JP2006207584A - 形状記憶合金を含むタービンエンジンステータ及び間隙制御方法 - Google Patents

形状記憶合金を含むタービンエンジンステータ及び間隙制御方法 Download PDF

Info

Publication number
JP2006207584A
JP2006207584A JP2006013360A JP2006013360A JP2006207584A JP 2006207584 A JP2006207584 A JP 2006207584A JP 2006013360 A JP2006013360 A JP 2006013360A JP 2006013360 A JP2006013360 A JP 2006013360A JP 2006207584 A JP2006207584 A JP 2006207584A
Authority
JP
Japan
Prior art keywords
sma
gap
engine operation
fluid
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006013360A
Other languages
English (en)
Other versions
JP2006207584A5 (ja
JP4805682B2 (ja
Inventor
Robert J Albers
ロバート・ジョセフ・アルバーズ
Rafael Ruiz
ラファエル・ルイズ
Marcia Boyle
マルシア・ボイル
Christopher Charles Glynn
クリストファー・チャールズ・グリン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2006207584A publication Critical patent/JP2006207584A/ja
Publication of JP2006207584A5 publication Critical patent/JP2006207584A5/ja
Application granted granted Critical
Publication of JP4805682B2 publication Critical patent/JP4805682B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/16Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means
    • F01D11/18Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means using stator or rotor components with predetermined thermal response, e.g. selective insulation, thermal inertia, differential expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/24Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/505Shape memory behaviour

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

【課題】回転ブレード配列組立体(11)との間に半径方向ギャップ(26)をはさんで並置した状態のタービンエンジンステータ組立体(18)を提供する。
【解決手段】本タービンエンジンステータ組立体(18)は、半径方向に可動のシュラウド(20)と、少なくとも1つの形状記憶合金(SMA)で作られたギャップ制御部材(28)とを含む。SMAは、エンジン作動中に該SMAの周りの温度に対応して所定量だけ変形してギャップ(26)の半径方向長さを変更するように選択されかつ予め調整されている。流体流れ手段(30)は、エンジン作動中に所定温度でSMAに流体(34)を供給する。
【選択図】 図1

Description

本発明は、総括的にはタービンエンジンステータ組立体に関し、より具体的には、タービンエンジンステータ組立体内の固定シュラウド面と並置したブレード配列部材の回転面との間の作動間隙を制御するための装置及び方法に関する。
軸流タービンエンジン、典型的にはガスタービンエンジンの形態は、エンジンの流路を形成する働きをする固定組立体の半径方向内部に回転組立体を含む。実施例は、流入空気を加圧する回転圧縮機組立体と、エンジン燃料燃焼の生成物から動力を引き出す回転タービン組立体とを含む。このような組立体は、周囲のステータ組立体内部に回転ブレードの段を有し、ステータ組立体は、回転ブレードの協働する面から間隔を置いて配置されたシュラウド面を含む。タービンエンジンの効率は、少なくとも部分的に、並置したシュラウド面と回転ブレードとの間の間隙若しくはギャップにより決まる。間隙が大き過ぎる場合には、そのようなギャップ間で望ましくないエンジン流路流体の漏洩が発生して、エンジン効率の低下を生じることになる。間隙が小さすぎる場合には、そのような組立体の回転及び固定部材間で干渉が起こり、そのような協働する面の1つ又はそれ以上に損傷を生じるおそれがある。
米国特許第6,367,253号公報 米国特許第6,065,934号公報 米国特許第6,135,713号公報 米国特許第6,220,550B1号公報 英国特許出願第2,354,290A号公報
このような装置における間隙の問題を複雑にしているのは、このようなタービンエンジン組立体間の間隙がエンジン作動条件(エンジン作動中に協働する部材が受けるところの、加速、減速、或いはその他の熱的状態若しくは遠心力条件における変化など)と共に変化することである、ということが事実としてよく知られている。このような組立体用の間隙制御の機構は、アクティブ間隙制御システムと呼ばれ、選択した間隙条件をエンジン作動中においても維持するための機械的システム即ち材料の熱膨張/収縮特性に基づいたシステムを有している。このようなシステムでは、一般的に、エンジンの作動サイクルで用いられている空気などを犠牲にして、加熱または冷却目的でかなりの量の空気を使用する必要がある。改良型のアクティブ間隙制御手段を提供することにより、エンジン流路におけるこのような加熱又は冷却目的の流体に対する必要性を低下せしめることは、エンジン効率を高めることに資する。
本発明の一つの形態は、エンジン作動前に第1の半径方向ギャップ長を有するギャップをはさんでタービンエンジン回転ブレード配列組立体の周りに円周方向に間隔を置いて配置されたタービンエンジンステータ組立体を含む。ステータ組立体は、ギャップの第1の半径方向境界面を形成するシュラウド内面を有する円周方向シュラウドを有し、また回転ブレード配列組立体は、ギャップの第2の半径方向境界面を形成するブレード配列部材外面を有するブレード配列部材を含む。このような形態では、ステータ組立体は、半径方向に可動であるシュラウドと、形状記憶合金(SMA)で作られた少なくとも1つのギャップ制御部材と、ギャップ制御部材のSMAに所定温度で例えば空気のような流体を供給する流体流れ手段とを含む。ギャップ制御部材のSMAは、エンジン作動中に流体の温度に対応して所定量だけ変形するように選択されかつ予め調整されて、タービンエンジン作動中に第1の半径方向ギャップ長を所定量だけ変更するようにシュラウド内面をブレード配列部材外面に対して半径方向に移動させる。
別の形態では、本発明は、例えばシュラウド内面のような円周方向固定面と例えばブレード配列部材外面のような円周方向回転面との間のギャップの半径方向長さを変更する方法を提供する。本方法の形態は、固定面が半径方向に移動するのを可能にする手段を設ける段階を含む。エンジン作動前に用いるために第1の半径方向ギャップ長が選択され、またエンジン作動中に用いるために少なくとも1つの付加的半径方向ギャップ長が選択される。固定面に作動可能に結合された、SMAで作られた部材が設けられる。SMAは、エンジン作動前に第1の半径方向ギャップ長のギャップをはさんで固定面及び回転面を位置決めしかつエンジン作動中に該SMAの周りの温度に対応して所定量だけ変形するように選択され、予め調整されかつ成形される。流体流れ手段は、エンジン作動中に所定温度で流体をSMAに供給して、固定面を回転面に対して半径方向に少なくとも1つの付加的半径方向ギャップ長まで移動させるようにSMAを所定量だけ変形させる。例えば、SMAは、エンジン作動前にブレード配列部材外面に対して第1の半径方向ギャップ長でシュラウド内面を位置決めするように予め調整され、かつエンジン作動中に流体の所定温度に対応して少なくとも1つの付加的半径方向ギャップ長でシュラウド内面を位置決めするように予め調整される。
形状記憶合金(SMA)と呼ばれる合金で作られた物品が、1つの物理的形状から少なくとも別の物理的形状への変化を可能にする温度関連の固体微細組織相の変化を被るような金属合金の例が幾つか報告されている。このような相変化が起こる温度は一般的に、合金の臨界又は遷移温度と呼ばれる。広く知られかつ報告されたSMAは、ニチノール合金とも呼ばれるチタンニッケル合金である。より最近報告されたより耐熱タイプのSMAは、Nb又はTaと合金化したRuの合金であり、この合金は、それぞれ室温から最高約1100°C又は約1400°Cまで変化すると言われている形状記憶遷移温度を生じる。特定の用途では、遷移温度は組成の改質によって変化させることができると報告されている。
作動中において1つの形状から他の少なくとも1つの形状に変化することを意図した物品をこのような合金から製造する場合には、その物品は、その遷移温度以上で作動させる使用を意図した第1の形状にもたらされる。このような第1の形状は、固体微細組織相の変化が起こる遷移温度即ち臨界温度以上の温度で、合金の物品プリフォームを加工しかつ焼きなますことによって作製される。しかしながら、その臨界温度以下では、このような合金は展性があり、第1の形状のその物品は、所望の第2の形状に、例えばほぼ室温で組立体内に包含することができるように、変形することができる。その後、例えば物品の実用作動中に、その第2の形状のSMA物品は、臨界温度以上に加熱されると、微細組織相変化を生じ、それにより物品は第1の形状に戻ることになる。
SMAについて記載しかつSMAで作られた物品を特定している多数の刊行物の代表的なものは、航空機着陸装置用のSMAアクチュエータに関するKutlucinarの米国特許第6,367,253号である。Jacot他の米国特許第6,065,934号、Domzalski他の米国特許第6,135,713号及びMcKillip,Jr.の米国特許第6,220,550B1号のような米国特許は、ヘリコプタ回転翼又はタブ制御に関係したアクチュエータにおけるSMAの使用を記載している。さらに、Care他の英国特許出願公開第2,354,290A号は、ガスタービンエンジン構成部品内の空気冷却用流量制御弁としてのSMAの使用を記載している。
本発明の種々の形態によると、タービンエンジンステータ組立体には、それらの間のギャップをはさんで並置した円周方向回転ブレード部材に対して半径方向に可動な円周方向固定シュラウドと、SMAの周りの温度に対応してシュラウドを半径方向に移動させるSMAで作られたギャップ制御部材と、前もって選択していた選択温度で例えば空気のような流体をSMAに供給する流体流れ手段との組合せが設けられている。ギャップ制御部材のSMAは、エンジン作動中にSMAの周りの温度に対応して所定量だけ変形するように選択されかつ予め調整される。本明細書で用いる場合、「半径方向の」又は「半径方向に」という用語を用いる語句は、ほぼエンジン軸線から離れる又は該エンジン軸線に向かうようなタービンエンジン内での全体的な又は主たる移動又は位置取りを意味する。同様に、「軸線方向に」という用語を用いる語句は、ほぼエンジン軸線に沿った又は該エンジン軸線の方向における位置取りを意味し、「円周方向の」又は「円周方向に」という用語を用いる語句は、エンジン軸線の周りでのほぼ円周方向における位置決め又は方向付けを意味する。
本発明は、図面を参照することによってさらに完全に理解されることになり、図面において、図1は、全体を符号10で示しかつエンジン軸線12の周りで円周方向に見た、軸流ガスタービンエンジンのタービンセクションの一部の概略部分断面図である。タービンセクション10は、固定タービンベーン16に軸方向に隣接した回転タービンブレード14のような円周方向回転ブレード配列部材の全体を回転ブレード組立体(符号11で示す)を含む。タービンセクション10内に含まれているのは、全体を符号18で示すタービンステータ組立体であり、このタービンステータ組立体は、一般的にはタービンブレード14の周りで円周方向に組立てられた複数の円周方向に隣接するシュラウドセグメントから成る円周方向固定タービンシュラウド20を含む。シュラウド20は、ブレード配列部材外面24と並置した状態で内面22を有し、これら面は、シュラウド内面22とブレード配列部材外面24との間のギャップ26のそれぞれ第1の境界面及び第2の境界面を表す。上述したように、ギャップ26の半径方向長さは、タービンエンジンの効率に影響を与えることになる。従って、ギャップ26の半径方向長さは、様々なエンジン作動条件中に可能な限り小さく維持することが望ましい。
ステータ組立体18内に含まれるのは、図面において強調するために断面図で示したギャップ制御部材28である。この実施形態におけるギャップ制御部材28は、SMAで作られかつシュラウド20に作動可能に結合されたステータ組立体18内に固定されたところの、円周方向リング状部材である。例えば、ギャップ制御部材28は、シュラウド20と直接接触した状態とすることも、或いは図面に示すように1つ又はそれ以上の中間ステータ組立体部材を介してシュラウド20と間接的に接触した状態とすることもできる。シュラウド20は、該シュラウド20を支持する部材若しくは手段の移動に対応して半径方向に可動である。
ギャップ制御部材28と協働するのは、図面に示すように、ギャップ制御部材28に(例として、ギャップ制御部材28の周りに)流体を供給する流体流れ手段30である。例として、エンジン作動条件の関数として、可変所定温度の空気を供給することができる。流体流れ手段30と関連しているのは、公知のタイプの流体流れ制御装置(図示せず)であってよく、その場合に、この流体流れ制御装置は、流体流れ手段用の流体の温度を選択的に変化させるように、エンジンの他の部分並びに(又は)その周りからの例えば空気のような流体を選択するための公知の予めプログラムされた流体弁と弁制御装置とを用いる。例えば、流体温度を変化させる自由度のために、空気及び/又は燃焼生成物を含むエンジン流路内流体と外部の周囲空気とは、圧縮機の様々な部分からと(または)、流体流れ手段とを通して付与するようになった周囲空気とから必要に応じて選択することができる。図面では、流体流れ手段30は、所定温度でギャップ制御部材28の周りに例えば軸方向前方の圧縮機(図示せず)からの空気のような流体34を供給する開口部32を含むほぼ円周方向の空気流チャンバ又はマニホルドとして表されている。ギャップ制御部材28のSMAは、エンジン作動中に流体34の温度に対応して所定量だけ変形するように選択されかつ予め調整される。流体34の温度は、例えば圧縮機の段、周囲の空気又はそれらの混合物などの流体源を適切に選択することによって変化させることができる。
本発明の実施形態によると、シュラウド20は、タービンブレード14に向かって若しくは該タービンブレード14から離れるようにほぼ半径方向に可動である。シュラウド20は、エンジン実用作動中にギャップ制御部材28が選択的に変形すると、ギャップ制御部材28による力を受けて移動する。図面の実施形態では、このような力は、ステータ組立体18の中間部材36を介してシュラウド20に伝達される。このようなシュラウド20の移動は、シュラウド内面22をブレード配列部材外面24に向かってまたは該部材外面24から離れるように移動させ、それによってギャップ26の半径方向長さを変更しかつ表面22及び24間の間隙を能動的にかつ選択的に制御してエンジン効率を向上させる。
図2に一部の概略部分断面図として、ギャップ制御部材28の別の実施形態を示す。この実施形態では、断面として全体を符号28で示されたギャップ制御部材は複数の円周方向に別個の部分38、40及び42を含むものであり、これらは、全体的に接して実質的に連続したセグメントギャップ制御部材を形成する。図3に一部の概略部分断面図として、ギャップ制御部材28のさらに別の実施形態を示す。断面として全体を符号28で示したギャップ制御部材は、複数の間隔を置いて配置された別個の円周方向リング44及び46を含む。各このような別個の部分は、様々なエンジンの作動条件中にギャップ26の制御を高めるように選択した温度遷移特性を有する同一のSMA又は異なるSMAで作ることができる。
本発明の別の形態は、エンジン作動中に例えばシュラウド内面22のような円周方向固定面と例えばブレード外面24のような円周方向回転面との間の例えばギャップ26のようなギャップの半径方向長さを変更する方法を提供する。本方法は、固定面22が半径方向に移動するのを可能にする手段を設ける段階を含む。第1の半径方向ギャップ長は、エンジン作動前に用いるように選択され、また少なくとも1つの付加的半径方向ギャップ長は、エンジン作動中における様々な作動条件に対して選択される。SMAで作られたギャップ制御部材28は、固定面22に作動可能に結合された状態で設けられる。SMAは、エンジン作動前に第1の半径方向ギャップ長のギャップ26をはさんで固定面22及び回転面24を位置決めしかつエンジン作動中にSMAの周りの温度に対応して所定量だけ変形するように選択され、予め調整されかつ成形される。流体流れ手段30は、所定温度で流体34をギャップ制御部材28のSMAに供給するように構成される。
本発明は、タービンエンジンステータ組立体が、様々なエンジン作動条件の間に、固定シュラウドの面と並置した回転ブレード配列部材の面との間の半径方向ギャップ長を変更することができるように構成した。特定の実施例、材料並びに構造及び形状の組合せに関連して本発明を説明してきたが、それらは本発明の技術的範囲を何ら限定するのではなくて、本発明の代表的なものであることを意図していることを理解されたい。例えばタービンエンジンの設計及び操作にまたSMA材料などの用途及び構造に関係した様々な当業者には、特許請求の範囲の技術的範囲から逸脱することなく本発明に変更及び修正を加えることができることが分かるであろう。
回転タービンブレードの周りに配置されかつその中にSMAギャップ制御部材の1つの実施形態を含むガスタービンエンジンタービンステータ組立体の一部の概略部分断面図。 ステータ組立体内にSMAギャップ制御部材の別の実施形態を含む、図1と同様の概略図。 ステータ組立体内にSMA部材のさらに別の実施形態を含む、図1と同様の概略図。
符号の説明
10 タービンセクション
11 回転ブレード配列組立体
12 エンジン軸線
14 タービンブレード
16 固定タービンベーン
18 ステータ組立体
20 シュラウド
22 シュラウド内面
24 ブレード配列部材外面
26 ギャップ
28 ギャップ制御部材
30 流体流れ手段
32 開口部
34 流体
36 中間部材
38、40、42、44、46 別個のSMA部分

Claims (8)

  1. タービンエンジン作動前において第1の半径方向ギャップ長を有するギャップ(26)を横切っているタービンエンジン回転ブレード配列組立体(11)の周りに円周方向に間隔を置いて配置されたタービンエンジンステータ組立体(18)であって、
    該ステータ組立体(18)は、前記ギャップ(26)の第1の半径方向境界面を規定するシュラウド内面(22)を有する円周方向シュラウド(20)を備え、
    前記回転ブレード配列組立体(11)は、前記ギャップ(26)の第2の半径方向境界面を規定するブレード配列部材外面(24)を有するブレード配列部材(14)を有し、
    前記円周方向シュラウド(20)は、半径方向に可動であり、
    前記ステータ組立体(18)は、少なくとも1つの形状記憶合金(SMA)で作られた少なくとも1つのギャップ制御部材(28)を、該ギャップ制御部材(28)のSMAに所定温度で流体(34)を供給する流体流れ手段(30)と組合せた状態で有し、
    前記ギャップ制御部材(28)のSMAが、エンジン作動中に流体(34)の温度に対応して所定量だけ変形するように選択されかつ予め調整されて、エンジン作動中に前記第1の半径方向ギャップ長を所定量だけ変更するように前記円周方向シュラウド(20)及びシュラウド内面(22)を前記ブレード配列部材外面(24)に対して半径方向に移動させることを特徴とするステータ組立体(18)。
  2. 前記流体流れ手段(30)が、前記SMAの周りに流体(34)を供給することを特徴とする請求項1記載のステータ組立体(18)。
  3. 前記流体流れ手段(30)が、エンジン作動中に流体(34)の温度を選択的に変化させるための流れ制御装置を含むことを特徴とする請求項1記載のステータ組立体(18)。
  4. 前記ギャップ制御部材(28)が、複数の別個のSMA部分(38、40、42/44、46)を含むことを特徴とする請求項1記載のステータ組立体(18)。
  5. 前記複数の別個のSMA部分(38、40、42/44、46)が、少なくとも2つの異なるSMAを含むことを特徴とする請求項4記載のステータ組立体(18)。
  6. タービンエンジンにおいて円周方向固定面(22)と円周方向回転面(24)との間のギャップの半径方向長さを変更する方法であって、
    前記固定面(22)が半径方向に移動するのを可能にする手段(36)を設ける段階と、
    エンジン作動前に用いる第1の半径方向ギャップ長を選択する段階と、
    エンジン作動中に用いる少なくとも1つの付加的半径方向ギャップ長を選択する段階と、
    前記固定面(22)に作動可能に結合された、SMAで作られかつ前記SMAがエンジン作動前に前記第1の半径方向長さのギャップ(26)をはさんで前記固定面(22)及び回転面(24)を位置決めしかつエンジン作動中に該SMAの周りの温度に対応して所定量だけ変形するように選択され、予め調整されかつ成形されたギャップ制御部材(28)を設ける段階と、
    エンジン作動中に所定温度で流体(34)を前記SMAに供給して、前記固定面(22)を前記回転面(24)に対して半径方向に少なくとも1つの付加的半径方向ギャップ長まで移動させるように所定量だけ変形させる流体流れ手段(30)を設ける段階と、
    を含むことを特徴とする方法。
  7. 前記固定面(22)が、シュラウド(20)の内面であり、
    また前記回転面(24)が、ブレード配列部材(14)の外面であることを特徴とする請求項6記載の方法。
  8. 前記流体流れ手段(30)が、前記SMAの周りに流体(34)を供給することを特徴とする請求項6記載の方法。
JP2006013360A 2005-01-26 2006-01-23 形状記憶合金を含むタービンエンジンステータ及び間隙制御方法 Expired - Fee Related JP4805682B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/043,369 US7367776B2 (en) 2005-01-26 2005-01-26 Turbine engine stator including shape memory alloy and clearance control method
US11/043,369 2005-01-26

Publications (3)

Publication Number Publication Date
JP2006207584A true JP2006207584A (ja) 2006-08-10
JP2006207584A5 JP2006207584A5 (ja) 2009-03-05
JP4805682B2 JP4805682B2 (ja) 2011-11-02

Family

ID=35852307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006013360A Expired - Fee Related JP4805682B2 (ja) 2005-01-26 2006-01-23 形状記憶合金を含むタービンエンジンステータ及び間隙制御方法

Country Status (4)

Country Link
US (1) US7367776B2 (ja)
EP (1) EP1686243B1 (ja)
JP (1) JP4805682B2 (ja)
CA (1) CA2533576C (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121684A (ja) * 2006-11-15 2008-05-29 General Electric Co <Ge> 複合間隙制御エンジン
JP2009203982A (ja) * 2008-02-27 2009-09-10 General Electric Co <Ge> 高温形状記憶合金アクチュエータ
CN101852101A (zh) * 2009-03-23 2010-10-06 通用电气公司 用于涡轮发动机冷却空气管理的设备
JP2012246923A (ja) * 2011-05-24 2012-12-13 Alstom Technology Ltd ターボ機械
JP2013064404A (ja) * 2011-09-19 2013-04-11 Alstom Technology Ltd 熱負荷されるターボ機械の回転構成部材と固定構成部材との間の特に半径方向の間隙を制御する自己調節型装置
JP2014507603A (ja) * 2011-03-07 2014-03-27 スネクマ リングセクタ装着手段を備えるタービンケーシング

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005013796A1 (de) * 2005-03-24 2006-09-28 Alstom Technology Ltd. Wärmestausegment
DE102005013797A1 (de) * 2005-03-24 2006-09-28 Alstom Technology Ltd. Wärmestausegment
US7665960B2 (en) * 2006-08-10 2010-02-23 United Technologies Corporation Turbine shroud thermal distortion control
FR2931872B1 (fr) * 2008-05-28 2010-08-20 Snecma Turbine haute pression d'une turbomachine avec montage ameliore du boitier de pilotage des jeux radiaux d'aubes mobiles.
DE102008033783A1 (de) * 2008-07-18 2010-01-21 Mtu Aero Engines Gmbh Gasturbine und Verfahren zum Ändern der aerodynamischen Gestalt einer Gasturbinenschaufel
EP2226469A1 (de) * 2009-03-04 2010-09-08 Siemens Aktiengesellschaft Turbinenkomponente mit einer Schutzschicht
US8277172B2 (en) * 2009-03-23 2012-10-02 General Electric Company Apparatus for turbine engine cooling air management
EP2239423A1 (de) * 2009-03-31 2010-10-13 Siemens Aktiengesellschaft Axialturbomaschine mit passiver Kontrolle des Schaufelspitzenspiels
GB0907513D0 (en) * 2009-05-01 2009-06-10 Rolls Royce Plc A flow modulating device
US8939709B2 (en) 2011-07-18 2015-01-27 General Electric Company Clearance control for a turbine
US20130034423A1 (en) * 2011-08-01 2013-02-07 General Electric Company System and method for passively controlling clearance in a gas turbine engine
RU2506434C2 (ru) * 2012-04-04 2014-02-10 Николай Борисович Болотин Газотурбинный двигатель
RU2506433C2 (ru) * 2012-04-04 2014-02-10 Николай Борисович Болотин Газотурбинный двигатель
RU2498085C1 (ru) * 2012-04-04 2013-11-10 Николай Борисович Болотин Газотурбинный двигатель
RU2490474C1 (ru) * 2012-04-16 2013-08-20 Николай Борисович Болотин Турбина газотурбинного двигателя
RU2499892C1 (ru) * 2012-04-24 2013-11-27 Николай Борисович Болотин Турбина газотурбинного двигателя
RU2496991C1 (ru) * 2012-05-21 2013-10-27 Николай Борисович Болотин Турбина двухконтурного газотурбинного двигателя
RU2499145C1 (ru) * 2012-05-21 2013-11-20 Николай Борисович Болотин Турбина двухконтурного газотурбинного двигателя
RU2501956C1 (ru) * 2012-07-31 2013-12-20 Николай Борисович Болотин Двухконтурный газотурбинный двигатель, способ регулирования радиального зазора в турбине двухконтурного газотурбинного двигателя
US9598975B2 (en) 2013-03-14 2017-03-21 Rolls-Royce Corporation Blade track assembly with turbine tip clearance control
EP3055513B1 (en) * 2013-10-07 2019-09-18 United Technologies Corporation Clearance control system for a gas turbine engine and method of controlling a radial tip clearance within a gas turbine engine
JP6223111B2 (ja) * 2013-10-15 2017-11-01 三菱日立パワーシステムズ株式会社 ガスタービン
RU2537646C1 (ru) * 2013-12-30 2015-01-10 Федеральное государственное унитарное предприятие "Научно-производственный центр газотурбостроения "Салют" (ФГУП "НПЦ газотурбостроения "Салют") Способ регулирования радиального зазора в турбине газотурбинного двигателя
RU2567885C1 (ru) * 2014-08-08 2015-11-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Статор компрессора
CN108019242B (zh) * 2017-12-15 2019-08-06 北京航空航天大学 基于形状记忆合金丝的航空发动机叶尖间隙主动控制装置
RU2716648C1 (ru) * 2019-07-16 2020-03-13 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Охлаждаемая лопатка газовой турбины
US11021998B2 (en) 2019-08-08 2021-06-01 General Electric Company Shape memory alloy sleeve support assembly for a bearing
US11828235B2 (en) 2020-12-08 2023-11-28 General Electric Company Gearbox for a gas turbine engine utilizing shape memory alloy dampers
CN113090342B (zh) * 2021-04-08 2023-01-13 沈阳航空航天大学 基于记忆合金丝的主动间隙控制篦齿密封结构
US11674399B2 (en) 2021-07-07 2023-06-13 General Electric Company Airfoil arrangement for a gas turbine engine utilizing a shape memory alloy
US11668317B2 (en) 2021-07-09 2023-06-06 General Electric Company Airfoil arrangement for a gas turbine engine utilizing a shape memory alloy
US11788425B2 (en) * 2021-11-05 2023-10-17 General Electric Company Gas turbine engine with clearance control system
US11808157B1 (en) 2022-07-13 2023-11-07 General Electric Company Variable flowpath casings for blade tip clearance control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57195803A (en) * 1981-05-27 1982-12-01 Hitachi Ltd Adjusting device of tip clearance in turbo fluidic machine
JPS59110876A (ja) * 1982-12-16 1984-06-26 Keihin Seiki Mfg Co Ltd 形状記憶合金よりなる駆動体の加熱方法
JPS61103504U (ja) * 1984-12-12 1986-07-01
JPS61250304A (ja) * 1985-04-26 1986-11-07 Toshiba Corp 軸流タ−ビン
JPS6435001A (en) * 1987-07-30 1989-02-06 Toshiba Corp Gap adjusting device for seal part of turbine
JPH01240776A (ja) * 1988-03-18 1989-09-26 Matsushita Electric Ind Co Ltd 流路切換え作動装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206807A (ja) * 1982-05-28 1983-12-02 Hitachi Ltd 軸流タ−ビンの動翼先端すき間制御装置
JPS5918208A (ja) * 1982-07-21 1984-01-30 Toshiba Corp ラビリンスパツキン
JPS60111004A (ja) * 1983-11-21 1985-06-17 Hitachi Ltd 軸流形流体機械のケ−シング
US6065934A (en) 1997-02-28 2000-05-23 The Boeing Company Shape memory rotary actuator
US6220550B1 (en) 1998-03-31 2001-04-24 Continuum Dynamics, Inc. Actuating device with multiple stable positions
US6135713A (en) 1999-01-19 2000-10-24 The Mcdonnell Douglas Helicopter Company Helicopter rotor blade flap actuator government interest
GB2354290B (en) 1999-09-18 2004-02-25 Rolls Royce Plc A cooling air flow control device for a gas turbine engine
US6367253B2 (en) 1999-12-20 2002-04-09 Las, L.L.C. Shape memory alloy actuators for aircraft landing gear
US6318070B1 (en) 2000-03-03 2001-11-20 United Technologies Corporation Variable area nozzle for gas turbine engines driven by shape memory alloy actuators
GB2363864B (en) * 2000-06-23 2004-08-18 Rolls Royce Plc A control arrangement
JP2002285802A (ja) * 2001-03-26 2002-10-03 Toshiba Corp 回転機械のラビリンスシール装置
GB0308147D0 (en) * 2003-04-09 2003-05-14 Rolls Royce Plc A seal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57195803A (en) * 1981-05-27 1982-12-01 Hitachi Ltd Adjusting device of tip clearance in turbo fluidic machine
JPS59110876A (ja) * 1982-12-16 1984-06-26 Keihin Seiki Mfg Co Ltd 形状記憶合金よりなる駆動体の加熱方法
JPS61103504U (ja) * 1984-12-12 1986-07-01
JPS61250304A (ja) * 1985-04-26 1986-11-07 Toshiba Corp 軸流タ−ビン
JPS6435001A (en) * 1987-07-30 1989-02-06 Toshiba Corp Gap adjusting device for seal part of turbine
JPH01240776A (ja) * 1988-03-18 1989-09-26 Matsushita Electric Ind Co Ltd 流路切換え作動装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121684A (ja) * 2006-11-15 2008-05-29 General Electric Co <Ge> 複合間隙制御エンジン
JP2009203982A (ja) * 2008-02-27 2009-09-10 General Electric Co <Ge> 高温形状記憶合金アクチュエータ
CN101852101A (zh) * 2009-03-23 2010-10-06 通用电气公司 用于涡轮发动机冷却空气管理的设备
JP2014507603A (ja) * 2011-03-07 2014-03-27 スネクマ リングセクタ装着手段を備えるタービンケーシング
JP2012246923A (ja) * 2011-05-24 2012-12-13 Alstom Technology Ltd ターボ機械
US9169741B2 (en) 2011-05-24 2015-10-27 Alstom Technology Ltd Turbomachine clearance control configuration using a shape memory alloy or a bimetal
JP2013064404A (ja) * 2011-09-19 2013-04-11 Alstom Technology Ltd 熱負荷されるターボ機械の回転構成部材と固定構成部材との間の特に半径方向の間隙を制御する自己調節型装置
US9963988B2 (en) 2011-09-19 2018-05-08 Ansaldo Energia Switzerland AG Self-adjusting device for controlling the clearance between rotating and stationary components of a thermally loaded turbo machine

Also Published As

Publication number Publication date
EP1686243A2 (en) 2006-08-02
CA2533576C (en) 2015-03-10
US7367776B2 (en) 2008-05-06
EP1686243A3 (en) 2012-05-16
EP1686243B1 (en) 2016-09-07
US20060165518A1 (en) 2006-07-27
JP4805682B2 (ja) 2011-11-02
CA2533576A1 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JP4805682B2 (ja) 形状記憶合金を含むタービンエンジンステータ及び間隙制御方法
US10316687B2 (en) Blade track assembly with turbine tip clearance control
EP3097273B1 (en) Retention clip for a blade outer air seal
EP2875224B1 (en) Radial position control of case supported structure
US9976435B2 (en) Blade tip clearance systems
US10053999B2 (en) Radial position control of case supported structure with axial reaction member
CH705551A1 (de) Selbstjustierende Einrichtung zum Steuern des Spielraums, insbesondere in radialer Richtung, zwischen rotierenden und stationären Komponenten einer thermisch belasteten Turbomaschine.
US8678753B2 (en) Passive flow control through turbine engine
US9803559B2 (en) Variable vane and seal arrangement
US10408080B2 (en) Tailored thermal control system for gas turbine engine blade outer air seal array
US9976438B2 (en) Stator vane adjusting device of a gas turbine
JP6746288B2 (ja) ブレード先端クリアランス制御のためのシステム及び方法
US20130034423A1 (en) System and method for passively controlling clearance in a gas turbine engine
EP2984298B1 (en) Gas turbine engine rapid response clearance control system with air seal segment interface
EP3249171B1 (en) Seal assembly
US10001022B2 (en) Seals for gas turbine engine
CN109563744A (zh) 带有吸气面密封的涡轮发动机
JP6666280B2 (ja) 開閉弁、及び蒸気タービン
JP2015055250A (ja) 回転機械のためのクリアランス制御システムおよびクリアランスを制御する方法
EP3055512B1 (en) Non-linearly deflecting brush seal land
EP3513041B1 (en) Bimetal thermo mechanical actuator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110225

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees