JPH10221279A - Measuring method and device for thermal diffusivity using alternate current calorimetry - Google Patents

Measuring method and device for thermal diffusivity using alternate current calorimetry

Info

Publication number
JPH10221279A
JPH10221279A JP2293597A JP2293597A JPH10221279A JP H10221279 A JPH10221279 A JP H10221279A JP 2293597 A JP2293597 A JP 2293597A JP 2293597 A JP2293597 A JP 2293597A JP H10221279 A JPH10221279 A JP H10221279A
Authority
JP
Japan
Prior art keywords
thin film
film sample
thermal diffusivity
sample
unknown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2293597A
Other languages
Japanese (ja)
Other versions
JP3758784B2 (en
Inventor
Nobuyuki Araki
信幸 荒木
Gun You
軍 楊
Daii Tou
大偉 唐
Atsushi Makino
敦 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU RIKO KK
Original Assignee
SHINKU RIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU RIKO KK filed Critical SHINKU RIKO KK
Priority to JP02293597A priority Critical patent/JP3758784B2/en
Publication of JPH10221279A publication Critical patent/JPH10221279A/en
Application granted granted Critical
Publication of JP3758784B2 publication Critical patent/JP3758784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure the thermal diffusivity of a multi-layer film, electric conductor film, and semiconductor film in the direction across the thickness. SOLUTION: A laminate thin film specimen LA prepared by pinching a thin film specimen 1 whose thermal diffisivity of the layer 3 is unknown by at least one of the first and second insulative thin film specimens 21 and 22 (layers 2 and 4) where the thermal diffusivities a2 and a4 , thermal conductivity, and thicknesses 12 and 14 are known, is pinched by a pair of specimen holders 31 and 32 (layers 1 and 5), and different AC powers of constant frequency (f) are given one after another to a thin metal film 4 pinched in tight attachment by the first insulative thin film specimen 21 and the specimen holder 31 . The phase difference ΔΦt of the thermal wave transmitted to the laminate specimen LA is measured by an electric resistance thermometer and lock-in amplifier using thin metal film 5 pinched by the second insulative thin film specimen 22 and specimen holder 32 , and using the obtained phase difference, the thermal diffusivity a3 of the unknown thin film specimen is calculated from ΔΦt=ΔΦ2 +ΔΦ3 +ΔΦ4 and ΔΦi =-1i (πf/ai )<1/2> where layer i is 2, 3, 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜試料の厚さ方
向の熱拡散率測定方法及び装置に関する。
The present invention relates to a method and an apparatus for measuring a thermal diffusivity in a thickness direction of a thin film sample.

【0002】[0002]

【従来の技術】従来、薄膜試料の厚さ方向の熱拡散率の
測定は種々試みられており、例えば、熱拡散率が未知の
薄膜試料を既知の第1及び第2の薄膜試料で挟み、未知
の薄膜試料の一方の表面に付着した金属膜抵抗に交流電
力を加えて該薄膜試料を加熱し、他方の表面に付着した
温度計用金属膜抵抗の抵抗変化から得られた交流温度信
号から未知の薄膜試料の熱拡散率を算出する交流カロリ
メトリによる測定方法が提案されている(特開平6−2
73361号)。
Conventionally, various attempts have been made to measure the thermal diffusivity in the thickness direction of a thin film sample. For example, a thin film sample whose thermal diffusivity is unknown is sandwiched between known first and second thin film samples. An AC power is applied to the metal film resistance attached to one surface of the unknown thin film sample to heat the thin film sample, and from an AC temperature signal obtained from a resistance change of the metal film resistance for the thermometer attached to the other surface. A measurement method using AC calorimetry for calculating the thermal diffusivity of an unknown thin film sample has been proposed (JP-A-6-2).
No. 73361).

【0003】[0003]

【発明が解決しようとする課題】上記の従来技術では、
熱拡散率が既知の第1又は第2の薄膜試料は、未知の薄
膜試料と同じλ・k[λ:熱伝導率、k(交流温度減衰
係数):(πf/a)1/ 2 ]の値でなければならない。
したがって、2層、3層と多層の場合には測定不能で、
単層しか測定できないという不具合があり、また、試料
は電気的に不良導体に限られ、金属及び半導体の薄膜試
料は測定できないという不具合があった。本発明は、上
記した従来の熱拡散率の測定方法の不具合を解決し、複
数層膜や電気的導体膜、半導体膜の熱拡散率を測定する
ことができる交流カロリメトリによる熱拡散率測定方法
及び装置を提供することを課題とする。
In the above prior art,
The first or second thin film sample thermal diffusivity is known, the same lambda · k with the unknown thin film sample [lambda: thermal conductivity, k (AC Temperature attenuation coefficient) :( πf / a) 1/ 2] of Must be a value.
Therefore, it cannot be measured in the case of two layers, three layers, and
There is a problem that only a single layer can be measured, and a sample is limited to an electrically defective conductor, and there is a problem that a thin film sample of metal or semiconductor cannot be measured. The present invention solves the above-mentioned problems of the conventional method for measuring the thermal diffusivity, and a method for measuring the thermal diffusivity by AC calorimetry capable of measuring the thermal diffusivity of a multilayer film, an electric conductor film, and a semiconductor film. It is an object to provide a device.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、請求項1に記載のように、熱拡散率が
未知の薄膜試料が、熱拡散率、熱伝導率及び厚さがそれ
ぞれ既知の、少なくとも1枚の第1及び第2の絶縁薄膜
試料で挟まれた層状薄膜試料を、一対の試料ホルダで挟
み、第1の絶縁薄膜試料と試料ホルダとの間に密着して
挟み込まれた金属薄膜に種々の周波数fの一定の交流電
力を順次与え、前記層状薄膜試料に伝搬する温度波の位
相差ΔΦT を第2の絶縁薄膜試料と試料ホルダとの間に
挟まれた金属薄膜を用いた電気抵抗温度計及びロックイ
ン増幅器により測定し、 ΔΦt =ΔΦ2 +ΔΦ3 +ΔΦ4 (6) ΔΦi =−li (πf/ai 1/2 (i=2,3,4) (7) 但し、ΔΦ2 は、第1の絶縁薄膜試料の温度波の位相差 ΔΦ3 は、未知の薄膜試料の温度波の位相差 ΔΦ4 は、第2の絶縁薄膜試料の温度波の位相差 li は、第1及び第2の絶縁薄膜試料並びに未知の薄膜
試料の厚さ ai は、第1及び第2の絶縁薄膜試料並びに未知の薄膜
試料の熱拡散率 上記位相差ΔΦt を用いて上記(6)(7)式から未知
の薄膜試料の熱拡散率a3 を算出することを特徴とする
交流カロリメトリによる熱拡散率測定方法にあり、ま
た、請求項2に記載のように、薄膜試料が熱拡散率、熱
伝導率及び厚さがそれぞれ既知の、少なくとも1枚の第
1及び第2の絶縁薄膜試料で挟まれた層状薄膜試料にお
ける熱拡散率が未知の薄膜試料の熱拡散率測定装置であ
って、交流発振器、金属薄膜を用いた電気抵抗温度計、
直流増幅器及びロックイン増幅器から成る前記層状薄膜
試料の温度波の位相差ΔΦt を測定する計測用装置と、 ΔΦt =ΔΦ2 +ΔΦ3 +ΔΦ4 (6) ΔΦi =−li (πf/ai 1/2 (i=2,3,4) (7) 上記位相差ΔΦt を用いて上記(6)(7)式から熱拡
散率が未知の薄膜試料の熱拡散率を算出する手段とから
構成されることを特徴とする交流カロリメトリによる熱
拡散率測定装置にある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a thin film sample whose thermal diffusivity is unknown, comprising the steps of: A layered thin film sample sandwiched between at least one first and second insulating thin film samples, each of which is known, is sandwiched between a pair of sample holders, and closely adhered between the first insulating thin film sample and the sample holder. A constant AC power of various frequencies f is sequentially applied to the sandwiched metal thin film, and the phase difference ΔΦ T of the temperature wave propagating to the layered thin film sample is sandwiched between the second insulating thin film sample and the sample holder. Measured with an electric resistance thermometer and a lock-in amplifier using a thin metal film. = ΔΦ 2 + ΔΦ 3 + ΔΦ 4 (6) ΔΦ i = -l i (πf / a i) 1/2 (i = 2,3,4) (7) where, .DELTA..PHI 2 is the first insulating thin film sample The phase difference of the temperature wave ΔΦ 3 is the phase difference of the temperature wave of the unknown thin film sample ΔΦ 4 is the phase difference of the temperature wave of the second insulating thin film sample l i is the first and second insulating thin film sample and the unknown the thickness a i of the thin film sample, the first and second insulating thin film sample and the thermal diffusivity of the phase difference of the unknown film sample ΔΦt 3. A method for measuring the thermal diffusivity by AC calorimetry, wherein the thermal diffusivity a 3 of an unknown thin film sample is calculated from the above equations (6) and (7). The thermal diffusivity, thermal conductivity, and thickness of the thin film sample are known, and the thermal diffusivity of the thin film sample is unknown in the layered thin film sample sandwiched between at least one first and second insulating thin film samples. A thermal diffusivity measuring device, an AC oscillator, an electric resistance thermometer using a metal thin film,
Phase difference ΔΦt of temperature wave of the layered thin film sample composed of DC amplifier and lock-in amplifier Measuring device for measuring Δt = ΔΦ 2 + ΔΦ 3 + ΔΦ 4 (6) ΔΦ i = -l i (πf / a i) 1/2 (i = 2,3,4) (7) The retardation ΔΦt And a means for calculating the thermal diffusivity of the thin film sample whose thermal diffusivity is unknown from the above equations (6) and (7), using a thermal diffusivity measuring apparatus based on AC calorimetry.

【0005】図1において、層2、3及び4は、それぞ
れ第1の絶縁薄膜試料、熱拡散率[a=λ/(C・ρ)
ρ:密度]が未知の薄膜試料及び第2の絶縁薄膜試
料で、それぞれの厚さ、熱拡散率、熱伝導率及び交流温
度減衰係数は、l2 、a2 、λ2 及びk2 ,l3
3 、λ3 及びk3 並びにl4 、a4 、λ4 及びk4
する。この層2、3及び4の3層から成る層状薄膜試料
が、層1及び層5の試料ホルダによって挟まれた状態に
おいて、3層から成る層状薄膜試料の表面(x=0)が
周波数f、単位面積当りの熱量Q(最大値)で周期的に
加熱されたときの該層状薄膜試料の裏面(x=d4 )に
おける温度応答及び位相差を測定する。前記試料ホルダ
の層1及び層5は3層から成る層状薄膜試料に比較して
十分厚いものとし、この層1及び層5の厚さ、熱拡散
率、熱伝導率及び交流温度減衰係数はそれぞれl1 、a
1 、λ1 及びk1 並びにl5 、a5 、λ5 及びk5 とす
る。また、各層間の接触熱抵抗はないとして一次元熱伝
導方程式を解くと、x=d4 における温度応答は式
(1)となる。
In FIG. 1, layers 2, 3 and 4 are a first insulating thin film sample and a thermal diffusivity [a = λ / (C · ρ), respectively.
ρ: density] of the unknown thin film sample and the second insulating thin film sample, the thickness, thermal diffusivity, thermal conductivity and AC temperature decay coefficient of l 2 , a 2 , λ 2 and k 2 , l 3 ,
a 3, lambda 3 and k 3 and l 4, a 4, and lambda 4 and k 4. In a state where the layered thin film sample composed of the three layers 2, 3, and 4 is sandwiched between the sample holders of the layers 1 and 5, the surface (x = 0) of the layered thin film sample composed of the three layers has a frequency f, The temperature response and the phase difference on the back surface (x = d 4 ) of the layered thin film sample when the layered thin film sample is periodically heated by the heat quantity Q (maximum value) per unit area are measured. The layers 1 and 5 of the sample holder are sufficiently thicker than the three-layered thin film sample, and the thickness, thermal diffusivity, thermal conductivity and AC temperature decay coefficient of the layers 1 and 5 are respectively l 1 , a
1, lambda 1 and k 1 and l 5, a 5, a lambda 5 and k 5. If the one-dimensional heat conduction equation is solved on the assumption that there is no contact thermal resistance between the layers, the temperature response at x = d 4 is given by equation (1).

【0006】[0006]

【数1】 (Equation 1)

【0007】ここで、添字は層の番号であり、Y、W、
Vは次式で表される。
Here, the suffix is a layer number, and Y, W,
V is represented by the following equation.

【0008】[0008]

【数2】 (Equation 2)

【0009】もしも、λ1 1 =λ2 2 であれば、層
2と層3の位相差(層2及び層3のそれぞれの表面温度
と裏面温度の位相差、以上及び以下同様)はそれぞれ式
(2)、(3)となる。
If λ 1 k 1 = λ 2 k 2 , the phase difference between the layers 2 and 3 (the phase difference between the surface temperature and the back surface temperature of each of the layers 2 and 3, and above and below) is Equations (2) and (3) respectively.

【0010】 ΔΦ2 =−k2 2 (2)ΔΦ 2 = −k 2 l 2 (2)

【0011】[0011]

【数3】 (Equation 3)

【0012】式(3)の第2項は第1項に比較して非常
に小さく、無視できる大きさである。つまり、 ΔΦ3 =−k3 3 (4) と近似できる。図2は式(4)で近似したことによる誤
差を種々のパラメータを変化させて表示したものであ
る。実用的範囲においてその誤差は±1%以下であるこ
とが分かる[図2において、Fo3 はフーリエ数(at
/l2 )、Λは熱浸透率(effusivity)、αは例えば層
4のΛと層3のΛとの比Λ4/3 である。Λ=(λ・C・
ρ)1/2=(λ・λ/a)1/2=λ/(a)1/2]。層4
の位相差は、λ4 4 =λ5 5 とすると、 ΔΦ4 =−k4 4 (5) となる。式(2)は層2の物性値(熱伝導率、熱拡散
率)が層1と同じであるとして導かれたものであるが、
たとえ両者の物性値が異なっていても、層3に対する解
析と同様な手法を適用すると、近似的に式(2)が成立
することが分かる。式(5)も同じ観点から層4と層5
の物性値が異なっても近似的に成立する。
The second term in equation (3) is very small and negligible compared to the first term. That is, it can be approximated as ΔΦ 3 = −k 3 l 3 (4). FIG. 2 shows an error caused by approximation by the equation (4) while changing various parameters. It can be seen that the error is within ± 1% in a practical range [In FIG. 2, Fo 3 is the Fourier number (at
/ L 2 ), Λ is the thermal effusivity, and α is, for example, the ratio of Λ of layer 4 to 層 of layer 3 Λ 4/3 . Λ = (λ ・ C ・
ρ) 1/2 = (λ · λ / a) 1/2 = λ / (a) 1/2 ]. Layer 4
The phase difference of ΔΦ 4 = −k 4 l 4 (5) is assuming that λ 4 k 4 = λ 5 k 5 . Equation (2) is derived assuming that the physical properties (thermal conductivity and thermal diffusivity) of the layer 2 are the same as those of the layer 1.
Even if the physical property values of the two are different, it is understood that Expression (2) is approximately established by applying the same method as the analysis for the layer 3. Equation (5) is applied to the layer 4 and the layer 5 from the same viewpoint.
Are approximately established even if the physical property values of are different.

【0013】結局、層状薄膜試料全体の位相差(加熱面
と温度測定点)ΔΦt は次式で表される。
ΔΦt =ΔΦ2 +ΔΦ3 +ΔΦ4
(6) ここで、 ΔΦi =−li (πf/ai 1/2 (i=
2、3、4) (7) 尚、(7)式が、薄膜試料の一方の面に交流熱を加え
て、一方の面の温度と他方の面の温度との間に温度波の
位相差を生じたときに成立することは、例えば、前記特
開平6−273361号公報に詳細に述べられている。
After all, the phase difference (heating surface and temperature measurement point) ΔΦ t of the whole layered thin film sample is expressed by the following equation.
ΔΦ t = ΔΦ 2 + ΔΦ 3 + ΔΦ 4
(6) where, ΔΦ i = -l i (πf / a i) 1/2 (i =
2,3,4) (7) Equation (7) is obtained by applying AC heat to one surface of the thin film sample, and calculating the phase difference of the temperature wave between the temperature of one surface and the temperature of the other surface. The fact that the above condition is satisfied when is generated is described in detail in, for example, the above-mentioned JP-A-6-273361.

【0014】層状薄膜試料全体の位相差ΔΦt を測定
し、(6)(7)式を用いることによって、層状薄膜試
料全体の実効的熱拡散率が計算することができる。層3
である薄膜試料の物性値が未知であり、他の層である絶
縁薄膜試料の物性値及び厚さが既知であれば、未知の薄
膜試料の熱拡散率a3 は、層状薄膜試料全体の位相差Δ
Φt を測定することによって、(6)(7)式から容易
に求めることができる。以上の説明では、薄膜試料の上
下の絶縁薄膜試料は夫々1層で、総計3層を例として説
明したが、3層以上であっても、各位相差の和で表され
る近似は実用的な範囲で成立する。
By measuring the phase difference ΔΦ t of the entire layered thin film sample and using equations (6) and (7), the effective thermal diffusivity of the entire layered thin film sample can be calculated. Layer 3
In a physical property value of the thin film sample is unknown, if the known physical properties and thickness of the insulating thin film sample which is another layer, the thermal diffusivity of a 3 unknown film samples, the entire layered thin film sample position Phase difference Δ
By measuring Φ t , it can be easily obtained from equations (6) and (7). In the above description, the insulating thin film samples above and below the thin film sample are each one layer, and a total of three layers have been described as an example. However, even if there are three or more layers, the approximation represented by the sum of the respective phase differences is practical. It is established in the range.

【0015】請求項2に記載の測定装置において、交流
発振器、金属薄膜を用いた電気抵抗温度計、直流増幅器
及びロックイン増幅器から成る前記層状薄膜試料の温度
波の位相差Φt を測定する計測用装置は、交流発振器か
ら出力する交流電流で層状薄膜試料を加熱して前記層状
薄膜試料の温度波の位相差を測定し、前記手段は、測定
した前記層状薄膜試料の温度波の位相差と前記(6)及
び(7)式とから熱拡散率が未知の薄膜試料の熱拡散率
を算出する。
[0015] The measuring apparatus according to claim 2, AC generator, the electric resistance thermometer using a metal thin film, measurement for measuring the phase difference [Phi t temperature wave of said layered film sample consisting of the DC amplifier and the lock-in amplifier The apparatus for heating the layered thin film sample with an alternating current output from an AC oscillator to measure the phase difference of the temperature wave of the layered thin film sample, and the means is configured to measure the phase difference of the measured temperature wave of the layered thin film sample. From the equations (6) and (7), the thermal diffusivity of the thin film sample whose thermal diffusivity is unknown is calculated.

【0016】[0016]

【発明の実施の形態】以下に本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図3は、試料薄膜の熱拡散率を測定すると
きの試料系の模式図である。
FIG. 3 is a schematic diagram of a sample system when measuring the thermal diffusivity of a sample thin film.

【0018】同図において、1は、前記層3に対応す
る、例えばステンレス鋼(SUS304)である熱拡散
率が未知の薄膜試料、21 及び22 は、前記層2及び層
4に対応する例えばポリイミドフィルムである絶縁薄膜
試料、31 及び32 は前記層1及び層5に対応する例え
ばポリイミドフィルムである試料ホルダであり、試料ホ
ルダ31 には、加熱用の金膜4(抵抗値2〜3Ω)がス
パッタリングにより蒸着されており、試料ホルダ32
は電気抵抗温度計として使用する金膜5(抵抗値10〜
20Ω)が蒸着されている。これらの薄膜試料1、21
及び22 から成る層状薄膜試料LA及び試料ホルダ31
及び32 等は、例えばガラスプレートの基台6に載せら
れ、層間の接触熱抵抗を減らすために例えばガラスプレ
ートである押板7により上からしっかりと押さえられ
る。
[0018] In the figure, 1 is corresponding to the layer 3, for example, stainless steel (SUS304) thermal diffusivity unknown lamella is, 2 1 and 2 2 correspond to the layer 2 and layer 4 for example, an insulating thin film sample a polyimide film, 3 1 and 3 2 are sample holder such as a polyimide film corresponding to the layer 1 and the layer 5, the sample holder 3 1, a gold film 4 (the resistance value of the heating 2~3Omu) are deposited by sputtering, a gold film 5 (the resistance value used as an electric resistance thermometer 10 to the sample holder 3 2
20Ω) is deposited. These thin film samples 1, 2 1
And layered lamella LA and specimen holder 3 1 consists of two 2
And 3 2, etc., for example, mounted on the base 6 of the glass plate is firmly pressed from above by the pressing plate 7, for example a glass plate in order to reduce the thermal contact resistance between the layers.

【0019】図4は熱拡散率測定装置の概略を示すブロ
ック図を示す。
FIG. 4 is a block diagram schematically showing a thermal diffusivity measuring apparatus.

【0020】同図において、10は前記加熱用の金膜4
に電力増幅器11を介して接続された例えば関数発生器
である交流発振器、12は前記金膜5に可変抵抗13を
介して接続された電気抵抗温度計用直流電源、14は前
記金膜5に補償装置15を介して接続された直流増幅
器、16は該直流増幅器14に接続されたロックイン増
幅器で、以上の交流発振器10、電力増幅器11、抵抗
温度計用直流電源12、直流増幅器14及びロックイン
増幅器16等は層状薄膜試料LAの温度波の位相差を測
定する計測用装置を構成する。この装置には、図示しな
いが、ロックイン増幅器16に接続され、前記(6)及
び(7)式から未知の試料薄膜1の熱拡散率を計算する
例えば、コンピュータなどの手段を有する。
In FIG. 1, reference numeral 10 denotes the gold film 4 for heating.
An AC oscillator, for example, a function generator, connected to the gold film 5 via a variable resistor 13 is connected to the gold film 5 via a variable resistor 13; The DC amplifier 16 connected via the compensator 15 is a lock-in amplifier connected to the DC amplifier 14, and the AC oscillator 10, the power amplifier 11, the DC power supply 12 for the resistance thermometer, the DC amplifier 14, and the lock. The in-amplifier 16 and the like constitute a measuring device for measuring the phase difference of the temperature wave of the layered thin film sample LA. Although not shown, this apparatus has means such as a computer which is connected to the lock-in amplifier 16 and calculates the thermal diffusivity of the unknown sample thin film 1 from the equations (6) and (7).

【0021】以上の装置を用いて未知の試料薄膜1の熱
拡散率測定方法を説明すると、試料ホルダ31 の表面
(x=0)に蒸着された金膜4に交流発振器10から交
流電流を流して層状薄膜試料を周期的に加熱する。最大
加熱量は3W程度で、加熱周波数は、0.5 〜5.0 Hzの
範囲で変化させた。層2である第1の絶縁薄膜試料31
の加熱面と層4である第2の絶縁薄膜試料32 の温度応
答面との間の温度波の位相差を前記金膜5を用いた電気
抵抗温度計の出力を補償装置15、直流増幅器14を介
してロックイン増幅器16に入力することにより測定
し、この出力を前記手段例えばコンピュータに入力し、
コンピュータにおいて、前記(6)及び(7)式により
薄膜試料1の熱拡散率を計算した。
[0021] To explain the thermal diffusivity measurement method of an unknown sample thin film 1 by using the above apparatus, the alternating current from the AC oscillator 10 to the gold film 4 deposited on the sample holder 3 first surface (x = 0) And periodically heats the layered thin film sample. The maximum heating amount was about 3 W, and the heating frequency was changed in the range of 0.5 to 5.0 Hz. The first insulating thin film sample 3 1 which is the layer 2
The phase difference of the temperature wave between the heating surface of the layer 4 and the temperature response surface of the second insulating thin film sample 32 as the layer 4 is compensated for by the output of the electric resistance thermometer using the gold film 5 and the DC amplifier. 14 by input to a lock-in amplifier 16 via 14 and this output is input to said means, for example a computer,
Using a computer, the thermal diffusivity of the thin film sample 1 was calculated according to the equations (6) and (7).

【0022】前記未知の薄膜試料1として、先ず、ステ
ンレス鋼(SUS304)の薄板を用い、厚さの異なる
薄膜試料(100 、200 、300 μm)に対して測定を行な
った。 図5は、周波数を0.5 〜5.0 Hzの範囲で変化
したときの前記位相差ΔΦtを測定した結果を示す。位
相差ΔΦt は周波数fの平方根に対し直線的に変化して
おり、前記(7)式が成立していることが分かる。
First, as the unknown thin film sample 1, a thin plate of stainless steel (SUS304) was used, and thin film samples (100, 200, and 300 μm) having different thicknesses were measured. Figure 5 shows the results of the phase difference .DELTA..PHI t measured when the change in the range of 0.5 to 5.0 Hz frequency. Phase difference .DELTA..PHI t is linearly changed with respect to the square root of the frequency f, it can be seen that the equation (7) is satisfied.

【0023】この傾きより求められたステンレス鋼の熱
拡散率を表1に示す。
Table 1 shows the thermal diffusivity of stainless steel obtained from the inclination.

【0024】 測定されたステンレス鋼の熱拡散率は、Thermophysics
Properties Handbook[Jpn.Soc.Thermophys. Prop.,Tok
yo.Yokendo , (1990) 26 ]に示された参照デ−タと比
較して4%以内で一致している。
[0024] The measured thermal diffusivity of stainless steel is
Properties Handbook [Jpn. Soc. Thermophys. Prop., Tok
yo.Yokendo, (1990) 26], which is within 4% of the reference data.

【0025】この測定方法の適用例として、液晶温度計
がどの程度の非定常温度応答性を持つのかを知るのに極
めて大切な、表面温度測定用液晶シ−トの熱拡散率を測
定した。
As an application example of this measurement method, the thermal diffusivity of a liquid crystal sheet for surface temperature measurement, which is extremely important for knowing how much unsteady temperature response a liquid crystal thermometer has, was measured.

【0026】温度測定用液晶シートは層状になっている
ことが多く、図6に示すように、例えばコレステロール
誘導形の液晶シートは、厚さが102 μmの透明なPET
(ポリエチレンテレフタラート)17の基材に下塗り層
を介して液晶(LC)層18(下塗り層及び黒色層を含
めて厚さが 64 μm)が、該液晶層18に黒色層を介し
て厚さが 100μmの粘着層19が大略3層の層状に形成
されている。この液晶シートについて測定した。その測
定結果を表2に示す。
The liquid crystal sheet for temperature measurement is often in the form of a layer. As shown in FIG. 6, for example, a cholesterol-derived liquid crystal sheet is a transparent PET having a thickness of 102 μm.
A liquid crystal (LC) layer 18 (having a thickness of 64 μm including the undercoat layer and the black layer) is provided on the base material of (polyethylene terephthalate) 17 via an undercoat layer. The adhesive layer 19 having a thickness of 100 μm is formed in approximately three layers. This liquid crystal sheet was measured. Table 2 shows the measurement results.

【0027】 表2のNO.1は液晶シート全体に対する測定値、N
O.2は、粘着層を溶剤により溶かして除去した試料に
対する測定値である。基材のPET17の熱拡散率とし
て、Polymer Handbook(J.Brandrup,E.H.Immergut, J
ohn Wilery & Son(1989), V104)に掲載されたデー
タ(a2 =0.929×10-72 /s)を使用する
と、液晶層18の熱拡散率は、a3 =0.72×10-7
2 /sと求められる。NO.4の粘着層19のデータ
は上記データと全体の位相差から求めた値である。
[0027] NO. 1 is a measured value for the entire liquid crystal sheet, N
O. 2 is a measured value for a sample from which the adhesive layer was dissolved and removed with a solvent. As a thermal diffusivity of PET17 as a base material, Polymer Handbook (J. Brandrup, EHImmergut, J
Using the data (a 2 = 0.929 × 10 −7 m 2 / s) published in Ohn Wilery & Son (1989), V104), the thermal diffusivity of the liquid crystal layer 18 becomes a 3 = 0.72 × 10 -7
m 2 / s. NO. The data of the adhesive layer 19 of No. 4 is a value obtained from the above data and the entire phase difference.

【0028】[0028]

【発明の効果】本発明は、複数層薄膜や電気的導体膜、
半導体膜の熱拡散率を測定することができるという効果
を有する。
According to the present invention, a multi-layer thin film, an electric conductor film,
This has the effect that the thermal diffusivity of the semiconductor film can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 層状薄膜試料の模式図FIG. 1 is a schematic diagram of a layered thin film sample.

【図2】 (A)及び(B)は、それぞれフーリエ数を
変数とし、effusivity ratioをパラメータとしたときの
近似による誤差及び effusivity ratio を変数とし、フ
ーリエ数をパラメータとしたときの近似による誤差を示
す図。
FIGS. 2A and 2B respectively show an error caused by approximation when the Fourier number is used as a variable and the efficiency ratio as a parameter, and an error caused by approximation when the Fourier number is used as a parameter and the efficiency ratio is used as a parameter. FIG.

【図3】 試料薄膜の熱拡散率を測定するときの試料系
の模式図。
FIG. 3 is a schematic diagram of a sample system when measuring the thermal diffusivity of a sample thin film.

【図4】 熱拡散率測定装置の概略を示すブロック図。FIG. 4 is a block diagram schematically showing a thermal diffusivity measuring apparatus.

【図5】 周波数を0.5〜5.0Hzの範囲で変化し
たときの前記位相差を測定した結果を示す図。
FIG. 5 is a view showing a result of measuring the phase difference when a frequency is changed in a range of 0.5 to 5.0 Hz.

【図6】 温度測定用液晶シートの構成を示す模式図。FIG. 6 is a schematic diagram showing a configuration of a liquid crystal sheet for temperature measurement.

【符号の説明】[Explanation of symbols]

1…薄膜試料 21 、22 …絶縁薄膜試料 31 、32 …試料ホルダ 4…金属
膜 5…金属膜 6…基台 7…押板 10…交流発振器 11…電力増幅器 12…電気抵抗温
度計用電源 14…直流増幅器 16…ロックイン
増幅器
1 ... thin film sample 2 1, 2 2 ... insulating film sample 3 1, 3 2 ... specimen holder 4 ... metal film 5 ... metal film 6 ... base 7 ... push plate 10 ... AC oscillator 11 ... power amplifier 12 ... resistance temperature Meter power supply 14 DC amplifier 16 Lock-in amplifier

───────────────────────────────────────────────────── フロントページの続き (72)発明者 唐 大偉 静岡県浜松市広沢一丁目23−2 合同宿舎 広沢住宅1−36号 (72)発明者 牧野 敦 静岡県浜松市広沢一丁目22−6 合同宿舎 広沢住宅5−33号 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Taro Dai, 1-23-2, Hirosawa, Hamamatsu-shi, Shizuoka Pref. Joint Dormitory 5-33 Hirosawa Residence

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱拡散率が未知の薄膜試料が、熱拡散
率、熱伝導率及び厚さがそれぞれ既知の、少なくとも1
枚の第1及び第2の絶縁薄膜試料で挟まれた層状薄膜試
料を、一対の試料ホルダで挟み、第1の絶縁薄膜試料と
試料ホルダとの間に密着して挟み込まれた金属薄膜に種
々の周波数fの一定の交流電力を順次与え、前記層状薄
膜試料に伝搬する温度波の位相差ΔΦt を第2の絶縁薄
膜試料と試料ホルダとの間に挟まれた金属薄膜を用いた
電気抵抗温度計及びロックイン増幅器により測定し、 ΔΦt =ΔΦ2 +ΔΦ3 +ΔΦ4 (6) ΔΦi =−li (πf/ai 1/2 (i=2,3,4) (7) 但し、ΔΦ2 は、第1の絶縁薄膜試料の温度波の位相差 ΔΦ3 は、未知の薄膜試料の温度波の位相差 ΔΦ4 は、第2の絶縁薄膜試料の温度波の位相差 li は、第1及び第2の絶縁薄膜試料並びに未知の薄膜
試料の厚さ ai は、第1及び第2の絶縁薄膜試料並びに未知の薄膜
試料の熱拡散率 上記位相差ΔΦt を用いて上記(6)(7)式から未知
の薄膜試料の熱拡散率a3 を算出することを特徴とする
交流カロリメトリによる熱拡散率測定方法。
1. A thin film sample whose thermal diffusivity is unknown is made of at least one thin film sample whose thermal diffusivity, thermal conductivity and thickness are each known.
The layered thin film sample sandwiched between the first and second insulating thin film samples is sandwiched between a pair of sample holders, and various types of metal thin films are tightly sandwiched between the first insulating thin film sample and the sample holder. Of the temperature wave propagating to the layered thin film sample by sequentially applying a constant AC power having a frequency f of Is measured by an electric resistance thermometer and a lock-in amplifier using a metal thin film sandwiched between the second insulating thin film sample and the sample holder, and ΔΦt = ΔΦ 2 + ΔΦ 3 + ΔΦ 4 (6) ΔΦ i = -l i (πf / a i) 1/2 (i = 2,3,4) (7) where, .DELTA..PHI 2 is the first insulating thin film sample The phase difference of the temperature wave ΔΦ 3 is the phase difference of the temperature wave of the unknown thin film sample ΔΦ 4 is the phase difference of the temperature wave of the second insulating thin film sample l i is the first and second insulating thin film samples and the unknown the thickness a i of the thin film sample, the first and second insulating thin film sample and the thermal diffusivity of the phase difference of the unknown film sample ΔΦt Calculating the thermal diffusivity a 3 of the unknown thin film sample from the above equations (6) and (7) using the above method.
【請求項2】 熱拡散率が未知の薄膜試料が熱拡散率、
熱伝導率及び厚さがそれぞれ既知の、少なくとも1枚の
第1及び第2の絶縁薄膜試料で挟まれた層状薄膜試料に
おける前記薄膜試料の熱拡散率測定装置であって、交流
発振器、金属薄膜を用いた電気抵抗温度計、直流増幅器
及びロックイン増幅器から成る前記層状薄膜試料の温度
波の位相差ΔΦtを測定する計測用装置と、 ΔΦt =ΔΦ2 +ΔΦ3 +ΔΦ4 (6) ΔΦi =−li (πf/ai 1/2 (i=2,3,4) (7) 上記位相差ΔΦt を用いて上記(6)(7)式から熱拡
散率が未知の薄膜試料の熱拡散率を算出する手段とから
構成されることを特徴とする交流カロリメトリによる熱
拡散率測定装置。
2. A thin film sample whose thermal diffusivity is unknown has a thermal diffusivity of
An apparatus for measuring the thermal diffusivity of a thin film sample in a layered thin film sample sandwiched between at least one first and second insulating thin film samples, each having a known thermal conductivity and a known thickness, comprising an AC oscillator, a metal thin film A measuring device for measuring the phase difference ΔΦt of the temperature wave of the layered thin film sample comprising an electric resistance thermometer, a DC amplifier and a lock-in amplifier using = ΔΦ 2 + ΔΦ 3 + ΔΦ 4 (6) ΔΦ i = -l i (πf / a i) 1/2 (i = 2,3,4) (7) The retardation ΔΦt And means for calculating the thermal diffusivity of the thin film sample whose thermal diffusivity is unknown from the above equations (6) and (7).
JP02293597A 1997-02-05 1997-02-05 Method and apparatus for measuring thermal diffusivity by AC calorimetry Expired - Fee Related JP3758784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02293597A JP3758784B2 (en) 1997-02-05 1997-02-05 Method and apparatus for measuring thermal diffusivity by AC calorimetry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02293597A JP3758784B2 (en) 1997-02-05 1997-02-05 Method and apparatus for measuring thermal diffusivity by AC calorimetry

Publications (2)

Publication Number Publication Date
JPH10221279A true JPH10221279A (en) 1998-08-21
JP3758784B2 JP3758784B2 (en) 2006-03-22

Family

ID=12096497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02293597A Expired - Fee Related JP3758784B2 (en) 1997-02-05 1997-02-05 Method and apparatus for measuring thermal diffusivity by AC calorimetry

Country Status (1)

Country Link
JP (1) JP3758784B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044509A1 (en) * 2001-11-19 2003-05-30 The Circle For The Promotion Of Science And Engineering Method for thermal analysis and system for thermal analysis
JP2006205449A (en) * 2005-01-26 2006-08-10 Yokohama Rubber Co Ltd:The Estimation method of internal temperature of heating target and program
CN100409003C (en) * 2001-10-10 2008-08-06 株式会社日立制作所 Resin thermal impedance testing method and tester using same
CN104020188A (en) * 2014-06-18 2014-09-03 上海电机学院 Unfavorable conductor heat conduction coefficient measuring device and unfavorable conductor heat condution coefficient measuring method
CN109557129A (en) * 2018-10-29 2019-04-02 同济大学 A kind of measurement method of film thermal diffusion coefficient
CN112415046A (en) * 2020-10-30 2021-02-26 同济大学 System and method for measuring longitudinal thermal diffusion coefficient of film based on medium detector
CN113702422A (en) * 2021-08-26 2021-11-26 西安交通大学 Device and method for measuring fluid thermal conductivity by double-section platinum wire method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100409003C (en) * 2001-10-10 2008-08-06 株式会社日立制作所 Resin thermal impedance testing method and tester using same
WO2003044509A1 (en) * 2001-11-19 2003-05-30 The Circle For The Promotion Of Science And Engineering Method for thermal analysis and system for thermal analysis
JP2006205449A (en) * 2005-01-26 2006-08-10 Yokohama Rubber Co Ltd:The Estimation method of internal temperature of heating target and program
JP4513582B2 (en) * 2005-01-26 2010-07-28 横浜ゴム株式会社 Method and program for predicting internal temperature of heated object
CN104020188A (en) * 2014-06-18 2014-09-03 上海电机学院 Unfavorable conductor heat conduction coefficient measuring device and unfavorable conductor heat condution coefficient measuring method
CN109557129A (en) * 2018-10-29 2019-04-02 同济大学 A kind of measurement method of film thermal diffusion coefficient
CN112415046A (en) * 2020-10-30 2021-02-26 同济大学 System and method for measuring longitudinal thermal diffusion coefficient of film based on medium detector
CN112415046B (en) * 2020-10-30 2021-11-09 同济大学 System and method for measuring longitudinal thermal diffusion coefficient of film based on medium detector
CN113702422A (en) * 2021-08-26 2021-11-26 西安交通大学 Device and method for measuring fluid thermal conductivity by double-section platinum wire method

Also Published As

Publication number Publication date
JP3758784B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
Cahill Thermal conductivity measurement from 30 to 750 K: the 3ω method
Epstein et al. High‐frequency response heat‐flux gauge
Birge et al. Wide‐frequency specific heat spectrometer
EP0406282B1 (en) A device for measuring thermal properties of a sample of a substance
Ramu et al. A “2-omega” technique for measuring anisotropy of thermal conductivity
JP4093333B2 (en) Thermophysical property measuring method and apparatus
Bodenschatz et al. Extending the 3ω method: Thermal conductivity characterization of thin films
JPH10221279A (en) Measuring method and device for thermal diffusivity using alternate current calorimetry
Pietrak et al. Methods for experimental determination of solid-solid interfacial thermal resistance with application to composite materials
CN113533424A (en) Nondestructive testing method for testing thermophysical properties of multilayer thin film structure
JP3556227B2 (en) Apparatus and method for differential analysis using real and imaginary signal components
Qiu et al. Adaptable thermal conductivity characterization of microporous membranes based on freestanding sensor-based 3ω technique
Alvarez-Quintana et al. Extension of the 3ω method to measure the thermal conductivity of thin films without a reference sample
Frank et al. Determination of thermal conductivity and specific heat by a combined 3ω/decay technique
Aubain et al. In-plane thermal conductivity determination through thermoreflectance analysis and measurements
Lee et al. Heat capacity measurement of dielectric solids using a linear surface heater: application to ferroelectrics
Menon Dynamic specific heat of a supercooled liquid
JP3047141B2 (en) Parallel plate dielectric constant measuring device
von Arx et al. Determination of the heat capacity of CMOS layers for optimal CMOS sensor design
Borca-Tasciuc et al. Experimental techniques for thin-film thermal conductivity characterization
Nishimura et al. Measurement of in-plane thermal and electrical conductivities of thin film using a micro-beam sensor: A feasibility study using gold film
Delenclos et al. A new calibration procedure for the determination of thermal parameters and their temperature dependence using the photopyroelectric method
Morikawa et al. Thermal diffusivity measurement of papers by an ac Joule heating method
Coufal et al. A pulsed method for thermal-diffusivity measurements of polymer films with submicrometre thickness
Wang et al. Simultaneous determination of thermal conductivities of thin film and substrate by extending 3ω-method to wide-frequency range

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees