the wind power generator of the first aspect as described above, the auxiliary bearing takes charge of the difference between the maximum load during emergency operation and the fatigue load, thereby determining the size of the rolling bearing used independently during normal operation from the maximum load. A small fatigue load can be applied. The rolling bearing in this case is not particularly limited, such as a rolling bearing or a sliding bearing, but a double row tapered roller bearing is most preferable.
Note that the maximum load during emergency operation described above is extremely low as the frequency of occurrence during the wind turbine lifetime, and is mainly intended for loads with a short duration of action.

上記第1態様の風力発電装置において、前記補助軸受の軸受面と前記軸部の外周面との間には、前記通常運転時に所定の面間距離を維持して間隙部が形成されていることが好ましい。これにより、通常運転時に発生して軸部に作用する摩擦力等の抵抗力を抑制できる。 In the wind turbine generator according to the first aspect, a gap is formed between the bearing surface of the auxiliary bearing and the outer peripheral surface of the shaft portion while maintaining a predetermined inter-surface distance during the normal operation. Is preferred. Thereby, it is possible to suppress a resistance force such as a frictional force that is generated during normal operation and acts on the shaft portion.

上記第1態様の風力発電装置において、前記補助軸受の軸受面は、周方向の全周にわたって設けられてもよいし、あるいは、周方向を複数に分割した不連続状態に設けられてもよい。
また、上記第1態様の風力発電装置は、前記補助軸受に滑り軸受を採用することが望ましい。すなわち、非常運転時以外に使用されない補助軸受としては、潤滑不良防止等のメンテナンスが不要になる滑り軸受が好適である。
In the wind power generator according to the first aspect, the bearing surface of the auxiliary bearing may be provided over the entire circumference in the circumferential direction, or may be provided in a discontinuous state in which the circumferential direction is divided into a plurality.
In the wind power generator according to the first aspect, it is desirable to employ a sliding bearing as the auxiliary bearing. That is, as an auxiliary bearing that is not used except during an emergency operation, a sliding bearing that does not require maintenance such as prevention of poor lubrication is suitable.

本発明に係る第2態様の風力発電装置は、複数の風車回転翼を備え、水平な軸線を中心に回転するロータヘッドの軸部を、軸方向に所定の間隔を設けて配置した複数の転がり軸受により回転可能に支持する軸受支持構造を有する風力発電装置であって、前記軸受支持構造は、前記転がり軸受は、通常運転時のラジアル荷重またはアキシアル荷重を負担し、前記通常運転時の前記ラジアル荷重または前記アキシアル荷重よりも荷重が増加したとき、前記転がり軸受に加えて、前記ラジアル荷重または前記アキシアル荷重を負担し、等価荷重条件下及び最大荷重条件下での前記転がり軸受に作用する前記ラジアル荷重または前記アキシアル荷重を低減する補助軸受を備えていることを特徴とするものである。 A wind turbine generator according to a second aspect of the present invention includes a plurality of rolling wheels provided with a plurality of wind turbine rotor blades, and the shaft portion of a rotor head that rotates about a horizontal axis is arranged at predetermined intervals in the axial direction. A wind turbine generator having a bearing support structure that is rotatably supported by a bearing, wherein the rolling bearing bears a radial load or an axial load during normal operation, and the radial during the normal operation. When the load increases more than the axial load , in addition to the rolling bearing, the radial load or the axial load is borne, and the radial acting on the rolling bearing under an equivalent load condition and a maximum load condition and it is characterized in that it comprises an auxiliary bearing to reduce the load or the axial load.

このような第2態様の風力発電装置によれば、転がり軸受の荷重負担低減による軸受体格の大型化を抑制することができる。 According to the wind power generator of such a 2nd aspect, the enlargement of the bearing body by the load burden reduction of a rolling bearing can be suppressed.

第2態様の参考例に係る風力発電装置において、前記補助軸受は、前記軸部の外周面に設置された回転側磁性体と前記軸部の外周部材に固定設置された固定側磁性体とにより構成される周方向を複数に分割した磁気軸受分割体よりなり、前記回転側磁性体と前記固定側磁性体との間に生じる面間距離をギャップセンサで検出し、該ギャップセンサの検出値に応じて前記磁気分割体毎の磁力及び磁力の負荷方向を変化させるように構成された磁気軸受であることが好ましい。 In the wind turbine generator according to the reference example of the second aspect, the auxiliary bearing includes a rotation-side magnetic body installed on the outer peripheral surface of the shaft portion and a fixed-side magnetic body fixedly installed on the outer peripheral member of the shaft portion. It is composed of a magnetic bearing divided body divided into a plurality of circumferential directions, and a gap distance between the rotating side magnetic body and the fixed side magnetic body is detected by a gap sensor, and the detected value of the gap sensor Accordingly, the magnetic bearing is preferably configured to change the magnetic force and the load direction of the magnetic force for each of the magnetic divided bodies.

このような風力発電装置によれば、補助軸受として複数の転がり軸受より先端側に設置した磁気軸受が、軸受下側の領域で軸部と反発し、かつ、軸受上側の領域で軸部を引き寄せることにより、ハブ中心に作用する下向きの荷重に対し、ハブが存在する先端側の滑り軸受で負担するラジアル荷重を低減することができる。 According to such a wind turbine generator , the magnetic bearing installed on the front end side as a plurality of rolling bearings as an auxiliary bearing repels the shaft portion in the lower region of the bearing and attracts the shaft portion in the upper region of the bearing. As a result, the radial load borne by the sliding bearing on the tip side where the hub exists can be reduced with respect to the downward load acting on the hub center.

上記第2態様の参考例に係る風力発電装置において、前記補助軸受は、前記軸部に通常運転時の負荷荷重を受けた状態で軸部外周面と非接触となり、かつ、前記軸部に異常荷重負荷を受けた状態で前記軸部外周面と接触となるように、前記軸部外周面との面間距離を設定した滑り軸受であることが好ましい。 In the wind turbine generator according to the reference example of the second aspect, the auxiliary bearing is not in contact with the outer peripheral surface of the shaft portion in a state where the shaft portion receives a load load during normal operation, and the shaft portion is abnormal. It is preferable that the bearing is a sliding bearing in which a distance between the shaft portion outer peripheral surface and the shaft portion outer peripheral surface is set so as to be in contact with the shaft portion outer peripheral surface in a state of receiving a load.

このような風力発電装置によれば、補助軸受の滑り軸受は、通常運転時の負荷荷重からラジアル荷重が増加して異常荷重負荷に近づくと軸部外周面と接触するので、転がり軸受において負担するラジアル荷重を低減することができる。 According to such a wind turbine generator , the sliding bearing of the auxiliary bearing comes into contact with the outer peripheral surface of the shaft portion when the radial load increases from the load load during normal operation and approaches an abnormal load load. Radial load can be reduced.

上記第2態様の参考例に係る風力発電装置において、前記補助軸受は、前記軸部の外周面から突出して一体に回転するとともに軸線と直交する磁性体面を軸方向両面に有する回転側磁性体と、前記軸部の外周部材に固定設置されるとともに、前記回転側磁性体の軸方向両側に対向する磁性体面を有する一対の固定側磁性体よりなり、前記回転側磁性体と前記固定側磁性体との間に生じる面間距離をギャップセンサで検出し、該ギャップセンサの検出値に応じて磁力及び磁力の負荷方向を変化させるように構成された磁気軸受であることが好ましい。 In the wind turbine generator according to the reference example of the second aspect, the auxiliary bearing protrudes from the outer peripheral surface of the shaft portion and rotates integrally, and has a magnetic body surface orthogonal to the axis on both surfaces in the axial direction. The rotary side magnetic body and the fixed side magnetic body are fixedly installed on the outer peripheral member of the shaft portion and have a pair of fixed side magnetic bodies having opposite magnetic surfaces on both sides in the axial direction of the rotary side magnetic body. It is preferable that the magnetic bearing be configured to detect the inter-surface distance generated between the magnetic sensor and the gap sensor with a gap sensor and to change the magnetic force and the load direction of the magnetic force according to the detection value of the gap sensor.

このような風力発電装置によれば、補助軸受の磁気軸受は、ハブ中心において風車回転翼から受けるアキシアル荷重(軸方向の先端側から後方へ向けた荷重)に対し、軸方向前側に引き寄せるとともに後方側で反発することにより、転がり軸受において負担するラジアル荷重を低減することができる。 According to such a wind turbine generator , the magnetic bearing of the auxiliary bearing attracts the axial front (backward from the front end side in the axial direction) to the axial front and receives the axial load from the wind turbine rotor blade at the hub center. By repelling on the side, the radial load imposed on the rolling bearing can be reduced.

上記第2態様の参考例に係る風力発電装置において、前記補助軸受は、前記軸部の外周面から突出して軸線と直交する周方向のストッパ面を形成するとともに、前記軸部と一体に回転するフランジ部に対し、前記軸部の外周側部材に固定設置されて前記ストッパ面の対向面を形成するように、通常運転時の負荷荷重を受けた状態で前記ストッパ面に対して非接触とされ、かつ、前記軸部に異常荷重負荷を受けた状態で前記ストッパ面に接触する軸方向位置に設置された滑り軸受であることを特徴とするものである。 In the wind turbine generator according to the reference example of the second aspect, the auxiliary bearing protrudes from the outer peripheral surface of the shaft portion to form a circumferential stopper surface orthogonal to the axis and rotates integrally with the shaft portion. The flange portion is non-contacted with the stopper surface in a state of receiving a load load during normal operation so that the flange portion is fixedly installed on the outer peripheral side member of the shaft portion to form an opposing surface of the stopper surface. And it is a slide bearing installed in the axial direction position which contacts the said stopper surface in the state which received the abnormal load load to the said axial part.

このような風力発電装置によれば、補助軸受の滑り軸受は、通常運転時の負荷荷重からアキシアル荷重が増加して異常荷重負荷に近づくとストッパ面と接触するので、転がり軸受において負担するアキシアル荷重を低減することができる。 According to such a wind turbine generator , the auxiliary bearing slide bearing comes into contact with the stopper surface when the axial load increases from the load load during normal operation and approaches an abnormal load load. Can be reduced.

上記第2態様の風力発電装置において、前記補助軸受は、前記軸部の外周面を取り囲むように配置されるとともに周方向を複数に分割された滑り軸受分割体と、前記滑り軸受分割体を半径方向に移動させる駆動機構とを備え、前記軸部に通常運転時の負荷荷重を受けた状態では、前記滑り軸受分割体と前記軸部の外周面とが非接触とされ、かつ、前記軸部に異常荷重負荷を受けた状態では、前記駆動機構が前記滑り軸受分割体を軸中心方向へ移動させて前記軸部外周面と接触させるように構成された補助支持機構である。 In the wind turbine generator according to the second aspect, the auxiliary bearing is disposed so as to surround the outer peripheral surface of the shaft portion, and a sliding bearing divided body having a plurality of circumferential directions divided therein, and a radius of the sliding bearing divided body A drive mechanism that moves in a direction, and in a state in which the shaft portion receives a load during normal operation, the sliding bearing divided body and the outer peripheral surface of the shaft portion are not in contact with each other, and the shaft portion in the state that received an abnormal load load, the drive mechanism Ru configured auxiliary support mechanism der into contact with the slide bearing the divided body is moved in the axial center direction the shaft portion outer circumferential surface.

このような風力発電装置によれば、補助軸受の補助支持機構は、通常運転時の負荷荷重を受けた状態では軸部外周面と非接触となり、異常荷重負荷を受けた状態、あるいは負荷荷重が異常荷重負荷に近づいた状態になると、駆動機構が動作して滑り軸受分割体を軸中心方向へ移動させて軸部外周面に接触させるので、転がり軸受において負担する荷重を低減することができる。なお、駆動機構が動作する設定により、転がり軸受で負担する荷重は、通常運転時の負荷荷重を超えないように限定することも可能である。 According to such a wind turbine generator , the auxiliary support mechanism of the auxiliary bearing is not in contact with the outer peripheral surface of the shaft portion in a state of receiving a load load during normal operation, and is in a state of receiving an abnormal load load or a load load. When approaching the abnormal load load, the drive mechanism operates to move the sliding bearing divided body in the axial center direction so as to come into contact with the outer peripheral surface of the shaft portion, so that the load imposed on the rolling bearing can be reduced. It should be noted that the load borne by the rolling bearing can be limited so as not to exceed the load load during normal operation, depending on the setting for operating the drive mechanism.

本発明に係る風力発電装置は、複数の風車回転翼を備えたロータヘッドの回転を支持する主軸用軸受、前記風車回転翼のピッチ角を可変に支持するピッチ軸受、及び、ナセルのヨー角を可変に支持するヨー軸受の少なくとも一つが、上記軸受支持構造であることを特徴とするものである。   A wind turbine generator according to the present invention includes a main shaft bearing that supports rotation of a rotor head that includes a plurality of wind turbine rotor blades, a pitch bearing that variably supports a pitch angle of the wind turbine rotor blades, and a yaw angle of a nacelle. At least one of the variably supported yaw bearings is the bearing support structure described above.

このような本発明の風力発電装置によれば、複数の風車回転翼を備えたロータヘッドの回転を支持する主軸用軸受、風車回転翼のピッチ角を可変に支持するピッチ軸受、及び、ナセルのヨー角を可変に支持するヨー軸受の少なくとも一つに上記軸受支持構造を採用したので、主軸用軸受、ピッチ軸受及び/またはヨー軸受の軸受支持構造において非常運転時の最大荷重と疲労荷重との差分を補助軸受が受け持つようにすれば、通常運転時に単独使用する転がり軸受の体格決定に最大荷重より小さい疲労荷重を適用できるようになり、軸受及び風力発電装置の小型・軽量化が可能になる。
また、転がり軸受に加えて、等価荷重条件下でのラジアル荷重またはアキシアル荷重を低減する補助軸受を備えた軸受支持構造とすれば、転がり軸受の荷重負担低減による軸受体格の大型化を抑制することができる。
本発明に係る第3態様の風力発電装置は、複数の風車回転翼を備え、水平な軸線を中心に回転するロータヘッドの軸部を、軸方向に所定の間隔を設けて配置した複数の転がり軸受により回転可能に支持する軸受支持構造を有する風力発電装置であって、前記軸受支持構造は、前記転がり軸受に加えて、等価荷重条件下及び最大荷重条件下でのラジアル荷重またはアキシアル荷重を低減する補助軸受を備え、前記補助軸受は、前記軸部の軸部外周面を取り囲むように配置されるとともに周方向を複数に分割された滑り軸受分割体と、前記滑り軸受分割体を半径方向に移動させる駆動機構とを備え、前記軸部に通常運転時の負荷荷重を受けた状態では、前記滑り軸受分割体と前記軸部外周面とが非接触とされ、かつ、前記軸部に異常荷重負荷を受けた状態では、前記駆動機構が前記滑り軸受分割体を軸中心方向へ移動させて前記軸部外周面と接触させるように構成された補助支持機構であることを特徴とするものである。
According to such a wind turbine generator of the present invention, the main shaft bearing that supports the rotation of the rotor head including a plurality of wind turbine rotor blades, the pitch bearing that variably supports the pitch angle of the wind turbine rotor blades, and the nacelle Since the above bearing support structure is adopted for at least one of the yaw bearings that variably support the yaw angle, the maximum load and the fatigue load during emergency operation in the bearing support structure for the main shaft, pitch bearing, and / or yaw bearing If the auxiliary bearing takes charge of the difference, it becomes possible to apply a fatigue load smaller than the maximum load to determine the size of the rolling bearing used independently during normal operation, and it becomes possible to reduce the size and weight of the bearing and the wind turbine generator. .
In addition to the rolling bearing, if the bearing support structure is equipped with an auxiliary bearing that reduces the radial load or the axial load under the equivalent load condition, the increase in the size of the bearing due to the reduced load bearing of the rolling bearing is suppressed. Can do.
A wind turbine generator according to a third aspect of the present invention includes a plurality of rolling elements provided with a plurality of wind turbine rotor blades, and a shaft portion of a rotor head that rotates about a horizontal axis is arranged at predetermined intervals in the axial direction. A wind turbine generator having a bearing support structure rotatably supported by a bearing, wherein the bearing support structure reduces a radial load or an axial load under an equivalent load condition and a maximum load condition in addition to the rolling bearing. The auxiliary bearing is disposed so as to surround the outer peripheral surface of the shaft portion of the shaft portion, and is divided into a plurality of sliding bearing divisions in the circumferential direction, and the sliding bearing division body in the radial direction. A sliding drive mechanism, and in a state in which the shaft portion receives a load during normal operation, the sliding bearing divided body and the outer peripheral surface of the shaft portion are not in contact with each other, and an abnormal load is applied to the shaft portion. Under load The state is characterized in that said drive mechanism is configured auxiliary support mechanism into contact with the shaft portion outer circumferential surface by moving the sliding bearing split body in the axial center direction.

上述した本発明によれば、通常運転時に単独支持する主軸受の体格決定に最大荷重よりも小さな値の疲労荷重を採用でき、しかも、万が一の最大荷重については主軸受及び補助軸受が協働して支持するので、最大荷重に対する支持強度、耐久性及び信頼性等を確保しつつ、主軸受の体格が小型化することにより軸受支持構造の重量単価を低減できる。
また、本発明の軸受支持構造を主軸用軸受、ピッチ軸受及び/またはヨー軸受に採用した風力発電装置は、軸受支持構造の支持強度や信頼性等を確保しつつ小型化して重量単価を下げることができ、この結果、装置全体の小型化やコストの低減が可能になる。
According to the present invention described above, a fatigue load having a value smaller than the maximum load can be adopted for determining the size of the main bearing that is supported independently during normal operation, and the main bearing and the auxiliary bearing cooperate in the event of the maximum load. Therefore, the weight of the bearing support structure can be reduced by reducing the size of the main bearing while ensuring the support strength, durability, reliability and the like for the maximum load.
In addition, the wind turbine generator employing the bearing support structure of the present invention for the main shaft bearing, pitch bearing and / or yaw bearing can be reduced in size and reduced in unit weight while ensuring the support strength and reliability of the bearing support structure. As a result, the entire apparatus can be reduced in size and cost.

本発明の軸受支持構造に係る一実施形態(第1態様)を示す図で、風力発電装置の主軸用軸受に適用した構成例の側面図である。It is a figure which shows one Embodiment (1st aspect) which concerns on the bearing support structure of this invention, and is a side view of the structural example applied to the main shaft bearing of a wind power generator. 図1に示した補助軸受の断面図である。It is sectional drawing of the auxiliary bearing shown in FIG. 図1に示した補助軸受の変形例を示す断面図である。It is sectional drawing which shows the modification of the auxiliary bearing shown in FIG. 図1に示した軸受支持構造について、主軸受が単独支持する通常運転時の状態(紙面左側)と、主軸受及び補助軸受が協働して支持する非常運転時の状態(紙面右側)とを示す説明図である。About the bearing support structure shown in FIG. 1, a state during normal operation (left side of the paper) supported by the main bearing alone and a state during emergency operation (right side of the paper) supported by the main bearing and the auxiliary bearing in cooperation are shown. It is explanatory drawing shown. 図1に示した軸受支持構造を単純な支持モデルにした説明図であり、主軸受が単独支持する通常運転時の状態(紙面左側)と、主軸受及び補助軸受が協働して支持する非常運転時の状態(紙面右側)とを示している。It is explanatory drawing which made the bearing support structure shown in FIG. 1 the simple support model, and the state at the time of normal operation (left side of a paper surface) which a main bearing supports independently, and the emergency which a main bearing and an auxiliary bearing support in cooperation The state during operation (right side of the drawing) is shown. 図4の説明図に対応した荷重分布(圧縮)について、主軸受を軸方向から見た場合の回転方向角度を横軸にして示す図であり、主軸受が単独支持する通常運転時の状態(紙面左側)と、主軸受及び補助軸受が協働して支持する非常運転時の状態(紙面右側)とを示している。FIG. 5 is a diagram showing the load distribution (compression) corresponding to the explanatory diagram of FIG. 4 with the rotation direction angle when the main bearing is viewed from the axial direction as the horizontal axis, and the state during normal operation that the main bearing alone supports ( The left side of the drawing) and the state during emergency operation (right side of the drawing) supported by the main bearing and the auxiliary bearing in cooperation are shown. 本実施形態の軸受支持構造(第1態様)について、主軸受及び補助軸受に関する許容外力(横軸)と負荷能力(縦軸)との関係を示す説明図である。It is explanatory drawing which shows the relationship between the allowable external force (horizontal axis) regarding a main bearing and an auxiliary bearing, and load capability (vertical axis) about the bearing support structure (1st aspect) of this embodiment. 本実施形態の軸受支持構造(第1態様)を風力発電装置のピッチ軸受に適用した概略構成例を示す要部断面図である。It is principal part sectional drawing which shows the schematic structural example which applied the bearing support structure (1st aspect) of this embodiment to the pitch bearing of a wind power generator. 本実施形態の軸受支持構造(第1態様)を風力発電装置のヨー軸受に適用した概略構成例を示す要部断面図である。It is principal part sectional drawing which shows the schematic structural example which applied the bearing support structure (1st aspect) of this embodiment to the yaw bearing of a wind power generator. 図9のヨー軸受に滑り軸受を採用した場合の概略構成例を示す要部断面図である。FIG. 10 is a cross-sectional view of a main part illustrating a schematic configuration example when a sliding bearing is employed in the yaw bearing of FIG. 9. 風力発電装置の概要を示す側面図である。It is a side view which shows the outline | summary of a wind power generator. 本発明の軸受支持構造に係る一実施形態(第2態様)を示す図で、風力発電装置の主軸用軸受に適用される補助軸受(ラジアル荷重対応)に磁気軸受を用いた構成例の側面図である。The figure which shows one Embodiment (2nd aspect) which concerns on the bearing support structure of this invention, and is a side view of the structural example which used the magnetic bearing for the auxiliary bearing (corresponding to radial load) applied to the main shaft bearing of a wind power generator. It is. 図12に示した軸受支持構造について、通常運転時の荷重負荷及び異常荷重負荷に対する補助軸受(ラジアル荷重対応)としての動作説明図である。FIG. 13 is an operation explanatory diagram of the bearing support structure shown in FIG. 12 as an auxiliary bearing (corresponding to a radial load) with respect to a load load and an abnormal load load during normal operation. 図12に示した第2態様の軸受支持構造について、滑り軸受(ラジアル荷重対応)を用いた第1参考例を示す側面図である。It is a side view which shows the 1st reference example using a sliding bearing (corresponding to a radial load) about the bearing support structure of the 2nd aspect shown in FIG. 図12に示した第2態様の軸受支持構造について、補助軸受(アキシアル荷重対応)として磁気軸受を用いた第2参考例を示す側面図である。FIG. 13 is a side view showing a second reference example using a magnetic bearing as an auxiliary bearing (corresponding to an axial load) in the bearing support structure of the second mode shown in FIG. 12. 図15に示した軸受支持構造について、通常運転時の荷重負荷及び異常荷重負荷に対する補助軸受(アキシアル荷重対応)としての動作説明図である。FIG. 16 is an operation explanatory diagram of the bearing support structure shown in FIG. 15 as an auxiliary bearing (corresponding to an axial load) with respect to a load load and an abnormal load load during normal operation. 図12に示した第2態様の軸受支持構造について、補助軸受(アキシアル荷重対応)として滑り軸受を用いた第3参考例を示す側面図である。FIG. 13 is a side view showing a third reference example using a sliding bearing as an auxiliary bearing (corresponding to an axial load) in the bearing support structure of the second mode shown in FIG. 12. 図12に示した第2態様の軸受支持構造について、補助軸受として滑り軸受を有する補助支持機構を用いた実施例を示す側面図である。The bearing support structure of the second embodiment shown in FIG. 12 is a side view showing an embodiment using the auxiliary support mechanism having a sliding bearing as an auxiliary bearing. 図18に示す補助支持機構の動作説明図であり、転がり軸受及び軸部の位置関係が上段の通常運転時から下段の最大荷重時に変化した状態を示す縦断面図である。It is operation | movement explanatory drawing of the auxiliary | assistant support mechanism shown in FIG. 18, and is a longitudinal cross-sectional view which shows the state from which the positional relationship of a rolling bearing and a shaft part changed at the time of the maximum load of the lower stage from the normal operation of the upper stage. 図18に示す補助支持機構の動作説明図であり、補助支持機構が上段の通常運転時から下段の最大荷重時に変化した状態を示す縦断面図である。It is operation | movement explanatory drawing of the auxiliary | assistant support mechanism shown in FIG. 18, and is a longitudinal cross-sectional view which shows the state in which the auxiliary | assistant support mechanism changed at the time of the maximum load of the lower stage from the normal operation of the upper stage. 軸受支持構造の従来例として、風力発電装置の主軸用軸受部を示す一部断面側面図である。It is a partial cross section side view which shows the bearing part for main shafts of a wind power generator as a prior art example of a bearing support structure. 軸受支持構造の従来例として、軸方向に配置した一対の転がり軸受で主軸を支持する風力発電装置の主軸受構造を示し概略構成図である。It is a schematic block diagram which shows the main bearing structure of the wind power generator which supports a main axis | shaft with a pair of rolling bearing arrange | positioned to an axial direction as a prior art example of a bearing support structure. 図21に示した主軸受構造の要部断面図である。It is principal part sectional drawing of the main bearing structure shown in FIG. 荷重サイズ(縦軸)及び時間スケール(横軸)のイメージ図であり、通常発電(運転)時や暴風などの異常時の風況に応じた荷重変化のイメージを示している。It is an image figure of a load size (vertical axis) and a time scale (horizontal axis), and shows an image of load change according to wind conditions during normal power generation (operation) or abnormal conditions such as storms.

以下、本発明に係る軸受支持構造の一実施形態として、風力発電装置への適用例について図面を参照して説明する。
図11に示す風力発電装置1は、基礎B上に立設される支柱(「タワー」ともいう。)2と、支柱2の上端に設置されるナセル3と、略水平な回転軸線周りに回転可能に支持されてナセル3に設けられるロータヘッド(ハブ)4とを有している。なお、風力発電装置1が洋上風車の場合には、浮体式あるいは基礎Bを海底に設ける方式の何れでもよい。
Hereinafter, as an embodiment of a bearing support structure according to the present invention, an application example to a wind turbine generator will be described with reference to the drawings.
A wind turbine generator 1 shown in FIG. 11 rotates around a substantially horizontal rotation axis, a column (also referred to as “tower”) 2 standing on the foundation B, a nacelle 3 installed at the upper end of the column 2. And a rotor head (hub) 4 that is supported on the nacelle 3 and is supported. In addition, when the wind power generator 1 is an offshore windmill, either a floating body type or a method of providing a foundation B on the seabed may be used.

ロータヘッド4には、その回転軸線周りに放射状にして複数枚(たとえば3枚)の風車回転翼5が取り付けられている。これにより、ロータヘッド4の回転軸線方向から風車回転翼5に当たった風の力が、ロータヘッド4を回転軸線周りに回転させる動力に変換されるようになっている。   A plurality of (for example, three) wind turbine rotor blades 5 are attached to the rotor head 4 in a radial pattern around the rotation axis. As a result, the force of wind striking the wind turbine rotor blade 5 from the direction of the rotation axis of the rotor head 4 is converted into power for rotating the rotor head 4 around the rotation axis.

<第1の実施形態(第1態様)>
上述した風力発電装置1には、軸線(図1の回転軸線Rs)を中心に回転する回転体の軸部を回転可能に片持ち支持する軸受支持構造として、例えば図1に示すように、ロータヘッド4と、ロータヘッド4の後端部に連結された主軸7とを回転可能に支持する主軸用軸受BUが設けられている。上述した風車回転翼5は、ロータヘッド4に取り付けられ、ロータヘッド4のカバーを貫通して放射状に突出している。
なお、図示の構成例では、主軸7の後端部側が増速機8と連結され、ロータヘッド4の回転を増速して発電機(不図示)を駆動するが、このような増速発電方式に限定されることはない。
<First embodiment (first aspect)>
In the wind power generator 1 described above, as shown in FIG. 1, for example, a rotor is used as a bearing support structure that cantilever-supports a shaft portion of a rotating body that rotates about an axis (rotation axis Rs in FIG. 1). A spindle bearing BU for rotatably supporting the head 4 and the spindle 7 connected to the rear end portion of the rotor head 4 is provided. The windmill rotor blade 5 described above is attached to the rotor head 4 and protrudes radially through the cover of the rotor head 4.
In the illustrated configuration example, the rear end side of the main shaft 7 is connected to the speed increaser 8 to drive the generator (not shown) by increasing the rotation of the rotor head 4. The method is not limited.

主軸用軸受BUは、回転体であるロータヘッド4の軸部先端側をモーメントが作用する片持ち梁状に単独支持可能な主軸受の複列テーパコロ軸受10と、複列テーパコロ軸受10の軸部後端側(増速機8側)を支持する補助軸受の滑り軸受20とを備えている。
主軸受となる複列テーパコロ軸受10は、バネ定数k1のナセル3に固定支持され、所定値以下の荷重が作用する通常運転時において、ロータヘッド4の後端部に連結されたバネ定数k2に設定された主軸7の主軸前端部7aを単独支持する。なお、ナセル3のバネ定数k1及び主軸7のバネ定数k2は、ナセル3のバネ定数k1が圧倒的に大きな値(k1≫k2)となるように設定されている。
The main shaft bearing BU includes a double-row tapered roller bearing 10 which is a main bearing capable of supporting the tip end side of the shaft portion of the rotor head 4, which is a rotating body, in a cantilevered manner, and a shaft portion of the double-row tapered roller bearing 10. And an auxiliary bearing slide bearing 20 that supports the rear end side (speed increaser 8 side).
The double-row tapered roller bearing 10 serving as a main bearing is fixedly supported by the nacelle 3 having a spring constant k1, and has a spring constant k2 connected to the rear end of the rotor head 4 during normal operation in which a load of a predetermined value or less acts. The main shaft front end portion 7a of the set main shaft 7 is supported alone. The spring constant k1 of the nacelle 3 and the spring constant k2 of the main shaft 7 are set so that the spring constant k1 of the nacelle 3 becomes an overwhelmingly large value (k1 >> k2).

複列テーパコロ軸受10は、内輪11と外輪12との間に、周方向へ等ピッチに配置した多数のコロ13が軸方向に2列配列された構成とされる。この場合、2列に配列した円柱状のコロ13は、回転軸線Rsと直交する中心線C1側の端部が内輪11側となるように、中心線C1に対してほぼ45度傾斜した状態に配置されている。
この結果、1台の複列テーパコロ軸受10は、回転体の荷重を受けて主軸7を回転自在に支持するとともに、中心線C1に対して傾斜配置された2列のコロ13が主軸7に作用するモーメントにも対応可能である。
The double row tapered roller bearing 10 has a configuration in which a large number of rollers 13 arranged at equal pitches in the circumferential direction are arranged in two rows in the axial direction between the inner ring 11 and the outer ring 12. In this case, the columnar rollers 13 arranged in two rows are inclined substantially 45 degrees with respect to the center line C1 so that the end on the center line C1 side orthogonal to the rotation axis Rs is on the inner ring 11 side. Has been placed.
As a result, the single double-row tapered roller bearing 10 receives the load of the rotating body and rotatably supports the main shaft 7, and two rows of rollers 13 that are inclined with respect to the center line C 1 act on the main shaft 7. It is also possible to respond to moments.

補助軸受の滑り軸受20は、所定値を超えた大荷重が作用する非常運転時にのみ、複列テーパコロ軸受10と協働して主軸7を支持する。この滑り軸受20は、例えばポリエーテルエーテルケトン(PEEK)樹脂のような材料を用いて形成した円形断面の軸受面21を備えている。このような軸受面21は、例えば図2に示すように、非常運転時より荷重の小さい通常運転時において主軸7とほぼ同心の位置関係となる。   The auxiliary bearing slide bearing 20 supports the main shaft 7 in cooperation with the double-row tapered roller bearing 10 only during an emergency operation in which a large load exceeding a predetermined value is applied. The sliding bearing 20 includes a bearing surface 21 having a circular cross section formed using a material such as polyether ether ketone (PEEK) resin. For example, as shown in FIG. 2, the bearing surface 21 has a positional relationship that is substantially concentric with the main shaft 7 during normal operation with a smaller load than during emergency operation.

また、通常運転時の状態では、主軸7の外周面と滑り軸受20の内周面との間に所定の面間距離S1(好適には0.5mm程度)を維持して隙間22が形成され、滑り軸受20に対して主軸7が非接触の状態となっている。
この結果、通常運転時においては、非接触の滑り軸受20で摩擦力等の抵抗力が発生しないので、主軸7の全体に作用する摩擦力等の抵抗力を抑制することができる。
Further, in a state during normal operation, a gap 22 is formed between the outer peripheral surface of the main shaft 7 and the inner peripheral surface of the slide bearing 20 while maintaining a predetermined inter-surface distance S1 (preferably about 0.5 mm). The main shaft 7 is not in contact with the slide bearing 20.
As a result, during normal operation, resistance force such as friction force is not generated in the non-contact sliding bearing 20, so that resistance force such as friction force acting on the entire main shaft 7 can be suppressed.

また、上述した滑り軸受20は、ナセル3を構成する高剛性の台板3aに対してステー24で固定支持されており、特に鉛直方向の入力に対して高剛性となるように支持されている。ステー24の曲げに対する剛性は、すなわち上下方向の剛性を意味するバネ定数k3は、複列テーパコロ軸受10を支持するナセル3のバネ定数k1及び主軸7のバネ定数k2と比較して最も大きな値(k3>k1≫k2)に設定されている。これは、ステー24の剛性が不十分だと、非常運転時の荷重を受けて複列テーパコロ軸受10とともに変形移動することになり、滑り軸受20を設置する目的を達成できなくなるためである。
このような滑り軸受20は、潤滑不良防止等のメンテナンスが不要になることから、非常運転時以外に使用されることのないない補助軸受として好適である。
The sliding bearing 20 described above is fixedly supported by a stay 24 with respect to a high-rigidity base plate 3a constituting the nacelle 3, and is particularly supported to have high rigidity with respect to an input in a vertical direction. . The stiffness of the stay 24 with respect to bending, that is, the spring constant k3 which means the stiffness in the vertical direction is the largest value compared to the spring constant k1 of the nacelle 3 supporting the double row tapered roller bearing 10 and the spring constant k2 of the main shaft 7 ( k3> k1 >> k2). This is because if the rigidity of the stay 24 is insufficient, it will be deformed and moved together with the double-row tapered roller bearing 10 under the load during emergency operation, and the purpose of installing the sliding bearing 20 cannot be achieved.
Such a sliding bearing 20 is suitable as an auxiliary bearing that is not used except during emergency operation because maintenance such as prevention of poor lubrication is unnecessary.

ところで、上述した滑り軸受20は、周方向の全周にわたって軸受面21を設けているが、たとえば図3に示すように、周方向を4分割した不連続状態の軸受面21Aを設けてもよい。この不連続状態は、軸受面21Aと軸受面21Aのない間隙部23とが周方向へ交互に配置されたものであり、軸受面21Aの分割数は特に限定されることはない。
また、不連続状態の軸受面21Aに代えて、例えばローラ等の転動体を周方向へ等ピッチに複数配置する構成とし、非常運転時に主軸7が接触して支持される構成としてもよい。
By the way, although the sliding bearing 20 mentioned above has provided the bearing surface 21 over the perimeter of the circumferential direction, as shown in FIG. 3, for example, you may provide the bearing surface 21A of the discontinuous state which divided the circumferential direction into four. . In this discontinuous state, the bearing surface 21A and the gaps 23 without the bearing surface 21A are alternately arranged in the circumferential direction, and the number of divisions of the bearing surface 21A is not particularly limited.
Further, instead of the discontinuous bearing surface 21A, for example, a plurality of rolling elements such as rollers may be arranged at equal pitches in the circumferential direction, and the main shaft 7 may be supported in contact during emergency operation.

以下、上述した主軸用軸受BUの作用について、図4〜7を参照して説明する。
さて、上述した主軸受用軸受BUは、図4に示すように、ロータヘッド4等の回転体重心から複列テーパコロ軸受10の中心線C1までの距離をL1、複列テーパコロ軸受10の中心線C1から滑り軸受20の中心線C2までの距離をL2とすれば、距離L1が距離L2より大(L1>L2)となるように設定されている。また、複列テーパコロ軸受10の径をD1、滑り軸受20の径をD2とすれば、径D1が径D2より大(D1>D2)となるように設定されている。なお、滑り軸受20は、軸方向の幅がL3となる。
Hereinafter, the operation of the main shaft bearing BU will be described with reference to FIGS.
As shown in FIG. 4, the main bearing BU described above has a distance from the center of gravity of the rotating body such as the rotor head 4 to the center line C1 of the double row tapered roller bearing 10 as L1, and from the center line C1 of the double row tapered roller bearing 10. If the distance to the center line C2 of the plain bearing 20 is L2, the distance L1 is set to be larger than the distance L2 (L1> L2). If the diameter of the double row tapered roller bearing 10 is D1 and the diameter of the sliding bearing 20 is D2, the diameter D1 is set to be larger than the diameter D2 (D1> D2). The sliding bearing 20 has an axial width L3.

図5は、上述した軸受支持構造を材料力学の単純な支持モデルにした説明図である。
紙面左側の通常運転時においては、先端に外力F1が作用する長さL1の片持ち梁B1となり、片持ち梁B1を支持する基部にはモーメントMが作用している。この場合、外力F1は、モーメントM以下(0≦F1≦M)となる。この状態は、図4の通常運転時において、滑り軸受20の軸受面21と主軸7との間に面間距離S1の隙間22が形成され、主軸7が複列テーパコロ軸受10により単独支持されたものである。
FIG. 5 is an explanatory diagram in which the above-described bearing support structure is a simple support model of material mechanics.
During normal operation on the left side of the sheet, the length L1 is a cantilever beam B1 on which the external force F1 acts, and a moment M acts on the base portion that supports the cantilever beam B1. In this case, the external force F1 is equal to or less than the moment M (0 ≦ F1 ≦ M). In this state, in the normal operation of FIG. 4, a gap 22 having a surface distance S1 is formed between the bearing surface 21 of the sliding bearing 20 and the main shaft 7, and the main shaft 7 is supported by the double row tapered roller bearing 10. Is.

このような通常運転時において、主軸用軸受BUに作用する圧縮荷重の荷重分布は、図6の紙面左側に示すように、ハブ側コロ列と増速機側コロ列とが回転方向角度において180度ずれている。また、滑り軸受20によるアシストサポートはないので、図中に点線で示すように、滑り軸受20の荷重分布は常時0となる。
すなわち、実線で示すハブ側コロ列の荷重分布は、最大の0度から0の90度まで低下し、90度から270度まで荷重0の状態が継続した後、270度から最大の360度まで上昇する。また、破線で示す増速機側コロ列の荷重分布は、0度から90度まで荷重0の状態が継続した後、90度から徐々に上昇して180度で最大となる。この後、180度から荷重0の270度まで低下し、270度から360度まで荷重0の状態が継続する。
During such normal operation, the load distribution of the compressive load acting on the main shaft bearing BU is 180 degrees in the rotation direction angle between the hub side roller train and the speed increasing device side roller train, as shown on the left side of FIG. Degrees are off. Further, since there is no assist support by the sliding bearing 20, the load distribution of the sliding bearing 20 is always 0 as shown by the dotted line in the figure.
That is, the load distribution of the hub side roller row indicated by the solid line decreases from the maximum 0 degree to 90 degrees, and after the state of the load 0 continues from 90 degrees to 270 degrees, it increases from 270 degrees to the maximum 360 degrees. To rise. Further, the load distribution of the speed increaser side roller train indicated by a broken line gradually increases from 90 degrees and reaches a maximum at 180 degrees after the state of zero load continues from 0 degrees to 90 degrees. Thereafter, the load decreases from 180 degrees to 270 degrees with a load of 0, and the state of the load of 0 continues from 270 degrees to 360 degrees.

一方、紙面右側の非常運転時においては、先端に外力F1より大きい外力F2(M≦F2≦M′)が作用する長さL1+L2の片持ち梁B2となり、弾性片持ち支持及び2点単純支持の機能を備えている。この場合、片持ち梁B2が所定値以上の荷重(外力F2)を受けることにより、弾性変形することによりP1での1点支持からP1,P2の2点で単純支持された片持ち梁B2となる。
この状態は、図4に示す非常運転時のように、過大な外力F2を受けて最も低剛性(弾性係数k2)の主軸7が弾性変形したものとなる。
On the other hand, during an emergency operation on the right side of the page, the cantilever B2 has a length L1 + L2 in which an external force F2 (M ≦ F2 ≦ M ′) greater than the external force F1 acts on the tip, and is an elastic cantilever support and a two-point simple support It has a function. In this case, when the cantilever B2 receives a load (external force F2) of a predetermined value or more, the cantilever B2 is simply supported at two points P1 and P2 from the one point support at P1 by elastic deformation. Become.
In this state, as in the emergency operation shown in FIG. 4, the main shaft 7 having the lowest rigidity (elastic coefficient k2) is elastically deformed by receiving an excessive external force F2.

この結果、滑り軸受20の軸受面21と主軸7との間に維持されていた面間距離S1の隙間22は、一方(例えば下面側)の軸受面21に主軸7が接触してゼロとなり、同時に、他方(例えば上面側)が面間距離S2にほぼ倍増(S2≒S1×2)した状態となる。すなわち、主軸7は、複列テーパコロ軸受10により支持に加えて、滑り軸受20による支持も受けている。   As a result, the gap 22 of the inter-surface distance S1 maintained between the bearing surface 21 of the sliding bearing 20 and the main shaft 7 becomes zero when the main shaft 7 comes into contact with one (for example, the lower surface side) bearing surface 21, At the same time, the other (for example, the upper surface side) is almost doubled (S2≈S1 × 2) to the inter-surface distance S2. That is, the main shaft 7 is supported not only by the double row tapered roller bearing 10 but also by the sliding bearing 20.

このような非常運転時において、主軸用軸受BUに作用する圧縮荷重の荷重分布は、図6の紙面右側に示すようになる。
すなわち、実線で示すハブ側(ロータヘッド側)コロ列の荷重分布は、上述した通常運転時と同様に、最大の0度から0の90度まで低下し、90度から270度まで荷重0の状態が継続した後、270度から最大の360度まで上昇する。
During such an emergency operation, the load distribution of the compressive load acting on the main shaft bearing BU is as shown on the right side of FIG.
That is, the load distribution on the hub side (rotor head side) roller row indicated by the solid line decreases from the maximum 0 degree to 0 degree 90 degrees, and the load 0 from 90 degrees to 270 degrees, as in the normal operation described above. After the condition continues, it rises from 270 degrees to a maximum of 360 degrees.

しかし、破線で示す増速機側コロ列の荷重分布は、90度から270度の範囲においてやや低下するものの、0度〜90度及び270度〜360度の範囲では大幅に上昇する。そして、増速機側コロ列の荷重分布が低下する90度から270度の範囲では、図中に点線で示すように、滑り軸受20によるアシストサポートが許容値まで増加している。   However, although the load distribution of the speed increasing machine side roller train indicated by the broken line slightly decreases in the range of 90 to 270 degrees, it significantly increases in the range of 0 to 90 degrees and 270 to 360 degrees. Then, in the range from 90 degrees to 270 degrees where the load distribution of the speed increaser side roller train decreases, the assist support by the slide bearing 20 increases to an allowable value as indicated by the dotted line in the figure.

従って、上述した軸受支持構造の主軸用軸受BUにおいて、主軸受の複列テーパコロ軸受10及び補助軸受の滑り軸受20に関する許容外力(横軸)と負荷能力(縦軸)との関係は、例えば図7に示す説明図のようになる。
すなわち、許容外力が0〜Mの領域では、複列テーパコロ軸受10が単独で負荷能力が0〜aまでの範囲を負担し、さらに、許容外力がMを超えた領域では、負荷能力がa〜cまでの範囲を複列テーパコロ軸受10及び滑り軸受20により負担している。
Therefore, in the main shaft bearing BU having the above-described bearing support structure, the relationship between the allowable external force (horizontal axis) and the load capacity (vertical axis) regarding the double-row tapered roller bearing 10 of the main bearing and the sliding bearing 20 of the auxiliary bearing is, for example, The explanatory diagram shown in FIG.
That is, in the region where the allowable external force is 0 to M, the double row tapered roller bearing 10 alone bears the range of the load capability from 0 to a, and in the region where the allowable external force exceeds M, the load capability is a to The range up to c is borne by the double row tapered roller bearing 10 and the sliding bearing 20.

換言すれば、許容外力がM〜M´の領域では、負荷能力がe〜fまで負担可能な滑り軸受20を加える(上方へ平行移動してaに接続する)ことで、許容値を超えた複列テーパコロ軸受10の負荷能力については、a〜bのように負荷能力を増すことなく、主軸用軸受BU全体としての負荷能力を0〜cまで確保することができる。
なお、図示の複列テーパコロ軸受10及び滑り軸受20は、いずれも直線的に負荷能力を増す線形として説明したが、たとえば図7に示すg〜fや0〜hのように負荷能力を増す非線形でもよく、複列テーパコロ軸受10の許容値以上を負担して支持できれば特に限定されることはない。
In other words, in the region where the allowable external force is M to M ′, the allowable value is exceeded by adding the sliding bearing 20 that can bear the load capacity up to ef (translating upward and connecting to a). As for the load capacity of the double row tapered roller bearing 10, the load capacity of the main shaft bearing BU as a whole can be secured from 0 to c without increasing the load capacity as in a to b.
The double-row tapered roller bearing 10 and the sliding bearing 20 shown in the figure have been described as linearly increasing the load capacity linearly, but for example, non-linearly increasing the load capacity such as g to f and 0 to h shown in FIG. However, there is no particular limitation as long as it can support the double row tapered roller bearing 10 with an allowable value or more.

上述したように、本実施形態の主軸用軸受BUは、非常運転時に作用する最大荷重に対して補助軸受の滑り軸受20によるアシストサポートを受けるように構成されているので、通常運転時に単独支持する主軸受の複列テーパコロ軸受10については、その体格決定に最大荷重よりも小さな値の疲労荷重を採用できる。従って、複列テーパコロ軸受10の小型化が可能となり、風力発電装置1を大型化しても、相対的に小型化できる複列テーパコロ軸受10は汎用品の使用が可能になるなど、コスト低減や調達が容易になる。
すなわち、50年に1度あるかないかの暴風等を想定した万が一の最大荷重については、複列テーパコロ軸受10及び滑り軸受20が協働して支持するように構成されているので、最大荷重に対する支持強度、耐久性及び信頼性等を確保し、かつ、複列テーパコロ軸受10の体格が小型化することに伴って、主軸用軸受BUは軸受支持構造全体の重量単価を低減できる。
As described above, the main shaft bearing BU of the present embodiment is configured to receive the assist support by the sliding bearing 20 of the auxiliary bearing with respect to the maximum load acting at the time of emergency operation. For the double-row tapered roller bearing 10 as the main bearing, a fatigue load having a value smaller than the maximum load can be adopted for determining the physique. Accordingly, the double row tapered roller bearing 10 can be downsized, and even if the wind power generator 1 is enlarged, the double row tapered roller bearing 10 that can be relatively downsized can be used as a general-purpose product. Becomes easier.
That is, in the unlikely event that a storm or the like that occurs once every 50 years is assumed, the double-row tapered roller bearing 10 and the sliding bearing 20 are configured to support each other in a cooperative manner. As the support strength, durability, reliability, and the like are ensured, and the size of the double-row tapered roller bearing 10 is reduced in size, the main shaft bearing BU can reduce the weight of the entire bearing support structure.

次に、本発明の軸受支持構造をピッチ軸受に適用した実施形態について、図8を参照して説明する。
図8に示すピッチ軸受40は、風車回転翼5のピッチ角を可変に支持する軸受支持構造であり、主軸受となる転がり軸受41と、補助軸受となるアシストサポート支持部42とを備えている。
Next, an embodiment in which the bearing support structure of the present invention is applied to a pitch bearing will be described with reference to FIG.
The pitch bearing 40 shown in FIG. 8 is a bearing support structure that variably supports the pitch angle of the wind turbine rotor 5, and includes a rolling bearing 41 as a main bearing and an assist support support portion 42 as an auxiliary bearing. .

転がり軸受41はロータヘッド4に固定支持され、内輪41aと外輪41bとの間に球状のベアリング41cを挟持した構成とされる。
アシストサポート支持部42は、風車回転翼5の回動方向(紙面の左右方向)と直交する方向(紙面の上下方向)の両側に一対設けられている。具体的には、一対のアシストサポート支持部42は、外輪41bの上端面と、外輪41bの下端面とロータヘッド4との間に設けられている。そして、一対のアシストサポート支持部42の対向面には、内輪41aの上下端面との間に所定の隙間を形成するようにして、PEEK材などの滑動部材42aが取り付けられている。このため、上述したアシストサポート支持部42は、通常運転時に非接触の滑り軸受として機能する。
The rolling bearing 41 is fixedly supported by the rotor head 4, and a spherical bearing 41c is sandwiched between the inner ring 41a and the outer ring 41b.
A pair of assist support support portions 42 are provided on both sides in a direction (vertical direction on the paper surface) orthogonal to the rotational direction (left and right direction on the paper surface) of the wind turbine rotor 5. Specifically, the pair of assist support support portions 42 are provided between the upper end surface of the outer ring 41 b, the lower end surface of the outer ring 41 b, and the rotor head 4. A sliding member 42a such as a PEEK material is attached to the opposing surfaces of the pair of assist support support portions 42 so as to form a predetermined gap between the upper and lower end surfaces of the inner ring 41a. For this reason, the assist support support part 42 described above functions as a non-contact sliding bearing during normal operation.

このように構成されたピッチ軸受40は、通常運転時においてピッチ角制御に伴う風車回転翼5の回動を転がり軸受41が単独支持し、非常運転時において最大荷重が作用すると、滑り軸受の機能を有するアシストサポート支持部42が転がり軸受41と協働して支持する。
従って、主軸受の転がり軸受41は、その体格決定に最大荷重よりも小さな値の疲労荷重を採用できるので、小型化が可能となる。
The pitch bearing 40 configured in this manner functions as a sliding bearing when the rolling bearing 41 supports the rotation of the wind turbine rotor blade 5 associated with pitch angle control during normal operation and the maximum load is applied during emergency operation. The assist support support portion 42 having the function is supported in cooperation with the rolling bearing 41.
Therefore, the rolling bearing 41 of the main bearing can employ a fatigue load having a value smaller than the maximum load for determining the physique, and thus can be reduced in size.

次に、本発明の軸受支持構造をヨー軸受に適用した実施形態について、図9及び図10を参照して説明する。
図9に示すヨー軸受50は、ナセル3のヨー角を可変に支持する軸受支持構造であり、主軸受となる転がり軸受51と、補助軸受となるアシストサポート支持部52とを備えている。
Next, an embodiment in which the bearing support structure of the present invention is applied to a yaw bearing will be described with reference to FIGS.
The yaw bearing 50 shown in FIG. 9 has a bearing support structure that variably supports the yaw angle of the nacelle 3, and includes a rolling bearing 51 serving as a main bearing and an assist support support 52 serving as an auxiliary bearing.

この場合、ヨーブレーキ装置60のブレーキディスク61をアシストサポート支持部52などに利用している。
転がり軸受51は、支柱2の上端部に固定設置されたブレーキディスク61に固定支持され、内輪51aと外輪51bとの間に球状のベアリング51cを挟持した構成とされる。
In this case, the brake disc 61 of the yaw brake device 60 is used for the assist support support portion 52 and the like.
The rolling bearing 51 is fixedly supported by a brake disc 61 fixedly installed at the upper end portion of the support column 2, and a spherical bearing 51c is sandwiched between an inner ring 51a and an outer ring 51b.

アシストサポート支持部52は、ナセル3の回動方向(紙面の左右方向)と直交する方向(紙面の上下方向)の両側に一対設けられている。具体的には、一対のアシストサポート支持部52は、外輪51bの上端面と、外輪51bの下端面と支柱2の上端面との間に設けられたブレーキディスク61とにより構成される。
また、内輪51aとナセル3の台板3aとの間には、外輪51aの上端面まで鍔状に突出する補助部材53が設けられている。
A pair of assist support support portions 52 are provided on both sides in a direction (vertical direction of the paper surface) orthogonal to the rotation direction of the nacelle 3 (horizontal direction of the paper surface). Specifically, the pair of assist support support portions 52 includes an upper end surface of the outer ring 51 b and a brake disc 61 provided between the lower end surface of the outer ring 51 b and the upper end surface of the column 2.
Further, an auxiliary member 53 is provided between the inner ring 51a and the base plate 3a of the nacelle 3 so as to protrude like a bowl up to the upper end surface of the outer ring 51a.

そして、一対のアシストサポート支持部52の対向面には、補助部材53の上端面との間、及び内輪51aの下端面との間に、所定の隙間を形成するようにして、PEEK材などの滑動部材52aが取り付けられている。このため、上述したアシストサポート支持部52は、通常運転時に非接触の滑り軸受として機能する。
従って、非常運転時において最大荷重が作用すると、滑り軸受の機能を有するアシストサポート支持部52が転がり軸受51と協働して支持できるようになる。このため、主軸受の転がり軸受51は、その体格決定に最大荷重よりも小さな値の疲労荷重を採用できるので、小型化が可能となる。
Further, a predetermined gap is formed between the upper surface of the auxiliary member 53 and the lower surface of the inner ring 51a on the opposing surfaces of the pair of assist support support portions 52, such as a PEEK material. A sliding member 52a is attached. For this reason, the above-described assist support support portion 52 functions as a non-contact sliding bearing during normal operation.
Therefore, when the maximum load is applied during emergency operation, the assist support support portion 52 having the function of a sliding bearing can be supported in cooperation with the rolling bearing 51. For this reason, since the rolling bearing 51 of the main bearing can employ a fatigue load having a value smaller than the maximum load for determining the physique, the size can be reduced.

また、図10に示すヨー軸受70は、主軸受に滑り軸受71を採用した場合を示している。このヨー軸受70は、固定側鍔部71aの上下に配設されてナセル3を回動自在に支持する滑動部材72aと、回転側鍔部71aの内周面に配設されてナセル3の水平方向移動を規制する滑動部材72bとを備えている。   Moreover, the yaw bearing 70 shown in FIG. 10 has shown the case where the sliding bearing 71 is employ | adopted as the main bearing. The yaw bearing 70 is disposed on the upper and lower sides of the fixed side collar 71a and rotatably supports the nacelle 3. The yaw bearing 70 is disposed on the inner peripheral surface of the rotation side collar 71a and is horizontally disposed on the nacelle 3. And a sliding member 72b for restricting the direction movement.

そして、この場合のアシストサポートは、滑動部材72aの近傍に設置された上下一対の滑動部材74により行われる。この滑動部材74は、回動するナセル3側に設置されるとともに、固定側鍔部71aとの間に所定の隙間を形成している。
このようなヨー軸受70としても、非常運転時において最大荷重が作用すると、滑り軸受の機能を有する補助軸受のアシストサポート支持部74が主軸受の滑り軸受71と協働して支持できるようになる。このため、主軸受の滑り軸受70は、その体格決定に最大荷重よりも小さな値の疲労荷重を採用できるので、小型化が可能となる。
In this case, the assist support is performed by a pair of upper and lower sliding members 74 installed in the vicinity of the sliding member 72a. The sliding member 74 is installed on the rotating nacelle 3 side, and forms a predetermined gap with the fixed side flange 71a.
Even in such a yaw bearing 70, when the maximum load is applied during an emergency operation, the assist support support portion 74 of the auxiliary bearing having the function of a sliding bearing can be supported in cooperation with the sliding bearing 71 of the main bearing. . For this reason, the sliding bearing 70 of the main bearing can employ a fatigue load having a value smaller than the maximum load for determining its physique, and thus can be reduced in size.

本実施形態の風力発電装置1は、その軸受支持構造として、複数の風車回転翼5を備えたロータヘッド4の回転を支持する主軸用軸受BU、風車回転翼5のピッチ角を可変に支持するピッチ軸受40、及び、ナセル3のヨー角を可変に支持するヨー軸受50,70の少なくとも一つを採用していれば、非常運転時の最大荷重と疲労荷重との差分を補助軸受が受け持つことができるようになる。この結果、通常運転時に単独使用する主軸受の体格決定に最大荷重より小さい疲労荷重を適用できるようになり、主軸受となる軸受及び風力発電装置1の小型・軽量化が可能になる。   The wind turbine generator 1 of the present embodiment, as its bearing support structure, variably supports the main shaft bearing BU for supporting the rotation of the rotor head 4 including a plurality of wind turbine rotor blades 5 and the pitch angle of the wind turbine rotor blades 5. If at least one of the pitch bearing 40 and the yaw bearings 50 and 70 that variably support the yaw angle of the nacelle 3 is employed, the auxiliary bearing will be responsible for the difference between the maximum load and the fatigue load during emergency operation. Will be able to. As a result, a fatigue load smaller than the maximum load can be applied to determine the size of the main bearing that is used alone during normal operation, and the bearing and the wind power generator 1 that are the main bearing can be reduced in size and weight.

また、風力発電装置1を大型化する際、上述した本実施形態の軸受支持構造は、主軸7を支持する軸受として2軸受構造から軽量化とナセル3の長さ短縮によるコンパクト化に有効な複列テーパコロ軸受10を採用し、そのメリットを生かしつつ、主軸受の小型化により軸受サプライヤの軸受製造能力の限界による制約を低減できる。従って、軸受支持構造の大型化に伴う制約から解放され、スケールアップによって風力発電装置1の大型化を目指すことが可能になる。   When the wind power generator 1 is increased in size, the above-described bearing support structure according to the present embodiment is effective for reducing the weight and reducing the length of the nacelle 3 from the two-bearing structure as a bearing for supporting the main shaft 7. By adopting the row taper roller bearing 10 and taking advantage of its merit, it is possible to reduce the restriction due to the limit of the bearing manufacturing capability of the bearing supplier by downsizing the main bearing. Therefore, it is possible to release the restrictions associated with the increase in the size of the bearing support structure and to increase the size of the wind power generator 1 by scaling up.

<第2の実施形態(第2態様)>
次に、本発明に係る軸受支持構造について、第2の実施形態を図面に基づいて説明する。
以下に説明する実施形態は、軸方向に所定の間隔を設けて配置した前後一対の転がり軸受Bf、Brにより主軸7を支持する軸受支持構造に適用したものであり、転がり軸受Bf,Brに加えて、等価荷重条件下及び最大荷重条件下でのラジアル荷重またはアキシアル荷重を低減する補助軸受を備えている。なお、主軸7を支持する転がり軸受は、通常前後一対の転がり軸受Bf,Brによる支持とするが、特に限定されることはなく、2以上の複数であってもよい。
<Second Embodiment (Second Aspect)>
Next, a second embodiment of the bearing support structure according to the present invention will be described with reference to the drawings.
The embodiment described below is applied to a bearing support structure in which a main shaft 7 is supported by a pair of front and rear rolling bearings Bf and Br arranged at predetermined intervals in the axial direction. In addition to the rolling bearings Bf and Br, In addition, an auxiliary bearing for reducing radial load or axial load under the equivalent load condition and the maximum load condition is provided. The rolling bearing that supports the main shaft 7 is normally supported by a pair of front and rear rolling bearings Bf and Br, but is not particularly limited, and may be two or more.

図12に示す第2態様の軸受支持構造は、回転軸線Rsを中心に回転する回転体の主軸(軸部)7を、軸方向に所定の間隔を設けて配置した前後一対の転がり軸受Bf,Brにより回転可能に支持するとともに、フロント側の転がり軸受Bfよりも軸先端側となる位置に設けた磁気軸受MBを備えている。この磁気軸受MBは、軸受体格の大型化を抑えるため、ラジアル荷重の低減を目的として設置した補助軸受である。この場合の軸先端側は、主軸7に風車回転翼5やロータヘッド(ハブ)4が取り付けられている方向のことである。
なお、図中の符号3aはナセル3の台板、Rmは補強部材である。
The bearing support structure of the second aspect shown in FIG. 12 is a pair of front and rear rolling bearings Bf in which main shafts (shaft portions) 7 of a rotating body that rotates about a rotation axis Rs are arranged at predetermined intervals in the axial direction. The magnetic bearing MB is provided so as to be rotatable by Br and provided at a position closer to the shaft tip side than the rolling bearing Bf on the front side. This magnetic bearing MB is an auxiliary bearing installed for the purpose of reducing the radial load in order to suppress an increase in the size of the bearing body. The shaft tip side in this case is the direction in which the wind turbine rotor 5 and the rotor head (hub) 4 are attached to the main shaft 7.
In addition, the code | symbol 3a in a figure is a base plate of the nacelle 3, and Rm is a reinforcement member.

磁気軸受MBは、主軸7の外周面に設置された回転側磁性体Mrと、主軸7の外周部材に固定設置された固定側磁性体Mfとにより構成され、周方向を複数に分割した磁気軸受分割体Mpの集合体である。すなわち、磁気軸受MBは、複数の磁気軸受分割体Mpを主軸7の外周を取り囲むようにして周方向に略均等配置した構成とされる。   The magnetic bearing MB is composed of a rotation-side magnetic body Mr installed on the outer peripheral surface of the main shaft 7 and a fixed-side magnetic body Mf fixedly installed on the outer peripheral member of the main shaft 7, and the magnetic bearing divided into a plurality of circumferential directions. It is an aggregate of divided bodies Mp. That is, the magnetic bearing MB has a configuration in which a plurality of magnetic bearing divided bodies Mp are arranged substantially equally in the circumferential direction so as to surround the outer periphery of the main shaft 7.

ところで、図示の磁気軸受MBは、回転側磁性体Mr及び固定側磁性体Mfの一方が、好適には固定側磁性体Mfが電磁石であり、通電により磁力及びS/Nの極性(磁力の負荷方向)を制御できるようになっている。なお、回転側磁性体Mrは、主軸7の外表面に埋め込まれた磁石となる。   Incidentally, in the illustrated magnetic bearing MB, one of the rotation-side magnetic body Mr and the fixed-side magnetic body Mf, preferably the fixed-side magnetic body Mf, is an electromagnet. Direction) can be controlled. The rotation-side magnetic body Mr is a magnet embedded in the outer surface of the main shaft 7.

上述した磁気軸受MBの近傍には、回転側磁性体Mrと固定側磁性体Mfとの間に生じる半径方向の面間距離(図13に示すギャップG)を検出するギャップセンサGSが設置されている。このギャップセンサGSは、検出したギャップGを図示しない制御部に入力されることにより、例えば電磁石とした固定側磁性体Mfの磁力や極性の制御に使用される。すなわち、磁気軸受MBは、ギャップセンサGSの検出値に応じて、磁気分割体Mp毎の磁力及び磁力の負荷方向を変化させるように構成されている。   A gap sensor GS for detecting a radial inter-surface distance (gap G shown in FIG. 13) generated between the rotation-side magnetic body Mr and the fixed-side magnetic body Mf is installed in the vicinity of the magnetic bearing MB described above. Yes. The gap sensor GS is used to control the magnetic force and polarity of the fixed-side magnetic body Mf, which is an electromagnet, for example, by inputting the detected gap G to a control unit (not shown). That is, the magnetic bearing MB is configured to change the magnetic force and the load direction of the magnetic force for each magnetic divided body Mp according to the detection value of the gap sensor GS.

このような第2態様の磁気軸受MBを備えた軸受支持構造は、転がり軸受Bf,Brに加えて、寿命評価に用いる等価荷重条件下におけるラジアル荷重を低減する補助軸受を備えたものとなる。従って、転がり軸受Bf,Brの荷重負担低減により、特に、ハブ中心(ロータヘッド中心)の荷重負荷位置Hcに近いフロント側の転がり軸受Bfにおいて、軸受下側の領域で主軸7と反発し、かつ、軸受上側の領域で主軸7を引き寄せることにより、下向きに作用するラジアル荷重を低減して軸受体格の大型化を抑制することができる。   In addition to the rolling bearings Bf and Br, the bearing support structure including the magnetic bearing MB of the second aspect includes an auxiliary bearing that reduces a radial load under an equivalent load condition used for life evaluation. Therefore, by reducing the load load of the rolling bearings Bf and Br, particularly in the rolling bearing Bf on the front side close to the load loading position Hc at the center of the hub (center of the rotor head), it repels the main shaft 7 in the region below the bearing, and By pulling the main shaft 7 in the region on the upper side of the bearing, it is possible to reduce the radial load acting downward and suppress the increase in size of the bearing body.

以下では、上述した磁気軸受MBについて、補助軸受としての動作を図13に基づいて具体的に説明する。
主軸7においては、ハブ中心の荷重負荷位置Hcに作用する下向きの荷重により、寿命評価用の等価荷重(ラジアル荷重)は下向きとなる。従って、通常運転時荷重負荷は、ニュートラル位置で略同心となる主軸7及び磁気軸受MBの固定側磁性体Mfの位置関係が変動する。すなわち、主軸7がラジアル荷重を受けて下方へ移動し、主軸7の上方領域においてギャップGがニュートラル位置との比較において拡大する。
Below, the operation | movement as an auxiliary bearing is demonstrated concretely based on FIG. 13 about magnetic bearing MB mentioned above.
In the main shaft 7, the equivalent load (radial load) for life evaluation is downward due to the downward load acting on the load load position Hc at the center of the hub. Therefore, the load relationship during normal operation varies in the positional relationship between the main shaft 7 and the fixed-side magnetic body Mf of the magnetic bearing MB that are substantially concentric at the neutral position. That is, the main shaft 7 receives a radial load and moves downward, and the gap G expands in the upper region of the main shaft 7 in comparison with the neutral position.

このようなギャップGの変化は、ギャップセンサGSの検出値から認識することができ、同時に、荷重負荷方向の把握が可能となる。
そこで、荷重負荷方向と逆方向へ吸引力が発生するように、磁気軸受MBの電磁石を制御する。すなわち、図示の構成例では、白抜矢印の方向に吸引力が発生するように固定側磁性体Mfの電磁石を制御すれば、主軸7は本来の回転軸線Rsの方向へ近づいてギャップGが低減されるので、転がり軸受Bfに作用する軸受荷重の低減が可能となる。なお、固定側磁性体Mfの電磁石は、主軸7を回転軸線Rsの方向へ極力近づけるため、ギャップGに応じて磁力を適宜調整すればよい。
Such a change in the gap G can be recognized from the detection value of the gap sensor GS, and at the same time, the load load direction can be grasped.
Therefore, the electromagnet of the magnetic bearing MB is controlled so that the attractive force is generated in the direction opposite to the load direction. That is, in the illustrated configuration example, if the electromagnet of the fixed-side magnetic body Mf is controlled so that an attractive force is generated in the direction of the white arrow, the main shaft 7 approaches the original rotation axis Rs and the gap G is reduced. Therefore, the bearing load acting on the rolling bearing Bf can be reduced. The electromagnet of the fixed-side magnetic body Mf may adjust the magnetic force as appropriate according to the gap G in order to bring the main shaft 7 as close as possible to the direction of the rotation axis Rs.

一方、非常時などの異常荷重負荷が作用して他の領域(図示の例では下側領域)にニュートラル時より大きなギャップGが生じた場合、これをギャップセンサGSが検知することで、ギャップGを低減する方向に吸引力(白抜矢印参照)が生じるように、磁気軸受MBの電磁石を制御する。この結果、主軸7が本来の回転軸線Rsの方向へ近づくので、ギャップGが低減されるとともに転がり軸受Bfに作用する軸受荷重も低減される。   On the other hand, when an abnormal load such as an emergency is applied and a gap G larger than that at the neutral time is generated in another region (lower region in the illustrated example), the gap G is detected by the gap sensor GS. The electromagnet of the magnetic bearing MB is controlled so that the attractive force (see the white arrow) is generated in the direction of reducing. As a result, the main shaft 7 approaches the direction of the original rotation axis Rs, so that the gap G is reduced and the bearing load acting on the rolling bearing Bf is also reduced.

このように、補助軸受として磁気軸受MBを転がり軸受Bfより先端側に設けた軸受支持構造は、磁気軸受MBの磁力や磁力の負荷方向をギャップGの検出値をニュートラル状態へ極力近づけるように制御することで、ロータヘッド4が存在する先端側の滑り軸受Bfで負担するラジアル荷重を低減することができる。
なお、磁気軸受MBの電磁石は、吸引力と反発力とを同時に作用させるようにしてもよく、このような場合には、吸引側の方向から180度の逆方向が反発力の作用方向となる。
As described above, the bearing support structure in which the magnetic bearing MB is provided as the auxiliary bearing on the tip side from the rolling bearing Bf is controlled so that the magnetic force of the magnetic bearing MB and the load direction of the magnetic force are as close as possible to the detection value of the gap G. By doing so, the radial load borne by the sliding bearing Bf on the tip side where the rotor head 4 exists can be reduced.
Note that the electromagnet of the magnetic bearing MB may simultaneously apply the attractive force and the repulsive force. In such a case, the reverse direction of 180 degrees from the direction of the attractive side is the direction of the repulsive force. .

次に、上述した第2態様の軸受支持構造について、第1参考例を図14に基づいて説明する。
この参考例で採用する補助軸受は、等価荷重条件下及び最大荷重条件下でのラジアル荷重を低減するものである。この補助軸受は、主軸7に通常運転時の負荷荷重を受けた状態で軸部外周面と非接触となり、かつ、主軸7に異常荷重負荷を受けた状態で軸部外周面と接触となるように、軸部外周面との面間距離を設定した滑り軸受SBである。この場合、滑り軸受SBに用いる油は、例えば主軸受等のように、近傍に設置された機器類と併用することも可能である。
なお、滑り軸受SBの位置は、転がり軸受Bf,Brの間に配置されているが、転がり軸受Bfより先端側に配置するなど、特に限定されることはない。
Next, a first reference example will be described based on FIG. 14 with respect to the bearing support structure of the second aspect described above.
The auxiliary bearing employed in this reference example reduces the radial load under equivalent load conditions and maximum load conditions. The auxiliary bearing is not in contact with the outer peripheral surface of the shaft portion when the main shaft 7 receives a load load during normal operation, and is in contact with the outer peripheral surface of the shaft portion when the main shaft 7 receives an abnormal load load. Further, the sliding bearing SB is set with a distance between the outer peripheral surface of the shaft portion. In this case, the oil used for the sliding bearing SB can also be used in combination with equipment installed in the vicinity, such as a main bearing.
Note that the position of the sliding bearing SB is arranged between the rolling bearings Bf and Br, but is not particularly limited, such as being arranged on the tip side of the rolling bearing Bf.

このような軸受支持構造によれば、補助軸受の滑り軸受SBは、通常運転時の負荷荷重からラジアル荷重が増加して異常荷重負荷に近づくと、周方向のいずれかで面間距離が減少して軸部外周面と接触する。このため、滑り軸受SBが軸受として機能し、ラジアル荷重の一部を負担するので、転がり軸受Bfにおいて負担するラジアル荷重を低減することができる。   According to such a bearing support structure, the sliding bearing SB of the auxiliary bearing reduces the inter-surface distance in any of the circumferential directions when the radial load increases from the load load during normal operation and approaches an abnormal load load. In contact with the outer peripheral surface of the shaft. For this reason, since the sliding bearing SB functions as a bearing and bears a part of the radial load, the radial load burdened on the rolling bearing Bf can be reduced.

次に、上述した第2態様の軸受支持構造について、第2参考例を図15及び図16に基づいて説明する。
この参考例で採用する補助軸受は、等価荷重条件下及び最大荷重条件下でのアキシアル荷重を低減するものである。
Next, a second reference example will be described based on FIGS. 15 and 16 for the above-described bearing support structure of the second aspect.
The auxiliary bearing used in this reference example reduces the axial load under the equivalent load condition and the maximum load condition.

ここで採用する補助軸受の磁気軸受MBは、主軸7の外周面から突出して一体に回転するとともに、軸線Rsと直交する磁性体面を軸方向両面に有する回転側磁性体Mrと、主軸7の外周部材(例えば台板3a)に固定設置されるとともに、回転側磁性体Mrの軸方向両側に対向する磁性体面を有する一対の固定側磁性体Mfとにより構成される。なお、この参考例では、固定側磁性体Mfが電磁石となり、極性や磁力等を適宜制御できる。 The magnetic bearing MB of the auxiliary bearing adopted here protrudes from the outer peripheral surface of the main shaft 7 and rotates integrally therewith, and also has a rotation-side magnetic body Mr having magnetic surfaces orthogonal to the axis Rs on both axial sides, and the outer periphery of the main shaft 7. It is configured by a pair of fixed-side magnetic bodies Mf that are fixedly installed on a member (for example, the base plate 3a) and that have magnetic surfaces facing both sides in the axial direction of the rotation-side magnetic body Mr. In this reference example, the fixed-side magnetic body Mf is an electromagnet, and the polarity, magnetic force, and the like can be appropriately controlled.

この磁気軸受MBは、回転側磁性体Mrと固定側磁性体Mfとの間に生じる面間距離(図15に示すギャップGf,Gr)をギャップセンサGSで検出し、この検出値に応じて磁力及び磁力の負荷方向を変化させるように構成されている。
ここで、ギャップセンサGSで検出するギャップGf,Grは、主軸7に作用するアキシアル荷重の変動により変化する軸方向の面間距離である。
In this magnetic bearing MB, the inter-surface distance (gap Gf, Gr shown in FIG. 15) generated between the rotation-side magnetic body Mr and the fixed-side magnetic body Mf is detected by the gap sensor GS, and the magnetic force is determined according to the detected value. And it is comprised so that the load direction of magnetic force may be changed.
Here, the gaps Gf and Gr detected by the gap sensor GS are axial distances that change due to variations in the axial load acting on the main shaft 7.

このような磁気軸受MBを備えた第2参考例の軸受支持構造によれば、転がり軸受Bf,Brに加えて、等価荷重条件下でのアキシアル荷重を低減することができ、従って、転がり軸受Bf,Brの荷重負担低減による軸受体格の大型化を抑制することができる。 According to the bearing support structure of the second reference example provided with such a magnetic bearing MB, in addition to the rolling bearings Bf and Br, the axial load under the equivalent load condition can be reduced, and therefore the rolling bearing Bf. , Br can reduce the increase in the size of the bearing body due to the reduced load burden of Br.

具体的に説明すると、主軸7にアキシアル荷重が作用すると、ニュートラル位置でギャップGf,Grが略一致(Gf≒Gr)するように設定されている。しかし、通常運転時荷重負荷(アキシアル荷重)が作用すると、軸先端側のギャップGfが増大するとともに、軸後端側のギャップGrが減少する。そこで、磁気軸受MBの固定側磁性体Mfは、ギャップGf,Grのアンバランスを是正する方向の磁力を発生する。   More specifically, when an axial load is applied to the main shaft 7, the gaps Gf and Gr are set to substantially coincide (Gf≈Gr) at the neutral position. However, when a load during normal operation (axial load) is applied, the gap Gf on the shaft front end side increases and the gap Gr on the shaft rear end side decreases. Therefore, the fixed-side magnetic body Mf of the magnetic bearing MB generates a magnetic force in a direction that corrects the unbalance of the gaps Gf and Gr.

すなわち、軸先端側の固定側磁性体Mfが回転側磁性体Mrを吸引し、ギャップGf,Grのアンバランスを是正してもよいし、軸後端側の固定側磁性体Mfによる反発力のみで、あるいは、吸引力及び反発力の両方を用いてアンバランスを是正してもよい。このようなギャップGf,Grのアンバランス是正は、ハブ6の中心において風車回転翼5から受けるアキシアル荷重(軸方向の先端側から後方へ向けた荷重)に対し、転がり軸受Bf,Brで負担するラジアル荷重を低減でき、軸受体格の大型化を防止できる。   That is, the shaft-side fixed-side magnetic body Mf may attract the rotation-side magnetic body Mr to correct the imbalance between the gaps Gf and Gr, or only the repulsive force by the shaft-side end-side fixed-side magnetic body Mf. Alternatively, the imbalance may be corrected by using both suction force and repulsive force. Such unbalance correction of the gaps Gf and Gr is borne by the rolling bearings Bf and Br against the axial load (the load directed from the front end side in the axial direction to the rear) received from the wind turbine rotor 5 at the center of the hub 6. The radial load can be reduced and the size of the bearing body can be prevented from increasing.

次に、上述した第2態様の軸受支持構造について、第3参考例を図17に基づいて説明する。
この参考例で採用する補助軸受は、等価荷重条件下及び最大荷重条件下におけるアキシアル荷重を低減するものである。この補助軸受は、主軸7と一体に回転するフランジ部Sfのストッパ面Saに対し、滑り軸受SBを接触させてアキシアル荷重を低減する。
Next, a third reference example will be described based on FIG. 17 with respect to the bearing support structure of the second aspect described above.
The auxiliary bearing employed in this reference example reduces the axial load under the equivalent load condition and the maximum load condition. The auxiliary bearing reduces the axial load by bringing the sliding bearing SB into contact with the stopper surface Sa of the flange portion Sf that rotates integrally with the main shaft 7.

具体的に説明すると、滑り軸受SBは、主軸7の外周面から突出して軸線Rsと直交する周方向のストッパ面Saを形成し、主軸7と一体に回転するフランジ部Sfに対し、主軸7の外周側部材(例えば台板3a等)に固定設置されてストッパ面Saの対向面を形成するように設置されている。この滑り軸受SBは、通常運転時の負荷荷重を受けた状態でストッパ面Saに対して非接触とされ、かつ、主軸7に異常荷重負荷を受けた状態でストッパ面Saに接触する軸方向位置に設置されている。   More specifically, the slide bearing SB projects from the outer peripheral surface of the main shaft 7 to form a circumferential stopper surface Sa perpendicular to the axis Rs, and the flange 7 S rotates integrally with the main shaft 7 so that the main shaft 7 rotates. It is installed so as to be fixed to an outer peripheral side member (for example, the base plate 3a) and to form a facing surface of the stopper surface Sa. The sliding bearing SB is in non-contact with the stopper surface Sa in a state of receiving a load load during normal operation, and is in an axial position in contact with the stopper surface Sa in a state of receiving an abnormal load load on the main shaft 7. Is installed.

このような軸受支持構造によれば、補助軸受の滑り軸受SBは、通常運転時の負荷荷重からアキシアル荷重が増加して異常荷重負荷に近づくと、ストッパ面Saと接触して軸受として機能するので、転がり軸受Bf,Brにおいて負担するアキシアル荷重を低減することができる。
なお、図示の構成例では、軸方向に前後2組の滑り軸受SB及びフランジ部Sfを設けてあるが、特に限定されることはなく、1組または3組以上としてもよい。
According to such a bearing support structure, the sliding bearing SB of the auxiliary bearing functions as a bearing in contact with the stopper surface Sa when the axial load increases from the load load during normal operation and approaches an abnormal load load. The axial load borne by the rolling bearings Bf and Br can be reduced.
In the illustrated configuration example, two sets of front and rear sliding bearings SB and flange portions Sf are provided in the axial direction, but there is no particular limitation, and one set or three or more sets may be used.

最後に、上述した第2態様の軸受支持構造について、一の実施例を図18〜図19Bに基づいて説明する。
この実施例で採用する補助軸受は、最大荷重条件下での荷重を低減する補助支持機構ASである。以下、この補助支持機構ASについて具体的に説明する。
Finally, one embodiment of the above-described bearing support structure according to the second aspect will be described with reference to FIGS. 18 to 19B.
The auxiliary bearing employed in this embodiment is an auxiliary support mechanism AS that reduces the load under the maximum load condition. Hereinafter, the auxiliary support mechanism AS will be described in detail.

補助支持機構ASは、主軸7の外周面を取り囲むように配置されるとともに周方向を複数に分割された滑り軸受分割体Spと、滑り軸受分割体Spを半径方向に移動させる駆動機構の油圧シリンダHSとを備えている。この場合、滑り軸受分割体Spとしては、潤滑油を必要としないドライタイプが好適である。   The auxiliary support mechanism AS is disposed so as to surround the outer peripheral surface of the main shaft 7 and is divided into a plurality of sliding bearings Sp in the circumferential direction, and a hydraulic cylinder of a drive mechanism that moves the sliding bearing splits Sp in the radial direction. HS. In this case, a dry type that does not require lubricating oil is suitable as the sliding bearing split Sp.

この補助支持機構ASは、主軸7に通常運転時の負荷荷重を受けた状態において、滑り軸受分割体Spと主軸7の外周面とが非接触の状態(図19A上段を参照)とされ、従って、転がり軸受Bf内の主軸上方領域には、内輪RiとベアリングWとの間に隙間δ1(図19A上段を参照)が形成されている。なお、この状態において、転がり軸受Bf内の主軸下方領域では、ベアリングWが内輪Ri及び外輪Roと接触状態にあり、隙間が存在しない状態となっている。   The auxiliary support mechanism AS is in a state in which the sliding bearing divided body Sp and the outer peripheral surface of the main shaft 7 are not in contact with each other when the main shaft 7 receives a load during normal operation (see the upper part of FIG. 19A). A gap δ1 (see the upper part of FIG. 19A) is formed between the inner ring Ri and the bearing W in the region above the main shaft in the rolling bearing Bf. In this state, in the region below the main shaft in the rolling bearing Bf, the bearing W is in contact with the inner ring Ri and the outer ring Ro, and there is no gap.

また、主軸7に異常荷重負荷を受けた状態(図19B下段を参照)においては、油圧シリンダHSが滑り軸受分割体Spを軸中心方向へ移動させ、滑り軸受分割体Spを軸部外周面と接触させるように構成されている。
なお、図示の構成例では、補助支持機構ASを周方向へ120度ピッチに3組設置しているが、特に限定されるものではない。
Further, in a state where the main shaft 7 is subjected to an abnormal load (see the lower part of FIG. 19B), the hydraulic cylinder HS moves the sliding bearing divided body Sp toward the axial center, and the sliding bearing divided body Sp is moved to the shaft outer peripheral surface. It is comprised so that it may contact.
In the illustrated configuration example, three sets of auxiliary support mechanisms AS are installed at a 120-degree pitch in the circumferential direction, but the present invention is not particularly limited.

このような軸受支持構造によれば、補助軸受の補助支持機構ASは、主軸7が通常運転時の負荷荷重を受けた状態では軸部外周面と非接触となり、滑り軸受分割体Spは滑り軸受としての機能を発揮することはない。
しかし、主軸7が異常荷重負荷を受けた状態、あるいは、負荷荷重が異常荷重負荷に近づいた状態になると、油圧シリンダHSが動作して滑り軸受分割体Spを軸中心方向へ移動させ、滑り軸受分割体Spを軸部外周面に接触させて押圧する。
According to such a bearing support structure, the auxiliary support mechanism AS of the auxiliary bearing is not in contact with the outer peripheral surface of the shaft portion when the main shaft 7 receives a load load during normal operation, and the sliding bearing split Sp is a sliding bearing. It does not demonstrate its function.
However, when the main shaft 7 is subjected to an abnormal load load, or the load load is close to the abnormal load load, the hydraulic cylinder HS is operated to move the slide bearing divided body Sp toward the center of the shaft, and the slide bearing. The divided body Sp is brought into contact with the outer peripheral surface of the shaft portion and pressed.

この結果、軸受分割体Spは、主軸7を回転可能に支持する滑り軸受として機能するので、転がり軸受Bf,Brにおいて負担するラジアル荷重やアキシアル荷重を低減することができる。このように、軸受分割体Spが滑り軸受として機能すると、転がり軸受Bf内においては、ベアリングWと内輪Riとの間に隙間δ2,δ3が生じて(図19A下段を参照)非接触の状態となるため、荷重負担が低減されている。
なお、上述した隙間δ1は、隙間δ2と隙間δ3との和(δ1=δ2+δ3)となる。
As a result, since the bearing split body Sp functions as a sliding bearing that rotatably supports the main shaft 7, it is possible to reduce the radial load and the axial load that are borne by the rolling bearings Bf and Br. As described above, when the bearing divided body Sp functions as a sliding bearing, the clearances δ2 and δ3 are generated between the bearing W and the inner ring Ri in the rolling bearing Bf (see the lower stage in FIG. 19A). Therefore, the load burden is reduced.
The above-described gap δ1 is the sum of the gap δ2 and the gap δ3 (δ1 = δ2 + δ3).

また、上述した油圧シリンダHSを動作させる条件の設定により、転がり軸受Bf,Brで負担する荷重は、通常運転時の負荷荷重を超えないように限定することも可能である。   Further, by setting the conditions for operating the hydraulic cylinder HS described above, the load borne by the rolling bearings Bf and Br can be limited so as not to exceed the load load during normal operation.

このように、上述した第2態様、参考例及び一の実施例によれば、転がり軸受Bf,Brに加えて、等価荷重条件下及び最大荷重条件下でのラジアル荷重またはアキシアル荷重を低減する補助軸受を備えた軸受支持構造としたので、転がり軸受Bf,Brの荷重負担低減による軸受体格の大型化を抑制することができる。
なお、本発明は上述した実施形態に限定されることはなく、発電機駆動系が増速機を備えた増速方式に限定されないなど、その要旨を逸脱しない範囲内において適宜変更することができる。
As described above, according to the second aspect , the reference example, and the one embodiment described above, in addition to the rolling bearings Bf and Br, the auxiliary load for reducing the radial load or the axial load under the equivalent load condition and the maximum load condition. Since the bearing support structure is provided with a bearing, it is possible to suppress an increase in the size of the bearing body due to the reduced load burden on the rolling bearings Bf and Br.
Note that the present invention is not limited to the above-described embodiment, and the generator drive system is not limited to a speed increasing system provided with a speed increaser, and can be appropriately changed within a range not departing from the gist thereof. .

1 風力発電装置
2 支柱(タワー)
3 ナセル
3a 台板
4 ロータヘッド(ハブ)
5 風車回転翼
7 主軸
10 複列テーパコロ軸受(主軸受)
20 滑り軸受(補助軸受)
21,21A 軸受面
22 隙間
23 間隙部
24 ステー
40 ピッチ軸受
50,70 ヨー軸受
60 ヨーブレーキ装置
Bf,Br 転がり軸受
MB 磁気軸受
Mr 回転側磁性体
Mf 固定側磁性体
Mp 磁気軸受分割体
GS ギャップセンサ
SB 滑り軸受
Sf フランジ部
Sa ストッパ面
AS 補助支持機構
Sp 滑り軸受分割体
HS 油圧シリンダ
1 Wind power generator 2 Strut (tower)
3 Nacelle 3a Base plate 4 Rotor head (hub)
5 Wind turbine rotor blade 7 Main shaft 10 Double row tapered roller bearing (main bearing)
20 Sliding bearing (auxiliary bearing)
21, 21A Bearing surface 22 Gap 23 Gap portion 24 Stay 40 Pitch bearing 50, 70 Yaw bearing 60 Yaw brake device Bf, Br Rolling bearing MB Magnetic bearing Mr Rotating side magnetic body Mf Fixed side magnetic body Mp Magnetic bearing divided body GS Gap sensor SB Slide bearing Sf Flange portion Sa Stopper surface AS Auxiliary support mechanism Sp Slide bearing divided body HS Hydraulic cylinder

Claims (6)

複数の風車回転翼を備え、水平な軸線を中心に回転するロータヘッドの軸部を回転可能に片持ち支持する軸受支持構造を有する風力発電装置であって、
前記軸受支持構造は、
前記ロータヘッドの軸部先端側をモーメントが作用する片持ち梁状に単独支持可能な転がり軸受と、前記転がり軸受の軸部後端側を支持する補助軸受とを備え、
前記転がり軸受は、所定値以下の荷重が作用する通常運転時に前記軸部を単独支持し、
前記補助軸受は、前記所定値を超えた大荷重が作用する非常運転時にのみ前記軸部を前記転がり軸受と協働して支持し、
前記補助軸受は、前記非常運転時に作用する最大荷重と、前記最大荷重よりも小さな値の疲労荷重の差分を受け持ち、
前記通常運転時に前記軸部を単独支持する前記転がり軸受は、前記疲労荷重によって体格決定されていることを特徴とする風力発電装置。
A wind turbine generator having a bearing support structure that includes a plurality of wind turbine rotor blades and rotatably supports a shaft portion of a rotor head that rotates about a horizontal axis,
The bearing support structure is
A rolling bearing that can be independently supported in the form of a cantilever in which a moment acts on the front end side of the shaft portion of the rotor head, and an auxiliary bearing that supports the rear end side of the shaft portion of the rolling bearing,
The rolling bearing individually supports the shaft during normal operation when a load of a predetermined value or less acts,
The auxiliary bearing supports the shaft portion in cooperation with the rolling bearing only during an emergency operation in which a large load exceeding the predetermined value acts.
The auxiliary bearing is responsible for the difference between the maximum load acting during the emergency operation and a fatigue load having a value smaller than the maximum load,
The wind turbine generator according to claim 1, wherein the rolling bearing that independently supports the shaft portion during the normal operation is determined by the fatigue load.
前記補助軸受の軸受面と前記軸部の外周面との間には、前記通常運転時に所定の面間距離を維持して間隙部が形成されていることを特徴とする請求項1に記載の風力発電装置。   The gap portion is formed between the bearing surface of the auxiliary bearing and the outer peripheral surface of the shaft portion while maintaining a predetermined inter-surface distance during the normal operation. Wind power generator. 前記補助軸受の軸受面は、周方向の全周にわたって、あるいは、周方向を複数に分割した不連続状態に設けられていることを特徴とする請求項2に記載の風力発電装置。   The wind turbine generator according to claim 2, wherein the bearing surface of the auxiliary bearing is provided in a discontinuous state over the entire circumference in the circumferential direction or divided into a plurality of circumferential directions. 前記補助軸受が滑り軸受であることを特徴とする請求項1から3のいずれか1項に記載の風力発電装置。   The wind turbine generator according to any one of claims 1 to 3, wherein the auxiliary bearing is a sliding bearing. 複数の風車回転翼を備え、水平な軸線を中心に回転するロータヘッドの軸部を、軸方向に所定の間隔を設けて配置した複数の転がり軸受により回転可能に支持する軸受支持構造を有する風力発電装置であって、
前記軸受支持構造は、
前記転がり軸受は、通常運転時のラジアル荷重またはアキシアル荷重を負担し、
前記通常運転時の前記ラジアル荷重または前記アキシアル荷重よりも荷重が増加したとき、前記転がり軸受に加えて、前記ラジアル荷重または前記アキシアル荷重を負担し、等価荷重条件下及び最大荷重条件下での前記転がり軸受に作用する前記ラジアル荷重または前記アキシアル荷重を低減する補助軸受を備え、
前記補助軸受は、前記軸部の軸部外周面を取り囲むように配置されるとともに周方向を複数に分割された滑り軸受分割体と、前記滑り軸受分割体を半径方向に移動させる駆動機構とを備え、
前記軸部に通常運転時の負荷荷重を受けた状態では、前記滑り軸受分割体と前記軸部外周面とが非接触とされ、かつ、前記軸部に異常荷重負荷を受けた状態では、前記駆動機構が前記滑り軸受分割体を軸中心方向へ移動させて前記軸部外周面と接触させるように構成された補助支持機構であることを特徴とする風力発電装置。
Wind power having a bearing support structure that includes a plurality of wind turbine rotor blades and rotatably supports a shaft portion of a rotor head that rotates about a horizontal axis by a plurality of rolling bearings arranged at predetermined intervals in the axial direction. A power generator,
The bearing support structure is
The rolling bearing bears a radial load or an axial load during normal operation,
When the load increases more than the radial load or the axial load during the normal operation, in addition to the rolling bearing, the radial load or the axial load is borne, and the equivalent load condition and the maximum load condition are satisfied. An auxiliary bearing for reducing the radial load or the axial load acting on a rolling bearing ;
The auxiliary bearing includes a sliding bearing divided body that is arranged so as to surround the outer peripheral surface of the shaft portion of the shaft portion and is divided into a plurality of circumferential directions, and a drive mechanism that moves the sliding bearing divided body in the radial direction. Prepared,
In a state in which the shaft portion receives a load load during normal operation, the sliding bearing divided body and the shaft portion outer peripheral surface are not in contact with each other, and in a state in which the shaft portion receives an abnormal load load, The wind power generator, wherein the drive mechanism is an auxiliary support mechanism configured to move the sliding bearing divided body in the axial center direction so as to contact the outer peripheral surface of the shaft portion .
複数の風車回転翼を備え、水平な軸線を中心に回転するロータヘッドの軸部を、軸方向に所定の間隔を設けて配置した複数の転がり軸受により回転可能に支持する軸受支持構造を有する風力発電装置であって、
前記軸受支持構造は、
前記転がり軸受に加えて、等価荷重条件下及び最大荷重条件下でのラジアル荷重またはアキシアル荷重を低減する補助軸受を備え、
前記補助軸受は、前記軸部の軸部外周面を取り囲むように配置されるとともに周方向を複数に分割された滑り軸受分割体と、前記滑り軸受分割体を半径方向に移動させる駆動機構とを備え、
前記軸部に通常運転時の負荷荷重を受けた状態では、前記滑り軸受分割体と前記軸部外周面とが非接触とされ、かつ、前記軸部に異常荷重負荷を受けた状態では、前記駆動機構が前記滑り軸受分割体を軸中心方向へ移動させて前記軸部外周面と接触させるように構成された補助支持機構であることを特徴とする風力発電装置。
Wind power having a bearing support structure that includes a plurality of wind turbine rotor blades and rotatably supports a shaft portion of a rotor head that rotates about a horizontal axis by a plurality of rolling bearings arranged at predetermined intervals in the axial direction. A power generator,
The bearing support structure is
In addition to the rolling bearing, an auxiliary bearing that reduces radial load or axial load under equivalent load conditions and maximum load conditions is provided,
The auxiliary bearing includes a sliding bearing divided body that is arranged so as to surround the outer peripheral surface of the shaft portion of the shaft portion and is divided into a plurality of circumferential directions, and a drive mechanism that moves the sliding bearing divided body in the radial direction. Prepared,
In a state in which the shaft portion receives a load load during normal operation, the sliding bearing divided body and the shaft portion outer peripheral surface are not in contact with each other, and in a state in which the shaft portion receives an abnormal load load, The wind power generator, wherein the drive mechanism is an auxiliary support mechanism configured to move the sliding bearing divided body in the axial center direction so as to contact the outer peripheral surface of the shaft portion.
JP2014560544A 2013-02-05 2013-02-05 Wind power generator Active JP6144287B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/052531 WO2014122719A1 (en) 2013-02-05 2013-02-05 Bearing support structure and wind power generator

Publications (2)

Publication Number Publication Date
JPWO2014122719A1 JPWO2014122719A1 (en) 2017-01-26
JP6144287B2 true JP6144287B2 (en) 2017-06-07

Family

ID=51299334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014560544A Active JP6144287B2 (en) 2013-02-05 2013-02-05 Wind power generator

Country Status (2)

Country Link
JP (1) JP6144287B2 (en)
WO (1) WO2014122719A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109268222B (en) * 2018-09-26 2020-05-26 三一重能有限公司 Wind generating set and bearing assembly thereof
JP7224260B2 (en) * 2019-08-26 2023-02-17 三菱重工業株式会社 Load detector
JP6892004B1 (en) * 2020-03-30 2021-06-18 ダイキン工業株式会社 Motor system and turbo compressor equipped with it
FR3128977B1 (en) * 2021-11-09 2023-11-24 Safran Aircraft Engines Bearing assembly

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529293B2 (en) * 1973-03-19 1980-08-02
JPS5929418U (en) * 1982-08-20 1984-02-23 松下電器産業株式会社 air bearing
JPH08277845A (en) * 1995-04-03 1996-10-22 Shinko Electric Co Ltd Bearing load control device
JP2000170766A (en) * 1998-12-01 2000-06-20 Seiko Seiki Co Ltd Generator set utilizing magnetic bearing
JP2000197392A (en) * 1998-12-24 2000-07-14 Nsk Ltd Wind power generator
US7391128B2 (en) * 2004-12-30 2008-06-24 Rozlev Corp., Llc Wind generator system using attractive magnetic forces to reduce the load on the bearings
JP4522266B2 (en) * 2005-01-11 2010-08-11 Ntn株式会社 Double row roller bearing
JP5004535B2 (en) * 2005-08-25 2012-08-22 Ntn株式会社 Turbine unit for air cycle refrigeration cooling
JP2008038935A (en) * 2006-08-01 2008-02-21 Boc Edwards Kk Bearing device and turbo molecular pump
EP2410172A1 (en) * 2010-05-31 2012-01-25 Mitsubishi Heavy Industries, Ltd. Rolling bearing for wind power generator, and wind power generator

Also Published As

Publication number Publication date
JPWO2014122719A1 (en) 2017-01-26
WO2014122719A1 (en) 2014-08-14

Similar Documents

Publication Publication Date Title
JP5412516B2 (en) Wind power generator
CN109519346B (en) Thrust bearing for a wind turbine
US10859113B2 (en) Bearing arrangement for fluid machinery application
JP5017259B2 (en) Bearing unit for a rotor blade of a wind power generator, a wind power generator equipped with such a rotor blade bearing, and a method for operating such a wind power generator
JP5650210B2 (en) Wind turbine main bearing
US9297414B2 (en) Bearing unit for fluid machinery application
JP6469379B2 (en) Ball bearing type auxiliary bearing for magnetically suspended rotor system
US10385822B2 (en) Wind turbine rotor shaft arrangement
JP6144287B2 (en) Wind power generator
KR20110089293A (en) Wind-driven generator
US20150098825A1 (en) Bearing arrangement
JP2011174614A (en) Bearing system used for wind turbine rotor
JP2006177268A (en) Rotatably supporting device for wind power generator
WO2018194025A1 (en) Slewing bearing and processing method thereof
EP2679815B1 (en) Wind turbine with a rotating assembly
CN112955671B (en) Rolling bearing device and wind power plant
WO2015057126A1 (en) Wind turbine rotor bearing arrangement
JP2006090346A (en) Double row automatic aligning roller bearing and main shaft supporting structure of wind power generator
WO2015057136A1 (en) A marine current turbine comprising a multi row bearing
JP2006090345A (en) Double row automatic aligning roller bearing and main shaft supporting structure of wind power generator
WO2015057127A1 (en) A wind turbine comprising a multi row bearing
JP2014177984A (en) Bearing pad, bearing device, and rotary machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170510

R150 Certificate of patent or registration of utility model

Ref document number: 6144287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150