JP2002116166A - Measuring method and measuring instrument for thermal resistance and biot number of laminated material - Google Patents

Measuring method and measuring instrument for thermal resistance and biot number of laminated material

Info

Publication number
JP2002116166A
JP2002116166A JP2000306534A JP2000306534A JP2002116166A JP 2002116166 A JP2002116166 A JP 2002116166A JP 2000306534 A JP2000306534 A JP 2000306534A JP 2000306534 A JP2000306534 A JP 2000306534A JP 2002116166 A JP2002116166 A JP 2002116166A
Authority
JP
Japan
Prior art keywords
laminated material
thermal resistance
layer
surface temperature
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000306534A
Other languages
Japanese (ja)
Other versions
JP4252207B2 (en
Inventor
Kazuya Hosono
和也 細野
Ayanori Moriyama
文徳 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chokoon Zairyo Kenkyusho Kk
Japan Ultra High Temperature Materials Research Institute JUTEM
Original Assignee
Chokoon Zairyo Kenkyusho Kk
Japan Ultra High Temperature Materials Research Institute JUTEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chokoon Zairyo Kenkyusho Kk, Japan Ultra High Temperature Materials Research Institute JUTEM filed Critical Chokoon Zairyo Kenkyusho Kk
Priority to JP2000306534A priority Critical patent/JP4252207B2/en
Publication of JP2002116166A publication Critical patent/JP2002116166A/en
Application granted granted Critical
Publication of JP4252207B2 publication Critical patent/JP4252207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring method and a measuring instrument for the thermal resistance and Biot number of a laminated material, capable of accurately determining the thermal resistance of an interlayer part when an interlayer indefinable in thickness exists between layers of a laminated material having a first layer and a second layer, and capable of determining the Biot number of the laminated material. SOLUTION: This method comprises a first process for finding a measured surface temperature of one surface of the laminated material 13 when the other surface of the material 13 is heated instantly, a second process for finding a theoretical surface temperature of one surface of the material 13 when the other surface of the material 13 is heated instantly by calculating from the solution of a non-steady heat conduction equation taking boundary conditions into consideration, and a third process for determining the thermal resistance and Biot number from conditions for minimizing the deviation of the measured surface temperature from the theoretical surface temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、第1層と第2層と
を有する積層材料の層間に存在する熱抵抗と積層材料の
ビオー数の測定方法及びその測定装置に係り、更に詳し
くは層間厚さが明確に定義できない層間を有する積層材
料の熱抵抗とそのときの積層材料のビオー数の測定方法
及びその測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the thermal resistance existing between layers of a laminated material having a first layer and a second layer and the number of biot of the laminated material and a measuring apparatus therefor. The present invention relates to a method and apparatus for measuring the thermal resistance of a laminated material having an interlayer whose thickness cannot be clearly defined and the biot number of the laminated material at that time.

【0002】[0002]

【従来の技術】耐熱金属や非酸化物系材料の耐酸化性を
向上させるための耐酸化皮膜の形成、材料の耐熱性を向
上させるための遮熱コーティング層の形成等、材料の適
用範囲を拡大するために、母材となる材料の表面に他の
材料を積層させて材料の特性を向上させる材料の多層化
が広く検討されている。特に、高温下で使用される多層
材料においては、熱伝導特性が材料設計における重要な
物性値となり、その中でも多層材料の層間に生じる熱抵
抗は、高温材料の材料設計において特に重要な因子とな
る。そのため、従来、例えば、母材表面に耐酸化皮膜や
遮熱コーティング層が形成されている積層材料におい
て、母材表面上の形成層との間に生成される層間の厚さ
が明確に定義できてこの部分を中間層として考慮するこ
とができる場合には、この層間に存在する熱抵抗は、例
えばレーザーフラッシュ法を用いた多層材解析法により
求めることができる。
2. Description of the Related Art The application range of materials, such as formation of an oxidation-resistant film for improving the oxidation resistance of heat-resistant metals and non-oxide-based materials, and formation of a thermal barrier coating layer for improving the heat resistance of the material, is increased. In order to enlarge the material, multilayering of a material for improving characteristics of a material by laminating another material on a surface of a material to be a base material has been widely studied. In particular, in a multilayer material used at a high temperature, the heat conduction property is an important physical property value in the material design, and among them, the thermal resistance generated between the layers of the multilayer material is a particularly important factor in the material design of the high temperature material. . Therefore, conventionally, for example, in a laminated material in which an oxidation-resistant film or a thermal barrier coating layer is formed on the base material surface, the thickness between layers formed between the base material surface and the formed layer can be clearly defined. When the lever portion can be considered as the intermediate layer, the thermal resistance existing between the layers can be obtained by, for example, a multilayer material analysis method using a laser flash method.

【0003】レーザーフラッシュ法を用いた多層材解析
法では、始めに、積層材料の一方の表面にレーザー光を
照射して瞬間加熱し、そのときの熱が伝導することによ
る他方の面の温度の変化を、例えば赤外線検出器で測定
し、実測表面温度を求める。また、積層材料の一方の面
をレーザー光で照射したときの他方の面の温度変化を熱
伝導方程式を解いて求め、この解析解に積層材料の各層
が有する密度、厚さ、熱物性などのデータを代入し、更
に層間に形成された中間層の熱抵抗を仮定し、計算機を
用いて数値計算し、他方の表面の理論表面温度を求め
る。次いで、実測表面温度と数値計算で得られた理論表
面温度との2乗偏差が最小となる条件から中間層の有す
る熱抵抗を決定し、この値を中間層の熱抵抗としてい
た。
In the multilayer material analysis method using the laser flash method, first, one surface of a laminated material is irradiated with a laser beam for instantaneous heating, and the temperature of the other surface due to the conduction of the heat at that time. The change is measured by, for example, an infrared detector to determine an actually measured surface temperature. In addition, the temperature change on the other surface when one side of the laminated material is irradiated with laser light is obtained by solving the heat conduction equation, and this analytical solution is used to determine the density, thickness, thermophysical properties, etc. of each layer of the laminated material. Substituting the data, further assuming the thermal resistance of the intermediate layer formed between the layers, performing a numerical calculation using a computer, and obtaining the theoretical surface temperature of the other surface. Next, the thermal resistance of the intermediate layer was determined from the condition that minimizes the square deviation between the measured surface temperature and the theoretical surface temperature obtained by numerical calculation, and this value was used as the thermal resistance of the intermediate layer.

【0004】例えば、第1層と第3層の厚さが共に1m
m、第1層と第3層の間に形成された中間層である第2
層の厚さを0.005〜1mmとした試料を用いて、パ
ルス幅1msでパルス波形が三角波形のレーザー光を一
方の表面に照射し、他方の表面の温度変化に基づいて熱
抵抗を決定する場合、決定した熱抵抗の精度と熱抵抗が
生じている中間層の厚さの関係を求めると、図4、図5
に示す結果となる。図4、図5では、横軸は中間層であ
る第2層の厚さ(ΔL2 )と積層材料の厚さ(L 3 )と
の比として表記している。また、レーザーフラッシュ法
の測定においては温度測定は10μs、パルス波形の測
定は1μsのサンプリング速度で行い、数値計算におい
ては熱拡散率は第1層が1.0×10-42 /s、第2
層が1.1×10-42 /s、第3層が1.2×10-4
2 /s、比熱は第1層が1.0kJ/kg/K、第2
層が1.1kJ/kg/K、第3層が1.2kJ/kg
/K、密度は第1層が1000kg/m3 、第2層が1
100kg/m3 、第3層が1200kg/m3 とし
て、放射損失を示すビオー数は第1層及び第3層共に
0.01とした。なお、図4はレーザーのパルス波形を
考慮した場合における中間層である第2層の厚さ(ΔL
2 )と積層材料の厚さ(L3 )との比をパラメータとし
たときの決定した熱抵抗の精度の変化を、図5はパルス
波形をデルタ関数近似した重心法の場合における中間層
である第2層の厚さ(ΔL2 )と積層材料の厚さ(L
3 )との比をパラメータとしたときの決定した熱抵抗の
精度の変化をそれぞれ示している。
[0004] For example, the thickness of both the first layer and the third layer is 1 m.
m, a second layer which is an intermediate layer formed between the first layer and the third layer.
Using a sample with a layer thickness of 0.005 to 1 mm,
One pulse of laser light with a pulse width of 1 ms and a triangular waveform
Irradiates one surface and heats it based on temperature changes on the other surface.
When determining the resistance, the accuracy of the determined thermal resistance and the thermal resistance
When the relation of the thickness of the generated intermediate layer is obtained, FIGS.
The result shown in FIG. 4 and 5, the horizontal axis represents the intermediate layer.
Thickness of the second layer (ΔLTwo ) And the thickness of the laminated material (L Three )When
It is expressed as the ratio of In addition, laser flash method
Temperature measurement is 10 μs, pulse waveform measurement
The measurement is performed at a sampling rate of 1 μs.
The thermal diffusivity of the first layer is 1.0 × 10-FourmTwo / S, second
1.1 × 10 layers-FourmTwo / S, the third layer is 1.2 × 10-Four
mTwo / S, specific heat of the first layer is 1.0 kJ / kg / K,
1.1 kJ / kg / K for the layer, 1.2 kJ / kg for the third layer
/ K, density of the first layer is 1000 kg / mThree , The second layer is 1
100kg / mThree , The third layer is 1200 kg / mThree age
Therefore, the Biot number indicating the radiation loss is the same for both the first and third layers.
It was set to 0.01. FIG. 4 shows the pulse waveform of the laser.
Considering the thickness of the second layer (ΔL
Two ) And the thickness of the laminated material (LThree ) As the parameter
Figure 5 shows the change in accuracy of the determined thermal resistance when
Intermediate layer in the case of the center of gravity method with waveform approximated by delta function
Of the second layer (ΔLTwo ) And the thickness of the laminated material (L
Three ) And the determined thermal resistance as a parameter
Changes in accuracy are shown.

【0005】[0005]

【発明が解決しようとする課題】図4及び図5に示され
ているように、中間層である第2層の厚さ(ΔL2 )と
積層材料の厚さ(L3 )の比が小さくなるにつれて、す
なわち中間層である第2層の厚さ(ΔL2 )が薄くなる
につれて、決定した熱抵抗の精度は徐々に低下する。例
えば、図4のレーザーのパルス波形を考慮した場合で
は、中間層である第2層の厚さ(ΔL2 )と積層材料の
厚さ(L3 )の比が0.05未満になると誤差が急激に
増加し、図5のパルス波形をデルタ関数近似した重心法
の場合では、中間層である第2層の厚さ(ΔL2 )と積
層材料の厚さ(L3 )の比が0.1未満になると誤差が
急激に増加するようになる。このように、中間層である
第2層の厚さ(ΔL2 )が積層材料の厚さ(L3 )に比
較して薄くなると、レーザーフラッシュ法を用いた多層
材解析法により決定した熱抵抗の精度が低下してくるた
め、部分的に第1層と第3層とが接触して層間厚さが消
失して層間厚さが明確に定義できない層間の有する熱抵
抗を、レーザーフラッシュ法を用いた多層材解析法から
精度よく求めることは不可能となる。
As shown in FIGS. 4 and 5, the ratio of the thickness (ΔL 2 ) of the second layer as the intermediate layer to the thickness (L 3 ) of the laminated material is small. In other words, as the thickness (ΔL 2 ) of the second layer, which is the intermediate layer, decreases, the accuracy of the determined thermal resistance gradually decreases. For example, when the pulse waveform of the laser shown in FIG. 4 is considered, an error occurs when the ratio of the thickness (ΔL 2 ) of the second layer as the intermediate layer to the thickness (L 3 ) of the laminated material is less than 0.05. rapidly increased, when the pulse waveform in FIG. 5 of the delta function approximation center of gravity method, the ratio of the thickness of the second layer is an intermediate layer ([delta] L 2) to the thickness of the laminate material (L 3) is 0. If it becomes less than 1, the error will increase sharply. As described above, when the thickness (ΔL 2 ) of the second layer, which is the intermediate layer, becomes thinner than the thickness (L 3 ) of the laminated material, the thermal resistance determined by the multilayer material analysis method using the laser flash method. The thermal resistance between the layers where the first and third layers partially contact and the interlayer thickness disappears and the interlayer thickness cannot be clearly defined is reduced by the laser flash method. It is impossible to accurately determine from the used multi-layer analysis method.

【0006】本発明はかかる事情に鑑みてなされたもの
で、第1層と第2層とを有する積層材料の層間に厚さが
明確に定義できない層間が存在する場合の層間部の有す
る熱抵抗を精度よく決定できると共に積層材料のビオー
数を決定できる積層材料の熱抵抗とビオー数の測定方法
及び測定装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a thermal resistance of an interlayer portion when a layer whose thickness cannot be clearly defined exists between layers of a laminated material having a first layer and a second layer. It is an object of the present invention to provide a method and an apparatus for measuring the thermal resistance and the biot number of the laminated material, which can determine the Biot number of the laminated material with high accuracy.

【0007】[0007]

【課題を解決するための手段】前記目的に沿う本発明に
係る積層材料の熱抵抗とビオー数の測定方法は、第1層
と第2層を有する板状の積層材料で該第1層と該第2層
との間の層間部が有する熱抵抗及び該積層材料の熱放射
損失の程度を示すビオー数を測定する積層材料の熱抵抗
とビオー数の測定方法であって、前記積層材料の一方の
表面を瞬間的に加熱したときの前記積層材料の他方の表
面の実測表面温度を求める第1工程と、前記積層材料の
一方の表面を瞬間的に加熱したときの前記積層材料の他
方の表面の理論表面温度を、境界条件を考慮した非定常
熱伝導方程式の解から計算して求める第2工程と、前記
実測表面温度と前記理論表面温度との偏差を最小とする
条件から前記熱抵抗と前記ビオー数を決定する第3工程
とを有する。
According to the present invention, there is provided a method for measuring a thermal resistance and a biot number of a laminated material according to the present invention, which comprises a plate-shaped laminated material having a first layer and a second layer. A method for measuring the thermal resistance and biot number of the laminated material, which measures the thermal resistance of the interlayer portion between the second layer and the biot number indicating the degree of heat radiation loss of the laminated material, A first step of obtaining the measured surface temperature of the other surface of the laminated material when one surface is instantaneously heated, and the other step of the laminated material when one surface of the laminated material is instantaneously heated. A second step of calculating the theoretical surface temperature of the surface from the solution of the unsteady heat conduction equation in consideration of the boundary condition, and the heat resistance from the condition of minimizing the deviation between the measured surface temperature and the theoretical surface temperature. And a third step of determining the biot number.

【0008】積層材料の一方の表面を瞬間的に加熱し、
そのときの他方の表面の温度を非定常状態で測定するた
め、測定に要する時間を非常に短くすることができ、周
囲の外乱の影響を受けずに積層材料の熱特性を反映した
温度変化を正確に測定することができる。また、積層材
料の一方の表面を瞬間的に加熱したときの他方の表面の
温度を、加熱条件と境界条件を考慮した非定常の熱伝導
方程式を解くことにより、熱抵抗とビオー数を変数とし
て含む形で理論表面温度を計算により求めることが可能
となる。このため、熱抵抗とビオー数を変化させながら
理論表面温度を計算することにより、理論表面温度を実
測表面温度に一致させることが可能となる。従って、理
論表面温度が実測表面温度に一致するときの熱抵抗とビ
オー数の値が、積層材料の層間部が有する熱抵抗、積層
材料のビオー数であると考えることができる。ここで、
理論表面温度と実測表面温度との一致を、実測表面温度
と理論表面温度の偏差が最小になる条件から判定するの
で、熱抵抗とビオー数をパラメータとした繰り返し計算
から熱抵抗とビオー数を決定することができる。
[0008] One surface of the laminated material is instantaneously heated,
Since the temperature of the other surface at that time is measured in an unsteady state, the time required for the measurement can be extremely shortened, and the temperature change reflecting the thermal characteristics of the laminated material without being affected by surrounding disturbances. It can be measured accurately. Also, by solving the unsteady heat conduction equation considering the heating condition and the boundary condition when the one surface of the laminated material is instantaneously heated, the thermal resistance and the biot number can be used as variables. It is possible to obtain the theoretical surface temperature by calculation in a form that includes it. Therefore, by calculating the theoretical surface temperature while changing the thermal resistance and the Biot number, it becomes possible to make the theoretical surface temperature coincide with the measured surface temperature. Therefore, the values of the thermal resistance and the biot number when the theoretical surface temperature matches the measured surface temperature can be considered to be the thermal resistance of the interlayer portion of the laminated material and the biot number of the laminated material. here,
The agreement between the theoretical surface temperature and the measured surface temperature is determined from the condition that minimizes the deviation between the measured surface temperature and the theoretical surface temperature, so the thermal resistance and biot number are determined from repeated calculations using the thermal resistance and biot number as parameters. can do.

【0009】本発明に係る積層材料の熱抵抗とビオー数
の測定方法において、前記実測表面温度が前記他方の表
面の実測表面温度をラプラス変換したラプラス変換温
度、前記理論表面温度が前記非定常熱伝導方程式をラプ
ラス変換して求めた解析解に基づく計算値であり、前記
偏差が前記ラプラス変換温度と前記計算値の2乗偏差と
することもできる。ラプラス変換することにより、境界
条件を有する非定常熱伝導方程式を容易に解析的に解く
ことが可能となる。また、ラプラス変換温度と解析解に
基づく計算値との2乗偏差が最小となる条件から熱抵抗
とビオー数の決定を行うため、熱抵抗とビオー数の決定
に必要な計算量を大幅に低下させることができる。
In the method for measuring the thermal resistance and biot number of a laminated material according to the present invention, the measured surface temperature is a Laplace conversion temperature obtained by Laplace conversion of the measured surface temperature of the other surface, and the theoretical surface temperature is the unsteady heat. It is a calculated value based on an analytical solution obtained by Laplace transforming the conduction equation, and the deviation may be a square deviation between the Laplace conversion temperature and the calculated value. The Laplace transform makes it possible to easily and analytically solve the unsteady heat conduction equation having the boundary condition. In addition, the thermal resistance and biot number are determined under the condition that the square deviation between the Laplace conversion temperature and the calculated value based on the analytical solution is minimized, so the amount of calculation required to determine the thermal resistance and biot number is greatly reduced. Can be done.

【0010】本発明に係る積層材料の熱抵抗とビオー数
の測定方法において、前記実測表面温度が前記他方の表
面の実測表面温度をラプラス変換したラプラス変換温
度、前記理論表面温度が前記非定常熱伝導方程式をラプ
ラス変換して求めた解析解に基づく計算値であり、前記
偏差が前記ラプラス変換温度の逆数と前記計算値の逆数
の2乗偏差とすることが好ましい。解析解に基づく計算
値が分数形式であり、分母が求める熱抵抗とビオー数を
含む形式で構成されている場合、計算値の逆数を採用す
ることで、求める熱抵抗とビオー数が分母から分子に移
行する。従って、ラプラス変換温度の逆数と計算値の逆
数との2乗偏差を採用すると、2乗偏差の計算式の中で
は分数式に関する計算部分がなくなり、煩雑な計算処理
を避けて熱抵抗とビオー数を決定することができる。
In the method for measuring the thermal resistance and biot number of a laminated material according to the present invention, the measured surface temperature is a Laplace conversion temperature obtained by Laplace conversion of the measured surface temperature of the other surface, and the theoretical surface temperature is the unsteady heat. It is a calculated value based on an analytical solution obtained by Laplace transforming the conduction equation, and the deviation is preferably a square deviation of the reciprocal of the Laplace conversion temperature and the reciprocal of the calculated value. If the calculated value based on the analytic solution is in fractional format and is configured in a format that includes the thermal resistance and Biot number required by the denominator, adopting the reciprocal of the calculated value allows the thermal resistance and Biot number to be determined from the denominator Move to Therefore, if the square deviation between the reciprocal of the Laplace conversion temperature and the reciprocal of the calculated value is adopted, the calculation of the fractional formula in the calculation formula of the squared deviation is eliminated, and the heat resistance and the biot number are avoided by avoiding complicated calculation processing. Can be determined.

【0011】本発明に係る積層材料の熱抵抗とビオー数
の測定方法において、前記2乗偏差を最小とする条件
を、前記実測表面温度の変化から求めた実測減衰時定数
と前記理論表面温度の変化から求めた理論減衰時定数と
を同値とする付加条件のもとで求めることもできる。付
加条件を設けることにより、熱抵抗とビオー数という2
つの独立変数を熱抵抗又はビオー数の1つの独立変数に
することができ、変数を求めるための計算量を大幅に減
少させることができる。
In the method for measuring the thermal resistance and the Biot number of a laminated material according to the present invention, the condition for minimizing the square deviation is determined by setting the measured decay time constant obtained from the change in the measured surface temperature to the theoretical surface temperature. It can also be obtained under an additional condition that makes the same value as the theoretical decay time constant obtained from the change. By providing additional conditions, the thermal resistance and biot number
One independent variable can be one independent variable of thermal resistance or Biot number, and the amount of calculation for determining the variable can be greatly reduced.

【0012】続いて、第1層と第2層とを有する積層材
料の熱抵抗とビオー数の測定方法について、更に詳しく
説明する。第1層と第2層の層間に熱抵抗Rが存在する
板状の積層材料の第1層表面を瞬間的に加熱し、そのと
きの熱が第1層表面から第2層表面(積層材料の裏面)
にのみ移動すると近似できる場合、熱の伝導状態は、温
度Tに関する1次元の非定常熱伝導方程式と境界条件を
示す(1)〜(8)式により記述できる。ここで、tは
時間、xは第1層表面を基準として表面から積層材料内
部に進入した距離、α 1 、α2 はそれぞれ第1層、第2
層の熱拡散率、k1 、k2 はそれぞれ第1層、第2層の
熱伝導率、L1 、L2 はそれぞれ第1層、第2層の厚
さ、h0 、h1 はそれぞれ第1層、第2層のビオー数、
Qは第1層表面をパルス加熱した際の最大吸収エネルギ
ー、f(t)は第1層表面をパルス加熱する際のパルス
波形の時間変化を示す。
Subsequently, a laminated material having a first layer and a second layer
More details on the method of measuring the thermal resistance and biot number of materials
explain. Thermal resistance R exists between the first layer and the second layer
Instantly heat the surface of the first layer of the plate-shaped laminated material,
Heat from the surface of the first layer to the surface of the second layer (the back side of the laminated material)
If it can be approximated to move only to
One-dimensional unsteady heat conduction equation and the boundary condition for degree T
It can be described by the following equations (1) to (8). Where t is
Time, x is in the laminated material from the surface with reference to the surface of the first layer
Distance that entered the part, α 1 , ΑTwo Are the first layer and the second layer, respectively.
Thermal diffusivity of the layer, k1 , KTwo Are the first and second layers, respectively.
Thermal conductivity, L1 , LTwo Is the thickness of the first and second layers, respectively.
H0 , H1 Is the number of bios in the first and second layers, respectively.
Q is the maximum absorbed energy when the first layer surface is pulse-heated
-, F (t) is the pulse for pulse heating the surface of the first layer
6 shows a time change of a waveform.

【0013】[0013]

【数1】 (Equation 1)

【0014】上記の1次元の非定常熱伝導方程式と境界
条件を示す(1)〜(8)式をラプラス変換すると、
(9)〜(16)式となる。
When the above-mentioned one-dimensional transient heat conduction equation and equations (1) to (8) showing boundary conditions are Laplace transformed,
Expressions (9) to (16) are obtained.

【0015】[0015]

【数2】 (Equation 2)

【0016】微分方程式(9)の一般解は、Ai 、Bi
を定数として次式(17)、(18)で与えられる。こ
こで、ri =(p/αi1/2 であり、i=1は第1
層、i=2は第2層を示す。
The general solution of the differential equation (9) is A i , B i
Is given by the following equations (17) and (18) as a constant. Here, r i = (p / α i ) 1/2 and i = 1 is the first
The layer, i = 2, indicates the second layer.

【0017】[0017]

【数3】 (Equation 3)

【0018】次に、境界条件を示す(11)、(1
2)、(13)、及び(16)に一般解を代入し整理す
ると、(19)〜(22)式となる。
Next, the boundary conditions (11) and (1)
Substituting general solutions into (2), (13), and (16) and rearranging them gives equations (19) and (22).

【0019】[0019]

【数4】 (Equation 4)

【0020】更に、(19)、(22)式を整理すると
(23)、(24)式となる。
Further, when the equations (19) and (22) are arranged, the equations (23) and (24) are obtained.

【0021】[0021]

【数5】 (Equation 5)

【0022】次に、(20)、(21)式より、定数A
1 、B1 、とA2 、B2 の関係を求める。(20)、
(21)式をA1 、B1 、A2 、B2 を用いて整理して
示すと、(25)、(26)式となり、この関係は(2
7)式の形にまとめられる。
Next, according to equations (20) and (21), the constant A
The relationship between 1 , B 1 and A 2 , B 2 is determined. (20),
Equation (21) can be rearranged and expressed using A 1 , B 1 , A 2 , and B 2, as shown in equations (25) and (26).
7) It is summarized in the form of the equation.

【0023】[0023]

【数6】 (Equation 6)

【0024】更に、(24)、(27)式より、A1
1 とA2 の関係を導くと(28)、(29)式とな
る。
Further, from the expressions (24) and (27), A 1 ,
When the relationship between B 1 and A 2 is derived, equations (28) and (29) are obtained.

【0025】[0025]

【数7】 (Equation 7)

【0026】また、(28)、(29)式を(23)式
に代入してA2 を導くと(30)式となる。
Further, (28), and the equation (30) leads to the A 2 is substituted into the (23) equation (29) below.

【0027】[0027]

【数8】 (Equation 8)

【0028】これより積層材料の裏面の温度は(31)
式で表される。
From this, the temperature of the back surface of the laminated material is (31)
It is expressed by an equation.

【0029】[0029]

【数9】 (Equation 9)

【0030】(31)式において、分子の大括弧
([ ])内を変形すると(32)式となる。
In the equation (31), when the inside of the brackets ([]) of the numerator is transformed, the equation (32) is obtained.

【0031】[0031]

【数10】 (Equation 10)

【0032】また、(31)式において、分母の大括弧
([ ])内を変形する。先ず、c+dγ、a+bγを
変形すると、それぞれ(33)、(34)式となる。
In equation (31), the brackets ([]) of the denominator are modified. First, when c + dγ and a + bγ are transformed, equations (33) and (34) are obtained, respectively.

【0033】[0033]

【数11】 [Equation 11]

【0034】(33)、(34)を用いて、更に分子の
大括弧内の変形により生じたr2 −h 1 /L2 を考慮し
て、(31)式の分母の大括弧内を変形し整理すると、
(35)となる。
Using (33) and (34), the molecular
R caused by the transformation in bracketsTwo -H 1 / LTwo Taking into account
Then, by rearranging and rearranging the brackets of the denominator of equation (31),
(35).

【0035】[0035]

【数12】 (Equation 12)

【0036】従って、(31)、(32)、(35)式
を用いて、積層材料の裏面の温度を求めると(36)式
となる。
Accordingly, when the temperature of the back surface of the laminated material is obtained by using the equations (31), (32), and (35), the equation (36) is obtained.

【0037】[0037]

【数13】 (Equation 13)

【0038】続いて、第1層及び第2層の熱物性値が判
明している場合の層間部に発生している熱抵抗を求める
方法について説明する。積層材料の裏面の実測表面温度
と理論表面温度を表す理論式を用いて2乗偏差を構成
し、この2乗偏差を最小とするものとして熱抵抗R及び
ビオー数hを求めるが、その方法には直接法と時定数法
がある。直接法は熱抵抗R及びビオー数hを共に独立変
数として、2乗偏差が小さくなる方向に両変数を順次移
動して2乗偏差を最小とする熱抵抗Rとビオー数hを求
めるものである。一方、時定数法は、時間空間における
積層材料の裏面の実測表面温度の減衰領域において減衰
時定数τを測定し、この測定した減衰時定数τと積層材
料の裏面の理論表面温度を表す理論式より計算される理
論減衰時定数とを同値とする付加条件の下に2乗偏差の
最小値を求めるものである。この時定数に関する付加条
件式は、熱抵抗Rとビオー数hの関係を表す式である。
ここで、第1層表面と第2層表面のビオー数が等しいと
仮定する。h0 =h1 =hとして、(36)式を変形す
ると(37)式となる。
Next, a description will be given of a method of determining the thermal resistance generated between the layers when the thermophysical properties of the first and second layers are known. A square deviation is formed by using a theoretical expression representing the measured surface temperature and the theoretical surface temperature of the back surface of the laminated material, and the thermal resistance R and the Biot number h are determined to minimize the square deviation. There are direct method and time constant method. In the direct method, both the thermal resistance R and the Biot number h are independent variables, and both variables are sequentially moved in a direction in which the square deviation is reduced to obtain the thermal resistance R and the Biot number h that minimize the square deviation. . On the other hand, the time constant method measures the decay time constant τ in the decay region of the measured surface temperature of the back surface of the laminated material in the time space, and calculates a theoretical equation representing the measured decay time constant τ and the theoretical surface temperature of the back surface of the laminated material. The minimum value of the squared deviation is obtained under an additional condition that makes the calculated theoretical decay time constant the same value. The additional conditional expression relating to this time constant is an expression representing the relationship between the thermal resistance R and the Biot number h.
Here, it is assumed that the biot numbers of the first layer surface and the second layer surface are equal. If h 0 = h 1 = h and the equation (36) is modified, the equation (37) is obtained.

【0039】[0039]

【数14】 [Equation 14]

【0040】(37)式をパルス波形の時間変化部分の
ラプラス変換式f(p)で除して整理すると(38)式
となる。
Equation (37) is obtained by dividing equation (37) by the Laplace transform equation f (p) of the time-varying portion of the pulse waveform to obtain equation (38).

【0041】[0041]

【数15】 (Equation 15)

【0042】続いて、積層材料の裏面の実測表面温度と
理論表面温度を表す理論式を用いて2乗偏差を構成し、
この2乗偏差を最小とする熱抵抗Rとビオー数hを求め
ることになるが、2乗偏差は、実測表面温度と理論表面
温度の理論式を用いた通常の2乗偏差でもよし、それぞ
れの逆数を用いた2乗偏差でもよい。ここでは、理論表
面温度を与える式中で求める熱抵抗Rとビオー数hが分
母に存在しているため、逆数を用いた2乗偏差を採用す
る。積層材料の裏面である第2層表面の実測表面温度の
逆数と(37)で得られる理論表面温度の逆数との2乗
偏差は、(39)式として与えられる。ここで、第2層
表面の実測表面温度をラプラス変換したものをEj 、そ
の逆数をvj としている。ここで、nはラプラス変数の
個数である。
Subsequently, a square deviation is formed by using a theoretical formula representing the measured surface temperature and the theoretical surface temperature of the back surface of the laminated material,
The thermal resistance R and the Biot number h that minimize the squared deviation will be obtained. A square deviation using a reciprocal may be used. Here, since the thermal resistance R and the Biot number h found in the equation that gives the theoretical surface temperature are present in the denominator, the square deviation using the reciprocal is used. The square deviation between the reciprocal of the measured surface temperature of the second layer surface, which is the back surface of the laminated material, and the reciprocal of the theoretical surface temperature obtained in (37) is given by Expression (39). Here, the value obtained by Laplace transforming the measured surface temperature of the surface of the second layer is E j , and the reciprocal thereof is v j . Here, n is the number of Laplace variables.

【0043】[0043]

【数16】 (Equation 16)

【0044】先ず、最大吸収エネルギーQを(40)式
より求める。
First, the maximum absorption energy Q is obtained from equation (40).

【0045】[0045]

【数17】 [Equation 17]

【0046】次に、熱抵抗Rは、2乗偏差Sを最小とす
るRの値として決定できるので、Rで偏微分したものを
0とすることにより、(41)式に示す2乗偏差SのR
による偏微分式が得られる。
Next, since the thermal resistance R can be determined as the value of R that minimizes the square deviation S, the value obtained by partially differentiating with R is set to 0 to obtain the square deviation S shown in the equation (41). R
Is obtained.

【0047】[0047]

【数18】 (Equation 18)

【0048】従って、(42)式より熱抵抗Rが決定さ
れる。
Therefore, the thermal resistance R is determined from the equation (42).

【0049】[0049]

【数19】 [Equation 19]

【0050】ビオー数が小さく無視できる場合、(4
2)式のaj 、bj に、a0j、b0jを代入することによ
り熱抵抗Rが決定される。また、ビオー数hが無視でき
ない場合の熱抵抗Rは、直接法の場合には熱抵抗R及び
ビオー数hを2乗偏差が小さくなる方向に順次移動して
最終的に2乗偏差の最小値を与える熱抵抗Rとビオー数
hを求めることができる。また、時定数法の場合には、
2乗偏差を最小とする条件から熱抵抗Rとビオー数hを
決定する際に、実測された積層材料の裏面である第2層
表面の温度の減衰過程から計算される時定数が熱抵抗R
とビオー数hの関数であるという付加条件を設けるた
め、熱抵抗Rとビオー数hの2つの独立変数が熱抵抗R
又はビオー数hのいずれか1つの独立変数となり、計算
が容易となる。従って、ここでは、時定数法を用いた場
合について説明する。そこで、(36)式を用いて理論
時定数を計算する。先ず、(36)式の分母の括弧内を
(p)1/ 2 =xとして3次項まで展開すると(43)式
となる。
When the biot number is small and negligible, (4
The thermal resistance R is determined by substituting a 0j and b 0j for a j and b j in the expression 2). In the case of the direct method, the thermal resistance R when the Biot number h is not negligible is calculated by sequentially moving the thermal resistance R and the Biot number h in a direction in which the square deviation is reduced, and finally the minimum value of the square deviation. , And the biot number h can be obtained. In the case of the time constant method,
When determining the thermal resistance R and the Biot number h from the condition that minimizes the square deviation, the time constant calculated from the actually measured temperature decay process of the second layer surface, which is the back surface of the laminated material, is the thermal resistance R.
And the additional condition that it is a function of the Biot number h, the two independent variables of the thermal resistance R and the Biot number h are the thermal resistance R
Alternatively, it becomes one of the independent variables of the biot number h, and the calculation becomes easy. Therefore, the case where the time constant method is used will be described here. Therefore, the theoretical time constant is calculated using the equation (36). First, the (36) when expanded to the third order terms denominator in parentheses as (p) 1/2 = x of formula (43) below.

【0051】[0051]

【数20】 (Equation 20)

【0052】これより第2層表面の温度減衰の時定数τ
は(44)式で与えられる。
From this, the time constant τ of the temperature decay on the surface of the second layer
Is given by equation (44).

【0053】[0053]

【数21】 (Equation 21)

【0054】この時定数τをビオー数及び熱抵抗Rに対
して整理すると(44)式の分母及び分子はそれぞれ
(45)、(46)式となる。
When the time constant τ is arranged with respect to the Biot number and the thermal resistance R, the denominator and the numerator of the equation (44) are expressed by the equations (45) and (46), respectively.

【0055】[0055]

【数22】 (Equation 22)

【0056】従って、(45)、(46)式を用いて時
定数τは(47)式で表される。ここで、ビオー数が小
さい場合では(47)式よりビオー数は(48)式とし
て求まる。
Accordingly, the time constant τ is expressed by the following equation (47) using the equations (45) and (46). Here, when the biot number is small, the biot number is obtained from equation (47) as equation (48).

【0057】[0057]

【数23】 (Equation 23)

【0058】また、熱抵抗Rは(49)式として求ま
る。
Further, the thermal resistance R is obtained by equation (49).

【0059】[0059]

【数24】 (Equation 24)

【0060】以上のことから、実測表面温度の減衰過程
から時定数τを具体的に求め、(42)式と(49)式
を同値とすることにより、ビオー数を具体的に決定でき
る。決定したビオー数を(42)に代入することにより
熱抵抗Rが求まる。更に、(42)式の近似式を使用し
て熱抵抗Rを求めることも可能である。(42)式の近
似式は、(42)式の各項を展開しビオー数の関数とし
て表した(50)式を用いて得られる。
From the above, the time constant τ is specifically obtained from the decay process of the measured surface temperature, and the Bioe number can be specifically determined by making the equations (42) and (49) the same value. The thermal resistance R is obtained by substituting the determined Biot number into (42). Further, the thermal resistance R can be obtained by using the approximate expression of the expression (42). The approximate expression of the expression (42) is obtained by using the expression (50) in which each term of the expression (42) is expanded and expressed as a function of the Biot number.

【0061】[0061]

【数25】 (Equation 25)

【0062】すなわち、(50)式を(42)式に代入
して、(45)式の分母、分子ともビオー数の1次項ま
でとして整理すると(51)式となり、(51)式を用
いて熱抵抗Rが決定できる。
That is, substituting the equation (50) into the equation (42) and rearranging the denominator and the numerator of the equation (45) up to the first order term of the Biot number, the equation (51) is obtained, and the equation (51) is used. The thermal resistance R can be determined.

【0063】[0063]

【数26】 (Equation 26)

【0064】前記目的に沿う本発明に係る積層材料の熱
抵抗とビオー数の測定装置は、第1層と第2層とを有し
該第1層と該第2層との間に層間部が存在する板状の積
層材料の一方の表面を瞬間的に加熱するパルス加熱手段
と、前記積層材料の他方の表面の実測表面温度を求める
温度測定手段と、前記一方の表面が瞬間的に加熱された
ときの前記他方の表面の理論表面温度を求め該理論表面
温度を前記実測表面温度に一致させることにより前記積
層材料の前記層間部の有する熱抵抗と前記積層材料のビ
オー数を決定する演算処理手段とを有する。積層材料の
一方の表面を瞬間的に加熱するパルス加熱手段を備える
ことにより、非定常状態における測定が可能となる。ま
た、積層材料の他方の表面の温度を測定する温度測定手
段を備えることにより、正確な表面の温度測定が可能と
なる。更に、演算処理手段が備えられていることによ
り、測定された他方の表面の温度の記録と、理論表面温
度の算出、及び熱抵抗と積層材料のビオー数を決定を連
続的に行うことができる。
According to the present invention, there is provided an apparatus for measuring the thermal resistance and biot number of a laminated material according to the present invention, comprising a first layer and a second layer, wherein an interlayer is provided between the first layer and the second layer. Pulse heating means for instantaneously heating one surface of the plate-shaped laminated material in which there is present, temperature measuring means for obtaining the measured surface temperature of the other surface of the laminated material, and said one surface being heated instantaneously. Calculating the theoretical surface temperature of the other surface at the time of the determination and matching the theoretical surface temperature to the measured surface temperature to determine the thermal resistance of the interlayer portion of the laminated material and the number of bios of the laminated material. Processing means. The provision of the pulse heating means for instantaneously heating one surface of the laminated material enables measurement in an unsteady state. Further, the provision of the temperature measuring means for measuring the temperature of the other surface of the laminated material enables accurate temperature measurement of the surface. Further, the provision of the arithmetic processing means enables continuous recording of the measured temperature of the other surface, calculation of the theoretical surface temperature, and determination of the thermal resistance and the number of bios of the laminated material. .

【0065】[0065]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。ここに、図1は本発明の一実施の形
態に係る積層材料の熱抵抗とビオー数の測定装置の構成
図、図2は本発明の一実施の形態に係る積層材料の熱抵
抗とビオー数の測定方法を適用して決定した熱抵抗値の
精度を示す説明図、図3は同積層材料の熱抵抗とビオー
数の測定方法を中間層が熱抵抗層として作用する3層積
層材料に適用して決定した熱抵抗の精度を示す説明図で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. Here, FIG. 1 is a configuration diagram of an apparatus for measuring a thermal resistance and a biot number of a laminated material according to an embodiment of the present invention, and FIG. 2 is a thermal resistance and a biot number of the laminated material according to an embodiment of the present invention. FIG. 3 is an explanatory view showing the accuracy of the thermal resistance value determined by applying the measurement method of FIG. 3, and FIG. FIG. 9 is an explanatory diagram showing the accuracy of the thermal resistance determined as follows.

【0066】図1に示すように、本発明の一実施の形態
に係る積層材料の熱抵抗とビオー数の測定装置の一例で
あるレーザーフラッシュ装置10は、レーザーパルスを
発生させることが可能なパルス加熱手段の一例であるレ
ーザーパルス発生手段11と、発生したレーザーパルス
を、レーザーパルスの波形を検出するレーザーパルス検
出手段12に向かうレーザーパルス及び積層材料13を
照射するレーザーパルスに分配するハーフミラー14
と、レーザーパルスが照射された積層材料13の裏面の
温度を測定する温度測定手段15と、レーザーパルス検
出手段12からの信号と温度測定手段15からの信号を
入力信号として積層材料の熱抵抗とビオー数の解析を行
う演算処理手段16と、演算処理手段16による解析結
果を表示する出力手段17とを有している。以下、これ
らについて詳細に説明する。
As shown in FIG. 1, a laser flash device 10 which is an example of an apparatus for measuring the thermal resistance and biot number of a laminated material according to one embodiment of the present invention has a pulse capable of generating a laser pulse. A laser pulse generating means 11 which is an example of a heating means, and a half mirror 14 which distributes the generated laser pulse into a laser pulse directed to a laser pulse detecting means 12 for detecting a laser pulse waveform and a laser pulse for irradiating a laminated material 13.
A temperature measuring unit 15 for measuring the temperature of the back surface of the laminated material 13 irradiated with the laser pulse; a signal from the laser pulse detecting unit 12 and a signal from the temperature measuring unit 15 as input signals; It has an arithmetic processing means 16 for analyzing the number of biot, and an output means 17 for displaying an analysis result by the arithmetic processing means 16. Hereinafter, these will be described in detail.

【0067】レーザーパルス発生手段11には、試料を
高温雰囲気に保持した場合でも雰囲気の熱変動を超える
熱エネルギーを積層材料13表面に注入することが可能
な、例えば、ルビーレーザー発振機を使用することがで
きる。積層材料13の大きさは、レーザーフラッシュ装
置10に設けられた試料ホルダー18のサイズにより決
定され、例えば、直径が8〜12mm、厚さが2〜3m
m程度の円板状の積層材料が使用できる。ハーフミラー
14は、ルビーレーザーの吸収率が極めて小さく、かつ
透過性が極めて高い材質を有した基板の表面に入射した
ルビーレーザーから所定量の光を反射するコーティング
層を設けた構成を有し、入射したルビーレーザーの光量
の、例えば50%を反射し、50%を通過させることが
できる。従って、レーザーパルス発生手段11から発生
したレーザーがハーフミラー14により反射しレーザー
パルス検出手段12の受光部に到達するようにレーザー
パルス検出手段12の受光部の光軸を調整することによ
り、レーザーパルス発生手段11から発射されたレーザ
ー光の一部をレーザーパルス検出手段12に導入してレ
ーザーパルスの波形をレーザーパルス検出手段12によ
り測定することができる。また、レーザーパルス発生手
段11から発生しハーフミラー14を透過したレーザー
の光軸と積層材料13の中心軸とを一致させることによ
り、積層材料13の表面をレーザーパルスで確実に照射
することができる。このような構成とすることにより、
積層材料13の一方の表面をルビーレーザーパルスで照
射した場合、積層材料13の温度変化を1次元非定常熱
伝導方程式により記述することができる。
As the laser pulse generating means 11, for example, a ruby laser oscillator capable of injecting thermal energy exceeding the thermal fluctuation of the atmosphere into the surface of the laminated material 13 even when the sample is kept in a high temperature atmosphere is used. be able to. The size of the laminated material 13 is determined by the size of the sample holder 18 provided in the laser flash device 10, and is, for example, 8 to 12 mm in diameter and 2 to 3 m in thickness.
A disc-shaped laminated material of about m can be used. The half mirror 14 has a configuration in which a coating layer that reflects a predetermined amount of light from a ruby laser incident on the surface of a substrate having a material having a very low ruby laser absorptivity and a very high transmissivity is provided, For example, 50% of the incident light amount of the ruby laser can be reflected and 50% can be transmitted. Therefore, by adjusting the optical axis of the light receiving section of the laser pulse detecting means 12 so that the laser generated from the laser pulse generating means 11 is reflected by the half mirror 14 and reaches the light receiving section of the laser pulse detecting means 12, the laser pulse is adjusted. A part of the laser light emitted from the generator 11 is introduced into the laser pulse detector 12 so that the laser pulse waveform can be measured by the laser pulse detector 12. Further, by aligning the optical axis of the laser generated from the laser pulse generating means 11 and transmitted through the half mirror 14 with the central axis of the laminated material 13, the surface of the laminated material 13 can be reliably irradiated with the laser pulse. . With such a configuration,
When one surface of the laminated material 13 is irradiated with a ruby laser pulse, the temperature change of the laminated material 13 can be described by a one-dimensional transient heat conduction equation.

【0068】温度測定手段15は、レーザーパルスが照
射された積層材料13の裏面の温度変化を高速で精度よ
く測定できる機能を有する必要があり、例えば、温度検
知センサーとして赤外線検出器を備えた温度計測器が使
用できる。演算処理手段16は、例えば、1)レーザー
パルス検出手段12からの信号を記録すると共に該パル
ス波形をラプラス変換する機能、2)温度測定手段15
からの積層材料13の裏面の実測表面温度の信号を記録
すると共に、実測表面温度のラプラス変換を行う機能、
3)積層材料13を構成している第1層及び第2層の有
する各種物性値、積層材料13の寸法を用いて、積層材
料13の有する境界条件から1次元の非定常熱伝導方程
式をラプラス変換により解析的に解いて積層材料13の
裏面の理論表面温度を求める機能、4)実測表面温度の
ラプラス変換と理論表面温度の2乗偏差を求めて、2乗
偏差を最小とする条件から熱抵抗とビオー数を決定する
機能、5)決定された熱抵抗とビオー数を表示手段に表
示する機能とを備えている。演算処理手段16には、例
えば、パーソナルコンピュータが使用できる。出力手段
17は決定された熱抵抗とビオー数を表示する機能を有
するもので、例えば、パーソナルコンピュータ用の表示
機器が使用できる。
The temperature measuring means 15 needs to have a function of measuring the temperature change on the back surface of the laminated material 13 irradiated with the laser pulse at high speed and with high accuracy. For example, the temperature measuring means 15 is provided with an infrared detector as a temperature detecting sensor. A measuring instrument can be used. The arithmetic processing means 16 includes, for example, 1) a function of recording a signal from the laser pulse detecting means 12 and Laplace transforming the pulse waveform, and 2) a temperature measuring means 15
A function of recording the signal of the measured surface temperature of the back surface of the laminated material 13 from, and performing Laplace conversion of the measured surface temperature,
3) Using the various physical property values of the first and second layers constituting the laminated material 13 and the dimensions of the laminated material 13, a one-dimensional transient heat conduction equation is obtained from the boundary conditions of the laminated material 13. A function of calculating the theoretical surface temperature of the back surface of the laminated material 13 by solving analytically by the conversion, 4) calculating the Laplace transform of the measured surface temperature and the square deviation of the theoretical surface temperature, and calculating the heat from the condition that minimizes the square deviation. It has a function of determining the resistance and the number of bios, and 5) a function of displaying the determined thermal resistance and the number of bios on the display means. For example, a personal computer can be used as the arithmetic processing means 16. The output means 17 has a function of displaying the determined thermal resistance and biot number. For example, a display device for a personal computer can be used.

【0069】次に、本発明の一実施の形態に係る積層材
料の熱抵抗とビオー数の測定方法について詳細に説明す
る。例えば、第1層と第2層とを圧着して形成した素材
から直径が10mmで第1層と第2層の境界を中心に第
1層と第2層の厚さが各1mmで全体の厚さが2mmと
なる円板形状の積層材料13を作成し、レーザーフラッ
シュ装置10の試料室に設けられている試料ホルダー1
8上に、例えば第1層側を上側にして固定する。続い
て、試料室を真空等の所定雰囲気にし、試料室内の温度
を制御して、積層材料13が所定の温度に安定した段階
でレーザーパルス発生手段11からレーザーパルスをハ
ーフミラー14に向けて発射する。発射されたレーザー
パルスはハーフミラー14に到達し、ハーフミラー14
によってレーザーパルスの光量の、例えば50%は反射
されてレーザーパルス検出手段12に到達しレーザーパ
ルスの波形が求められ、そのデータは演算処理手段16
に転送される。また、ハーフミラー14を透過したレー
ザーパルスは積層材料13の第1層表面に到達し表面を
瞬間的に加熱する。
Next, a method for measuring the thermal resistance and the number of bios of a laminated material according to one embodiment of the present invention will be described in detail. For example, from a material formed by pressing the first layer and the second layer, a diameter of 10 mm, a thickness of the first layer and a second layer of 1 mm each around the boundary between the first layer and the second layer, and an overall thickness of 1 mm. A disk-shaped laminated material 13 having a thickness of 2 mm is prepared, and a sample holder 1 provided in a sample chamber of the laser flash device 10 is prepared.
8, for example, with the first layer side facing upward. Subsequently, the sample chamber is set to a predetermined atmosphere such as a vacuum, the temperature in the sample chamber is controlled, and a laser pulse is emitted from the laser pulse generating means 11 toward the half mirror 14 when the laminated material 13 is stabilized at the predetermined temperature. I do. The emitted laser pulse reaches the half mirror 14 and the half mirror 14
For example, 50% of the light amount of the laser pulse is reflected and reaches the laser pulse detecting means 12 to determine the waveform of the laser pulse.
Is forwarded to The laser pulse transmitted through the half mirror 14 reaches the surface of the first layer of the laminated material 13 and instantaneously heats the surface.

【0070】レーザーパルスにより積層材料13の第1
層表面が加熱されると、そのときの熱は第2層側に伝導
するので、第2層表面(積層材料13の裏面)の温度は
徐々にに上昇する。しかし、積層材料13の表面からの
熱の散逸も同時に生じているので、裏面温度は最高温度
を経てから次に徐々に低下する。このときの温度変化
を、例えば赤外線検出器を備えた温度測定手段15によ
り測定し、測定値は演算処理手段16に転送される。演
算処理手段16では、先ず、温度測定手段15から転送
された積層材料13の裏面の実測表面温度の信号を記録
すると共に、実測表面温度のラプラス変換を行いラプラ
ス変換温度を記録する。次いで、積層材料13の有する
境界条件から1次元の非定常熱伝導方程式をラプラス変
換により解析的に解き、レーザーパルス検出手段12か
らの信号により積層材料13の表面が吸収したパルス波
形を記録すると共に該パルス波形をラプラス変換し、積
層材料13を構成している第1層及び第2層の有する各
種物性値、第1層及び第2層の寸法を用いて、積層材料
13の裏面のラプラス空間における理論表面温度を求め
る。その後、記録している実測表面温度のラプラス変換
温度とラプラス空間における理論表面温度の2乗偏差を
求め、2乗偏差を最小とする条件から熱抵抗とビオー数
を決定する。最後に、決定した熱抵抗とビオー数、測定
データ等の指定された内容を、例えばパーソナルコンピ
ュータ用の表示機器に表示する。
The first of the laminated materials 13 is generated by a laser pulse.
When the layer surface is heated, the heat at that time is conducted to the second layer side, so that the temperature of the second layer surface (the back surface of the laminated material 13) gradually increases. However, since heat is also dissipated from the surface of the laminated material 13 at the same time, the rear surface temperature gradually decreases after passing through the maximum temperature. The temperature change at this time is measured by, for example, temperature measuring means 15 having an infrared detector, and the measured value is transferred to arithmetic processing means 16. First, the arithmetic processing means 16 records the signal of the measured surface temperature of the back surface of the laminated material 13 transferred from the temperature measuring means 15 and performs the Laplace conversion of the measured surface temperature to record the Laplace conversion temperature. Next, the one-dimensional unsteady heat conduction equation is analytically solved by Laplace transform from the boundary conditions of the laminated material 13, and a pulse waveform absorbed by the surface of the laminated material 13 by a signal from the laser pulse detecting means 12 is recorded. The pulse waveform is subjected to Laplace conversion, and the Laplace space on the back surface of the laminated material 13 is obtained using various physical property values of the first and second layers constituting the laminated material 13 and the dimensions of the first and second layers. The theoretical surface temperature at is determined. Thereafter, a square deviation between the recorded Laplace conversion temperature of the actually measured surface temperature and the theoretical surface temperature in the Laplace space is obtained, and the thermal resistance and the Biot number are determined from the condition for minimizing the square deviation. Finally, the specified contents such as the determined thermal resistance and biot number, and the measured data are displayed on a display device for a personal computer, for example.

【0071】続いて、本発明の積層材料の熱抵抗とビオ
ー数の測定方法により決定される熱抵抗とビオー数の精
度について説明する。先ず、積層材料13の第1層と第
2層の有する熱物性値を含む各種物性値、試料寸法、ビ
オー数、及び第1層と第2層の層間に生じている熱抵抗
を設定して、レーザーパルスを用いて第1層表面を加熱
したときの第2層表面(裏面)の温度を、境界条件を考
慮した1次元非定常熱伝導方程式から解析的に求める。
ここで、設定する熱抵抗の値は妥当な範囲内の数値であ
ることを条件として任意に数種類設定し、ビオー数も第
1層と第2層で同一として妥当な値に設定した。次に、
解析的に求めた裏面の温度を仮想実測表面温度とし、レ
ーザーパルスによる加熱条件を同一として、積層材料1
3の第1層と第2層の有する熱物性値を含む各種物性
値、試料寸法を用いて、(36)式によりラプラス空間
における理論表面温度を求める。続いて、仮想実測表面
温度のラプラス変換値と理論表面温度の2乗偏差を求
め、2乗偏差を最小とする条件から熱抵抗とビオー数を
決定する。決定された熱抵抗とビオー数を仮想実測表面
温度を求める際に設定した熱抵抗とビオー数の値と比較
することにより、その一致の程度から(36)式を用い
た、すなわち本発明の積層材料の熱抵抗とビオー数の測
定方法により決定された熱抵抗とビオー数の精度が評価
できる。
Next, the accuracy of the thermal resistance and the biot number determined by the method for measuring the thermal resistance and the biot number of the laminated material of the present invention will be described. First, various physical property values including the thermophysical property values of the first layer and the second layer of the laminated material 13, sample size, biot number, and thermal resistance generated between the first layer and the second layer are set. The temperature of the surface of the second layer (back surface) when the surface of the first layer is heated using a laser pulse is analytically determined from a one-dimensional transient heat conduction equation in consideration of boundary conditions.
Here, several types of thermal resistances were arbitrarily set on condition that the values were within a reasonable range, and the biot number was also set to a reasonable value as being the same for the first layer and the second layer. next,
The temperature of the back surface obtained analytically is set as the virtual actually measured surface temperature, and the heating conditions by the laser pulse are the same, and the laminated material 1
The theoretical surface temperature in the Laplace space is obtained by equation (36) using various physical property values including the thermophysical property values of the first layer and the second layer of No. 3 and sample dimensions. Subsequently, the squared deviation between the Laplace conversion value of the virtual measured surface temperature and the theoretical surface temperature is obtained, and the thermal resistance and the biot number are determined from the condition that minimizes the squared deviation. By comparing the determined thermal resistance and Biot number with the values of the thermal resistance and Biot number set at the time of obtaining the virtual measured surface temperature, Expression (36) was used from the degree of coincidence, that is, the lamination of the present invention. The accuracy of the thermal resistance and Biot number determined by the method of measuring the thermal resistance and Biot number of the material can be evaluated.

【0072】例えば、第1層を密度:1000kg/m
3 、比熱:1.00kJ/kg/K、熱拡散率:1.0
×10-42 /s、層厚さ:1.0mmとし、第2層を
密度:1200kg/m3 、比熱:1.20kJ/kg
/K、熱拡散率:1.2×10 -42 /s、層厚さ:
1.0mmとし、ビオー数を0.01、設定熱抵抗値
(R 0 )を表1に示す11種類の値にして、仮想実測表
面温度を求め仮想実測表面温度のラプラス変換値を求め
た。更に、仮想実測表面温度に対して、積層材料13の
第1層と第2層の有する熱物性値を含む各種物性値、試
料寸法を用いて(36)式により理論表面温度を求め
て、仮想実測表面温度のラプラス変換値と理論表面温度
との2乗偏差を最小とする条件から熱抵抗とビオー数を
決定した。決定した熱抵抗の値を熱抵抗解析値(R)と
して設定熱抵抗値(R0 )と共に表1に記載する。な
お、(36)式を用いて熱抵抗とビオー数を決定する
際、第1層の表面が吸収したレーザーパルス波形を重心
近似した場合(重心法)と、パルス波形を考慮した場合
(パルス補正法)の2種類の方法を採用した。
For example, the first layer may be provided with a density of 1000 kg / m
Three , Specific heat: 1.00 kJ / kg / K, thermal diffusivity: 1.0
× 10-FourmTwo / S, layer thickness: 1.0 mm, the second layer
Density: 1200 kg / mThree , Specific heat: 1.20 kJ / kg
/ K, thermal diffusivity: 1.2 × 10 -FourmTwo / S, layer thickness:
1.0mm, Bior number 0.01, set thermal resistance
(R 0 ) Is changed to 11 values shown in Table 1.
Find the surface temperature and find the Laplace transform value of the virtual measured surface temperature
Was. Furthermore, for the virtual measured surface temperature,
Various physical properties, including thermophysical properties of the first and second layers,
Theoretical surface temperature is calculated from equation (36) using the material dimensions.
The Laplace transform value of the virtual measured surface temperature and the theoretical surface temperature
The thermal resistance and biot number from the condition that minimizes the square deviation of
Were determined. The determined thermal resistance value is referred to as thermal resistance analysis value (R).
And set thermal resistance (R0 ) Are listed in Table 1. What
The thermal resistance and the number of bios are determined by using the equation (36).
The center of the laser pulse waveform absorbed by the surface of the first layer
Approximation (center of gravity method) and when considering the pulse waveform
(Pulse correction method).

【0073】[0073]

【表1】 [Table 1]

【0074】また、図2に示すように、縦軸を設定熱抵
抗値(R0 )と2乗偏差を最小とするものとして求めた
熱抵抗解析値(R)との比とし、横軸を設定熱抵抗値
(R0 )と第1層及び第2層の熱抵抗の和(R1 +R
2 )との比として表示し、熱抵抗解析値(R)の特性を
検討した。ここで、R1 、R2 は第1層及び第2層の厚
さを各層の熱伝導率で割ったものである。表1及び図2
から、2乗偏差を用いた積層材料の熱抵抗とビオー数の
測定方法により、第1層と第2層の層間に厚さが明確に
定義できない層間部が存在する場合の層間部の有する熱
抵抗を精度よく決定することが可能となることが判明し
た。更に、熱抵抗を精度よく決定するには、決定される
熱抵抗と、第1層及び第2層の熱抵抗の和との比が、
0.05以上であることが必要であることも判明した。
更に、パルス波形を考慮するパルス補正法(●)は、パ
ルス重心法(〇)に比較して、高い精度で熱抵抗を決定
することが可能であることも判った。なお、2乗偏差を
用いて決定される熱抵抗とビオー数の精度の検討は、熱
抵抗の場合について具体的に示したが、仮想実測表面温
度のラプラス変換値と理論表面温度との2乗偏差を最小
とする条件から熱抵抗とビオー数を決定しているため、
決定したビオー数の精度も熱抵抗と同様の精度を有して
いる。
Further, as shown in FIG. 2, the vertical axis represents the ratio between the set thermal resistance value (R 0 ) and the thermal resistance analysis value (R) determined to minimize the square deviation, and the horizontal axis represents the horizontal axis. Sum of the set thermal resistance (R 0 ) and the thermal resistance of the first and second layers (R 1 + R
2 ) and the characteristics of the thermal resistance analysis value (R) were examined. Here, R 1 and R 2 are obtained by dividing the thickness of the first layer and the second layer by the thermal conductivity of each layer. Table 1 and FIG.
According to the method of measuring the thermal resistance and the biot number of the laminated material using the square deviation, the heat of the interlayer portion when there is an interlayer portion whose thickness cannot be clearly defined between the first layer and the second layer It has been found that the resistance can be determined accurately. Furthermore, in order to accurately determine the thermal resistance, the ratio of the determined thermal resistance to the sum of the thermal resistances of the first layer and the second layer is determined by:
It was also found that it was necessary to be 0.05 or more.
Furthermore, it has been found that the pulse correction method (●) considering the pulse waveform can determine the thermal resistance with higher accuracy than the pulse centroid method (〇). The examination of the accuracy of the thermal resistance and the Biot number determined using the square deviation was specifically shown for the case of thermal resistance, but the square of the Laplace transform value of the virtual measured surface temperature and the theoretical surface temperature was shown. Because the thermal resistance and biot number are determined from the condition that minimizes the deviation,
The accuracy of the determined Biot number has the same accuracy as the thermal resistance.

【0075】本発明に係る積層材料の熱抵抗の測定方法
は、第1層、第2層、及び第3層を有する積層材料で第
2層の熱拡散率が第1層及び第3層の熱拡散率と比較し
て小さく熱抵抗層として作用するときの熱抵抗の決定に
も適用できることが判明している。例えば、第1層を密
度:1100kg/m3 、比熱:1.00kJ/kg/
K、熱拡散率:1.0×10-42 /s、層厚さ:1.
0mmとし、第3層を密度:1200kg/m3 、比
熱:1.20kJ/kg/K、熱拡散率:1.2×10
-42 /s、層厚さ:1.0mmとし、第2層を熱拡散
率:1.1×10-62 /s、比熱:1.10kJ/k
g/Kとし、ビオー数を0.01、第2層の層厚さを変
更することにより熱抵抗を5種類の値に設定して、3層
材裏面温度の理論式より理論表面温度を求めて、この仮
想実測表面温度に対して本発明に係る積層材料の熱抵抗
の測定方法を適用して第2層の熱抵抗を決定した。その
結果を、図2と同じ要領で表した図3に示す。図3から
判るように、第2層の熱拡散率が第1層及び第3層の熱
拡散率の1/100以下であれば、パルス補正法を採用
すると、決定される熱抵抗(R2 )と第1層及び第3層
の熱抵抗の和(R1 +R 3 )との比が0.05以上であ
れば5%以内の精度で第2層の有する熱抵抗を決定する
ことができる。
The method for measuring the thermal resistance of the laminated material according to the present invention
Is a laminated material having a first layer, a second layer, and a third layer.
The thermal diffusivity of the two layers is compared with the thermal diffusivities of the first and third layers.
To determine the thermal resistance when acting as a small thermal resistance layer
Has also been found to be applicable. For example, close the first layer
Degree: 1100kg / mThree , Specific heat: 1.00 kJ / kg /
K, thermal diffusivity: 1.0 × 10-FourmTwo / S, layer thickness: 1.
0 mm, and the density of the third layer is 1200 kg / m.Three ,ratio
Heat: 1.20 kJ / kg / K, Thermal diffusivity: 1.2 × 10
-FourmTwo / S, layer thickness: 1.0 mm, thermal diffusion of the second layer
Rate: 1.1 × 10-6mTwo / S, specific heat: 1.10 kJ / k
g / K, the biot number is 0.01, and the thickness of the second layer is changed.
By changing the thermal resistance to five values, three layers
Calculate the theoretical surface temperature from the theoretical equation of
Thermal resistance of the laminated material according to the present invention with respect to the measured surface temperature
Was applied to determine the thermal resistance of the second layer. That
FIG. 3 shows the results in the same manner as in FIG. From FIG.
As can be seen, the thermal diffusivity of the second layer is higher than that of the first and third layers.
If the spreading factor is 1/100 or less, use the pulse correction method
Then, the determined thermal resistance (RTwo ) And first and third layers
The sum of the thermal resistances (R1 + R Three ) Is greater than 0.05
In this case, the thermal resistance of the second layer is determined with an accuracy within 5%.
be able to.

【0076】以上、本発明の実施の形態を説明したが、
本発明は、この実施の形態に限定されるものではなく、
例えば、積層材料の熱抵抗とビオー数の測定装置におけ
るパルス加熱手段としてレーザーパルス発生手段を使用
したが、キセノンランプ等のハロゲンランプを使用した
パルス加熱手段を使用することも可能である。また、実
測表面温度のラプラス変換値と理論表面温度との2乗偏
差として、各逆数の偏差を2乗して求めた2乗偏差を例
として求めたが、実測表面温度のラプラス変換値と理論
表面温度の偏差を2乗して求める2乗偏差を使用するこ
とも可能である。
The embodiment of the present invention has been described above.
The present invention is not limited to this embodiment,
For example, although a laser pulse generating means is used as a pulse heating means in a measuring device for measuring the thermal resistance and biot number of a laminated material, a pulse heating means using a halogen lamp such as a xenon lamp may be used. In addition, as a square deviation between the Laplace conversion value of the measured surface temperature and the theoretical surface temperature, a square deviation obtained by squaring the deviation of each reciprocal was obtained as an example. It is also possible to use a squared deviation obtained by squaring the deviation of the surface temperature.

【0077】[0077]

【発明の効果】請求項1〜4記載の積層材料の熱抵抗と
ビオー数の測定方法においては、積層材料の一方の表面
を瞬間的に加熱したときの積層材料の他方の表面の実測
表面温度を求める第1工程と、積層材料の一方の表面を
瞬間的に加熱したときの積層材料の他方の表面の理論表
面温度を、境界条件を考慮した非定常熱伝導方程式の解
から計算して求める第2工程と、実測表面温度と理論表
面温度との偏差を最小とする条件から熱抵抗と前記ビオ
ー数を決定する第3工程とを有するので、熱抵抗とビオ
ー数の決定を測定に熟練を要することなく高精度に行う
ことができる。更に、非定常状態での測定であるため、
低温から高温までの広い温度範囲で測定を容易に行うこ
とが可能となる。
According to the method for measuring the thermal resistance and biot number of a laminated material according to the present invention, the measured surface temperature of the other surface of the laminated material when one surface of the laminated material is instantaneously heated. And the theoretical surface temperature of the other surface of the laminated material when one surface of the laminated material is instantaneously heated is calculated from the solution of the unsteady heat conduction equation in consideration of the boundary conditions. Since the method includes the second step and the third step of determining the thermal resistance and the biot number from the condition of minimizing the deviation between the measured surface temperature and the theoretical surface temperature, the determination of the thermal resistance and the biot number requires skill in measurement. It can be performed with high accuracy without need. Furthermore, because the measurement is in an unsteady state,
Measurement can be easily performed in a wide temperature range from a low temperature to a high temperature.

【0078】特に、請求項2記載の積層材料の熱抵抗と
ビオー数の測定方法においては、実測表面温度が他方の
表面の実測表面温度をラプラス変換したラプラス変換温
度、理論表面温度が非定常熱伝導方程式をラプラス変換
して求めた解析解に基づく計算値であり、偏差がラプラ
ス変換温度と計算値の2乗偏差であるので、厳密な解析
解が得られることから理論表面温度を容易に正確に求め
ることが可能となり、更に2乗偏差を最小とする条件か
ら熱抵抗とビオー数を求めるため、測定から熱抵抗とビ
オー数の決定までが自動化でき熱抵抗とビオー数を短時
間に高精度で決定することができる。
In particular, in the method for measuring the thermal resistance and the biot number of a laminated material according to the second aspect, the measured surface temperature is the Laplace conversion temperature obtained by Laplace conversion of the measured surface temperature of the other surface, and the theoretical surface temperature is the unsteady heat. This is a calculated value based on the analytical solution obtained by Laplace transform of the conduction equation, and the deviation is the square deviation of the Laplace transform temperature and the calculated value. In addition, since the thermal resistance and Biot number are determined from the condition that minimizes the squared deviation, the process from measurement to determination of the thermal resistance and Biot number can be automated, and the thermal resistance and Biot number can be accurately determined in a short time. Can be determined.

【0079】請求項3記載の積層材料の熱抵抗とビオー
数の測定方法においては、実測表面温度が他方の表面の
実測表面温度をラプラス変換したラプラス変換温度、理
論表面温度が非定常熱伝導方程式をラプラス変換して求
めた解析解に基づく計算値であり、偏差がラプラス変換
温度と計算値の逆数の2乗偏差であるので、2乗偏差を
最小とする条件から熱抵抗とビオー数を決定するに際し
て、分数式の煩雑な計算を避けることができ、熱抵抗と
ビオー数をより短時間に高精度で決定することができ
る。
In the method for measuring the thermal resistance and biot number of a laminated material according to the third aspect, the measured surface temperature is the Laplace conversion temperature obtained by Laplace conversion of the measured surface temperature of the other surface, and the theoretical surface temperature is the unsteady heat conduction equation. Is the calculated value based on the analytical solution obtained by Laplace transform, and the deviation is the square deviation of the reciprocal of the Laplace conversion temperature and the calculated value, so the thermal resistance and Biot number are determined from the condition that minimizes the squared deviation. In doing so, complicated calculations of fractional expressions can be avoided, and the thermal resistance and Biot number can be determined in a shorter time with high accuracy.

【0080】請求項4記載の積層材料の熱抵抗とビオー
数の測定方法においては、2乗偏差を最小とする条件
を、実測表面温度の変化から求めた実測減衰時定数と理
論表面温度の変化から求めた理論減衰時定数とを同値と
する付加条件のもとで求めるので、2つの独立変数を1
つの独立変数にすることで計算量を大幅に減少させるこ
とができ、熱抵抗とビオー数を更に短時間に高精度で決
定することができる。
According to a fourth aspect of the present invention, in the method for measuring the thermal resistance and the biot number of a laminated material, the condition for minimizing the squared deviation is determined by changing the measured attenuation time constant and the theoretical surface temperature obtained from the measured surface temperature change. The two independent variables are set to 1
By using two independent variables, the amount of calculation can be greatly reduced, and the thermal resistance and Biot number can be determined in a shorter time with higher accuracy.

【0081】請求項5記載の積層材料の熱抵抗とビオー
数の測定装置においては、第1層と第2層とを有し第1
層と第2層との間に層間部が存在する板状の積層材料の
一方の表面を瞬間的に加熱するパルス加熱手段と、積層
材料の他方の表面の実測表面温度を求める温度測定手段
と、一方の表面が瞬間的に加熱されたときの他方の表面
の理論表面温度を求め理論表面温度を実測表面温度に一
致させることにより積層材料の層間部の有する熱抵抗と
積層材料のビオー数を決定する演算処理手段とを有する
ので、測定に熟練していない者でも測定を行うことが可
能で、高精度に熱抵抗とビオー数を決定することができ
る。また、測定には微小サイズの試料でも可能となる。
According to a fifth aspect of the present invention, there is provided an apparatus for measuring thermal resistance and biot number of a laminated material, comprising a first layer and a second layer.
A pulse heating means for instantaneously heating one surface of a plate-shaped laminated material having an interlayer portion between the layer and the second layer; a temperature measuring means for obtaining a measured surface temperature of the other surface of the laminated material; By calculating the theoretical surface temperature of the other surface when one surface is instantaneously heated and matching the theoretical surface temperature to the measured surface temperature, the thermal resistance of the interlayer portion of the laminated material and the biot number of the laminated material are determined. Since it has an arithmetic processing means for determining, even a person who is not skilled in measurement can perform the measurement, and can determine the thermal resistance and the biot number with high accuracy. In addition, the measurement can be performed on a sample having a very small size.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る積層材料の熱抵抗
とビオー数の測定装置の構成図である。
FIG. 1 is a configuration diagram of an apparatus for measuring the thermal resistance and biot number of a laminated material according to an embodiment of the present invention.

【図2】本発明の一実施の形態に係る積層材料の熱抵抗
とビオー数の測定方法を適用して決定した熱抵抗値の精
度を示す説明図である。
FIG. 2 is an explanatory diagram showing accuracy of a thermal resistance value determined by applying a method for measuring a thermal resistance and a biot number of a laminated material according to an embodiment of the present invention.

【図3】同積層材料の熱抵抗とビオー数の測定方法を中
間層が熱抵抗層として作用する3層積層材料に適用して
決定した熱抵抗の精度を示す説明図である。
FIG. 3 is an explanatory diagram showing the accuracy of thermal resistance determined by applying the method for measuring the thermal resistance and biot number of the laminated material to a three-layer laminated material in which an intermediate layer acts as a thermal resistance layer.

【図4】レーザーパルス波形を考慮した場合の、中間層
が熱抵抗層として作用する3層積層材料における多層材
解析法により決定した熱抵抗の精度の中間層厚さとの関
係を示すグラフである。
FIG. 4 is a graph showing the relationship between the accuracy of the thermal resistance determined by a multilayer material analysis method and the thickness of the intermediate layer in a three-layer laminated material in which the intermediate layer acts as a heat resistance layer in consideration of the laser pulse waveform. .

【図5】レーザーパルス波形を重心法で近似した場合
の、中間層が熱抵抗層として作用する3層積層材料にお
ける多層材解析法により決定した熱抵抗の精度の中間層
厚さとの関係を示すグラフである。
FIG. 5 shows the relationship between the accuracy of the thermal resistance determined by the multilayer material analysis method and the thickness of the intermediate layer in a three-layer laminated material in which the intermediate layer acts as a thermal resistance layer when the laser pulse waveform is approximated by the center of gravity method. It is a graph.

【符号の説明】[Explanation of symbols]

10:レーザーフラッシュ装置(積層材料の熱抵抗とビ
オー数の測定装置)、11:レーザーパルス発生手段
(パルス加熱手段)、12:レーザーパルス検出手段、
13:積層材料、14:ハーフミラー、15:温度測定
手段、16:演算処理手段、17:出力手段、18:試
料ホルダー
10: laser flash device (measuring device for thermal resistance and biot number of laminated material), 11: laser pulse generating means (pulse heating means), 12: laser pulse detecting means,
13: laminated material, 14: half mirror, 15: temperature measuring means, 16: arithmetic processing means, 17: output means, 18: sample holder

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第1層と第2層を有する板状の積層材料
で該第1層と該第2層との間の層間部が有する熱抵抗、
及び該積層材料の熱放射損失の程度を示すビオー数を測
定する積層材料の熱抵抗とビオー数の測定方法であっ
て、前記積層材料の一方の表面を瞬間的に加熱したとき
の前記積層材料の他方の表面の実測表面温度を求める第
1工程と、前記積層材料の一方の表面を瞬間的に加熱し
たときの前記積層材料の他方の表面の理論表面温度を、
境界条件を考慮した非定常熱伝導方程式の解から計算し
て求める第2工程と、前記実測表面温度と前記理論表面
温度との偏差を最小とする条件から前記熱抵抗と前記ビ
オー数を決定する第3工程とを有することを特徴とする
積層材料の熱抵抗とビオー数の測定方法。
1. A thermal resistance of a plate-shaped laminated material having a first layer and a second layer in an interlayer portion between the first layer and the second layer.
And a method for measuring the thermal resistance and biot number of the laminated material for measuring the Biot number indicating the degree of heat radiation loss of the laminated material, wherein the laminated material when one surface of the laminated material is instantaneously heated A first step of determining the measured surface temperature of the other surface of the, and the theoretical surface temperature of the other surface of the laminated material when one surface of the laminated material is momentarily heated,
Determining the thermal resistance and the biot number from the second step of calculating and calculating from the solution of the unsteady heat conduction equation in consideration of the boundary condition, and the condition of minimizing the deviation between the measured surface temperature and the theoretical surface temperature. A method for measuring the thermal resistance and biot number of a laminated material, comprising a third step.
【請求項2】 請求項1記載の積層材料の熱抵抗とビオ
ー数の測定方法において、前記実測表面温度が前記他方
の表面の実測表面温度をラプラス変換したラプラス変換
温度、前記理論表面温度が前記非定常熱伝導方程式をラ
プラス変換して求めた解析解に基づく計算値であり、前
記偏差が前記ラプラス変換温度と前記計算値の2乗偏差
であることを特徴とする積層材料の熱抵抗とビオー数の
測定方法。
2. The method for measuring the thermal resistance and biot number of a laminated material according to claim 1, wherein the measured surface temperature is a Laplace conversion temperature obtained by Laplace conversion of the measured surface temperature of the other surface, and the theoretical surface temperature is the Laplace conversion temperature. Thermal resistance of the laminated material, wherein the deviation is a square deviation between the Laplace conversion temperature and the calculated value, which is a calculated value based on an analytical solution obtained by Laplace transforming the transient heat conduction equation. How to measure numbers.
【請求項3】 請求項1記載の積層材料の熱抵抗とビオ
ー数の測定方法において、前記実測表面温度が前記他方
の表面の実測表面温度をラプラス変換したラプラス変換
温度、前記理論表面温度が前記非定常熱伝導方程式をラ
プラス変換して求めた解析解に基づく計算値であり、前
記偏差が前記ラプラス変換温度の逆数と前記計算値の逆
数の2乗偏差であることを特徴とする積層材料の熱抵抗
とビオー数の測定方法。
3. The method for measuring the thermal resistance and biot number of a laminated material according to claim 1, wherein the measured surface temperature is a Laplace conversion temperature obtained by Laplace conversion of the measured surface temperature of the other surface, and the theoretical surface temperature is the Laplace conversion temperature. It is a calculated value based on an analytical solution obtained by Laplace transform of the unsteady heat conduction equation, wherein the deviation is a squared deviation of the reciprocal of the Laplace conversion temperature and the reciprocal of the calculated value. How to measure thermal resistance and biot number.
【請求項4】 請求項2又は3記載の積層材料の熱抵抗
とビオー数の測定方法において、前記2乗偏差を最小と
する条件を、前記実測表面温度の変化から求めた実測減
衰時定数と前記理論表面温度の変化から求めた理論減衰
時定数とを同値とする付加条件のもとで求めることを特
徴とする積層材料の熱抵抗とビオー数の測定方法。
4. The method for measuring the thermal resistance and Biot number of a laminated material according to claim 2 or 3, wherein the condition for minimizing the squared deviation is determined by a measured decay time constant obtained from a change in the measured surface temperature. A method for measuring the thermal resistance and biot number of a laminated material, wherein the thermal resistance and the biot number of the laminated material are obtained under additional conditions that make the theoretical decay time constant obtained from the change in the theoretical surface temperature the same.
【請求項5】 第1層と第2層とを有し該第1層と該第
2層との間に層間部が存在する板状の積層材料の一方の
表面を瞬間的に加熱するパルス加熱手段と、前記積層材
料の他方の表面の実測表面温度を求める温度測定手段
と、前記一方の表面が瞬間的に加熱されたときの前記他
方の表面の理論表面温度を求め該理論表面温度を前記実
測表面温度に一致させることにより前記積層材料の前記
層間部の有する熱抵抗と前記積層材料のビオー数を決定
する演算処理手段とを有することを特徴とする積層材料
の熱抵抗とビオー数の測定装置。
5. A pulse for instantaneously heating one surface of a plate-shaped laminated material having a first layer and a second layer and having an interlayer between the first layer and the second layer. Heating means, temperature measuring means for measuring the measured surface temperature of the other surface of the laminated material, and calculating the theoretical surface temperature of the other surface when the one surface is instantaneously heated, the theoretical surface temperature The thermal resistance of the interlayer portion of the laminated material and the arithmetic processing means for determining the number of bios of the laminated material by matching the measured surface temperature and the thermal resistance of the laminated material and the number of bios measuring device.
JP2000306534A 2000-10-05 2000-10-05 Measuring method and measuring device for thermal resistance and biot number of laminated material Expired - Fee Related JP4252207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000306534A JP4252207B2 (en) 2000-10-05 2000-10-05 Measuring method and measuring device for thermal resistance and biot number of laminated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000306534A JP4252207B2 (en) 2000-10-05 2000-10-05 Measuring method and measuring device for thermal resistance and biot number of laminated material

Publications (2)

Publication Number Publication Date
JP2002116166A true JP2002116166A (en) 2002-04-19
JP4252207B2 JP4252207B2 (en) 2009-04-08

Family

ID=18787206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000306534A Expired - Fee Related JP4252207B2 (en) 2000-10-05 2000-10-05 Measuring method and measuring device for thermal resistance and biot number of laminated material

Country Status (1)

Country Link
JP (1) JP4252207B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205449A (en) * 2005-01-26 2006-08-10 Yokohama Rubber Co Ltd:The Estimation method of internal temperature of heating target and program
JP2010243482A (en) * 2009-03-19 2010-10-28 National Institute For Materials Science Thin film thermophysical property measuring instrument and method of measuring thermal conductivity and interface thermal resistance using this measuring instrument
JP2012117939A (en) * 2010-12-01 2012-06-21 Espec Corp Heat conductivity measuring device, heat conductivity calculation device, heat conductivity calculation program, and heat conductivity measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205449A (en) * 2005-01-26 2006-08-10 Yokohama Rubber Co Ltd:The Estimation method of internal temperature of heating target and program
JP4513582B2 (en) * 2005-01-26 2010-07-28 横浜ゴム株式会社 Method and program for predicting internal temperature of heated object
JP2010243482A (en) * 2009-03-19 2010-10-28 National Institute For Materials Science Thin film thermophysical property measuring instrument and method of measuring thermal conductivity and interface thermal resistance using this measuring instrument
JP2012117939A (en) * 2010-12-01 2012-06-21 Espec Corp Heat conductivity measuring device, heat conductivity calculation device, heat conductivity calculation program, and heat conductivity measuring method

Also Published As

Publication number Publication date
JP4252207B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
Adams et al. Analytical optoacoustic spectrometry. Part III. The optoacoustic effect and thermal diffusivity
JP3430258B2 (en) Measurement method of thermal diffusivity and interfacial thermal resistance
US9772298B2 (en) Method and apparatus for determining thermal conductivity and thermal diffusivity of a heterogeneous material
US20020031164A1 (en) Method and apparatus for photothermal analysis of a layer of material, especially for thickness measurement thereof
JP4980147B2 (en) Thermophysical property measuring device, thermophysical property measuring method
US20130077084A1 (en) Object characteristic measuring system
JP3252155B2 (en) Thermal diffusivity measurement method by thermoreflectance method
JP2002116166A (en) Measuring method and measuring instrument for thermal resistance and biot number of laminated material
JP6127019B2 (en) Method for measuring thermal diffusivity of translucent materials
JP3568271B2 (en) Method and apparatus for measuring thermal constant using laser flash method
EP1852697B1 (en) Method for determing material parameters of an object from temperature-versus-time (t-t) data
JP2001108641A (en) Measuring method for contact thermal resistance
US20050002436A1 (en) Method for measuring thermophysical property of thin film and apparatus therefor
US6375349B1 (en) Instrument configured to test multiple samples for the determination of thermophysical properties by the flash method
JP4394315B2 (en) Thermal diffusivity measurement method using laser flash method
JP4101012B2 (en) Thermal property evaluation method and apparatus for laminated material having thermal resistance
JP5490628B2 (en) Measurement method of thermal constant using light heating method
JP4761547B2 (en) Measurement method of thermal constant using laser flash method
JP2006084442A (en) Method for measuring thermophysical property of thin film and micro-area
JP2001116711A (en) Method for measuring interfacial heat resistance
US11175249B2 (en) Physical property value measurement device, physical property value measurement method, and recording medium
Wallace et al. Spectral absorption coefficient of additive manufacturing materials
JP2016024083A (en) Method for measuring physical property by steady state method, and measurement device therefor
JP6399329B1 (en) Physical property value measuring apparatus, physical property value measuring method and program
JP2003042858A (en) Apparatus and method for dynamic calibration of temperature sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090121

R150 Certificate of patent or registration of utility model

Ref document number: 4252207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees