JP2006205449A - Estimation method of internal temperature of heating target and program - Google Patents

Estimation method of internal temperature of heating target and program Download PDF

Info

Publication number
JP2006205449A
JP2006205449A JP2005018341A JP2005018341A JP2006205449A JP 2006205449 A JP2006205449 A JP 2006205449A JP 2005018341 A JP2005018341 A JP 2005018341A JP 2005018341 A JP2005018341 A JP 2005018341A JP 2006205449 A JP2006205449 A JP 2006205449A
Authority
JP
Japan
Prior art keywords
heated
thermal diffusion
heating
diffusion coefficient
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005018341A
Other languages
Japanese (ja)
Other versions
JP4513582B2 (en
Inventor
Eiji Kobayashi
英治 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2005018341A priority Critical patent/JP4513582B2/en
Publication of JP2006205449A publication Critical patent/JP2006205449A/en
Application granted granted Critical
Publication of JP4513582B2 publication Critical patent/JP4513582B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply and precisely estimate the temperature change in a heating target even in a case that the passage of heat from the peripheral surface almost vertical to the heating surface of the heating target is relatively large in the heat treatment of the heating target. <P>SOLUTION: This estimation method of the internal temperature of the heating target comprises a correction step for correcting the coefficient of heat diffusion which characterizes the heating target corresponding to an area ratio which expresses the ratio of the area of the heating surface of the heating target to the equivalent area of the side surface almost vertical to the heating surface of the heating target and an estimate step for estimating a temporal change in the temperature of the heating target using a unidimensional heat conduction equation, wherein the corrected coefficient of heat diffusion is a coefficient and the height direction of the heating target is an axis, and the boundary condition corresponding to a predetermined heating condition. The equivalent area of the side surface of the heating target is determined corresponding to the length of the peripheral side of the heating surface of the heating target and the height in the direction almost vertical to the heating surface of the heating target. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被加熱体の内部温度予測方法に関し、特に、被加熱体の加硫処理における被加熱体内部の温度変化を、一次元熱伝導方程式を用いて高精度に予測する方法およびプログラムに関する。   The present invention relates to a method for predicting the internal temperature of an object to be heated, and more particularly to a method and a program for predicting a temperature change inside an object to be heated in a vulcanization process of the object to be heated with high accuracy using a one-dimensional heat conduction equation. .

今日、大型構造物である橋梁において、橋げたなどの上部構造と橋脚などの下部構造との間には、橋梁用ゴム支承が設けられている。橋梁用ゴム支承は、橋げたなどの上部構造の自重,および、これら上部構造に作用する力、および温度変化などによる上部構造の変形を下部構造に円滑に伝達する。橋梁用ゴム支承は、金属層とゴム層とが積層された構造のゴム製品であり、一般的なゴム製品と同様、製品モールドに装填されてプレス熱板から熱を与えられ、加硫処理されて製造される。
従来の橋梁用ゴム支承は平板形状のものが多く、橋梁用ゴム支承の加硫処理工程では、平板形状の比較的広い対向する2つの面を加熱面として、これら加熱面から熱を与えていた。橋梁用ゴム支承は板状部材であり、加硫処理における加熱面に略垂直な方向の厚さは、ごく薄いものであった。そのため、加硫処理において、橋梁用ゴム支承の周囲を囲む、加熱面に略垂直な側面からの熱の流入および流出は、非常に小さいものであった。このように、加熱面の面積に対して、加熱面に略垂直な方向の厚さが非常に薄い橋梁用ゴム支承については、加硫処理の際の加熱面から内部への熱伝導による加熱体内部の温度時間変化を、1次元熱伝導方程式を用いた簡便な熱伝導計算によって、充分な精度で予測することが可能である。
Today, in bridges that are large structures, rubber bearings for bridges are provided between an upper structure such as a bridge and a lower structure such as a pier. The rubber bearing for bridge smoothly transmits the weight of the upper structure such as the bridge, the force acting on the upper structure, and the deformation of the upper structure due to temperature change to the lower structure. A rubber bearing for a bridge is a rubber product with a structure in which a metal layer and a rubber layer are laminated. Like a general rubber product, it is loaded into a product mold and heated by a press hot plate and vulcanized. Manufactured.
Many conventional bridge rubber bearings have a flat plate shape, and in the vulcanization process of the rubber bearing for bridges, heat is applied from these heating surfaces using two relatively wide opposing surfaces as heating surfaces. . The rubber support for bridges is a plate-like member, and the thickness in the direction substantially perpendicular to the heating surface in the vulcanization process is very thin. Therefore, in the vulcanization process, the inflow and outflow of heat from the side surface that is substantially perpendicular to the heating surface and surrounds the periphery of the rubber bearing for bridges is extremely small. As described above, for the rubber bearing for a bridge whose thickness in the direction substantially perpendicular to the heating surface is very small with respect to the area of the heating surface, the heating body is formed by heat conduction from the heating surface to the inside during the vulcanization process. The internal temperature-time change can be predicted with sufficient accuracy by a simple heat conduction calculation using a one-dimensional heat conduction equation.

このように、平板状部材の内部の温度時間変化を予測する方法の一例として、下記特許文献1では、平板状部材の肉厚方向に1次元の熱伝導解析を実施する、1次元熱伝導方程式を用いた被加熱体の温度分布の解析方法が開示されている。下記特許文献1では、薄肉構造の樹脂成形品について、これら樹脂成形品の成型過程において加わる熱荷重の温度分布を予測する際、樹脂の熱伝導率が小さいことを利用して、薄肉構造の面内方向の熱伝導は無視して、1次元の熱伝導解析によって、肉厚方向の熱伝導のみに関して熱伝導解析を行なっている。   As described above, as an example of a method for predicting a change in temperature and time inside the flat plate member, in Patent Document 1 below, a one-dimensional heat conduction equation that performs a one-dimensional heat conduction analysis in the thickness direction of the flat plate member. A method for analyzing the temperature distribution of an object to be heated is disclosed. In the following Patent Document 1, when the temperature distribution of the thermal load applied in the molding process of these resin molded products is predicted for the thin-walled resin molded products, the surface of the thin-walled structure is utilized by utilizing the low thermal conductivity of the resin. Ignoring the heat conduction in the inward direction, the heat conduction analysis is performed only for the heat conduction in the thickness direction by a one-dimensional heat conduction analysis.

特許文献1では、平板状部材からなる樹脂成形品のコーナー部分やリブ付け根部分などの3次元的な形状効果を、肉厚補正によって1次元の熱伝導解析に取り入れるようにして、樹脂温度分布を正確に予測可能にしている。下記特許文献1では、上記微小要素を三角形や四角形などの2次元的要素とし、隣り合う微小要素間の熱伝導は省略し、微小要素ごとに独立して、平板状部材の表面から出入りする熱量だけを1次元の熱伝導解析によって求めている。特許文献1では、このように、3次元的な形状効果を肉厚補正によって取り入れることで、一次元の熱伝導解析であっても、コーナー部やリブ部の畜熱の影響を加味した高精度な解析を可能としている。
特開平07−52220号公報
In Patent Document 1, a three-dimensional shape effect such as a corner portion or a rib base portion of a resin molded product made of a flat plate member is incorporated into a one-dimensional heat conduction analysis by thickness correction, and the resin temperature distribution is calculated. It is accurately predictable. In the following Patent Document 1, the microelement is a two-dimensional element such as a triangle or a quadrangle, heat conduction between adjacent microelements is omitted, and the amount of heat entering and exiting the surface of the flat plate member independently for each microelement. Is obtained by one-dimensional heat conduction analysis. In Patent Document 1, by incorporating a three-dimensional shape effect through wall thickness correction in this way, even in a one-dimensional heat conduction analysis, high precision is taken into account the effects of animal heat at corners and ribs. Analysis is possible.
Japanese Unexamined Patent Publication No. 07-52220

しかし、近年では、橋梁用のゴム支承であっても、ゴム支承内部のゴム層および金属層の積層数が多く、かつ、高さが高い製品が増加しつつある。このような製品については、加熱面に略垂直な側面の面積が比較的大きくなり、側面からの熱の流入および流出が無視できない。
このように、側面からの熱の流入および流出を無視できない形状の被加硫体については、通常の1次元の熱伝導計算では、被加硫体内部の温度変化が正しく計算できない。
上記特許文献1では、平板状部材からなる樹脂成形品の、コーナー部分やリブ付け根部分などの3次元的な形状効果を、肉厚補正によって1次元熱伝導方程式に取り入れるようにし、このようなコーナー部分やリブ付け根部分などの3次元的な形状効果による畜熱を、通常の1次元熱伝導解析によって高精度に予測可能としている。
しかし、上記特許文献1における1次元の熱伝導計算では、厚肉部分などの3次元的な形状効果における畜熱の影響については予測可能であるが、被加熱体の側面からの熱の流入および流出については予測できない。そのため、内部温度の予測精度にも限界がある。
However, in recent years, even for rubber bearings for bridges, products with a large number of laminated rubber layers and metal layers inside the rubber bearings and a high height are increasing. For such products, the area of the side surface substantially perpendicular to the heating surface is relatively large, and heat inflow and outflow from the side surface cannot be ignored.
As described above, with respect to a vulcanized body having a shape in which the inflow and outflow of heat from the side surface cannot be ignored, the temperature change inside the vulcanized body cannot be calculated correctly by normal one-dimensional heat conduction calculation.
In the above-mentioned Patent Document 1, the three-dimensional shape effect of a resin molded product made of a flat plate member such as a corner portion and a rib root portion is incorporated into a one-dimensional heat conduction equation by thickness correction. The animal heat due to the three-dimensional shape effect such as the portion and the rib root portion can be predicted with high accuracy by a normal one-dimensional heat conduction analysis.
However, in the one-dimensional heat conduction calculation in Patent Document 1, it is possible to predict the influence of animal heat on the three-dimensional shape effect such as the thick-walled portion, but the inflow of heat from the side surface of the heated object and The outflow cannot be predicted. Therefore, there is a limit to the accuracy of predicting the internal temperature.

このように、側面からの熱の流入および流出が無視できない製品については、FEMを用いた3次元熱伝導解析によって内部温度を算出したり、実際に温度を測定することによって内部温度履歴を予測することも可能である。しかし、これらの方法では、特別な知識や時間やコストを要するため、日常のルーチンワークとして実施するのは困難であるといった問題がある。   As described above, for products in which the inflow and outflow of heat from the side cannot be ignored, the internal temperature history is predicted by calculating the internal temperature by three-dimensional heat conduction analysis using FEM or by actually measuring the temperature. It is also possible. However, since these methods require special knowledge, time, and cost, there is a problem that it is difficult to implement as daily routine work.

上記課題を解決するため、本発明は、対向する2面を備える柱状の被加熱体を、前記対向する2面のうち少なくともいずれか1方の面から加熱した際の、前記被加熱体の温度時間変化を予測する方法であって、前記被加熱体の加熱面に略垂直な側面の等価面積に対する、前記加熱面の面積の比を表す面積比に応じて、前記被加熱体を特徴づける熱拡散係数を補正する補正ステップと、補正された熱拡散係数を係数とする、前記被加熱体の高さ方向を軸とする1次元熱伝導方程式と、所定の加熱条件に応じた境界条件とを用いて、前記被加熱体の温度時間変化を予測する予測ステップとを有し、前記側面の等価面積は、前記被加熱体の加熱面の周辺の長さと、前記被加熱体の前記加熱面に略垂直方向の高さとに応じて定まることを特徴とする被加熱体の内部温度予測方法を提供する。   In order to solve the above-described problem, the present invention provides a temperature of the heated object when a columnar heated object having two opposed surfaces is heated from at least one of the two opposed surfaces. A method for predicting a change in time, characterized by heat that characterizes the object to be heated according to an area ratio that represents a ratio of an area of the heating surface to an equivalent area of a side surface substantially perpendicular to the heating surface of the object to be heated. A correction step for correcting the diffusion coefficient, a one-dimensional heat conduction equation with the corrected heat diffusion coefficient as a coefficient, the axis being the height direction of the heated object, and a boundary condition according to a predetermined heating condition And a predicting step for predicting a temperature-time change of the heated body, and the equivalent area of the side surface is equal to the length of the periphery of the heated surface of the heated body and the heated surface of the heated body. It is determined according to the height in the substantially vertical direction. To provide an internal temperature estimation method of the thermal body.

また、前記被加熱体は略直方体または略立方体であり、前記加熱面の一辺の長さをa、この一辺と略垂直な前記加熱面の他辺の長さをb、前記被加熱体の前記加熱面に略垂直方向の高さをlとすると、前記側面の等価面積Sは、下記式(1)で表すことが好ましい。
S=l×(a+b) (1)
Further, the heated body is a substantially rectangular parallelepiped or a substantially cubic body, the length of one side of the heating surface is a, the length of the other side of the heating surface substantially perpendicular to the one side is b, If the height in the direction substantially perpendicular to the heating surface is 1, the equivalent area S of the side surface is preferably expressed by the following formula (1).
S = 1 × (a + b) (1)

また、前記補正ステップは、前記被加熱体の面積比に応じて設定された補正係数を、前記熱拡散係数に乗算することで、前記熱拡散係数を補正するものであり、前記補正係数は、予め求めた面積比と補正係数との対応関係に基づいて設定されることが好ましい。   In the correction step, the thermal diffusion coefficient is corrected by multiplying the thermal diffusion coefficient by a correction coefficient set according to the area ratio of the object to be heated. It is preferably set based on the correspondence relationship between the area ratio and the correction coefficient obtained in advance.

また、前記被加熱体が、それぞれ異なる複数の板状部材が高さ方向に積層された積層部材である場合、複数の板状部材のうち1つの板状部材の材質を特徴づける熱拡散係数を、前記被加熱体を特徴づける熱拡散係数として用い、かつ、前記1つの板状部材の熱拡散係数に対する、各板状部材の熱拡散係数の比に応じて、各板状部材の前記高さ方向の厚さをそれぞれ補正し、補正後の合計値を前記被加熱体の前記高さとして用いることが好ましい。   Further, when the heated body is a laminated member in which a plurality of different plate-like members are laminated in the height direction, a thermal diffusion coefficient that characterizes the material of one plate-like member among the plurality of plate-like members. The height of each plate-like member is used as a thermal diffusion coefficient characterizing the object to be heated and according to the ratio of the thermal diffusion coefficient of each plate-like member to the heat diffusion coefficient of the one plate-like member. It is preferable to correct the thickness in each direction, and use the corrected total value as the height of the object to be heated.

また、前記被加熱体は、それぞれ異なる材料からなるn種類の板状部材B(m=1、2、・・・n)が高さ方向に積層された積層部材であり、n種類の板状部材Bのうち1つの板状部材Bの材質を特徴づける熱拡散係数αを、前記被加熱体を特徴づける熱拡散係数として用いる場合、n種類の板状部材それぞれの前記高さ方向の総厚を、それぞれl(m=1、2、・・・n)、各板状部材の材質を特徴づける熱拡散係数を、それぞれα(m=1、2、・・・n)、前記補正後の合計値をleqとすると、前記leqは、下記式(2)によって表されることが好ましい。

Figure 2006205449
The heated body is a laminated member in which n types of plate-like members B m (m = 1, 2,... N) made of different materials are laminated in the height direction, and n types of plates one plate-like member the thermal diffusion coefficient alpha 1 characterizing the material of B 1, wherein when used as a thermal diffusion coefficient characterizing the object to be heated, n kinds of plate-shaped members of each of the height of the Jo member B m The total thickness in the direction is 1 m (m = 1, 2,... N), and the thermal diffusion coefficient characterizing the material of each plate member is α m (m = 1, 2,... N). ), Where l eq is the total value after correction, the l eq is preferably represented by the following formula (2).
Figure 2006205449

なお、本発明は、対向する2面を備える柱状の被加熱体を、前記対向する2面のうち少なくともいずれか1方の面から加熱した際の、前記被加熱体の温度時間変化の予測をコンピュータに実行させるプログラムであって、前記被加熱体の加熱面に略垂直な側面の等価面積に対する、前記加熱面の面積の比を表す面積比に応じて、前記被加熱体を特徴づける熱拡散係数を補正する手順、補正された熱拡散係数を係数とする、前記被加熱体の高さ方向を軸とする1次元熱伝導方程式と、所定の加熱条件に応じた境界条件とを用いて、前記被加熱体の温度時間変化を予測する手順を有し、前記側面の等価面積は、前記被加熱体の加熱面の周辺の長さと、前記被加熱体の前記加熱面に略垂直方向の高さとに応じて定まることを特徴とする被加熱体の内部温度予測プログラムも併せて提供する。   In addition, this invention predicts the temperature time change of the said to-be-heated body at the time of heating the column-shaped to-be-heated body provided with two opposing surfaces from at least any one surface among the two opposing surfaces. A computer-executable program that characterizes the heated object according to an area ratio that represents a ratio of an area of the heating surface to an equivalent area of a side surface substantially perpendicular to the heating surface of the heated object. Using a procedure for correcting the coefficient, a one-dimensional heat conduction equation with the corrected thermal diffusion coefficient as a coefficient, the axis being the height direction of the heated object, and a boundary condition according to a predetermined heating condition, A procedure for predicting a temperature-time change of the heated object, and the equivalent area of the side surface is a length around the heating surface of the heated object and a height in a direction substantially perpendicular to the heating surface of the heated object. Of the object to be heated Also together to provide temperature prediction program.

本発明の被加熱体の内部温度予測方法によれば、加熱面と略垂直方向の高さが比較的大きく、加熱処理における側面からの熱の出入りが比較的大きい被加熱体であっても、被加熱体内部の温度時間変化を、簡便かつ精度良く予測することが可能である。
例えば、このような被加熱体の内部温度予測方法によって予測された被加熱体内部の温度変化に基づいて、加硫処理における加硫処理条件を設定することで、最適な加硫条件の設定が容易となる。また、このようにして設定された加硫条件で加硫処理を実施することで、加硫処理されて製造される加硫製品の品質の向上および安定を実現する。
According to the method for predicting the internal temperature of the heated object of the present invention, even if the heated object has a relatively large height in the direction substantially perpendicular to the heating surface, and the heat input / output from the side surface in the heat treatment is relatively large, It is possible to easily and accurately predict changes in temperature with time in the heated body.
For example, by setting the vulcanization process conditions in the vulcanization process based on the temperature change inside the heated object predicted by the method for predicting the internal temperature of the heated object, the optimum vulcanization conditions can be set. It becomes easy. Further, by performing the vulcanization treatment under the vulcanization conditions set as described above, the quality and stability of the vulcanized product produced by the vulcanization treatment are realized.

以下、本発明の被加熱体の内部温度予測方法について、添付の図面に示される好適実施例を基に詳細に説明する。
図1は、本発明の被加熱体の内部温度予測方法を実施する、被加熱体の内部温度予測装置の一例である、温度予測装置10(以降、装置10とする)の概略構成図である。
装置10は、略柱状の被加熱体である、橋梁用ゴム支承未加硫体30(以下、単にゴム支承30とする)(図2参照)の加硫処理における、所定の加熱経過時間におけるゴム支承30の中心部分の温度を、1次元熱伝導方程式によって比較的高精度に予測する。
Hereinafter, a method for predicting an internal temperature of an object to be heated according to the present invention will be described in detail based on a preferred embodiment shown in the accompanying drawings.
FIG. 1 is a schematic configuration diagram of a temperature predicting device 10 (hereinafter referred to as device 10), which is an example of an internal temperature predicting device for an object to be heated, which implements the internal temperature predicting method for an object to be heated according to the present invention. .
The apparatus 10 is a rubber at a predetermined heating elapsed time in a vulcanization process of a bridge rubber support unvulcanized body 30 (hereinafter simply referred to as a rubber support 30) (see FIG. 2), which is a substantially columnar heated body. The temperature of the central portion of the support 30 is predicted with relatively high accuracy by a one-dimensional heat conduction equation.

装置10は、図示しない入力手段から入力されたゴム支承30の形状データに基づいて、ゴム支承30の加熱面に略垂直な側面の等価面積に対する、ゴム支承30の加熱面の面積の比を表すゴム支承30の等価面積比を算出する等価面積比算出手段12と、
等価面積比算出手段12において算出された等価面積比に応じ、補正係数k(補正係数kについては、後に詳述する)を設定する補正係数設定手段14と、補正係数設定手段14において設定された補正係数kを用い、上述の熱拡散係数を補正する熱拡散係数補正手段15と、補正された熱拡散係数を係数とする1次元熱伝導方程式と、ゴム支承30の加熱条件とを用いて1次元熱伝導解析を行ない、ゴム支承30の内部の温度を算出する温度情報算出手段16とを有して構成されている。また、装置10は、オペレータからの指示や各種データを受け付け可能な入力手段18を備えている。入力手段18は、オペレータによる操作に応じて形状データが入力可能な、キーボードやマウスなどの入力手段であってもよいし、また、磁気記録媒体などの所定の記録媒体に記録された形状データを読み取る、所定の読取手段であってもよい。装置10は、内部にCPU20やメモリ22を備え、プログラムによって各部が機能するコンピュータである。
The apparatus 10 represents the ratio of the area of the heating surface of the rubber bearing 30 to the equivalent area of the side surface substantially perpendicular to the heating surface of the rubber bearing 30 based on the shape data of the rubber bearing 30 input from input means (not shown). Equivalent area ratio calculating means 12 for calculating an equivalent area ratio of the rubber bearing 30;
According to the equivalent area ratio calculated by the equivalent area ratio calculating means 12, a correction coefficient setting means 14 for setting a correction coefficient k (the correction coefficient k will be described in detail later) and a correction coefficient setting means 14 are set. Using the correction coefficient k, the thermal diffusion coefficient correction means 15 for correcting the thermal diffusion coefficient described above, a one-dimensional heat conduction equation using the corrected thermal diffusion coefficient as a coefficient, and the heating condition of the rubber bearing 30 are A temperature information calculation unit 16 that performs a three-dimensional heat conduction analysis and calculates the temperature inside the rubber bearing 30 is provided. In addition, the apparatus 10 includes an input unit 18 that can accept instructions from the operator and various data. The input means 18 may be an input means such as a keyboard or a mouse that can input shape data in accordance with an operation by an operator, and shape data recorded on a predetermined recording medium such as a magnetic recording medium. It may be a predetermined reading means for reading. The apparatus 10 is a computer that includes a CPU 20 and a memory 22 therein, and each part functions by a program.

図2は、ゴム支承30、およびゴム支承30を加硫する加硫システム40について説明する概略構成図である。加硫システム40は、ゴム支承30を上下から挟んで整形するための上下モールド42と、ゴム支承30を側面から挟んで整形するための側面モールド44と、上下モールド42を上面および下面から挟持し、これら上下モールド42を加熱しながら圧迫する熱板46と、熱板46と接続されて熱板46の温度を制御する加熱制御部48とを有して構成されている。   FIG. 2 is a schematic configuration diagram illustrating the rubber support 30 and the vulcanization system 40 that vulcanizes the rubber support 30. The vulcanization system 40 sandwiches the upper and lower molds 42 for shaping the rubber support 30 from above and below, the side mold 44 for shaping the rubber support 30 from the side, and the upper and lower molds 42 from above and below. The heating plate 46 is pressed while heating the upper and lower molds 42, and the heating control unit 48 is connected to the heating plate 46 and controls the temperature of the heating plate 46.

加熱制御部48は、加熱板46と接続されて加熱板46の温度を調節する。加熱制御部48が加熱板46の温度を調節することで、上下モールド42は所定の温度に調整され、ゴム支承30の上面および下面が所定の温度に調整される。
加熱制御部48は、ゴム支承30を加熱して加硫処理するための加熱条件が入力可能となっている。加熱条件としては、加熱開始からの加熱経過時間に対する上下モールド42の温度の条件が入力される。加熱制御部48は、この加熱条件に基づいて加熱板46の温度を制御して、ゴム支承30の加熱面(図2中上下の面)の温度を調整する。
The heating control unit 48 is connected to the heating plate 46 and adjusts the temperature of the heating plate 46. When the heating controller 48 adjusts the temperature of the heating plate 46, the upper and lower molds 42 are adjusted to a predetermined temperature, and the upper and lower surfaces of the rubber support 30 are adjusted to a predetermined temperature.
The heating control unit 48 can input heating conditions for heating the rubber bearing 30 to vulcanize. As the heating condition, the temperature condition of the upper and lower molds 42 with respect to the heating elapsed time from the start of heating is input. The heating control unit 48 controls the temperature of the heating plate 46 based on this heating condition, and adjusts the temperature of the heating surface (upper and lower surfaces in FIG. 2) of the rubber support 30.

装置10は、このような加硫システム40によって加硫処理される橋梁用ゴム支承などの被加熱体について、加硫処理中(加熱処理中)の被加熱体内部の温度を算出して予測する。装置10の各部について詳細に説明する。   The apparatus 10 calculates and predicts the temperature inside the object to be heated during the vulcanization process (during the heat treatment) for the object to be heated such as a rubber bearing for a bridge that is vulcanized by the vulcanization system 40. . Each part of the apparatus 10 will be described in detail.

等価面積比算出手段12は、入力手段18から入力された、ゴム支承30の形状データに基づいて、ゴム支承30の等価面積比を算出する。ここで、等価面積比とは、ゴム支承30の加熱面に略垂直な側面の等価面積に対する、加熱面の面積の比のことを指す。   The equivalent area ratio calculation means 12 calculates the equivalent area ratio of the rubber bearing 30 based on the shape data of the rubber bearing 30 input from the input means 18. Here, the equivalent area ratio refers to the ratio of the area of the heating surface to the equivalent area of the side surface substantially perpendicular to the heating surface of the rubber support 30.

図3は、ゴム支承30の形状および構造について説明する概略図である。ゴム支承30は略直方体形状であり、厚さがT(m=1〜5)のゴム層32、および厚さがU(m=1〜6)の金属層34とが交互に積層された多層積層構造となっている。 FIG. 3 is a schematic diagram for explaining the shape and structure of the rubber bearing 30. The rubber bearing 30 has a substantially rectangular parallelepiped shape, and a rubber layer 32 having a thickness of T m (m = 1 to 5) and a metal layer 34 having a thickness of U m (m = 1 to 6) are alternately stacked. It has a multilayered structure.

このように多層積層構造のゴム支承を加熱する場合、等価面積比算出手段12では、まず、金属層34における熱伝導を、熱伝導的にゴム層と等価と仮定できるよう金属層34の厚さを換算する。そして、この換算した金属層34の厚さを用い、ゴム支承30全体の熱拡散係数としてゴム層32の熱拡散係数αRBを用いた場合の、等価ゴム厚leqを算出する。
具体的には、ゴム層32の材料固有の熱拡散係数をαRB、金属層34の材料固有の熱拡散係数をαst、ゴム層32の厚さの総厚をLRB(=T+T+・・・T)、金属層34の厚さの総厚をLst(=U+U+・・・U)とすると、等価ゴム厚leqを、下記式(3)によって表す。

Figure 2006205449
In the case of heating a rubber bearing having a multilayer laminated structure in this way, the equivalent area ratio calculating means 12 firstly determines the thickness of the metal layer 34 so that the heat conduction in the metal layer 34 can be assumed to be equivalent to the rubber layer in terms of heat conduction. Is converted. Then, using the converted thickness of the metal layer 34, an equivalent rubber thickness l eq is calculated when the thermal diffusion coefficient α RB of the rubber layer 32 is used as the thermal diffusion coefficient of the rubber bearing 30 as a whole.
Specifically, the thermal diffusion coefficient specific to the material of the rubber layer 32 is α RB , the thermal diffusion coefficient specific to the material of the metal layer 34 is α st , and the total thickness of the rubber layer 32 is L RB (= T 1 + T 2 +... T 5 ), and the total thickness of the metal layer 34 is L st (= U 1 + U 2 +... U 5 ), the equivalent rubber thickness l eq is expressed by the following formula (3 ).
Figure 2006205449

等価面積比算出手段12では、この等価ゴム厚leqに基づき、ゴム支承30の等価面積比Aを求める。具体的には、ゴム支承30の加熱面の2つの辺aおよびbと、上述の等価ゴム厚leqとを用い、ゴム支承30の等価面積比Aを、下記式(4)に基づいて算出する。
A=[(a×b)]/[leq×(a+b)] (4)
The equivalent area ratio calculation means 12 calculates an equivalent area ratio A of the rubber bearing 30 based on the equivalent rubber thickness l eq . Specifically, using the two sides a and b of the heating surface of the rubber bearing 30 and the above-described equivalent rubber thickness l eq , the equivalent area ratio A of the rubber bearing 30 is calculated based on the following formula (4). To do.
A = [(a × b)] / [l eq × (a + b)] (4)

補正係数設定手段14は、後述する補正曲線導出システム50によって導出された、等価面積比と補正係数との対応を表す補正曲線(補正関数)に基づき、ゴム支承30の等価面積比Aに応じて補正係数kを設定する。熱拡散係数補正手段15では、補正係数設定手段14で設定された補正係数kを、ゴム層の材料固有の熱拡散係数αRBに乗算して、ゴム支承30全体の熱拡散係数として用いた、ゴム層32の熱拡散係数αRBを補正する。 The correction coefficient setting means 14 is in accordance with the equivalent area ratio A of the rubber bearing 30 based on a correction curve (correction function) representing the correspondence between the equivalent area ratio and the correction coefficient derived by the correction curve derivation system 50 described later. A correction coefficient k is set. In the thermal diffusion coefficient correction means 15, the correction coefficient k set by the correction coefficient setting means 14 is multiplied by the thermal diffusion coefficient α RB specific to the material of the rubber layer and used as the thermal diffusion coefficient of the rubber support 30 as a whole. The thermal diffusion coefficient α RB of the rubber layer 32 is corrected.

温度情報算出手段16は、熱拡散係数補正手段15によって熱拡散係数αRBが補正されることで得られた、補正後の熱拡散係数kcを係数に有し、ゴム支承30の高さ方向(図2中上下方向)を軸とする1次元熱拡散方程式を用いて1次元熱伝導解析を行なう。温度情報算出手段16では、この1次元熱伝導解析によって、所望の加熱時間が経過した時点における、ゴム支承30の中心部分(加熱面である上面および下面の中間)の温度情報を算出する。算出された中心部分の温度情報は、例えば、モニタなどの表示装置や紙面などの記録媒体に出力される。 The temperature information calculation means 16 has the corrected thermal diffusion coefficient kc obtained by correcting the thermal diffusion coefficient α RB by the thermal diffusion coefficient correction means 15 as a coefficient, and the height direction of the rubber bearing 30 ( A one-dimensional heat conduction analysis is performed using a one-dimensional heat diffusion equation centered on the vertical direction in FIG. The temperature information calculation means 16 calculates the temperature information of the central portion of the rubber bearing 30 (the middle between the upper surface and the lower surface, which is the heating surface) at the time when the desired heating time has elapsed, by this one-dimensional heat conduction analysis. The calculated temperature information of the central portion is output to a display device such as a monitor or a recording medium such as a paper surface, for example.

図4は、上述の補正曲線(補正関数)を導出する、補正曲線導出システム50について説明する概略構成図である。
補正曲線導出システム50は、等価面積比がそれぞれ異なる複数の参照用ゴム支承70それぞれの内部温度実測データと、熱拡散係数がそれぞれ異なる複数の1次元熱伝導方程式の解である内部温度解析データとに基づき、装置10における補正係数の設定の基準となる補正曲線を導出する。
補正曲線導出システム50は、参照用ゴム支承70の中心部に備えられ、参照用ゴム支承70の中心部の温度情報を検知する温度センサ47と、温度センサ47で検知した参照用ゴム支承70の温度情報を取得する温度情報取得部49と、補正係数導出装置51とからなる。この補正係数導出装置は、入力部52と、内部温度解析部54と、近似解析情報抽出部56と、参照補正係数算出部58と、補正曲線導出部60と、各部の動作および装置全体の動作シーケンスを制御する制御部62と、CPU64と、メモリ66とを有して構成されている。
FIG. 4 is a schematic configuration diagram for explaining the correction curve deriving system 50 for deriving the above-described correction curve (correction function).
The correction curve derivation system 50 includes internal temperature measurement data of each of the plurality of reference rubber bearings 70 having different equivalent area ratios, and internal temperature analysis data that is a solution of a plurality of one-dimensional heat conduction equations having different thermal diffusion coefficients. Based on the above, a correction curve serving as a reference for setting the correction coefficient in the apparatus 10 is derived.
The correction curve deriving system 50 is provided at the center of the reference rubber bearing 70, and includes a temperature sensor 47 that detects temperature information of the center of the reference rubber bearing 70, and a reference rubber bearing 70 detected by the temperature sensor 47. It comprises a temperature information acquisition unit 49 that acquires temperature information and a correction coefficient deriving device 51. The correction coefficient derivation device includes an input unit 52, an internal temperature analysis unit 54, an approximate analysis information extraction unit 56, a reference correction coefficient calculation unit 58, a correction curve derivation unit 60, the operation of each unit, and the operation of the entire device. A control unit 62 that controls the sequence, a CPU 64, and a memory 66 are included.

補正曲線導出システム50は、装置10によるゴム支承30の内部(中心部分)の温度の算出に先がけて、装置10における補正係数の設定の基準となる補正曲線を導出する。補正曲線導出システム50は、等価面積比Aが予め既知である複数の参照用ゴム支承70それぞれを、加熱システム40を用いて所定の加熱条件で加熱した際の内部温度変化の情報を取得する。それに加え、熱拡散係数を種々変更して得られた、複数の1次元熱拡散方程式について1次元熱伝導解析を行なう。これら1次元熱伝導解析の結果から、上述の補正係数を導出して出力する。
参照用ゴム支承70は、ゴム支承30とほぼ同様の積層構造(すなわち、金属層およびゴム層の積層状態がほぼ同一)で、等価面積比が異なる(すなわち、加熱面の面積、または側面の等価面積が異なる)ゴム支承未加硫体である。
The correction curve deriving system 50 derives a correction curve serving as a reference for setting a correction coefficient in the apparatus 10 prior to the calculation of the temperature inside (center portion) of the rubber bearing 30 by the apparatus 10. The correction curve deriving system 50 acquires information on the internal temperature change when each of the plurality of reference rubber supports 70 whose equivalent area ratio A is known in advance is heated using the heating system 40 under predetermined heating conditions. In addition, a one-dimensional heat conduction analysis is performed for a plurality of one-dimensional heat diffusion equations obtained by variously changing the heat diffusion coefficient. From the results of these one-dimensional heat conduction analyses, the above correction coefficient is derived and output.
The reference rubber bearing 70 has the same laminated structure as that of the rubber bearing 30 (that is, the laminated state of the metal layer and the rubber layer is substantially the same), and the equivalent area ratio is different (that is, the area of the heating surface or the equivalent of the side surface) It is an unvulcanized rubber bearing.

加熱システム40による加硫処理の最中、参照用ゴム支承70の中心部付近の温度が温度センサ47によって検知されて、温度情報取得部49によって内部温度実測データとして出力され、補正曲線導出装置51に入力される。また、補正曲線導出装置51には、入力部52から、予め既知である複数の参照用ゴム支承それぞれの等価面積比も入力されており、補正曲線導出装置51に入力された内部温度実測情報は、各内部温度実測情報を得る参照用ゴム支承の等価面積比のデータと対応付けられて、メモリ66に記憶される。また、入力部52からは加熱システム40での加硫処理における加熱条件も入力され、メモリ66は、この加熱条件も併せて記憶する。   During the vulcanization process by the heating system 40, the temperature near the center of the reference rubber bearing 70 is detected by the temperature sensor 47 and output as the internal temperature actual measurement data by the temperature information acquisition unit 49, and the correction curve deriving device 51. Is input. The correction curve deriving device 51 also receives an equivalent area ratio of each of a plurality of reference rubber bearings known in advance from the input unit 52, and the internal temperature actual measurement information input to the correction curve deriving device 51 is The internal temperature measurement information is stored in the memory 66 in association with the equivalent area ratio data of the reference rubber bearing. In addition, the heating condition in the vulcanization processing in the heating system 40 is also input from the input unit 52, and the memory 66 also stores this heating condition.

補正関数導出装置51の制御部62は、補正関数導出装置51の各部の動作を制御する。また、制御部62は、1次元熱伝導方程式における熱拡散係数の値の割り付けも行なう。ここで、割り付けとは、1次元熱伝導方程式において熱拡散係数の値を種々変更して設定することをいう。
内部温度解析部54では、上述の加熱条件を境界条件として、制御部62において割り付けられた各熱拡散係数を係数とする1次元熱伝導方程式それぞれについて、1次元熱伝導解析を行って、所定の加熱時間が経過した時点でのゴム支承の内部温度情報を算出する。各1次元熱伝導方程式の解析結果である参照用ゴム支承70の内部の温度情報は、メモリ66に記憶される。
The control unit 62 of the correction function deriving device 51 controls the operation of each unit of the correction function deriving device 51. The control unit 62 also assigns the value of the thermal diffusion coefficient in the one-dimensional heat conduction equation. Here, the allocation refers to setting various values of the thermal diffusion coefficient in the one-dimensional heat conduction equation.
The internal temperature analysis unit 54 performs a one-dimensional heat conduction analysis on each of the one-dimensional heat conduction equations using each of the heat diffusion coefficients assigned by the control unit 62 as a coefficient with the above-described heating condition as a boundary condition. The internal temperature information of the rubber bearing at the time when the heating time has elapsed is calculated. Temperature information inside the reference rubber bearing 70, which is an analysis result of each one-dimensional heat conduction equation, is stored in the memory 66.

近似解析情報抽出部56は、内部温度解析部54において算出されてメモリ66に記憶された、種々の熱拡散係数を用いた1次元熱伝導方程式それぞれの解析結果である内部温度解析情報と、メモリ66に記憶された、加硫システム40を用いて所定の加硫条件で参照用ゴム支承を加硫した際の、各参照用ゴム支承の実測内部温度データとを比較し、各実測内部温度データに最も近い内部温度解析データを抽出する。   The approximate analysis information extraction unit 56 calculates the internal temperature analysis information calculated by the internal temperature analysis unit 54 and stored in the memory 66, and is an analysis result of each one-dimensional heat conduction equation using various thermal diffusion coefficients, 66 is compared with the measured internal temperature data of each reference rubber support when the reference rubber support is vulcanized using the vulcanization system 40 under predetermined vulcanization conditions. The internal temperature analysis data closest to is extracted.

参照補正係数算出部58は、橋梁用ゴム支承30のゴム層の熱拡散係数αRBに対する、抽出された内部温度解析データが得る1次元熱伝導方程式の熱拡散係数の比である参照補正係数k’を、抽出された内部温度解析情報毎(すなわち、実測内部温度データ毎)にそれぞれ算出する。 The reference correction coefficient calculation unit 58 is a reference correction coefficient k that is a ratio of the thermal diffusion coefficient of the one-dimensional heat conduction equation obtained from the extracted internal temperature analysis data to the thermal diffusion coefficient α RB of the rubber layer of the rubber bearing 30 for bridges. 'Is calculated for each extracted internal temperature analysis information (that is, for each actually measured internal temperature data).

補正曲線導出部60は、参照用ゴム支承70の等価面積比と、抽出された熱拡散係数との相関を表す散布図を作成して補正曲線を導出する。補正曲線導出部60で作成される散布図および近似関数については、後に詳述する。   The correction curve deriving unit 60 derives a correction curve by creating a scatter diagram representing the correlation between the equivalent area ratio of the reference rubber bearing 70 and the extracted thermal diffusion coefficient. The scatter diagram and the approximate function created by the correction curve deriving unit 60 will be described in detail later.

以下、装置10を用いて実施される、加硫処理中のゴム支承30の温度予測方法について説明する。図5は、装置10を用いて実施される、本発明の被加熱体の温度情報予測方法の一例のフローチャート図である。
まず、ゴム支承30について、等価面積比を算出して求める(ステップS100)。等価面積比の算出は、装置10の入力手段18から入力されたゴム支承30の寸法データに基づき、等価面積比算出手段12において、上述のように、(式3)および(式4)を用いて行なわれる。
Hereinafter, a method for predicting the temperature of the rubber bearing 30 during the vulcanization process performed using the apparatus 10 will be described. FIG. 5 is a flowchart of an example of the method for predicting temperature information of an object to be heated according to the present invention, which is performed using the apparatus 10.
First, an equivalent area ratio is calculated and obtained for the rubber bearing 30 (step S100). The equivalent area ratio is calculated using (Equation 3) and (Equation 4) in the equivalent area ratio calculation means 12 based on the dimension data of the rubber bearing 30 input from the input means 18 of the apparatus 10 as described above. It is done.

等価面積比算出手段12は、算出した等価面積比を補正係数設定手段14に送る。
補正係数設定手段14では、予め導出された補正曲線に基づき、送信された等価面積比に応じて、1次元熱伝導方程式における熱拡散係数を補正するための補正係数を導出する。
The equivalent area ratio calculation unit 12 sends the calculated equivalent area ratio to the correction coefficient setting unit 14.
The correction coefficient setting means 14 derives a correction coefficient for correcting the thermal diffusion coefficient in the one-dimensional heat conduction equation according to the transmitted equivalent area ratio based on a correction curve derived in advance.

この補正係数の算出において用いられる補正曲線は、少なくとも、この補正係数の導出に先がけて、図2に示す補正曲線導出システム50によって導出される。
ここで、このような補正曲線の導出について詳細に説明する。図6は、図2に示す補正曲線導出システム50によって実施される、補正曲線導出のフローチャート図である。
補正曲線導出システム50では、加硫システム40を用い、等価面積比がそれぞれ異なる複数の参照用ゴム支承70を実際に加熱して加硫処理を行う。
The correction curve used in calculating the correction coefficient is derived at least by the correction curve derivation system 50 shown in FIG. 2 prior to the derivation of the correction coefficient.
Here, the derivation of such a correction curve will be described in detail. FIG. 6 is a flowchart of correction curve derivation performed by the correction curve derivation system 50 shown in FIG.
In the correction curve derivation system 50, the vulcanization system 40 is used to perform the vulcanization process by actually heating a plurality of reference rubber supports 70 having different equivalent area ratios.

まず、ゴム支承30とは等価面積比が異なる参照用ゴム支承70を、加硫システム40の所定位置に配置する。そして、加硫システム40において、ゴム支承30の加硫条件と同様の加硫条件(加熱条件)で参照用ゴム支承70を加熱して加硫処理を行う。この際、温度情報取得部49によって取得した加硫中の参照用ゴム支承70の内部温度の情報は、メモリ66に順次記憶される(ステップS200)。まず、このように、補正曲線導出装置50のメモリ66に、等価面積比がそれぞれ異なる複数の参照用ゴム支承を加熱した際の内部温度変化の実測データが記憶される。   First, a reference rubber bearing 70 having an equivalent area ratio different from that of the rubber bearing 30 is arranged at a predetermined position of the vulcanizing system 40. In the vulcanization system 40, the reference rubber support 70 is heated under the same vulcanization conditions (heating conditions) as the vulcanization conditions of the rubber support 30 to perform the vulcanization process. At this time, information on the internal temperature of the reference rubber bearing 70 during vulcanization acquired by the temperature information acquisition unit 49 is sequentially stored in the memory 66 (step S200). First, in this way, the memory 66 of the correction curve deriving device 50 stores measured data of changes in internal temperature when a plurality of reference rubber bearings having different equivalent area ratios are heated.

次に、1次元熱伝導方程式における熱拡散係数の値を設定する(ステップS202)。熱拡散係数は、制御部62によって種々の熱拡散係数の値が割り付けられることで設定される。そして、割り付けられた種々の熱拡散係数を係数とする1次元熱伝導方程式がそれぞれ解析されて、参照用ゴム支承の内部温度の解析結果が算出され、内部温度解析情報がメモリ66に記憶される(ステップS204)。1つの熱拡散係数について、この熱拡散係数を用いた1次元熱伝導方程式が解析されて解析結果が算出されると、割り付けられた全ての熱拡散係数について1次元熱伝導方程式による熱伝導解析が実施されたか判定され(ステップS206)、この判定が否定された場合、熱拡散係数を変更して、再度、内部温度解析情報を算出し、メモリ66に記憶する。
補正関数導出装置50は、熱拡散係数が異なる複数の1次元熱伝導方程式のそれぞれについて1次元熱伝導解析を行なう。そして、複数の1次元熱伝導方程式のそれぞれから、内部温度変化の解析結果を取得し、取得した内部温度解析情報をメモリ66に記憶しておく。
Next, the value of the thermal diffusion coefficient in the one-dimensional heat conduction equation is set (step S202). The thermal diffusion coefficient is set by assigning various thermal diffusion coefficient values by the control unit 62. Then, the one-dimensional heat conduction equations having various assigned thermal diffusion coefficients as coefficients are analyzed, the analysis result of the internal temperature of the reference rubber bearing is calculated, and the internal temperature analysis information is stored in the memory 66. (Step S204). When a one-dimensional heat conduction equation using this heat diffusion coefficient is analyzed and the analysis result is calculated for one heat diffusion coefficient, the heat conduction analysis by the one-dimensional heat conduction equation is performed for all assigned heat diffusion coefficients. It is determined whether it has been carried out (step S206), and if this determination is negative, the thermal diffusion coefficient is changed, and the internal temperature analysis information is calculated again and stored in the memory 66.
The correction function deriving device 50 performs a one-dimensional heat conduction analysis for each of a plurality of one-dimensional heat conduction equations having different heat diffusion coefficients. Then, the analysis result of the internal temperature change is acquired from each of the plurality of one-dimensional heat conduction equations, and the acquired internal temperature analysis information is stored in the memory 66.

次に、近似解析情報抽出部56において、メモリ66に記憶された内部温度解析データと、同じくメモリ66に記憶された内部温度実測データとを比較参照し、複数の内部温度実測データのそれぞれに最も近似した内部温度解析情報(近似内部温度解析情報)を抽出する(ステップS208)。そして、参照補正係数算出部58において、熱拡散係数αRBに対する、抽出した近似内部温度解析情報が得られる1次元熱伝導方程式の熱拡散係数の比である参照補正係数k’をそれぞれ求める(ステップS210)。 Next, in the approximate analysis information extraction unit 56, the internal temperature analysis data stored in the memory 66 and the internal temperature actual measurement data stored in the memory 66 are compared and referenced, and each of the plurality of internal temperature actual measurement data is the most. Approximated internal temperature analysis information (approximate internal temperature analysis information) is extracted (step S208). Then, the reference correction coefficient calculation unit 58 calculates on the thermal diffusion coefficient alpha RB, extracted reference approximating internal temperature analysis information is the ratio of the thermal diffusion coefficient of the one-dimensional heat conduction equation derived correction coefficient k ', respectively (step S210).

次に、補正曲線導出部60において、複数の近似内部温度解析情報それぞれにおける参照補正係数k’と、複数の近似内部温度解析情報それぞれが近似する内部温度実測データを得る、参照用ゴム支承70それぞれの等価面積比との対応を表す散布図が作成される。そして、この散布図に基づき、等価面積比に応じて補正係数を算出するための補正曲線(補正関数)を導出する(ステップS210)。   Next, in the correction curve deriving unit 60, each of the reference rubber bearings 70 for obtaining the reference correction coefficient k ′ in each of the plurality of approximate internal temperature analysis information and the internal temperature actual measurement data approximated by each of the plurality of approximate internal temperature analysis information. A scatter diagram representing the correspondence with the equivalent area ratio is created. Based on this scatter diagram, a correction curve (correction function) for calculating a correction coefficient according to the equivalent area ratio is derived (step S210).

図7は、図4に示す補正曲線導出システムによって作成された、等価面積比と参照補正係数k’との対応を表す散布図、および、この散布図から導出された補正曲線である。補正曲線導出システム50において導出された、このような補正曲線は、補正係数設定手段14に送られる。このような補正曲線が、図5のフローチャートにおけるステップS102(熱拡散係数の補正)に先がけて実施されて、補正係数設定手段14に記憶されている。   FIG. 7 is a scatter diagram showing the correspondence between the equivalent area ratio and the reference correction coefficient k ′ created by the correction curve derivation system shown in FIG. 4 and a correction curve derived from this scatter diagram. Such a correction curve derived by the correction curve deriving system 50 is sent to the correction coefficient setting means 14. Such a correction curve is performed prior to step S102 (correction of thermal diffusion coefficient) in the flowchart of FIG. 5 and stored in the correction coefficient setting means 14.

ステップS100においてゴム支承30の等価面積比を算出した後、ゴム支承30の内部温度を算出する1次元熱伝導方程式における熱拡散係数(上述のように、ゴム層32の熱拡散係数αRB)を補正するための補正係数が設定される。この補正係数は、補正係数設定手段14において、図7に示す補正曲線に基づき、等価面積比算出手段12で算出された等価面積比の値に応じて設定される。 After calculating the equivalent area ratio of the rubber bearing 30 in step S100, the thermal diffusion coefficient (the thermal diffusion coefficient α RB of the rubber layer 32 as described above) in the one-dimensional heat conduction equation for calculating the internal temperature of the rubber bearing 30 is calculated. A correction coefficient for correction is set. This correction coefficient is set in the correction coefficient setting means 14 according to the value of the equivalent area ratio calculated by the equivalent area ratio calculation means 12 based on the correction curve shown in FIG.

次に、熱拡散係数補正手段15において、上述の補正係数を用い、ゴム支承30の熱拡散係数を表すゴム層32の熱拡散係数αRBを補正する(ステップS104)。そして、補正した熱拡散係数を係数とする1次元熱伝導方程式をそれぞれ解析して、上述のように、ゴム支承30の中心部分の温度を求める(ステップS104)。 Next, the thermal diffusion coefficient correction means 15 corrects the thermal diffusion coefficient α RB of the rubber layer 32 representing the thermal diffusion coefficient of the rubber support 30 using the correction coefficient described above (step S104). Then, each one-dimensional heat conduction equation using the corrected thermal diffusion coefficient as a coefficient is analyzed, and the temperature of the central portion of the rubber bearing 30 is obtained as described above (step S104).

装置10では、このようにして加硫処理中(すなわち加熱中)のゴム支承30の内部温度を1次元熱伝導方程式を用いて1次元熱伝導解析によって求める。装置10において用いられる1次元熱伝導方程式は、熱拡散係数が、加熱面に略垂直な側面に対する加熱面の面積の比である等価面積比に基づいて補正されている。このように、加熱面に略垂直な側面の影響も加味された等価面積比に応じて補正された補正熱拡散係数を用いることで、加熱面に略垂直な側面からの熱の流入、および側面への熱の流出の影響を反映した高精度な1次元熱伝導解析を行なうことができる。   In the apparatus 10, the internal temperature of the rubber bearing 30 during the vulcanization process (that is, during heating) is thus obtained by one-dimensional heat conduction analysis using the one-dimensional heat conduction equation. In the one-dimensional heat conduction equation used in the apparatus 10, the thermal diffusion coefficient is corrected based on the equivalent area ratio that is the ratio of the area of the heating surface to the side surface substantially perpendicular to the heating surface. In this way, by using the corrected thermal diffusion coefficient corrected according to the equivalent area ratio that also takes into account the influence of the side surface substantially perpendicular to the heating surface, the inflow of heat from the side surface substantially perpendicular to the heating surface, and the side surface Highly accurate one-dimensional heat conduction analysis that reflects the effect of heat outflow on

このように、高精度な1次元熱伝導解析で算出された、ゴム支承30についての内部温度解析データに基づき、所定の時間だけ加熱した時点でのゴム支承30の内部の加硫状態を把握することができる。ゴム支承30は橋梁用のゴム支承未加硫体であり、比較的大きな構造物である。橋梁用ゴム支承未加硫体では、対向する2つの加熱面を一様に加熱した場合でも、側面からの熱の流出の影響で、特に中心部の温度は昇温しづらい。このような橋梁用ゴム支承未加硫体について内部温度を予測する際、ゴム支承未加硫体の材料に基づく熱拡散係数を用いるのみでは、側面からの熱の流出の影響が反映されず、正確に内部温度を予測することができない。本発明の被加熱体の内部温度予測方法によれば、側面からの熱の流出の影響が反映された正確な内部温度を、1次元熱伝導方程式によって、短時間で簡単に予測することができる。このようにして予測されたゴム支承30に加硫状態に基づき、加熱状態を設定することで、所望する最適な加硫条件(加熱条件)を、短時間で簡単かつ高精度に探索することも可能である。   Thus, based on the internal temperature analysis data about the rubber bearing 30 calculated by the highly accurate one-dimensional heat conduction analysis, the state of vulcanization inside the rubber bearing 30 when heated for a predetermined time is grasped. be able to. The rubber bearing 30 is a rubber bearing unvulcanized body for a bridge and is a relatively large structure. In the rubber support unvulcanized body for bridges, even when the two opposite heating surfaces are heated uniformly, the temperature at the center part is particularly difficult to increase due to the influence of heat flow from the side surfaces. When predicting the internal temperature for such a rubber bearing unvulcanized body for bridges, only using the thermal diffusion coefficient based on the material of the rubber bearing unvulcanized body does not reflect the effect of heat outflow from the side, The internal temperature cannot be predicted accurately. According to the method for predicting the internal temperature of an object to be heated according to the present invention, an accurate internal temperature reflecting the influence of heat outflow from the side surface can be easily predicted in a short time by using a one-dimensional heat conduction equation. . By setting the heating state based on the vulcanization state of the rubber bearing 30 thus predicted, it is possible to easily and accurately search for the optimum vulcanization condition (heating condition) desired in a short time. Is possible.

上記実施形態では、多層積層構造であるゴム支承30の中心部の温度変化を求めた。本発明の被加熱体の内部温度変化予測方法において内部の温度変化を求める被加熱体は、多層積層構造であることに限定されない。例えば、全てが同一材料で構成された、ソリッド型防舷材のようなゴム製品の未加硫体を被加熱体とし、該ゴム製品未加硫体の内部の温度変化を求めることも可能である。この際、前記等価面積比は、実際の該ゴム製品未加硫体の加熱面の周辺の長さと、加熱面に略垂直な高さとに応じて定めればよい。例えば、この該ゴム製品未加硫体の加熱面の一辺の長さをa、この一辺と略垂直な他辺の長さをb、加熱面に略垂直な高さをlとすると、この場合の等価面積比Aを下記式(4)によって表せばよい。
A=〔m×(a×b)〕/〔l×(a+b)〕 (mは定数) (4)
本発明における被加熱体は柱状形状であればよく、加熱面の形状や、高さ方向の層構造は特に限定されない。
In the said embodiment, the temperature change of the center part of the rubber bearing 30 which is a multilayer laminated structure was calculated | required. In the method for predicting an internal temperature change of an object to be heated according to the present invention, the object to be heated for obtaining an internal temperature change is not limited to a multilayer laminated structure. For example, an unvulcanized body of a rubber product, such as a solid fender, all made of the same material, can be used as a heated body, and the temperature change inside the unvulcanized rubber product can be obtained. is there. At this time, the equivalent area ratio may be determined according to the actual length of the periphery of the unvulcanized rubber product heating surface and the height substantially perpendicular to the heating surface. For example, when the length of one side of the heating surface of the rubber product unvulcanized body is a, the length of the other side substantially perpendicular to the one side is b, and the height substantially perpendicular to the heating surface is l, in this case The equivalent area ratio A may be expressed by the following equation (4).
A = [m × (a × b)] / [l × (a + b)] (m is a constant) (4)
The to-be-heated body in this invention should just be columnar shape, and the shape of a heating surface and the layer structure of a height direction are not specifically limited.

なお、多層積層構造の内部の温度変化を、1次元熱伝導方程式を用いて求めるのは、非常に面倒である。上記実施形態では、ゴム支承30全体の熱拡散係数として、ゴム層32の熱拡散係数αRBを用いた。そして、金属層34における熱伝導を、熱伝導的にゴム層と等価と仮定できるよう金属層34の厚さを換算して等価ゴム厚を算出し、この等価ゴム厚に応じて前記等価アスペクト比を算出した。これにより、ゴム支承30の高さ方向(図2中上下方向)を軸とする、1つの熱拡散係数を係数とした単純な1次元熱伝導方程式によって、ゴム支承30の内部温度変化を簡略かつ正確に求めることを可能としている。本発明の被加熱体の内部温度予測方法では、被加熱体が多層積層構造であっても、この被加熱体の内部温度を簡略かつ正確に予測できる。 In addition, it is very troublesome to obtain the temperature change inside the multilayer laminated structure using a one-dimensional heat conduction equation. In the above embodiment, the thermal diffusion coefficient α RB of the rubber layer 32 is used as the thermal diffusion coefficient of the rubber support 30 as a whole. Then, the equivalent rubber thickness is calculated by converting the thickness of the metal layer 34 so that the heat conduction in the metal layer 34 can be assumed to be equivalent to the rubber layer in terms of heat conduction, and the equivalent aspect ratio is calculated according to the equivalent rubber thickness. Was calculated. As a result, the internal temperature change of the rubber bearing 30 can be simplified and simplified by a simple one-dimensional heat conduction equation with one thermal diffusion coefficient as a coefficient centering on the height direction of the rubber bearing 30 (vertical direction in FIG. 2). It is possible to obtain accurately. In the method for predicting the internal temperature of the heated body of the present invention, the internal temperature of the heated body can be predicted simply and accurately even if the heated body has a multilayer laminated structure.

上記実施形態では、橋梁用ゴム支承を被加熱体として、このゴム支承を、対向する2つの加熱面から加熱した際の中心部分の温度を求めた。本発明の被加熱体の内部温度予測方法は、被加熱体が橋梁用ゴム支承であることに限定されない。また、被加熱体を対向する2つの加熱面から加熱することに限定されず、1つの面から加熱した場合でも、1次元熱伝導方程式によって被加熱体の内部温度を簡略かつ正確に予測できる。   In the above-described embodiment, the temperature of the central portion when the rubber support for a bridge is heated from the two opposing heating surfaces is determined with the rubber support for a bridge as a heated body. The method for predicting the internal temperature of the heated body of the present invention is not limited to the heated body being a rubber bearing for a bridge. Moreover, it is not limited to heating a to-be-heated body from the two heating surfaces which oppose, Even when it heats from one surface, the internal temperature of a to-be-heated body can be estimated simply and correctly with a one-dimensional heat conduction equation.

以上、本発明の被加熱体の内部温度情報予測方法について詳細に説明したが、本発明は上記実施例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良および変更を行ってもよいのはもちろんである。   As mentioned above, although the internal temperature information prediction method of the to-be-heated body of this invention was demonstrated in detail, this invention is not limited to the said Example, In the range which does not deviate from the summary of this invention, various improvement and change are performed. Of course.

本発明の被加熱体の内部温度予測方法を実施する、被加熱体の内部温度予測装置の一例である、温度予測装置10の概略構成図である。It is a schematic block diagram of the temperature prediction apparatus 10 which is an example of the internal temperature prediction apparatus of the to-be-heated body which implements the internal temperature prediction method of the to-be-heated body of this invention. 本発明における被加熱体の一例であるゴム支承未加硫体、およびゴム支承未加硫体を加熱して加硫する加硫システムについて説明する概略構成図である。It is a schematic block diagram explaining the vulcanization system which heats and vulcanizes the rubber bearing unvulcanized body which is an example of the to-be-heated body in this invention, and a rubber bearing unvulcanized body. 本発明における被加熱体の一例であるゴム支承未加硫体の形状および構造について説明する概略図である。It is the schematic explaining the shape and structure of the rubber bearing unvulcanized body which is an example of the to-be-heated body in this invention. 温度予測装置10による被加熱体の内部温度予測方法において用いる補正曲線を導出する、補正曲線導出システムの一例について説明する概略構成図である。It is a schematic block diagram explaining an example of the correction curve derivation system which derives the correction curve used in the internal temperature prediction method of the to-be-heated body by the temperature prediction apparatus. 本発明の被加熱体の内部温度予測方法の一例のフローチャート図である。It is a flowchart figure of an example of the internal temperature prediction method of the to-be-heated body of this invention. 図4に示す補正曲線導出システムによって実施される、補正曲線導出のフローチャート図である。FIG. 5 is a flowchart of correction curve derivation performed by the correction curve derivation system shown in FIG. 4. 図4に示す補正曲線導出システムによって作成される、参照用ゴム支承未加硫体の等価面積比と、参照補正係数k’との対応を表す散布図である。FIG. 5 is a scatter diagram showing a correspondence between an equivalent area ratio of a reference rubber-supported unvulcanized body and a reference correction coefficient k ′ created by the correction curve derivation system shown in FIG. 4.

符号の説明Explanation of symbols

10 温度予測装置
12 等価面積比算出手段
14 補正係数設定手段
15 熱拡散係数補正手段
16 温度情報算出手段
18 入力手段
20 CPU
22 メモリ
30 ゴム支承未加硫体
32 ゴム層
34 金属層
40 加硫システム
42 上下モールド
44 側面モールド
46 熱板
47 温度センサ
48 加熱制御部
49 温度情報取得部
50 補正曲線導出システム
52 入力部
54 内部温度解析部
56 近似解析情報抽出部
58 参照補正係数算出部
60 近似関数導出部
62 制御部
64 CPU
66 メモリ
70 参照用ゴム支承
DESCRIPTION OF SYMBOLS 10 Temperature prediction apparatus 12 Equivalent area ratio calculation means 14 Correction coefficient setting means 15 Thermal diffusion coefficient correction means 16 Temperature information calculation means 18 Input means 20 CPU
22 Memory 30 Rubber support unvulcanized body 32 Rubber layer 34 Metal layer 40 Vulcanization system 42 Upper and lower mold 44 Side mold 46 Heat plate 47 Temperature sensor 48 Heating control unit 49 Temperature information acquisition unit 50 Correction curve derivation system 52 Input unit 54 Inside Temperature analysis unit 56 Approximation analysis information extraction unit 58 Reference correction coefficient calculation unit 60 Approximate function derivation unit 62 Control unit 64 CPU
66 Memory 70 Rubber bearing for reference

Claims (6)

対向する2面を備える柱状の被加熱体を、前記対向する2面のうち少なくともいずれか1方の面から加熱した際の、前記被加熱体の温度時間変化を予測する方法であって、
前記被加熱体の加熱面に略垂直な側面の等価面積に対する、前記加熱面の面積の比を表す面積比に応じて、前記被加熱体を特徴づける熱拡散係数を補正する補正ステップと、
補正された熱拡散係数を係数とする、前記被加熱体の高さ方向を軸とする1次元熱伝導方程式と、所定の加熱条件に応じた境界条件とを用いて、前記被加熱体の温度時間変化を予測する予測ステップとを有し、
前記側面の等価面積は、前記被加熱体の加熱面の周辺の長さと、前記被加熱体の前記加熱面に略垂直方向の高さとに応じて定まることを特徴とする被加熱体の内部温度予測方法。
A method of predicting a temperature-time change of the heated object when a columnar heated object having two opposed surfaces is heated from at least one of the two opposed surfaces,
A correction step of correcting a thermal diffusion coefficient characterizing the heated object according to an area ratio representing a ratio of the area of the heated surface to an equivalent area of a side surface substantially perpendicular to the heated surface of the heated object;
Using the corrected thermal diffusion coefficient as a coefficient, the one-dimensional heat conduction equation with the height direction of the heated object as an axis, and the boundary condition according to a predetermined heating condition, the temperature of the heated object A prediction step for predicting a time change,
The equivalent area of the side surface is determined according to the length of the periphery of the heating surface of the heated body and the height of the heated body in a direction substantially perpendicular to the heating surface. Prediction method.
前記被加熱体は略直方体または略立方体であり、
前記加熱面の一辺の長さをa、この一辺と略垂直な前記加熱面の他辺の長さをb、前記被加熱体の前記加熱面に略垂直方向の高さをlとすると、
前記側面の等価面積Sは、下記式(1)で表されることを特徴とする請求項1記載の被加熱体の内部温度予測方法。
S=l×(a+b) (1)
The heated object is a substantially rectangular parallelepiped or a substantially cube.
When the length of one side of the heating surface is a, the length of the other side of the heating surface substantially perpendicular to the one side is b, and the height in the direction substantially perpendicular to the heating surface of the heated object is l,
The method of predicting the internal temperature of the heated object according to claim 1, wherein the equivalent area S of the side surface is expressed by the following formula (1).
S = 1 × (a + b) (1)
前記補正ステップは、前記被加熱体の面積比に応じて設定された補正係数を、前記熱拡散係数に乗算することで、前記熱拡散係数を補正するものであり、
前記補正係数は、予め求めた等価面積比と補正係数との対応関係に基づいて設定されることを特徴とする、請求項1または2記載の被加熱体の内部温度予測方法。
The correction step is to correct the thermal diffusion coefficient by multiplying the thermal diffusion coefficient by a correction coefficient set according to the area ratio of the heated object,
3. The method for predicting the internal temperature of a heated object according to claim 1, wherein the correction coefficient is set based on a correspondence relationship between an equivalent area ratio and a correction coefficient that are obtained in advance.
前記被加熱体が、それぞれ異なる複数の板状部材が高さ方向に積層された積層部材である場合、
複数の板状部材のうち1つの板状部材の材質を特徴づける熱拡散係数を、前記被加熱体を特徴づける熱拡散係数として用い、
かつ、前記1つの板状部材の熱拡散係数に対する、各板状部材の熱拡散係数の比に応じて、各板状部材の前記高さ方向の厚さをそれぞれ補正し、補正後の合計値を前記被加熱体の前記高さとして用いることを特徴とする請求項1〜3のいずれかに記載の被加熱体の内部温度予測方法。
When the heated body is a laminated member in which a plurality of different plate-like members are laminated in the height direction,
A thermal diffusion coefficient that characterizes the material of one plate-like member among the plurality of plate-like members is used as a thermal diffusion coefficient that characterizes the heated object,
And according to the ratio of the thermal diffusion coefficient of each plate-like member to the thermal diffusion coefficient of said one plate-like member, the thickness in the height direction of each plate-like member is corrected, respectively, and the corrected total value Is used as the height of the object to be heated, The internal temperature prediction method for the object to be heated according to any one of claims 1 to 3.
前記被加熱体は、それぞれ異なる材料からなるn種類の板状部材B(m=1、2、・・・n)が高さ方向に積層された積層部材であり、
n種類の板状部材Bのうち1つの板状部材Bの材質を特徴づける熱拡散係数αを、前記被加熱体を特徴づける熱拡散係数として用いる場合、
n種類の板状部材それぞれの前記高さ方向の総厚を、それぞれl(m=1、2、・・・n)、各板状部材の材質を特徴づける熱拡散係数を、それぞれα(m=1、2、・・・n)、前記補正後の合計値をleqとすると、
前記leqは、下記式(2)によって表されることを特徴とする請求項4記載の被加熱体の内部温度予測方法。
Figure 2006205449
The heated body is a laminated member in which n types of plate-like members B m (m = 1, 2,... N) made of different materials are laminated in the height direction,
When the thermal diffusion coefficient α 1 characterizing the material of one plate-like member B 1 among the n types of plate-like members B m is used as the thermal diffusion coefficient characterizing the object to be heated,
The total thickness in the height direction of each of the n types of plate-like members is 1 m (m = 1, 2,... n), and the thermal diffusion coefficient characterizing the material of each plate-like member is α m (M = 1, 2,..., N), and assuming that the total value after the correction is l eq ,
5. The method for predicting the internal temperature of a heated object according to claim 4, wherein the l eq is expressed by the following formula (2).
Figure 2006205449
対向する2面を備える柱状の被加熱体を、前記対向する2面のうち少なくともいずれか1方の面から加熱した際の、前記被加熱体の温度時間変化の予測をコンピュータに実行させるプログラムであって、
前記被加熱体の加熱面に略垂直な側面の等価面積に対する、前記加熱面の面積の比を表す面積比に応じて、前記被加熱体を特徴づける熱拡散係数を補正する手順、
補正された熱拡散係数を係数とする、前記被加熱体の高さ方向を軸とする1次元熱伝導方程式と、所定の加熱条件に応じた境界条件とを用いて、前記被加熱体の温度時間変化を予測する手順を有し、
前記側面の等価面積は、前記被加熱体の加熱面の周辺の長さと、前記被加熱体の前記加熱面に略垂直方向の高さとに応じて定まることを特徴とする被加熱体の内部温度予測プログラム。
A program for causing a computer to predict a temperature-time change of the heated object when a columnar heated object having two opposed surfaces is heated from at least one of the two opposed surfaces. There,
A procedure for correcting a thermal diffusion coefficient characterizing the heated object according to an area ratio representing a ratio of the area of the heated surface to an equivalent area of a side surface substantially perpendicular to the heated surface of the heated object;
Using the corrected thermal diffusion coefficient as a coefficient, the one-dimensional heat conduction equation with the height direction of the heated object as an axis, and the boundary condition according to a predetermined heating condition, the temperature of the heated object Has a procedure to predict time changes;
The equivalent area of the side surface is determined according to the length of the periphery of the heating surface of the heated body and the height of the heated body in a direction substantially perpendicular to the heating surface. Prediction program.
JP2005018341A 2005-01-26 2005-01-26 Method and program for predicting internal temperature of heated object Expired - Fee Related JP4513582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005018341A JP4513582B2 (en) 2005-01-26 2005-01-26 Method and program for predicting internal temperature of heated object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005018341A JP4513582B2 (en) 2005-01-26 2005-01-26 Method and program for predicting internal temperature of heated object

Publications (2)

Publication Number Publication Date
JP2006205449A true JP2006205449A (en) 2006-08-10
JP4513582B2 JP4513582B2 (en) 2010-07-28

Family

ID=36962800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005018341A Expired - Fee Related JP4513582B2 (en) 2005-01-26 2005-01-26 Method and program for predicting internal temperature of heated object

Country Status (1)

Country Link
JP (1) JP4513582B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176530A (en) * 2011-02-25 2012-09-13 Bridgestone Corp Steam hole arrangement determination method of laminated rubber
US8521456B2 (en) 2010-10-05 2013-08-27 Toyota Jidosha Kabushiki Kaisha State estimation method and state estimation apparatus of electric storage element

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179992A (en) * 1984-09-25 1986-04-23 Matsushita Electric Ind Co Ltd Control of thermal performance calculation for heat accumulating device
JPH0740355A (en) * 1993-07-26 1995-02-10 Bridgestone Corp Vulcanization control method
JPH0752220A (en) * 1993-08-18 1995-02-28 Toray Ind Inc Manufacture of resin molded product
JPH09159631A (en) * 1995-12-06 1997-06-20 Chokoon Zairyo Kenkyusho:Kk Method for analyzing thermal constant using laser flash method
JPH10222492A (en) * 1997-02-10 1998-08-21 Sony Corp Method for analyzing plate-type loop like thin heat pipe
JPH10221279A (en) * 1997-02-05 1998-08-21 Shinku Riko Kk Measuring method and device for thermal diffusivity using alternate current calorimetry
JPH10278085A (en) * 1997-04-08 1998-10-20 Canon Inc Device and method for estimating temperature history in injection molding process
JP2002116166A (en) * 2000-10-05 2002-04-19 Chokoon Zairyo Kenkyusho:Kk Measuring method and measuring instrument for thermal resistance and biot number of laminated material
JP2004132778A (en) * 2002-10-09 2004-04-30 Chokoon Zairyo Kenkyusho:Kk Heat characteristic evaluation method of laminated material having thermal resistance and its method
JP2006205452A (en) * 2005-01-26 2006-08-10 Yokohama Rubber Co Ltd:The Determination method of vulcanizing condition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179992A (en) * 1984-09-25 1986-04-23 Matsushita Electric Ind Co Ltd Control of thermal performance calculation for heat accumulating device
JPH0740355A (en) * 1993-07-26 1995-02-10 Bridgestone Corp Vulcanization control method
JPH0752220A (en) * 1993-08-18 1995-02-28 Toray Ind Inc Manufacture of resin molded product
JPH09159631A (en) * 1995-12-06 1997-06-20 Chokoon Zairyo Kenkyusho:Kk Method for analyzing thermal constant using laser flash method
JPH10221279A (en) * 1997-02-05 1998-08-21 Shinku Riko Kk Measuring method and device for thermal diffusivity using alternate current calorimetry
JPH10222492A (en) * 1997-02-10 1998-08-21 Sony Corp Method for analyzing plate-type loop like thin heat pipe
JPH10278085A (en) * 1997-04-08 1998-10-20 Canon Inc Device and method for estimating temperature history in injection molding process
JP2002116166A (en) * 2000-10-05 2002-04-19 Chokoon Zairyo Kenkyusho:Kk Measuring method and measuring instrument for thermal resistance and biot number of laminated material
JP2004132778A (en) * 2002-10-09 2004-04-30 Chokoon Zairyo Kenkyusho:Kk Heat characteristic evaluation method of laminated material having thermal resistance and its method
JP2006205452A (en) * 2005-01-26 2006-08-10 Yokohama Rubber Co Ltd:The Determination method of vulcanizing condition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8521456B2 (en) 2010-10-05 2013-08-27 Toyota Jidosha Kabushiki Kaisha State estimation method and state estimation apparatus of electric storage element
JP2012176530A (en) * 2011-02-25 2012-09-13 Bridgestone Corp Steam hole arrangement determination method of laminated rubber

Also Published As

Publication number Publication date
JP4513582B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
KR101935148B1 (en) Method for estimating a variation in preload applied to linear guideway
Babu Thermal contact resistance: experiments and simulation
JP4795176B2 (en) Mold temperature simulation method and simulation program
JP4513582B2 (en) Method and program for predicting internal temperature of heated object
JP2011131371A (en) Machine tool, and method and program for determining number and arrangement of temperature measurement parts of machine tool
Jin et al. Analysis and design for reducing residual stress and distortion after ejection of injection molded part with metal-insert
JP2019181801A (en) Shrinkage rate prediction device, shrinkage rate prediction model learning device, and program
JP5241310B2 (en) Method and apparatus for predicting deformed shape of molded product, program for predicting deformed shape and storage medium thereof
JP2004160700A (en) Simulation apparatus for injection molding process and method for estimating shape precision
US9037420B2 (en) Internal residual stress calculating device, non-transitory computer-readable medium, and internal residual stress calculating method
JP2007203591A (en) Physical property simulation method of laminated rubber after vulcanization
JP2010008312A (en) Method and device for evaluating thermal conductivity
Gough Calculation of times and temperatures for press vulcanization of thick rubber pads
US5630667A (en) Model and method for predicting heat cracking of heat-resistant members
JP5722077B2 (en) Post-vulcanization physical property simulation method for laminated rubber
JP6341566B2 (en) Slip surface temperature estimation method
JP2010117076A (en) Hot isotropic pressure device
JP4097083B2 (en) Method and apparatus for inspecting filling failure of concrete
JP7063034B2 (en) Laminated modeling method
JP2006026723A (en) Method, apparatus and program for simulating die-casting, and record medium for recording this program
JP2010030259A (en) Method of predicting molded article shape, method of predicting cavity shape and apparatus of them, prediction program for molded article shape or cavity shape and recording medium therefor
JPH0655597A (en) Injection-molding process simulation method and device thereof
JP6053525B2 (en) Method for predicting physical properties of resin molded products
Foadian et al. Simulation of edge defects behavior of slabs in the sizing press and roughing mill of a hot strip mill
JP3382685B2 (en) Vulcanizer mold temperature controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100503

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees