JP6127019B2 - Method for measuring thermal diffusivity of translucent materials - Google Patents

Method for measuring thermal diffusivity of translucent materials Download PDF

Info

Publication number
JP6127019B2
JP6127019B2 JP2014111454A JP2014111454A JP6127019B2 JP 6127019 B2 JP6127019 B2 JP 6127019B2 JP 2014111454 A JP2014111454 A JP 2014111454A JP 2014111454 A JP2014111454 A JP 2014111454A JP 6127019 B2 JP6127019 B2 JP 6127019B2
Authority
JP
Japan
Prior art keywords
thermal diffusivity
back surface
measuring
heat transfer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014111454A
Other languages
Japanese (ja)
Other versions
JP2015225034A (en
JP2015225034A5 (en
Inventor
細野 和也
和也 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Ultra High Temperature Materials Research Institute JUTEM
Original Assignee
Japan Ultra High Temperature Materials Research Institute JUTEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Ultra High Temperature Materials Research Institute JUTEM filed Critical Japan Ultra High Temperature Materials Research Institute JUTEM
Priority to JP2014111454A priority Critical patent/JP6127019B2/en
Publication of JP2015225034A publication Critical patent/JP2015225034A/en
Publication of JP2015225034A5 publication Critical patent/JP2015225034A5/ja
Application granted granted Critical
Publication of JP6127019B2 publication Critical patent/JP6127019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、拡散伝熱と放射伝熱の両伝熱現象により、表面に照射した加熱光のエネルギーが裏面に到達する半透明材料の熱拡散率の測定方法に関する。ここで、半透明材料としては、例えば、断熱材やセラミックス、また、通常の熱伝導現象以外に放射伝熱現象が生じるポーラス(多孔質の)材料等がある。   The present invention relates to a method for measuring the thermal diffusivity of a translucent material in which the energy of heating light applied to the surface reaches the back surface due to both heat transfer phenomena of diffusion heat transfer and radiation heat transfer. Here, examples of the semi-transparent material include a heat insulating material and ceramics, and a porous (porous) material in which a radiation heat transfer phenomenon occurs in addition to a normal heat conduction phenomenon.

材料の熱拡散率を測定する方法として、例えば、特許文献1に記載されたレーザフラッシュ法が近年多用されている。この方法は、熱拡散率を求めたい材料から、例えば、直径10mm、厚さ数ミリ程度の試料(以下、測定試料ともいう)を作製し、この試料の表面をレーザ光(加熱光)で短時間照射した際の試料裏面の温度を測定して得られた裏面温度測定データと、レーザ光で試料表面を照射した際の裏面温度の理論的な時間変化を示す裏面温度理論式とを、比較し解析することにより、試料の熱拡散率を求めるものである。
このとき、試料が満足すべき必要条件は、裏面温度理論式が導出される際の試料の条件となる。
As a method for measuring the thermal diffusivity of a material, for example, the laser flash method described in Patent Document 1 has been frequently used in recent years. In this method, for example, a sample having a diameter of about 10 mm and a thickness of several millimeters (hereinafter also referred to as a measurement sample) is prepared from a material whose thermal diffusivity is to be obtained, and the surface of this sample is shortened with laser light (heating light). Comparison of backside temperature measurement data obtained by measuring the temperature of the backside of the sample when irradiated for a long time, and the theoretical formula of the backside temperature indicating the theoretical temporal change in backside temperature when the sample surface is irradiated with laser light Then, the thermal diffusivity of the sample is obtained by analysis.
At this time, the necessary condition that the sample should satisfy is the condition of the sample when the theoretical formula of the back surface temperature is derived.

従来のレーザフラッシュ法で使用する試料の裏面温度理論式は、(1)式に示す非定常の一次元熱伝導方程式を、(2)式に示す初期条件、(3)式及び(4)式に示す境界条件のもとで解くことにより得られる。ここで、裏面温度理論式が導出される際の試料が満足すべき条件を、以下に示す。
(i)試料の表面から裏面へ(5)式のフーリエの式に基づき、(1)式を変形した(6)式の一次元熱伝導方程式が成立する。
(ii)試料の表面に照射するレーザ光のエネルギーが試料の表面で吸収される。
The theoretical formula of the back surface temperature of the sample used in the conventional laser flash method is the unsteady one-dimensional heat conduction equation shown in the equation (1), the initial condition shown in the equation (2), the equations (3) and (4) It can be obtained by solving under the boundary conditions shown below. Here, conditions that the sample should satisfy when the back surface temperature theoretical formula is derived are shown below.
(I) From the front surface to the back surface of the sample, a one-dimensional heat conduction equation of equation (6) obtained by modifying equation (1) is established based on the Fourier equation of equation (5).
(Ii) The energy of the laser light applied to the sample surface is absorbed by the sample surface.

Figure 0006127019
Figure 0006127019

従って、レーザフラッシュ法による測定で試料が満たすべき条件としては、上記(i)の条件から、均質、緻密、及び、不透明な材料であること、また、上記(ii)の条件から、表面が不透明な材料であること、が挙げられる。
また、測定して得られた裏面温度測定データと比較する裏面温度理論式としては、(7)式〜(9)式に示す時間空間解や、(10)式及び(11)式に示すラプラス空間解が用いられる。なお、(7)式中のaは(8)式で、βは(9)式で、それぞれ定義する。
Therefore, the conditions to be satisfied by the sample in the measurement by the laser flash method are the homogeneous, dense and opaque material from the condition (i) above, and the surface is opaque from the condition (ii) above. It is a simple material.
Moreover, as a back surface temperature theoretical formula compared with the back surface temperature measurement data obtained by measuring, the time-space solution shown in the formulas (7) to (9) and the Laplace shown in the formulas (10) and (11) are used. A spatial solution is used. Note that (7) in a n is (8) in the formula, beta n in (9), defined respectively.

Figure 0006127019
Figure 0006127019

ここで、qは熱流束、kは熱伝導率、Tは温度、xは座標(試料表面から内部に進入した距離)、tは時間、ρは密度、cは比熱、αは熱拡散率、Lは試料厚さ、hは試料表裏面からの放射損失を表すビオ数、pはラプラス変数である。また、Qはレーザ光照射により試料表面の単位面積当たりに供給される入熱量で、f(t)は全時間領域における積分値を1として規格化した関数であり、Qf(t)はレーザ光照射により試料表面に吸収される単位時間単位面積当たりのエネルギーとなる。   Where q is the heat flux, k is the thermal conductivity, T is the temperature, x is the coordinate (distance entering the sample surface from the inside), t is the time, ρ is the density, c is the specific heat, α is the thermal diffusivity, L is the sample thickness, h is the number of bioses representing the radiation loss from the front and back surfaces of the sample, and p is the Laplace variable. Q is the amount of heat input per unit area of the sample surface by laser light irradiation, f (t) is a function normalized with the integral value in the entire time region as 1, and Qf (t) is the laser light. It becomes energy per unit time unit area absorbed by the sample surface by irradiation.

上記したレーザフラッシュ法を用いた熱拡散率の測定は、測定の簡便性や短時間測定が可能であること等の多くの利点を有している。このため、レーザフラッシュ法による測定で、測定試料が満たすべき条件が厳密には成立しない材料に対しても、広く適用されているのが現状である。
例えば、透光性材料や断熱材等の半透明材料の熱拡散率を測定する場合、作製した測定試料の表裏面に黒化膜や金属膜を形成し不透光化して測定する。なお、断熱材のような半透明材料の多くは不均質材であるため、この熱拡散率を測定する場合は、更に、近似的に均質で緻密とみなされる程度にまで、測定試料を厚くして測定する。
The measurement of the thermal diffusivity using the laser flash method described above has many advantages such as simplicity of measurement and the ability to measure for a short time. For this reason, the present situation is that it is widely applied even to materials in which the conditions to be satisfied by the measurement sample are not satisfied in the measurement by the laser flash method.
For example, when the thermal diffusivity of a translucent material such as a translucent material or a heat insulating material is measured, a blackened film or a metal film is formed on the front and back surfaces of the manufactured measurement sample to make it non-translucent. Since most of the translucent materials such as heat insulating materials are inhomogeneous materials, when measuring this thermal diffusivity, further increase the thickness of the measurement sample to such an extent that it can be regarded as approximately homogeneous and dense. To measure.

特開平8−261967号公報JP-A-8-261967

上記したように、半透明材料で作製した試料の表裏面に、黒化膜等の不透光膜を施し、レーザフラッシュ法等の光照射法により熱拡散率(熱伝導率)を測定すると、温度が低い場合には、放射伝熱は抑制されて拡散伝熱主体の熱伝導となるため、正しい熱拡散率(熱伝導率)が得られる。ここで、拡散伝熱とは、温度勾配に比例した熱流束(フーリエ式)による熱伝導であり、また、放射伝熱とは、試料内の材料が電磁波の放射と吸収を行う熱伝導である。   As described above, when an opaque film such as a blackening film is applied to the front and back surfaces of a sample made of a translucent material and the thermal diffusivity (thermal conductivity) is measured by a light irradiation method such as a laser flash method, When the temperature is low, radiant heat transfer is suppressed and the heat conduction is mainly diffusion heat transfer, so that a correct thermal diffusivity (thermal conductivity) can be obtained. Here, diffusion heat transfer is heat conduction by a heat flux (Fourier equation) proportional to the temperature gradient, and radiant heat transfer is heat conduction in which a material in the sample emits and absorbs electromagnetic waves. .

上記した測定が成立するためには、試料の熱伝導が、上記した一次元熱伝導方程式、初期条件、及び、境界条件を満足する必要があるが、温度上昇と共に放射伝熱による裏面への熱流束が増加し、拡散伝熱による熱流束に比較して無視できない状況となる。このため、半透明材料の熱拡散率を、従来のレーザフラッシュ法で測定し解析すると、放射伝熱現象の影響を受けて、測定される熱拡散率が本来の熱拡散率(熱伝導率)より大きな値を示し、測定誤差が大きくなっていた。   In order for the above measurement to be established, the heat conduction of the sample must satisfy the above one-dimensional heat conduction equation, initial conditions, and boundary conditions. The bundle increases and it becomes a situation that cannot be ignored compared to the heat flux by diffusion heat transfer. For this reason, when the thermal diffusivity of a translucent material is measured and analyzed by the conventional laser flash method, the measured thermal diffusivity is affected by the radiation heat transfer phenomenon, and the measured thermal diffusivity is the original thermal diffusivity (thermal conductivity). A larger value was shown, and the measurement error was large.

本発明は係る事情に鑑みてなされたもので、放射伝現象が生じる場合にも、拡散伝熱の熱拡散率を精度よく測定可能な半透明材料の熱拡散率を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a thermal diffusivity of a translucent material capable of accurately measuring the thermal diffusivity of diffusion heat transfer even when a radiant heat transfer phenomenon occurs. To do.

前記目的に沿う本発明に係る半透明材料の熱拡散率の測定方法は、表面から裏面への熱移動が、拡散伝熱と放射伝熱により生じる半透明材料の熱拡散率の測定方法であって、
前記半透明材料から作製した測定試料の表裏面にそれぞれ、熱移動が拡散伝熱により生じる不透明材料を密着配置し、一方の前記不透明材料の表面を加熱光で照射し、他方の前記不透明材料の裏面の温度を測定して、該裏面の温度変化を示す裏面温度測定データを求める第1工程と、
前記半透明材料の熱拡散率と吸収係数と屈折率を変数として含み、前記不透明材料の表面を加熱光で照射した際の前記不透明材料の裏面の温度の理論的な時間変化を示す、前記拡散伝熱と前記放射伝熱を用いた裏面温度理論式と、前記裏面温度測定データとを比較して、前記半透明材料の熱拡散率を決定する第2工程とを有する。
The method for measuring the thermal diffusivity of the translucent material according to the present invention in accordance with the above object is a method for measuring the thermal diffusivity of the translucent material in which heat transfer from the front surface to the back surface is caused by diffusion heat transfer and radiation heat transfer. And
An opaque material in which heat transfer is caused by diffusion heat transfer is closely arranged on the front and back surfaces of the measurement sample prepared from the translucent material, the surface of one of the opaque materials is irradiated with heating light, and the other opaque material A first step of measuring the temperature of the back surface to obtain back surface temperature measurement data indicating a temperature change of the back surface;
The diffusion including a thermal diffusivity , an absorption coefficient, and a refractive index of the translucent material as variables, and showing a theoretical time change of the temperature of the back surface of the opaque material when the surface of the opaque material is irradiated with heating light. A second step of determining the thermal diffusivity of the translucent material by comparing the heat transfer and the back surface temperature theoretical formula using the radiant heat transfer with the back surface temperature measurement data.

本発明に係る半透明材料の熱拡散率の測定方法において、前記裏面温度理論式は更に、前記不透明材料のビオ数を、変数として含み、該変数を前記第2工程で決定することが好ましい。 In the method of the thermal diffusivity of the translucent material according to the present invention, the backside temperature theoretical formula further, a Biot number of the previous SL opaque material, including as a variable, it is preferable to determine the number of the displacement in the second step .

本発明に係る半透明材料の熱拡散率の測定方法において、前記裏面温度理論式は、一次元熱伝導方程式のラプラス空間式であり、前記裏面温度測定データは、測定した前記不透明材料の裏面の温度変化をラプラス変換したものであることが好ましい。   In the method for measuring the thermal diffusivity of a translucent material according to the present invention, the back surface temperature theoretical formula is a Laplace space formula of a one-dimensional heat conduction equation, and the back surface temperature measurement data is measured on the back surface of the measured opaque material. A temperature change is preferably Laplace converted.

本発明に係る半透明材料の熱拡散率の測定方法において、前記変数を、前記裏面温度理論式と前記裏面温度測定データとの2乗偏差を最小とする条件から決定することができる。
ここで、前記2乗偏差を最小とする条件は、前記変数をすべて独立変数として求めることができる。
また、前記2乗偏差を最小とする条件は、前記裏面温度測定データの温度減衰領域から求まる実測減衰時定数と、前記裏面温度理論式から求まる時定数とを同値とする付加条件を用いて求めることができる。
In the method for measuring the thermal diffusivity of a translucent material according to the present invention, the variable can be determined from a condition that minimizes a square deviation between the back surface temperature theoretical formula and the back surface temperature measurement data.
Here, the condition for minimizing the square deviation can be obtained as all independent variables.
Further, the condition for minimizing the square deviation is obtained by using an additional condition in which the measured decay time constant obtained from the temperature decay region of the back surface temperature measurement data and the time constant obtained from the back surface temperature theoretical equation are the same value. be able to.

本発明に係る半透明材料の熱拡散率の測定方法は、拡散伝熱と放射伝熱を用いた裏面温度理論式を使用するので、例えば、高温域のように放射伝熱の現象が生じる場合でも、半透明材料の熱拡散率を精度よく求めることができる。   Since the method for measuring the thermal diffusivity of the translucent material according to the present invention uses the back surface temperature theoretical formula using diffusion heat transfer and radiant heat transfer, for example, when a phenomenon of radiant heat transfer occurs in a high temperature region. However, the thermal diffusivity of the translucent material can be obtained with high accuracy.

特に、裏面温度理論式が半透明材料の吸収係数と屈折率を変数として含むので、これらの放射伝熱に影響を与える因子も考慮するため、半透明材料の熱拡散率を、更に精度よく求めることができる。
また、裏面温度理論式が更に、不透明材料のビオ数を変数として含む場合、特に、高温時における半透明材料の熱拡散率を精度よく求めることができる。これは、高温時に、試料の表裏面より放射されるエネルギーを無視できず、この現象を表すビオ数(各不透明材料の放射率と定常温度T の積に比例)が無視できないことによる。なお、高温時とは、放射伝熱現象が無視できなくなる温度域であり、例えば、800K以上であり、上限は特に限定されるものではない。
In particular, since the backside temperature theoretical formula including refractive index and absorption coefficient of the translucent material as a variable, to consider the factors that affect these radiation heat transfer, the thermal diffusivity of the translucent material, determined more accurately be able to.
Further, when the back surface temperature theoretical formula further includes the number of bios of the opaque material as a variable, the thermal diffusivity of the translucent material at a high temperature can be obtained with high accuracy. This is because, at high temperatures, the energy radiated from the front and back surfaces of the sample cannot be ignored, and the bio number representing this phenomenon (proportional to the product of the emissivity of each opaque material and the steady temperature T 0 3 ) cannot be ignored. The high temperature is a temperature range in which the radiant heat transfer phenomenon cannot be ignored, and is, for example, 800K or more, and the upper limit is not particularly limited.

(a)は本発明の一実施の形態に係る半透明材料の熱拡散率の測定方法を適用する測定装置の説明図、(b)は測定試料の伝熱モデルの説明図である。(A) is explanatory drawing of the measuring apparatus which applies the measuring method of the thermal diffusivity of the translucent material which concerns on one embodiment of this invention, (b) is explanatory drawing of the heat transfer model of a measurement sample. 拡散伝熱的熱伝導と放射伝熱的熱伝導の境界を示すグラフである。It is a graph which shows the boundary of diffusion heat transfer heat conduction and radiation heat transfer heat conduction. (a)、(b)はそれぞれ300Kと2000Kの各温度における裏面温度理論式の放射伝熱的温度式の定数Aと拡散伝熱的温度式の定数Bに対する吸収係数の依存性を示すグラフである。(A), (b) is a graph which shows the dependence of the absorption coefficient on the constant A of the radiant heat transfer temperature equation of the back surface temperature theoretical formula and the constant B of the diffusion heat transfer temperature equation at temperatures of 300K and 2000K, respectively. is there. 本発明の一実施の形態に係る半透明材料の熱拡散率の測定方法を用いて、熱拡散率及びビオ数を決定する際の手順を示す解析フロー図である。It is an analysis flowchart which shows the procedure at the time of determining a thermal diffusivity and a bio number using the measuring method of the thermal diffusivity of the translucent material which concerns on one embodiment of this invention. 同半透明材料の熱拡散率の測定方法を用いて、熱拡散率と、吸収係数又は屈折率とを決定する際の手順を示す解析フロー図である。It is an analysis flowchart which shows the procedure at the time of determining a thermal diffusivity and an absorption coefficient or a refractive index using the measuring method of the thermal diffusivity of the translucent material. 同半透明材料の熱拡散率の測定方法を用いて、熱拡散率と、吸収係数又は屈折率と、ビオ数を決定する際の手順を示す解析フロー図である。It is an analysis flowchart which shows the procedure at the time of determining a thermal diffusivity, an absorption coefficient or a refractive index, and a bio number using the measuring method of the thermal diffusivity of the translucent material. 同半透明材料の熱拡散率の測定方法を用いて、熱拡散率、吸収係数、及び、屈折率を決定する際の手順を示す解析フロー図である。It is an analysis flowchart which shows the procedure at the time of determining a thermal diffusivity, an absorption coefficient, and a refractive index using the measuring method of the thermal diffusivity of the translucent material. 本発明の他の実施の形態に係る半透明材料の熱拡散率の測定方法を用いて、熱拡散率及びビオ数を決定する際の手順を示す解析フロー図である。It is an analysis flowchart which shows the procedure at the time of determining a thermal diffusivity and a bio number using the measuring method of the thermal diffusivity of the translucent material which concerns on other embodiment of this invention. 同半透明材料の熱拡散率の測定方法を用いて、熱拡散率及びビオ数と、吸収係数又は屈折率とを決定する際の手順を示す解析フロー図である。It is an analysis flowchart which shows the procedure at the time of determining a thermal diffusivity, a bio number, an absorption coefficient, or a refractive index using the measuring method of the thermal diffusivity of the translucent material. 同半透明材料の熱拡散率の測定方法を用いて、熱拡散率、吸収係数、屈折率、及び、ビオ数を決定する際の手順を示す解析フロー図である。It is an analysis flowchart which shows the procedure at the time of determining a thermal diffusivity, an absorption coefficient, a refractive index, and a bio number using the measuring method of the thermal diffusivity of the translucent material.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明の一実施の形態に係る半透明材料の熱拡散率の測定方法を適用する測定装置10について、図1(a)、(b)を参照しながら説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, a measurement apparatus 10 that applies a method for measuring the thermal diffusivity of a translucent material according to an embodiment of the present invention will be described with reference to FIGS. 1 (a) and 1 (b).

測定装置10は、熱移動が拡散伝熱と放射伝熱により生じる半透明材料から作製した測定試料(以下、単に試料ともいう)11の表面側にレーザ光(加熱光の一例)を照射して半透明材料の熱拡散率を求める装置であり、レーザ光を発生させるレーザ光発生部12と、発生したレーザ光がレーザ光検出部13及び測定試料11にそれぞれ向かうように分配するハーフミラー14と、測定試料11の裏面の温度変化を測定する温度測定部15とを有している。   The measurement apparatus 10 irradiates a laser beam (an example of heating light) on the surface side of a measurement sample (hereinafter also simply referred to as a sample) 11 made from a translucent material in which heat transfer is caused by diffusion heat transfer and radiation heat transfer. A device for obtaining a thermal diffusivity of a translucent material, a laser beam generator 12 for generating laser beam, and a half mirror 14 for distributing the generated laser beam so as to be directed to the laser beam detector 13 and the measurement sample 11, respectively. And a temperature measuring unit 15 for measuring a temperature change on the back surface of the measurement sample 11.

ここで、半透明材料は、前記したように、例えば、断熱材やセラミックス、また、通常の熱伝導現象以外に放射伝熱現象が生じるポーラス材料等である。なお、放射伝熱現象が生じる材料とは、作製した測定試料で、以下の現象が生じる材料を意味する。
・試料内で電磁波の放射と吸収の現象を行う材料であり、吸収係数μ、屈折率の2乗n、及び、温度Tの積に比例した電磁波の放射の変化がある材料である(電磁波の放射と吸収の現象は、透明材料では生じず、半透明材料で生じる)。ここに、温度Tは、定常温度Tから加熱光(レーザ光)照射により上昇する温度増分である。
・試料の両端面間で多重反射の現象がある材料である。
この半透明材料を用いて作製する測定試料11は、例えば、直径10mm、厚さ数ミリ程度のものであるが、測定条件に応じて形状や寸法を種々変更できる。
Here, as described above, the translucent material is, for example, a heat insulating material or ceramics, or a porous material in which a radiant heat transfer phenomenon occurs in addition to a normal heat conduction phenomenon. In addition, the material in which the radiant heat transfer phenomenon occurs means a material in which the following phenomenon occurs in the manufactured measurement sample.
-A material that emits and absorbs electromagnetic waves in a sample, and has a change in electromagnetic wave radiation proportional to the product of absorption coefficient μ, refractive index square n 2 , and temperature T (electromagnetic wave) The phenomenon of radiation and absorption does not occur in transparent materials, but occurs in translucent materials). Here, the temperature T is a temperature increment that rises from the steady temperature T 0 by irradiation with heating light (laser light).
-It is a material that has multiple reflection phenomenon between both end faces of the sample.
The measurement sample 11 produced using this translucent material has a diameter of about 10 mm and a thickness of several millimeters, for example, but various shapes and dimensions can be changed according to measurement conditions.

測定試料11の表裏面(厚み方向の両端面)には、熱移動が拡散伝熱のみにより生じる不透明材料からなる板材16、17が密着配置され、3層材18を形成している。この板材16、17には、黒化膜(例えば、炭素等のセラミックス材の薄板)や金属膜(例えば、白金等の金属材の薄板)を使用できる。
上記したように、測定試料11の表面に板材16を密着させることで、板材16の表面に照射したレーザ光のエネルギーを、表面で100%吸収させることができる。更に、吸収させた熱を拡散伝熱にしたがって測定試料11に供給することができる。
一方、測定試料11の裏面に板材17を密着させることで、測定試料11を通過した熱を受取って、拡散伝熱にしたがって移動させることができ、裏面温度を表す裏面温度理論式を、一次元熱伝導方程式の解として求めることができる。
On the front and back surfaces (both end surfaces in the thickness direction) of the measurement sample 11, plate materials 16 and 17 made of an opaque material in which heat transfer is caused only by diffusion heat transfer are disposed in close contact to form a three-layer material 18. A black film (for example, a thin plate of a ceramic material such as carbon) or a metal film (for example, a thin plate of a metal material such as platinum) can be used for the plate members 16 and 17.
As described above, by bringing the plate material 16 into close contact with the surface of the measurement sample 11, the energy of the laser light irradiated on the surface of the plate material 16 can be absorbed by 100% on the surface. Furthermore, the absorbed heat can be supplied to the measurement sample 11 according to the diffusion heat transfer.
On the other hand, by bringing the plate material 17 into close contact with the back surface of the measurement sample 11, the heat passing through the measurement sample 11 can be received and moved according to diffusion heat transfer. It can be obtained as a solution of the heat conduction equation.

前記したレーザ光発生部12には、上記した2枚の板材16、17で挟み込んだ測定試料11、即ち、3層材18を高温雰囲気に保持した場合でも、雰囲気の熱変動を超える熱エネルギーを3層材18の表面に注入することが可能な、例えば、ルビーレーザ発振器を使用することができる。この3層材18の大きさは、例えば、一次元熱伝導が近似可能な寸法である。
レーザ光検出部13は、レーザ光発生部12から発生したレーザ光の加熱波形(レーザ光波形)の検出を行うものである。
ハーフミラー14は、レーザ光の吸収率が極めて小さく、かつ、透過性が極めて高い材質を有する基材で形成されている。例えば、入射したレーザ光から、予め設定した光量のレーザ光を反射させ、残部を通過させるコーティング層を、基材の表面に設けた構成とすることができる。
Even when the measurement sample 11 sandwiched between the two plates 16 and 17 described above, that is, the three-layer material 18 is held in a high-temperature atmosphere, the laser light generation unit 12 has thermal energy exceeding the thermal fluctuation of the atmosphere. For example, a ruby laser oscillator that can be injected into the surface of the three-layer material 18 can be used. The size of the three-layer material 18 is, for example, a dimension that can approximate one-dimensional heat conduction.
The laser beam detector 13 detects the heating waveform (laser beam waveform) of the laser beam generated from the laser beam generator 12.
The half mirror 14 is formed of a base material having a material with extremely low laser light absorption and extremely high transparency. For example, a coating layer that reflects a predetermined amount of laser light from incident laser light and allows the remaining part to pass therethrough may be provided on the surface of the substrate.

従って、上記したレーザ光発生部12から発生したレーザ光が、ハーフミラー14により反射しレーザ光検出部13の受光部(図示せず)に到達するように、受光部の光軸調整を行うことで、レーザ光発生部12から発射されたレーザ光の一部を、レーザ光検出部13に入射させて、レーザ光の加熱波形を測定することができる。
また、ハーフミラー14の光軸と3層材18の中心軸(厚み方向に沿った)とを一致させることにより、3層材18の表面を、通過したレーザ光で照射して加熱することができる。これにより、3層材18の表面をレーザ光で照射した場合、3層材18の裏面の温度変化を非定常の一次元熱伝導方程式により表すことができる。
Therefore, the optical axis of the light receiving part is adjusted so that the laser light generated from the laser light generating part 12 is reflected by the half mirror 14 and reaches the light receiving part (not shown) of the laser light detecting part 13. Thus, a part of the laser light emitted from the laser light generator 12 can be incident on the laser light detector 13 and the heating waveform of the laser light can be measured.
Further, by matching the optical axis of the half mirror 14 with the central axis of the three-layer material 18 (along the thickness direction), the surface of the three-layer material 18 can be irradiated with the laser beam that has passed and heated. it can. Thereby, when the surface of the three-layer material 18 is irradiated with laser light, the temperature change of the back surface of the three-layer material 18 can be expressed by an unsteady one-dimensional heat conduction equation.

温度測定部15は、レーザ光が照射された3層材18の裏面の温度変化を、高速で精度よく測定できる機能を有する必要があり、例えば、熱電対や放射型温度計等の温度検知センサを備えた温度測定器を使用できる。   The temperature measurement unit 15 needs to have a function capable of measuring the temperature change of the back surface of the three-layer material 18 irradiated with the laser light at high speed and with high accuracy. For example, a temperature detection sensor such as a thermocouple or a radiation thermometer A temperature measuring device with can be used.

更に、測定装置10は、3層材18の裏面温度の理論的な時間変化を示す裏面温度理論式と、温度測定部15より出力される信号から裏面温度測定データを、それぞれ求め、レーザ光検出部13から出力される信号と裏面温度理論式から得られる裏面温度の変化挙動(理論裏面温度データ)を、裏面温度測定データから得られる裏面温度の変化挙動に当てはめて、裏面温度理論式に変数として含まれている測定試料11の熱拡散率や、吸収係数と屈折率、また、板材16、17のビオ数をそれぞれ決定する演算処理部19と、この演算処理部19で求めた裏面温度理論式、裏面温度測定データ、熱拡散率、吸収係数、屈折率、及び、ビオ数を、それぞれ表示する出力器20とを有している。   Further, the measuring device 10 obtains back surface temperature measurement data from the back surface temperature theoretical formula indicating the theoretical time change of the back surface temperature of the three-layer material 18 and the signal output from the temperature measuring unit 15, and detects the laser beam. The back surface temperature change behavior (theoretical back surface temperature data) obtained from the signal output from the unit 13 and the back surface temperature theoretical equation is applied to the back surface temperature change behavior obtained from the back surface temperature measurement data, and the back surface temperature theoretical equation is changed. The calculation processing unit 19 for determining the thermal diffusivity, the absorption coefficient and the refractive index of the measurement sample 11 included in the measurement sample 11 and the number of bios of the plates 16 and 17, respectively, and the back surface temperature theory obtained by the calculation processing unit 19 And an output device 20 for displaying the equation, back surface temperature measurement data, thermal diffusivity, absorption coefficient, refractive index, and bio number.

この演算処理部19は、3層材18の裏面温度の理論的な時間変化を示す裏面温度理論式を求める機能、温度測定部15から出力される信号(裏面温度信号)をラプラス変換して裏面温度測定データを求める機能、裏面温度理論式(理論裏面温度データ)と裏面温度測定データの2乗偏差を求め、2乗偏差を最小とする条件から3層材18中の測定試料11の熱拡散率や、吸熱係数と屈折率、また、板材16、17のビオ数をそれぞれ決定する機能を備えている(例えば、特開2012−2758号公報参照)。
なお、演算処理部19は、前記の各機能を発現するプログラムをコンピュータに搭載することにより形成できる。
また、出力器20には、例えば、コンピュータ用の表示機器、印字機器が使用できる。
The arithmetic processing unit 19 has a function for obtaining a back surface temperature theoretical expression indicating a theoretical time change of the back surface temperature of the three-layer material 18, and a Laplace conversion of a signal (back surface temperature signal) output from the temperature measuring unit 15 is performed on the back surface. Function for obtaining temperature measurement data, the back surface temperature theoretical formula (theoretical back surface temperature data) and the back surface temperature measurement data square deviation is obtained, and the thermal diffusion of the measurement sample 11 in the three-layer material 18 from the condition that the square deviation is minimized. And a function of determining the heat absorption coefficient and refractive index, and the number of bios of the plate members 16 and 17 (see, for example, Japanese Patent Laid-Open No. 2012-2758).
The arithmetic processing unit 19 can be formed by installing a program that expresses each function described above in a computer.
For the output device 20, for example, a display device for a computer and a printing device can be used.

続いて、本発明の一実施の形態に係る半透明材料の熱拡散率の測定方法について、図1(a)を参照しながら説明する。
まず、測定しようとする半透明材料から測定試料11を作製する。そして、測定試料11の表裏面に、熱移動が拡散伝熱のみの不透明材料からなる板材16、17をそれぞれ密着配置して、3層材18を形成する。
Then, the measuring method of the thermal diffusivity of the translucent material which concerns on one embodiment of this invention is demonstrated, referring Fig.1 (a).
First, the measurement sample 11 is produced from the translucent material to be measured. Then, on the front and back surfaces of the measurement sample 11, plate materials 16 and 17 made of an opaque material whose heat transfer is only diffusion heat transfer are arranged in close contact with each other to form a three-layer material 18.

ここで、上記した測定試料11の表面側に密着配置される板材16と、裏面側に密着配置される板材17を構成する不透明材料には、例えば、カーボン等のセラミックス材又は白金等の金属材を用いることができる。
また、板材16、17は、測定試料11の表裏面にセラミックス材又は金属材を蒸着することにより、あるいは、測定試料11の表裏面にセラミックス材又は金属材の微粉末を塗布して焼付けることにより、更には、カーボンスプレーにより形成することもできる。これにより、板材の形成と、板材の測定試料11の表裏面への密着を同時に行うことができる。
Here, for the opaque material constituting the plate material 16 arranged in close contact with the front surface side of the measurement sample 11 and the plate material 17 arranged in close contact with the back surface side, for example, a ceramic material such as carbon or a metal material such as platinum Can be used.
Further, the plate members 16 and 17 are baked by depositing a ceramic material or a metal material on the front and back surfaces of the measurement sample 11 or by applying a fine powder of a ceramic material or a metal material on the front and back surfaces of the measurement sample 11. Further, it can be formed by carbon spray. Thereby, formation of a board | plate material and contact | adherence to the front and back of the measurement sample 11 of a board | plate material can be performed simultaneously.

次に、3層材18を、測定装置10の試料室(図示しない)に設けられた試料ホルダにセットし、試料室内の雰囲気を調整する(例えば、真空状態にする)。
また、一方の板材16について、密度ρ、比熱c、熱拡散率α、熱伝導率k、厚みdl、及び、放射率εを変数とし、測定試料11について、密度ρ、比熱c、熱拡散率α、熱伝導率k、厚みdl、屈折率の2乗n、及び、吸収係数μを変数とし、他方の板材17について、密度ρ、比熱c、熱拡散率α、熱伝導率k、厚みdl、及び、放射率εを変数とし、更に、レーザ光照射前の試料温度Tを変数として(既知のデータはその数値を)、演算処理部19に入力する。
Next, the three-layer material 18 is set in a sample holder provided in a sample chamber (not shown) of the measuring apparatus 10 and the atmosphere in the sample chamber is adjusted (for example, in a vacuum state).
In addition, with respect to one plate material 16, density ρ 1 , specific heat c 1 , thermal diffusivity α 1 , thermal conductivity k 1 , thickness dl 1 , and emissivity ε 1 are used as variables, and density ρ 2 is measured for measurement sample 11. , Specific heat c 2 , thermal diffusivity α 2 , thermal conductivity k 2 , thickness dl 2 , square of refractive index n 2 , and absorption coefficient μ, and the density ρ 3 and specific heat c for the other plate material 17. 3 , the thermal diffusivity α 3 , the thermal conductivity k 3 , the thickness dl 3 , and the emissivity ε 3 are used as variables, and the sample temperature T 0 before laser light irradiation is used as a variable. ) And input to the arithmetic processing unit 19.

続いて、試料室内の温度を予め設定した測定温度となるように制御し、3層材18の温度が測定温度に到達し安定した段階で、レーザ光発生部12からレーザ光を、ハーフミラー14に向けて発射する。
ここで、発射されたレーザ光はハーフミラー14に到達し、ハーフミラー14によってレーザ光の光量の一部が反射され、レーザ光検出部13に入射して、レーザ光の波形が求められ、そのデータが演算処理部19に入力される。また、ハーフミラー14を透過した残部のレーザ光は、3層材18の表面に到達し、表面を加熱する。
Subsequently, the temperature in the sample chamber is controlled to be a preset measurement temperature, and when the temperature of the three-layer material 18 reaches the measurement temperature and is stabilized, the laser beam is emitted from the laser beam generator 12 to the half mirror 14. Fire towards.
Here, the emitted laser light reaches the half mirror 14, a part of the light amount of the laser light is reflected by the half mirror 14 and enters the laser light detection unit 13, and the waveform of the laser light is obtained. Data is input to the arithmetic processing unit 19. Further, the remaining laser light transmitted through the half mirror 14 reaches the surface of the three-layer material 18 and heats the surface.

レーザ光により3層材18の表面が加熱されると、一方の板材16の表面に注入された熱エネルギーは、3層材18の裏面に向かって伝導するので、3層材18の裏面の温度は徐々に上昇する。しかし、3層材18の表面、側面、及び裏面からの熱の散逸も同時に生じているので、3層材18の裏面の温度は最高温度を経てから徐々に低下する。
このときの温度変化を、例えば、放射型温度計を備えた温度測定部15により測定し、得られた測定値は演算処理部19に入力される。なお、演算処理部19では、入力された測定値を記録すると共に、測定値のラプラス変換を行って裏面温度測定データT(p)を作成し記録する(以上、第1工程)。
When the surface of the three-layer material 18 is heated by the laser light, the thermal energy injected into the surface of the one plate material 16 is conducted toward the back surface of the three-layer material 18, and therefore the temperature of the back surface of the three-layer material 18. Gradually rises. However, since heat dissipation from the front surface, side surface, and back surface of the three-layer material 18 also occurs at the same time, the temperature of the back surface of the three-layer material 18 gradually decreases after passing through the maximum temperature.
The temperature change at this time is measured by, for example, the temperature measurement unit 15 including a radiation thermometer, and the obtained measurement value is input to the arithmetic processing unit 19. The arithmetic processing unit 19 records the input measurement value and performs Laplace conversion of the measurement value to create and record the back surface temperature measurement data T m (p) (the first step).

演算処理部19では、図1(b)に示すモデルに基づいて、ラプラス空間における裏面温度理論式を求める。以下、このモデルについて説明する。
3層材18を温度(定常温度)Tに設定した後、第1層である板材16(以下、単に第1層ともいう)の表面をレーザ光で照射して、第3層である板材17(以下、単に第3層ともいう)の裏面温度を測定するものとする。
ここで、温度Tからの温度変化をTとする。また、第1層の表面座標をx=0とし、第3層の裏面座標をx=Lとし、第1層と第2層の測定試料11(以下、単に第2層ともいう)との界面座標をx=L、また、第2層と第3層の界面座標をx=Lとする。
In the arithmetic processing part 19, the back surface temperature theoretical formula in Laplace space is calculated | required based on the model shown in FIG.1 (b). Hereinafter, this model will be described.
After the temperature of the three-layer material 18 is set to the temperature (steady temperature) T 0 , the surface of the plate material 16 that is the first layer (hereinafter also simply referred to as the first layer) is irradiated with laser light, and the plate material that is the third layer The back surface temperature of 17 (hereinafter also simply referred to as the third layer) is measured.
Here, the change in temperature from the temperature T 0 and T. The surface coordinates of the first layer and x = 0, the back surface coordinates of the third layer and x = L 3, the first layer and the measurement sample 11 of the second layer (hereinafter, referred to simply as the second layer) and The interface coordinates are x = L 1 and the interface coordinates of the second layer and the third layer are x = L 2 .

上記した第1層の表面からは、外部に向けてλ(0,t)のエネルギー放射があり、第3層の裏面からはλ(L,t)のエネルギー放射が外部に向けてあるものとする。また、界面x=Lにおいて、第1層から第2層内にλ(L,t)のエネルギー放射があり、界面x=Lにおいて第3層から第2層内にλ(L,t)のエネルギーが放射される。
ここで、第1層の表面からの外部への放射エネルギーと、第1層の裏面から第2層への放射エネルギーを区別するため、表面から外部への放射エネルギーにはuを付ける。同様に、第3層についても裏面(x=L)から外部への放射エネルギーにuを付ける。第1層および第3層の表裏面放射率が等しい場合には、uとuは1とする。
From the surface of the first layer, there is energy emission of λ 1 T 1 (0, t) toward the outside, and from the back surface of the third layer, energy emission of λ 3 T 3 (L 3 , t) is emitted. It is assumed that it is facing outside. Further, at the interface x = L 1 , there is λ 1 T 1 (L 1 , t) energy radiation from the first layer to the second layer, and at the interface x = L 2 , λ from the third layer to the second layer. 3 T 3 (L 2 , t) energy is emitted.
Here, in order to distinguish the radiant energy from the surface of the first layer to the outside and the radiant energy from the back surface of the first layer to the second layer, u 0 is added to the radiant energy from the surface to the outside. Similarly, for the third layer, u 1 is added to the radiant energy from the back surface (x = L 3 ) to the outside. When the front and back surface emissivities of the first layer and the third layer are equal , u 0 and u 1 are set to 1.

使用する変数は、前記したように、第1層について、密度ρ、比熱c、熱拡散率α、熱伝導率k、厚みdl、及び、放射率ε、第2層について、密度ρ、比熱c、熱拡散率α、熱伝導率k、厚みdl、屈折率の2乗n、及び、吸収係数μ、第3層について、密度ρ、比熱c、熱拡散率α、熱伝導率k、厚みdl、及び、放射率ε、更に、レーザ光照射前の試料温度(定常温度)T、である。
従って、以下の関係が成り立つ。
dl+dl=L
dl+dl+dl=L
As described above, the variables used are the density ρ 1 , the specific heat c 1 , the thermal diffusivity α 1 , the thermal conductivity k 1 , the thickness dl 1 , and the emissivity ε 1 for the first layer, as described above. , Density ρ 2 , specific heat c 2 , thermal diffusivity α 2 , thermal conductivity k 2 , thickness dl 2 , refractive index square n 2 , absorption coefficient μ, density ρ 3 , specific heat c for the third layer 3 , thermal diffusivity α 3 , thermal conductivity k 3 , thickness dl 3 , emissivity ε 3 , and sample temperature (steady temperature) T 0 before laser light irradiation.
Therefore, the following relationship holds.
dl 1 + dl 2 = L 2
dl 1 + dl 2 + dl 3 = L 3

また、表裏面からの放射に関する定数λ、λは、以下のように示される。
λ=4εσT
λ=4εσT
そして、第2層内部からの放射に関する定数λは、以下のように示される。
λ=eσT
なお、上記したeは定数(例えば、eπがあるが、放射や吸収のモデルのたて方により多少異なるものと考えられ、e=32/3等もある。)であり、σはステファンボルツマン定数である。また、3層材の裏面温度の減衰を時定数τとして定義する。
以上のことから、第2層である測定試料11内部の単位体積、かつ、単位時間当たりに放射されるエネルギーqνは、(12)式で与えられる。
Further, constants λ 1 and λ 3 relating to radiation from the front and back surfaces are expressed as follows.
λ 1 = 4ε 1 σT 0 3
λ 3 = 4ε 3 σT 0 3
The constant λ 2 related to the radiation from the inside of the second layer is expressed as follows.
λ 2 = e 1 n 2 σT 0 3
Incidentally, e 1 described above is a constant (for example, there are e 1 = 4 [pi, considered somewhat varies depending upon the vertical how the model of the radiation and absorption, are also like e 1 = 32/3.) Be , Σ is a Stefan Boltzmann constant. Further, the attenuation of the back surface temperature of the three-layer material is defined as a time constant τ.
From the above, the unit volume inside the measurement sample 11 which is the second layer and the energy q ν emitted per unit time are given by the equation (12).

Figure 0006127019
Figure 0006127019

続いて、ラプラス空間における裏面温度理論式T(L,p)について、説明する。
ラプラス空間における裏面温度理論式T(L,p)は、上記した3層材18の表面をレーザ光で照射した場合の裏面温度の理論的な時間変化を示す(13)式で示される。
ここで、測定試料11は、熱移動が拡散伝熱と放射伝熱により生じる材料で構成されていることから、裏面温度理論式T(L,p)は、(14)式の放射伝熱的温度式Trad(L,p)と、(15)式の拡散伝熱的温度式Tdif(L,p)の和として表される。この(14)式中のAと(15)式中のBは、定数である。
また、(14)式と(15)式の右辺のT(L,β)は、(16)式で表される。なお、(16)式中の右辺分子のkβkの係数は、レーザ光の照射により、3層材18の表面に吸収される単位面積当たりのエネルギーQf(t)を、ラプラス変換したものである。ここで、Qは単位面積当たりの入熱量を、tは時間を表す。
Next, the back surface temperature theoretical formula T (L 3 , p) in the Laplace space will be described.
The back surface temperature theoretical formula T (L 3 , p) in the Laplace space is expressed by the following equation (13) showing the theoretical time change of the back surface temperature when the surface of the three-layer material 18 is irradiated with laser light.
Here, since the measurement sample 11 is made of a material in which heat transfer is caused by diffusion heat transfer and radiant heat transfer, the back surface temperature theoretical formula T (L 3 , p) is expressed by the radiant heat transfer of the formula (14). It is expressed as the sum of the general temperature equation T rad (L 3 , p) and the diffusion heat transfer temperature equation T dif (L 3 , p) of the equation (15). A in the equation (14) and B in the equation (15) are constants.
Further, T s (L 3 , β) on the right side of the equations (14) and (15) is represented by the equation (16). In addition, the coefficient of k 1 r 1 k 2 βk 3 r 3 of the right-hand side molecule in the equation (16) is the energy Qf (t) per unit area absorbed on the surface of the three-layer material 18 by irradiation with laser light. Is a Laplace transform. Here, Q represents the amount of heat input per unit area, and t represents time.

Figure 0006127019
Figure 0006127019

Figure 0006127019
Figure 0006127019

なお、上記した(14)式と(15)式に用いるβとβはそれぞれ、(17)式と(18)式で表され、また、(16)式に用いるrとrはそれぞれ、(19)式と(20)式で表される。 Note that β 1 and β 3 used in the above equations (14) and (15) are represented by equations (17) and (18), respectively, and r 1 and r 3 used in equation (16) are Respectively, it is expressed by the equations (19) and (20).

Figure 0006127019
Figure 0006127019

更に、(14)式と(15)式で用いた定数A、Bはそれぞれ、(21)式と(22)式で表される。   Furthermore, the constants A and B used in the equations (14) and (15) are expressed by the equations (21) and (22), respectively.

Figure 0006127019
Figure 0006127019

上記した(21)式と(22)式に用いるμは、放射伝熱的熱伝導と拡散伝熱的熱伝導の境界となる吸収係数である。
従って、吸収係数μがこの値μより小さい場合は、放射伝熱的熱伝導が主体となり、一方、吸収係数μがこの値μより大きい場合は、拡散伝熱的熱伝導が主体となる。この両熱伝導の境界を定義する吸収係数μは、図2に示す(23)式の光学厚さ式で与えられる。なお、図2において、(23)式の線より左側が放射伝熱的熱伝導であり、右側が拡散伝熱的熱伝導である。また、光学厚さは、吸収係数μと厚さL(=dl)の積で表される。
この(23)式において、eは定数である。また、この境界の吸収係数μを用いて、(21)式と(22)式に用いるラプラス変数pを、(24)式に示す。
Μ c used in the above equations (21) and (22) is an absorption coefficient that becomes a boundary between radiative heat transfer and diffusion heat transfer.
Therefore, when the absorption coefficient μ is smaller than this value μ c , the radiant heat transfer is mainly conducted, whereas when the absorption coefficient μ is larger than this value μ c , the diffusion heat transfer is mainly conducted. . The absorption coefficient μ c that defines the boundary between the two heat conductions is given by the optical thickness formula (23) shown in FIG. In FIG. 2, the left side from the line of the equation (23) is radiant heat transfer heat conduction, and the right side is diffusion heat transfer heat conduction. The optical thickness is represented by the product of the absorption coefficient μ and the thickness L (= dl 2 ).
In this equation (23), e 2 is a constant. Further, by using the absorption coefficient mu c of this boundary, the Laplace variable p c used in (21) and (22), shown in equation (24).

Figure 0006127019
Figure 0006127019

上記した定数eは、一次元熱伝導と一次元放射が成立する場合には、(25)式で与えられる。
なお、第1層と第2層の界面における第2層内への放射が、3次元的に放射されるランバート面特性のような場合には、定数eは(25)式とは異なる定数となると考えられるが、それは個々の面の特性に合わせて設定するものとする。このランバート面とは、界面垂直方向からの角度をθとすると、面からの放射強度はIcos(θ)となるような面である。また、Iは、垂直方向の放射強度である。
これは、第2層と第3層の界面についても同様である。
The constant e 2 described above is given by equation (25) when one-dimensional heat conduction and one-dimensional radiation are established.
When the radiation into the second layer at the interface between the first layer and the second layer has a Lambertian surface characteristic emitted three-dimensionally, the constant e 2 is a constant different from the equation (25). However, it should be set according to the characteristics of each surface. This Lambertian surface is a surface where the radiation intensity from the surface becomes I 0 cos (θ), where θ is the angle from the interface vertical direction. I 0 is the vertical radiation intensity.
The same applies to the interface between the second layer and the third layer.

Figure 0006127019
Figure 0006127019

続いて、上記した(14)式で用いた定数A(即ち、(21)式)と、(15)式で用いた定数B(即ち、(22)式)について説明する。
定数Aは、放射伝熱的温度式Trad(L,p)に用いるものであり、定数Bは、拡散伝熱的温度式Tdif(L,p)に用いるものである。
ここで、図3(a)、(b)に、温度T=300KとT=2000Kのそれぞれにおける両定数A、Bの吸収係数依存性を示す。
図3(a)、(b)に示すように、吸収係数μが大きくなるに伴い、μ=μにおいて、定数(係数)Aは1から0に、また、定数(係数)Bは0から1に、それぞれ変化することがわかる。なお、この変化は温度により多少異なる。
Next, the constant A (that is, the equation (21)) used in the above equation (14) and the constant B that is used in the equation (15) (that is, the equation (22)) will be described.
The constant A is used for the radiant heat transfer temperature equation T rad (L 3 , p), and the constant B is used for the diffusion heat transfer temperature equation T dif (L 3 , p).
Here, FIGS. 3A and 3B show the absorption coefficient dependence of both constants A and B at temperatures T = 300K and T = 2000K, respectively.
FIG. 3 (a), (b), the with the absorption coefficient mu is increased, the mu = mu c, the constant (coefficient) A is from 1 0, also constant (coefficient) B from 0 It can be seen that 1 changes respectively. Note that this change slightly differs depending on the temperature.

次に、解析法について説明する。
解析法としては、直接法と時定数法があるが、まず、解析法の概略について説明する。
上記したように、演算処理部19で裏面温度理論式が求まると、演算処理部19では、裏面温度理論式Tth(理論裏面温度データ)と裏面温度測定データTを用いて、(26)式で表される2乗偏差式Rを作成する。
この2乗偏差の総和は、ラプラス変数pを複数設定して作成するものであり、裏面温度理論式T(L,p)と裏面温度測定データT(p)の2乗偏差の和で示される。なお、(26)式中のiは、i=1、2、3であり、1は第1層(板材16)、2は第2層(測定試料11)、3は第3層(板材17)を、それぞれ示している。
Next, the analysis method will be described.
The analysis method includes a direct method and a time constant method. First, an outline of the analysis method will be described.
As described above, when the back surface temperature theoretical formula is obtained by the arithmetic processing unit 19, the arithmetic processing unit 19 uses the back surface temperature theoretical formula T th (theoretical back surface temperature data) and the back surface temperature measurement data T m to obtain (26) A square deviation formula R expressed by the formula is created.
The sum of the square deviations is created by setting a plurality of Laplace variables p, and is the sum of the square deviations of the back surface temperature theoretical formula T (L 3 , p) and the back surface temperature measurement data T m (p). Indicated. In the formula (26), i is i = 1, 2, 3; 1 is the first layer (plate material 16), 2 is the second layer (measurement sample 11), and 3 is the third layer (plate material 17). ) Respectively.

次に、第1層と第3層の物性値及び厚さを既知として、第2層の物性値を解析する。
この解析に際しては、第2層の比熱c、密度ρ、及び、厚さdlを既知とし、第2層の熱拡散率α、吸収係数μ、屈折率の2乗n、及び、試料表裏面(第1層と第3層)からの熱損失を表すビオ数hを、それぞれ解析するものとする。
なお、ビオ数hは、第1層と第3層の物性値及び放射率を同一として、第1層と第3層の熱伝導率k、k、及び、放射率ε、εを用いて、(27)式で表される。これより、ビオ数hを解析することは、第1層と第3層の放射率ε、εを解析することと同じである。
Next, the physical property values of the second layer are analyzed with the physical property values and thicknesses of the first layer and the third layer being known.
In this analysis, the specific heat c 2 , the density ρ 2 , and the thickness dl 2 of the second layer are known, the thermal diffusivity α 2 , the absorption coefficient μ, the square of the refractive index n 2 of the second layer, and The bio numbers h representing the heat loss from the front and back surfaces of the sample (the first layer and the third layer) are respectively analyzed.
The bio number h is equal to the physical properties and emissivities of the first layer and the third layer, and the thermal conductivities k 1 and k 3 and emissivities ε 1 and ε 3 of the first layer and the third layer are the same. Is expressed by the equation (27). Thus, analyzing the bio number h is the same as analyzing the emissivities ε 1 and ε 3 of the first layer and the third layer.

Figure 0006127019
Figure 0006127019

まず、直接法について説明する。
ここで、解析する変数(独立変数)として、(28)式〜(33)式の組み合わせを検討する。
First, the direct method will be described.
Here, as a variable to be analyzed (independent variable), a combination of Expressions (28) to (33) is examined.

Figure 0006127019
Figure 0006127019

上記した各解析変数の組み合わせに対する直接法の解析フローを、図4〜図7にそれぞれ示す。詳細には、(28)式に対する解析フローを図4に、(29)式と(30)式に対する解析フローを図5に、(31)式と(32)式に対する解析フローを図6に、(33)式に対する解析フローを図7に、それぞれ示している。   The analysis flow of the direct method for each combination of analysis variables described above is shown in FIGS. Specifically, FIG. 4 shows an analysis flow for equation (28), FIG. 5 shows an analysis flow for equations (29) and (30), and FIG. 6 shows an analysis flow for equations (31) and (32). FIG. 7 shows an analysis flow for Expression (33).

まず、熱拡散率αとビオ数hの解析フローの手順について、図4を参照しながら説明する。
(a1)第2層の熱拡散率以外の変数を固定し、熱拡散率のみを変数として、2乗偏差が最小値を与える熱拡散率を計算する。
(a2)熱拡散率とビオ数以外の変数を固定してビオ数を複数設定し、各ビオ数に対して上記(a1)の計算を行い、次に、2乗偏差が小さくなる方向にビオ数を再設定して、上記(a1)の計算を行う。この手順を繰り返すことにより、2乗偏差を最小とする熱拡散率とビオ数を求める。
これにより、熱拡散率αとビオ数hが求まる。
First, the procedure of the analysis flow of the thermal diffusivity α 2 and the bio number h will be described with reference to FIG.
(A1) A variable other than the thermal diffusivity of the second layer is fixed, and only the thermal diffusivity is used as a variable to calculate a thermal diffusivity that gives a minimum square deviation.
(A2) A variable other than the thermal diffusivity and the number of bios is fixed to set a plurality of bio numbers, the calculation of (a1) is performed for each bio number, and then the biometric is reduced in the direction in which the square deviation becomes smaller. The number is reset and the above calculation (a1) is performed. By repeating this procedure, the thermal diffusivity and the bio number that minimize the square deviation are obtained.
Thereby, the thermal diffusivity α 2 and the bio number h are obtained.

次に、熱拡散率αと吸収係数μ又は屈折率の2乗nの解析フローの手順について、図5を参照しながら説明する。
ここでは、まず、上記(a1)の計算を行った後、上記(a2)におけるビオ数を、吸収係数又は屈折率の2乗に変更して、上記(a2)の計算を行う。
これにより、熱拡散率αと吸収係数μ又は屈折率の2乗nが求まる。
Next, the procedure of the analysis flow of the thermal diffusivity α 2 and the absorption coefficient μ or the square n 2 of the refractive index will be described with reference to FIG.
Here, after calculating (a1) above, the number of bios in (a2) above is changed to the square of the absorption coefficient or refractive index, and then calculating (a2) above.
Thereby, the thermal diffusivity α 2 and the absorption coefficient μ or the square n 2 of the refractive index are obtained.

続いて、熱拡散率α及びビオ数hと、吸収係数μ又は屈折率の2乗nの解析フローの手順について、図6を参照しながら説明する。
ここでは、上記(a1)と上記(a2)の計算を順次行った後、第2層の吸収係数又は屈折率の2乗を第3の変数とし、この変数を複数設定する。そして、各第3の変数に対して上記(a2)の計算を行い、次に、2乗偏差が小さくなる方向にこの第3の変数を再設定して、上記(a2)の計算を行い、この手順を繰り返す(以上、(a3))。
これにより、2乗偏差を最小とする熱拡散率α、ビオ数h、及び、第3の変数(即ち、吸収係数μ又は屈折率の2乗n)が求まる。
Subsequently, the procedure of the analysis flow of the thermal diffusivity α 2 and the bio number h and the absorption coefficient μ or the square n 2 of the refractive index will be described with reference to FIG.
Here, after the above calculations (a1) and (a2) are sequentially performed, the second coefficient of the absorption coefficient or refractive index of the second layer is set as a third variable, and a plurality of these variables are set. Then, the calculation of (a2) is performed for each third variable, and then the third variable is reset in a direction in which the square deviation is reduced, and the calculation of (a2) is performed. This procedure is repeated (the above (a3)).
As a result, the thermal diffusivity α 2 , the bio number h, and the third variable (that is, the absorption coefficient μ or the square n 2 of the refractive index) that minimize the square deviation are obtained.

最後に、熱拡散率αと吸収係数μと屈折率の2乗nの解析フローの手順について、図7を参照しながら説明する。
ここでは、まず、上記(a1)の計算を行った後、第2層の吸収係数を第2の変数とし、屈折率の2乗を第3の変数として、上記(a2)と上記(a3)と同様の計算を行うことにより、熱拡散率α、吸収係数μ、及び、屈折率の2乗nが求まる。
なお、図7では、熱拡散率α、吸収係数μ、及び、屈折率の2乗nの順に、解析する方法を示したが、これに限定されるものではなく、例えば、熱拡散率α、屈折率の2乗n、及び、吸収係数μの順に解析することもできる。
Finally, the procedure of the analysis flow of the thermal diffusivity α 2 , the absorption coefficient μ, and the square n 2 of the refractive index will be described with reference to FIG.
Here, after performing the calculation of (a1), the absorption coefficient of the second layer is set as the second variable, and the square of the refractive index is set as the third variable, so that (a2) and (a3) By performing the same calculation, the thermal diffusivity α 2 , the absorption coefficient μ, and the square n 2 of the refractive index are obtained.
In FIG. 7, the analysis method is shown in the order of the thermal diffusivity α 2 , the absorption coefficient μ, and the refractive index square n 2. However, the method is not limited to this, and for example, the thermal diffusivity It is also possible to analyze α 2 , the refractive index square n 2 , and the absorption coefficient μ in this order.

続いて、時定数法について説明する。
ここで、解析する変数として、前記した(28)式、(31)式、及び、(32)式と、(34)式の組み合わせを検討する。
Next, the time constant method will be described.
Here, as a variable to be analyzed, a combination of the above-described Expression (28), Expression (31), Expression (32), and Expression (34) is examined.

Figure 0006127019
Figure 0006127019

レーザ光照射後しばらくすると、試料温度は測定試料内で略同一となり、第2層内での放射伝熱が抑制された状態となり、試料表裏面からのビオ数に応じた放射損失で、レーザ光照射により吸収したエネルギーが失われる。この放射損失により試料温度が次第に減衰していく過程における減衰時定数は、上記考察より、試料内における電磁波の吸収と放射現象が無い拡散伝熱のみの場合の減衰時定数と略同一と考えられる。
この推察に基づく時定数法の解析フローの一例を、図8〜図10にそれぞれ示す。詳細には、(28)式に対する解析フローを図8に、(31)式と(32)式に対する解析フローを図9に、(34)式に対する解析フローを図10に、それぞれ示している。
After a while after the laser beam irradiation, the sample temperature becomes substantially the same in the measurement sample, the radiation heat transfer in the second layer is suppressed, and the laser beam is emitted with a radiation loss according to the number of bios from the front and back surfaces of the sample. Energy absorbed by irradiation is lost. Decay time constant in the course of sample temperature decays gradually This radiation loss is considered from the above discussion, substantially the same as the decay time constant in the case of the absorption of electromagnetic waves in the sample radiation phenomenon is no diffusion heat transfer only .
An example of the analysis flow of the time constant method based on this inference is shown in FIGS. Specifically, FIG. 8 shows an analysis flow for equation (28), FIG. 9 shows an analysis flow for equations (31) and (32), and FIG. 10 shows an analysis flow for equation (34).

まず、熱拡散率αとビオ数hの解析フローの手順について、図8を参照しながら説明する。
(b1)第2層の熱拡散率の初期値と裏面温度測定データの温度減衰領域から求まる時定数(実測減衰時定数)と時定数理論式をもとに、ビオ数の初期値を計算する。
(b2)第2層の屈折率の2乗と吸収係数を固定した状態で、ビオ数の初期値をもとに、2乗偏差を最小とする第2層の熱拡散率を計算する。
(b3)計算により求めた熱拡散率を、後述する時定数式に代入して、ビオ数を更新する。そして、このビオ数を、前記した(27)式に代入し、第1層と第3層の放射率ε、εを更新する。
(b4)更新したビオ数をもとに、上記(b2)にて熱拡散率の計算を行い、上記(b3)でビオ数を更新する繰り返し計算を行うことにより、熱拡散率とビオ数を求める。
これにより、熱拡散率αとビオ数hが求まる。
First, the procedure of the analysis flow of the thermal diffusivity α 2 and the bio number h will be described with reference to FIG.
(B1) Calculate the initial value of the bio number based on the initial value of the thermal diffusivity of the second layer, the time constant (measured decay time constant) obtained from the temperature decay region of the back surface temperature measurement data, and the time constant theoretical formula. .
(B2) Calculate the thermal diffusivity of the second layer that minimizes the square deviation based on the initial value of the bio number, with the square of the refractive index of the second layer and the absorption coefficient fixed.
(B3) The biodiffusivity is updated by substituting the thermal diffusivity obtained by the calculation into a time constant expression described later. Then, this bio number is substituted into the above-described equation (27), and the emissivities ε 1 and ε 3 of the first layer and the third layer are updated.
(B4) Based on the updated number of bios, the thermal diffusivity is calculated in (b2) above, and the thermal diffusivity and the bio number are calculated by repeatedly calculating the bio number in (b3) above. Ask.
Thereby, the thermal diffusivity α 2 and the bio number h are obtained.

次に、熱拡散率α及びビオ数hと、吸収係数μ又は屈折率の2乗nの解析フローの手順について、図9を参照しながら説明する。
上記(b1)〜(b4)の計算を順次行う。
(b5)第2層の屈折率の2乗(又は吸収係数)を第3の変数として複数設定し、各第3の変数に対し上記(b2)〜(b4)の計算を実施して、各第3の変数に対して2乗偏差を最小とする熱拡散率とビオ数を求める。そして、2乗偏差が小さくなる方向に第3の変数を新たに設定して、上記(b2)〜(b4)を繰り返す計算を行い、2乗偏差が最小となる第3の変数、熱拡散率、及び、ビオ数を求める。
これにより、熱拡散率α、ビオ数h、及び、第3の変数が求まる。
Next, the procedure of the analysis flow of the thermal diffusivity α 2 and the bio number h and the absorption coefficient μ or the square n 2 of the refractive index will be described with reference to FIG.
The above calculations (b1) to (b4) are sequentially performed.
(B5) A plurality of squares (or absorption coefficients) of the refractive index of the second layer are set as third variables, and the above calculations (b2) to (b4) are performed for each third variable. The thermal diffusivity and the bio number that minimize the square deviation with respect to the third variable are obtained. Then, a third variable is newly set in the direction in which the square deviation is reduced, and the calculation of repeating (b2) to (b4) above is performed, and the third variable that minimizes the square deviation, the thermal diffusivity And the number of bios.
Thereby, the thermal diffusivity α 2 , the bio number h, and the third variable are obtained.

最後に、熱拡散率α、吸収係数μ、屈折率の2乗n、及び、ビオ数hの解析フローの手順について、図10を参照しながら説明する。
上記(b1)〜(b5)の計算を順次行う。
(b6)上記(b1)〜(b5)の計算で取り上げていない変数である第2層の吸収係数(又は屈折率の2乗)を第4の変数とし、この第4の変数を複数設定し、各第4の変数に対し上記(b2)〜(b5)の計算を実施して、各第4の変数に対して2乗偏差を最小とする熱拡散率、ビオ数、及び、第3の変数を求める。そして、2乗偏差が小さくなる方向に第4の変数を新たに設定して、上記(b2)〜(b5)を繰り返す計算を行い、2乗偏差が最小となる第4の変数、熱拡散率α、ビオ数h、及び第3の変数を求める。
なお、図10では、第3の変数を屈折率の2乗とし、第4の変数を吸収係数として、解析する方法を示したが、この変数を逆、即ち、第3の変数を吸収係数とし、第4の変数を屈折率の2乗として、解析することも可能である。
Finally, the procedure of the analysis flow of the thermal diffusivity α 2 , the absorption coefficient μ, the refractive index square n 2 , and the bio number h will be described with reference to FIG.
The above calculations (b1) to (b5) are sequentially performed.
(B6) The absorption coefficient (or the square of refractive index) of the second layer, which is a variable not taken up in the calculations of (b1) to (b5) above, is set as a fourth variable, and a plurality of the fourth variables are set. The calculation of the above (b2) to (b5) is performed for each fourth variable, and the thermal diffusivity, the bio number, and the third to minimize the square deviation for each fourth variable. Find a variable. Then, a fourth variable is newly set in the direction in which the square deviation is reduced, and the above calculation (b2) to (b5) is repeated, and the fourth variable, the thermal diffusivity, in which the square deviation is minimized. Find α 2 , the bio number h, and the third variable.
In FIG. 10, the analysis method is shown in which the third variable is the refractive index squared and the fourth variable is the absorption coefficient. However, this variable is reversed, that is, the third variable is the absorption coefficient. It is also possible to analyze the fourth variable as the square of the refractive index.

ここで、時定数式について説明する。
以下に、1)吸収係数が小さく(35)式が成立する場合、2)吸収係数が大きく(36)式が成立する場合、3)試料内部への放射伝熱が無視でき3層の不透明体の時定数が成立する場合のそれぞれの時定数式を記載する。なお、上記1)及び2)は、それぞれの条件が成立するときに用いるべき時定数式であり、3)は、吸収係数とは無関係に使用する時定数式である。
Here, the time constant formula will be described.
In the following, 1) when the absorption coefficient is small and the expression (35) is established, 2) when the absorption coefficient is large and the expression (36) is established, and 3) the radiant heat transfer to the inside of the sample can be ignored, and the three-layer opaque body Each time constant expression when the time constant is established is described. The above 1) and 2) are time constant expressions to be used when the respective conditions are satisfied, and 3) is a time constant expression to be used regardless of the absorption coefficient.

Figure 0006127019
Figure 0006127019

先に、次の変数を、(37)式と(38)式で定義しておく。   First, the following variables are defined by equations (37) and (38).

Figure 0006127019
Figure 0006127019

1)吸収係数が小さく(35)式が成立する場合
時定数τは、以下に示すf、s、s1cosh、s1sinhを用いて、(39)式〜(43)式で表される。
1) When the absorption coefficient is small and the expression (35) is satisfied The time constant τ is expressed by the following expressions (39) to (43) using f 0 , s 0 , s 1cosh , and s 1sinh shown below. .

Figure 0006127019
Figure 0006127019

Figure 0006127019
Figure 0006127019

ここで、外部への放射損失が小さいとき、時定数式として(44)式の近似式を得る。   Here, when the radiation loss to the outside is small, an approximate expression (44) is obtained as a time constant expression.

Figure 0006127019
Figure 0006127019

2)吸収係数が大きく(36)式が成立する場合
時定数τは、以下に示すf、s、sを用いて、(45)式〜(48)式で表される。
2) When the absorption coefficient is large and Expression (36) is satisfied The time constant τ is expressed by Expressions (45) to (48) using f, s 0 , and s 1 shown below.

Figure 0006127019
Figure 0006127019

3)内部への放射伝熱が無視できる場合
内部への放射伝熱が無視できる場合、以下に示す各層が不透明体の3層材の時定数式を用いることができる。なお、本式は試料加熱後に、試料全体の温度が平衡に到達した後は、半透明体においても近似的に成立する。
3) When radiant heat transfer to the inside is negligible When the radiant heat transfer to the inside is negligible, the time constant equation of a three-layer material in which each layer shown below is opaque can be used. Note that this equation also holds approximately for a translucent body after the sample has been heated and the temperature of the entire sample has reached equilibrium.

Figure 0006127019
Figure 0006127019

ここで、測定温度が低く、試料表裏面からの放射損失が小さい場合は、上記(49)式を(50)式に近似できる。   Here, when the measurement temperature is low and the radiation loss from the front and back surfaces of the sample is small, the above equation (49) can be approximated to the equation (50).

Figure 0006127019
Figure 0006127019

以上の方法により、拡散伝熱と放射伝熱の両伝熱現象により、表面に照射したレーザ光のエネルギーが裏面に到達する半透明材料の熱拡散率を求めることができる(以上、第2工程)。   By the above method, the thermal diffusivity of the translucent material in which the energy of the laser light irradiated on the front surface reaches the back surface can be obtained by both the heat transfer phenomenon of diffusion heat transfer and radiation heat transfer (the second step). ).

続いて、本発明の一実施の形態に係る半透明材料の熱拡散率の測定方法の有効性を説明する。
以下に、吸収係数が小さく前記した(35)式が成立する場合と、吸収係数が大きく前記した(36)式が成立する場合の解析結果を示す。ここで、吸収係数が前記した(23)式に示す光学厚さの境界付近(即ち(51)式)の値を持つ場合には、この近似は成立せず、前記した(13)式の温度式を用いて、同様の解析を実施することになる。なお、この場合の解析結果については記載していないが、同様の手順で、第2層の熱拡散率や他の解析を行うことができる。
Then, the effectiveness of the measuring method of the thermal diffusivity of the translucent material which concerns on one embodiment of this invention is demonstrated.
In the following, analysis results when the above-described equation (35) is satisfied with a small absorption coefficient and when the above-described equation (36) is satisfied with a large absorption coefficient are shown. Here, when the absorption coefficient has a value in the vicinity of the boundary of the optical thickness shown in the equation (23) (that is, the equation (51)), this approximation does not hold, and the temperature of the equation (13) described above is not established. A similar analysis will be performed using the equation. In addition, although the analysis result in this case is not described, the thermal diffusivity of the second layer and other analyzes can be performed in the same procedure.

Figure 0006127019
Figure 0006127019

1)吸収係数が小さく、(35)式又は(52)式が成立する場合 1) When the absorption coefficient is small and formula (35) or formula (52) holds

Figure 0006127019
Figure 0006127019

吸収係数が小さく、光学厚さが条件μdl≪eを満足する場合、測定試料の裏面温度理論式は、(35)式あるいは(52)式に近似できる。ここで、吸収係数が小さい場合、前記した図3(a)、(b)に示すように、係数Aは1に近似できる(即ち(53)式)。 When the absorption coefficient is small and the optical thickness satisfies the condition μdl 2 << e 2 , the theoretical formula of the back surface temperature of the measurement sample can be approximated by the equation (35) or (52). Here, when the absorption coefficient is small, the coefficient A can be approximated to 1 as shown in FIGS. 3 (a) and 3 (b) (that is, equation (53)).

Figure 0006127019
Figure 0006127019

まず、解析に用いた理論データを、表1に示す。   First, the theoretical data used for the analysis is shown in Table 1.

Figure 0006127019
Figure 0006127019

また、直接法を用いた解析結果を表2と表3に、また、時定数法を用いた解析結果を表4に、それぞれ示す。なお、表2は、変数の組み合わせが、(α、h)、(α、h、n)、(α、h、μ)の場合の解析結果であり、表3は、(α、μ)、(α、μ、n)の場合の解析結果である。また、表4は、変数の組み合わせが、(α、h)、(α、h、μ)の場合の解析結果である。
ここで、解析を行うに際しては、ε=n=ε=0.8とした。
The analysis results using the direct method are shown in Tables 2 and 3, and the analysis results using the time constant method are shown in Table 4, respectively. Table 2 shows the analysis results when the combinations of variables are (α 2 , h), (α 2 , h, n 2 ), (α 2 , h, μ), and Table 3 shows (α 2 , μ) and (α 2 , μ, n 2 ). Table 4 shows analysis results when the combination of variables is (α 2 , h), (α 2 , h, μ).
Here, in the analysis, ε 1 = n 2 = ε 3 = 0.8.

Figure 0006127019
Figure 0006127019

Figure 0006127019
Figure 0006127019

Figure 0006127019
Figure 0006127019

2)吸収係数が大きく、(36)式又は(54)式が成立する場合 2) When the absorption coefficient is large and (36) or (54) holds

Figure 0006127019
Figure 0006127019

吸収係数が大きく、光学厚さが条件μdl≫eを満足する場合、測定試料の裏面温度理論式は、(36)式あるいは(54)式に近似できる。ここで、吸収係数が大きい場合、前記した図3(a)、(b)に示すように、係数Bは1に近似できる(即ち(55)式)。 When the absorption coefficient is large and the optical thickness satisfies the condition μdl 2 >> e 2 , the theoretical formula of the back surface temperature of the measurement sample can be approximated by the expression (36) or (54). Here, when the absorption coefficient is large, the coefficient B can be approximated to 1 as shown in FIGS. 3 (a) and 3 (b) (that is, equation (55)).

Figure 0006127019
Figure 0006127019

まず、解析に用いた理論データを、表5に示す。   First, the theoretical data used for the analysis is shown in Table 5.

Figure 0006127019
Figure 0006127019

また、直接法を用いた解析結果を表6に、また、時定数法を用いた解析結果を表7に、それぞれ示す。なお、表6と表7はそれぞれ、変数の組み合わせが、(α、h)、(α、h、n)、(α、h、μ)の場合の解析結果である。
ここで、解析を行うに際しては、ε=n=ε=0.8とした。
The analysis results using the direct method are shown in Table 6, and the analysis results using the time constant method are shown in Table 7, respectively. Tables 6 and 7 show the analysis results when the combinations of variables are (α 2 , h), (α 2 , h, n 2 ), (α 2 , h, μ), respectively.
Here, in the analysis, ε 1 = n 2 = ε 3 = 0.8.

Figure 0006127019
Figure 0006127019

Figure 0006127019
Figure 0006127019

上記した表2〜表4、及び、表6、表7の解析結果は、熱拡散率α、ビオ数h、吸収係数μ、屈折率の2乗nの真値に対する誤差を示しているが、精度が十分でないように思える。しかし、これは、データ量が約400点と非常に少ないデータを用いた場合の解析結果であり、通常の測定では例えば約9000点のデータ量を用いた測定と解析を行うため、実際の測定では、より精度が高い解析が可能になると考えられる。
従って、本発明の半透明材料の熱拡散率の測定方法を用いることで、放射伝現象が生じる場合にも、拡散伝熱の熱拡散率を精度よく測定できることがわかる。
The analysis results shown in Tables 2 to 4 and Tables 6 and 7 show errors with respect to the true values of the thermal diffusivity α 2 , the bio number h, the absorption coefficient μ, and the square n 2 of the refractive index. However, it seems that the accuracy is not enough. However, this is an analysis result when using a very small amount of data of about 400 points. In a normal measurement, for example, measurement and analysis using a data amount of about 9000 points are performed. Therefore, it is considered that analysis with higher accuracy becomes possible.
Therefore, it can be seen that by using the method for measuring the thermal diffusivity of the translucent material of the present invention, the thermal diffusivity of diffusion heat transfer can be accurately measured even when a radiant heat transfer phenomenon occurs.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の半透明材料の熱拡散率の測定方法を構成する場合も本発明の権利範囲に含まれる。例えば、熱伝導現象が拡散伝熱のみの不透明容器(不透明材料)に半透明液体を入れて、この半透明液体に接するように容器同様の不透明な材料の蓋をする形態も対象とする。
また、前記実施の形態においては、加熱光として、レーザ光を使用した場合について説明したが、例えば、可視光や赤外光等の電磁波を使用することもでき、また、加熱板を3層材の表面に接触させる方法を適用することも可能である。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the method for measuring the thermal diffusivity of a translucent material of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the present invention. For example, a configuration in which a translucent liquid is put in an opaque container (opaque material) in which only the heat conduction phenomenon is diffusion heat transfer, and an opaque material lid similar to the container is covered so as to be in contact with the translucent liquid.
Moreover, in the said embodiment, although the case where a laser beam was used as a heating light was demonstrated, electromagnetic waves, such as visible light and infrared light, can also be used, for example, and a heating plate is made into 3 layer material. It is also possible to apply a method of contacting the surface.

そして、前記実施の形態においては、熱拡散率の解析において、2乗偏差の最小値を与える変数を求める際に、2乗偏差が小さくなる方向に該当変数を複数設定して2乗偏差を計算し、その2乗偏差の値が小さくなる方向に新たに該当変数を設定する方法について説明したが、本方法に限定されるものではなく、例えば、ニュートン法等を用いても良い。
更に、使用する物性値には、電磁波の波長依存性を示すもの(放射率、吸収係数、屈折率2乗)があるため、これらは必要に応じて、波長による平均化処理を行うことが好ましい。
And in the said embodiment, when calculating | requiring the variable which gives the minimum value of a square deviation in the analysis of a thermal diffusivity, several corresponding variables are set in the direction where a square deviation becomes small, and a square deviation is calculated. However, the method of newly setting the corresponding variable in the direction in which the value of the square deviation becomes smaller has been described, but the present invention is not limited to this method, and for example, the Newton method may be used.
Furthermore, since the physical property values to be used include those showing the wavelength dependence of electromagnetic waves (emissivity, absorption coefficient, refractive index squared), it is preferable to perform an averaging process by wavelength as necessary. .

なお、前記した裏面温度理論式は、吸収係数が0の場合にも適用可能な式であり、透明材料にも適用可能である。また、吸収係数が大きく、熱移動が拡散伝熱のみの場合にも適用可能である。更に、裏面温度理論式において、第1層と第3層の厚さを0とすることにより、単層の半透明体の物性解析にも適用可能である。   Note that the above-described theoretical formula of the back surface temperature is an expression applicable even when the absorption coefficient is 0, and can also be applied to a transparent material. Further, the present invention is also applicable when the absorption coefficient is large and the heat transfer is only diffusion heat transfer. Furthermore, in the back surface temperature theoretical formula, by setting the thicknesses of the first layer and the third layer to 0, the present invention can be applied to the physical property analysis of a single-layer translucent body.

10:測定装置、11:測定試料、12:レーザ光発生部、13:レーザ光検出部、14:ハーフミラー、15:温度測定部、16、17:板材(不透明材料)、18:3層材、19:演算処理部、20:出力器 10: Measuring device, 11: Measurement sample, 12: Laser light generating unit, 13: Laser light detecting unit, 14: Half mirror, 15: Temperature measuring unit, 16, 17: Plate material (opaque material), 18: Three-layer material , 19: arithmetic processing unit, 20: output device

Claims (6)

表面から裏面への熱移動が、拡散伝熱と放射伝熱により生じる半透明材料の熱拡散率の測定方法であって、
前記半透明材料から作製した測定試料の表裏面にそれぞれ、熱移動が拡散伝熱により生じる不透明材料を密着配置し、一方の前記不透明材料の表面を加熱光で照射し、他方の前記不透明材料の裏面の温度を測定して、該裏面の温度変化を示す裏面温度測定データを求める第1工程と、
前記半透明材料の熱拡散率と吸収係数と屈折率を変数として含み、前記不透明材料の表面を加熱光で照射した際の前記不透明材料の裏面の温度の理論的な時間変化を示す、前記拡散伝熱と前記放射伝熱を用いた裏面温度理論式と、前記裏面温度測定データとを比較して、前記半透明材料の熱拡散率を決定する第2工程とを有することを特徴とする半透明材料の熱拡散率の測定方法。
The heat transfer from the front surface to the back surface is a method for measuring the thermal diffusivity of a translucent material generated by diffusion heat transfer and radiation heat transfer,
An opaque material in which heat transfer is caused by diffusion heat transfer is closely arranged on the front and back surfaces of the measurement sample prepared from the translucent material, the surface of one of the opaque materials is irradiated with heating light, and the other opaque material A first step of measuring the temperature of the back surface to obtain back surface temperature measurement data indicating a temperature change of the back surface;
The diffusion including a thermal diffusivity , an absorption coefficient, and a refractive index of the translucent material as variables, and showing a theoretical time change of the temperature of the back surface of the opaque material when the surface of the opaque material is irradiated with heating light. A second step of determining the thermal diffusivity of the translucent material by comparing the heat transfer and the back surface temperature theoretical formula using the radiant heat transfer with the back surface temperature measurement data. A method for measuring the thermal diffusivity of transparent materials.
請求項1記載の半透明材料の熱拡散率の測定方法において、前記裏面温度理論式は更に、前記不透明材料のビオ数を、変数として含み、該変数を前記第2工程で決定することを特徴とする半透明材料の熱拡散率の測定方法。 In the method of the thermal diffusivity of the translucent material according to claim 1, wherein the back surface temperature theoretical formula further, a Biot number of the previous SL opaque material, including as a variable, to determine the number of the displacement in the second step A method for measuring the thermal diffusivity of a translucent material. 請求項1又は2記載の半透明材料の熱拡散率の測定方法において、前記裏面温度理論式は、一次元熱伝導方程式のラプラス空間式であり、前記裏面温度測定データは、測定した前記不透明材料の裏面の温度変化をラプラス変換したものであることを特徴とする半透明材料の熱拡散率の測定方法。   3. The method of measuring the thermal diffusivity of a translucent material according to claim 1 or 2, wherein the back surface temperature equation is a Laplace space equation of a one-dimensional heat conduction equation, and the back surface temperature measurement data is the measured opaque material. A method for measuring the thermal diffusivity of a translucent material, characterized in that the temperature change on the back surface of the material is Laplace converted. 請求項3記載の半透明材料の熱拡散率の測定方法において、前記変数を、前記裏面温度理論式と前記裏面温度測定データとの2乗偏差を最小とする条件から決定することを特徴とする半透明材料の熱拡散率の測定方法。   4. The method of measuring a thermal diffusivity of a translucent material according to claim 3, wherein the variable is determined from a condition that minimizes a square deviation between the back surface temperature theoretical formula and the back surface temperature measurement data. A method for measuring the thermal diffusivity of a translucent material. 請求項4記載の半透明材料の熱拡散率の測定方法において、前記2乗偏差を最小とする条件は、前記変数をすべて独立変数として求めることを特徴とする半透明材料の熱拡散率の測定方法。   5. The method of measuring a thermal diffusivity of a translucent material according to claim 4, wherein the condition for minimizing the square deviation is to obtain all the variables as independent variables. Method. 請求項4記載の半透明材料の熱拡散率の測定方法において、前記2乗偏差を最小とする条件は、前記裏面温度測定データの温度減衰領域から求まる実測減衰時定数と、前記裏面温度理論式から求まる時定数とを同値とする付加条件を用いて求めることを特徴とする半透明材料の熱拡散率の測定方法。   5. The method for measuring the thermal diffusivity of a translucent material according to claim 4, wherein the condition for minimizing the square deviation is an actually measured decay time constant obtained from a temperature decay region of the back surface temperature measurement data and the back surface temperature theoretical formula. A method for measuring the thermal diffusivity of a translucent material, characterized in that it is obtained by using an additional condition that makes the time constant obtained from Eq.
JP2014111454A 2014-05-29 2014-05-29 Method for measuring thermal diffusivity of translucent materials Active JP6127019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014111454A JP6127019B2 (en) 2014-05-29 2014-05-29 Method for measuring thermal diffusivity of translucent materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014111454A JP6127019B2 (en) 2014-05-29 2014-05-29 Method for measuring thermal diffusivity of translucent materials

Publications (3)

Publication Number Publication Date
JP2015225034A JP2015225034A (en) 2015-12-14
JP2015225034A5 JP2015225034A5 (en) 2016-03-10
JP6127019B2 true JP6127019B2 (en) 2017-05-10

Family

ID=54841870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014111454A Active JP6127019B2 (en) 2014-05-29 2014-05-29 Method for measuring thermal diffusivity of translucent materials

Country Status (1)

Country Link
JP (1) JP6127019B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101833445B1 (en) 2017-06-27 2018-02-28 한국기초과학지원연구원 Detection device of thermal diffusion use laser lock-in thermography
JP7060378B2 (en) * 2017-12-28 2022-04-26 Koa株式会社 Thermal conductivity measurement method for metal film
CN108362733B (en) * 2018-02-11 2020-06-09 哈尔滨工业大学 Semitransparent material photo-thermal characteristic distribution measuring method based on combination of phase-locked thermal wave and optical chromatography
CN110160964B (en) * 2019-05-24 2021-11-19 哈尔滨工业大学 Translucent material photo-thermal characteristic parameter detection method based on Chirp frequency modulation laser irradiation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3568271B2 (en) * 1995-03-27 2004-09-22 株式会社超高温材料研究所 Method and apparatus for measuring thermal constant using laser flash method
JP3430258B2 (en) * 2000-10-17 2003-07-28 独立行政法人産業技術総合研究所 Measurement method of thermal diffusivity and interfacial thermal resistance
JP4394315B2 (en) * 2001-08-24 2010-01-06 株式会社超高温材料研究所 Thermal diffusivity measurement method using laser flash method
JP4761547B2 (en) * 2006-06-01 2011-08-31 株式会社超高温材料研究センター Measurement method of thermal constant using laser flash method
KR100939062B1 (en) * 2007-10-26 2010-01-28 한국과학기술원 Measuring device for thermal diffusivity by the flash method and measuring method thereof
JP5490628B2 (en) * 2010-06-18 2014-05-14 株式会社超高温材料研究センター Measurement method of thermal constant using light heating method

Also Published As

Publication number Publication date
JP2015225034A (en) 2015-12-14

Similar Documents

Publication Publication Date Title
JP5178001B2 (en) Equipment for nondestructive evaluation of insulating coatings
Sun Analysis of pulsed thermography methods for defect depth prediction
JP6127019B2 (en) Method for measuring thermal diffusivity of translucent materials
KR100939062B1 (en) Measuring device for thermal diffusivity by the flash method and measuring method thereof
Sfarra et al. Ceramics and defects: Infrared thermography and numerical simulations—a wide-ranging view for quantitative analysis
CN107843616B (en) Device and method for rapidly measuring thermal conductivity of thin film material
TW201514483A (en) LIT method and system for determining material layer parameters of a sample
US11022574B2 (en) Method and apparatus for rapid measurement of thermal conductivity of a thin film material
Zhao et al. Investigation of the effects of Ni-based alloy DZ125 on the normal spectral emissivity during oxidation
JP2018025560A (en) Thermal diffusivity measuring apparatus
JP3568271B2 (en) Method and apparatus for measuring thermal constant using laser flash method
Thiel et al. Localization of subsurface defects in uncoated aluminum with structured heating using high-power VCSEL laser arrays
CN108918580B (en) Nondestructive steady-state thermal conductivity measurement method
JP6243811B2 (en) Method and apparatus for measuring physical property values by steady method
JP5490628B2 (en) Measurement method of thermal constant using light heating method
Golovin et al. Determination of the thermal diffusivity of materials by a nondestructive express method with the use of step-by-step local heating of the surface and high-speed thermography
Anuchin et al. Influence of the Method of Attaching Surface Thermocouples on the Error of Temperature Determination in Testing Ceramic Materials on Radiative Heating Installations
JP4761547B2 (en) Measurement method of thermal constant using laser flash method
RU2610115C1 (en) Device for determining gas temperature in hollow high-temperature elements of gas turbine engines
RU2251098C1 (en) Method of contact-free nondestructive testing of thermal- physical properties of materials
Shi et al. Modeling the Normal Spectral Emissivity of Aluminum 1060 at 800-910 K During the Growth of Oxide Layer
JP4101012B2 (en) Thermal property evaluation method and apparatus for laminated material having thermal resistance
Shi et al. Effect of Surface Oxidization on the Spectral Normal Emissivity of Aluminum 3A21 at the Wavelength of 1.5 μ m Over the Temperature Range from 800 K to 910 K
RU2287807C1 (en) Method for determining thermo-physical properties of multi-layered building structures and products
Lima et al. Thermal effusivity estimation of polymers in time domain

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R150 Certificate of patent or registration of utility model

Ref document number: 6127019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250