JP2019181801A - Shrinkage rate prediction device, shrinkage rate prediction model learning device, and program - Google Patents
Shrinkage rate prediction device, shrinkage rate prediction model learning device, and program Download PDFInfo
- Publication number
- JP2019181801A JP2019181801A JP2018075372A JP2018075372A JP2019181801A JP 2019181801 A JP2019181801 A JP 2019181801A JP 2018075372 A JP2018075372 A JP 2018075372A JP 2018075372 A JP2018075372 A JP 2018075372A JP 2019181801 A JP2019181801 A JP 2019181801A
- Authority
- JP
- Japan
- Prior art keywords
- molding
- shrinkage rate
- molded product
- history information
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000465 moulding Methods 0.000 claims abstract description 232
- 229920005989 resin Polymers 0.000 claims abstract description 81
- 239000011347 resin Substances 0.000 claims abstract description 81
- 238000004458 analytical method Methods 0.000 claims abstract description 60
- 238000001816 cooling Methods 0.000 claims abstract description 44
- 239000000463 material Substances 0.000 claims abstract description 33
- 239000000835 fiber Substances 0.000 claims abstract description 29
- 238000001746 injection moulding Methods 0.000 claims abstract description 22
- 230000008602 contraction Effects 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 26
- 230000008859 change Effects 0.000 claims description 24
- 238000012545 processing Methods 0.000 claims description 8
- 239000000243 solution Substances 0.000 abstract 1
- 238000004364 calculation method Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 238000000611 regression analysis Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本発明は、収縮率予測装置、収縮率予測モデル学習装置、及びプログラムに係り、特に、成形品の成形中の冷却による収縮率を予測するための収縮率予測装置、収縮率予測モデル学習装置、及びプログラムに関する。 The present invention relates to a shrinkage rate prediction device, a shrinkage rate prediction model learning device, and a program, and in particular, a shrinkage rate prediction device, a shrinkage rate prediction model learning device for predicting a shrinkage rate due to cooling during molding of a molded product, And the program.
従来より、樹脂流れのシミュレーションを行い、熱硬化性樹脂の収縮ひずみを、硬化反応、温度変化および圧力変化を考慮して予測できるようにした技術が知られている(特許文献1)。 2. Description of the Related Art Conventionally, a technique is known in which a resin flow is simulated so that shrinkage strain of a thermosetting resin can be predicted in consideration of a curing reaction, a temperature change, and a pressure change (Patent Document 1).
また、平板のような基本形状の成形品を対象に、事前に実験や解析により、ゲートからの流動長、板厚、成形温度、保持圧力、保圧時間の関数として収縮ひずみを求め、本関数により収縮ひずみの予測を行う技術が知られている(特許文献2)。 In addition, for a molded product with a basic shape such as a flat plate, the shrinkage strain is obtained as a function of the flow length from the gate, plate thickness, molding temperature, holding pressure, and holding time by experiments and analysis in advance. A technique for predicting shrinkage strain is known (Patent Document 2).
また、事前に平板などを使って計測した樹脂流動方向とそれに垂直な方向の収縮率を用いて、樹脂流れシミュレーションと組み合わせることで、方向による収縮率の違い(異方性)を予測可能にした技術が知られている(特許文献3)。 Also, by using the resin flow direction measured using a flat plate in advance and the shrinkage rate in the direction perpendicular to it, it is possible to predict the difference (anisotropy) in the shrinkage rate depending on the direction by combining with the resin flow simulation. A technique is known (Patent Document 3).
樹脂流動方向とそれに垂直な方向に加えて、板厚方向の収縮率も実測し、それらを使った実験式より収縮率を予測する技術が知られている(特許文献4)。 In addition to the resin flow direction and the direction perpendicular to the resin flow direction, a technique for measuring the shrinkage rate in the plate thickness direction and predicting the shrinkage rate from an empirical formula using them is known (Patent Document 4).
また、平板成形品などで事前に、分子配向の強さを表す複屈折度と収縮率の関係を測定し、その関係と樹脂流れシミュレーションを組み合わせ、収縮率の異方性を予測する技術が知られている(特許文献5)。 We also know technology for measuring the relationship between the birefringence, which represents the strength of molecular orientation, and the shrinkage rate in advance for flat molded products, etc., and combining the relationship with the resin flow simulation to predict the anisotropy of the shrinkage rate. (Patent Document 5).
また、任意の結晶化度におけるPVT特性を用いて、成形品内の結晶化度の違いを考慮した収縮率予測を行う技術が知られている(特許文献6)。 In addition, a technique is known in which shrinkage rate prediction is performed in consideration of a difference in crystallinity in a molded product using PVT characteristics at an arbitrary crystallinity (Patent Document 6).
また、PVT特性を板厚と金型温度の関数として表し、これを用いて体積収縮率の予測精度を向上させた技術が知られている(特許文献7)。 In addition, a technique is known in which PVT characteristics are expressed as a function of sheet thickness and mold temperature, and the prediction accuracy of volume shrinkage rate is improved using this (Patent Document 7).
また、PVT特性より計算された体積収縮率を基に、冷却速度依存性を考慮するための補正式を提案した技術が知られている(特許文献8)。 Further, a technique that proposes a correction formula for taking into consideration the cooling rate dependency based on the volume shrinkage calculated from the PVT characteristics is known (Patent Document 8).
しかしながら、上記特許文献1に記載の技術は、熱可塑性樹脂の収縮率予測に直接適用できない。 However, the technique described in Patent Document 1 cannot be directly applied to the shrinkage rate prediction of a thermoplastic resin.
上記特許文献2に記載の技術では、繊維配向を考慮していないため、配向による収縮率の異方性を予測できない。 In the technique described in Patent Document 2, since the fiber orientation is not considered, the anisotropy of the shrinkage due to the orientation cannot be predicted.
上記特許文献3に記載の技術で扱う異方性は、樹脂の流れ方向を基準にしたものであり、繊維配向による異方性を表すことができない。 The anisotropy handled by the technique described in Patent Document 3 is based on the flow direction of the resin and cannot represent anisotropy due to fiber orientation.
上記特許文献4に記載の技術で扱う異方性は、上記特許文献3と同様に、樹脂の流れ方向を基準にしたものであり、繊維配向による異方性を表すことができない。 The anisotropy handled by the technique described in Patent Document 4 is based on the resin flow direction, as in Patent Document 3, and cannot represent anisotropy due to fiber orientation.
また、分子配向と繊維配向は異なるため、上記特許文献5に記載の技術でも、繊維配向による異方性を表すことができない。 Further, since the molecular orientation and the fiber orientation are different, even the technique described in Patent Document 5 cannot express anisotropy due to the fiber orientation.
また、冷却速度の違いにより、結晶化度も変化することから、上記特許文献6に記載の技術は、冷却速度依存を考慮した予測技術の一つである。また、板厚や金型温度により冷却速度も変化することから、上記特許文献7に記載の技術も、冷却速度依存を考慮した予測技術の一つである。 In addition, since the degree of crystallinity also changes due to the difference in cooling rate, the technique described in Patent Document 6 is one of prediction techniques that considers the cooling rate dependency. In addition, since the cooling rate changes depending on the plate thickness and the mold temperature, the technique described in Patent Document 7 is also one of the prediction techniques considering the cooling rate dependency.
以上より、従来技術では、冷却速度に依存した収縮率予測の提案はいくつか見られるが、繊維配向に基づく、収縮率の異方性予測の提案は見られない。収縮率の異方性予測については、流れ方向を基準にした異方性の予測、分子配向に起因した異方性予測が見られるだけである。なお、上記特許文献8では、配向解析を実施し、その結果に基づき各方向の収縮ひずみの分配、つまり異方性の考慮を行うとの記述も見られるが、具体的な方法は示されていない。充填材の配向度と収縮ひずみの関係は、単純な関係(例えば、配向度が2倍になれば、収縮ひずみが1/2になる、など)ではないことから、上記特許文献8のような簡単な記述だけからでは異方性の考慮は難しいと考える。 As described above, in the prior art, there are several proposals for predicting shrinkage rate depending on the cooling rate, but no proposal for predicting shrinkage rate anisotropy based on fiber orientation. Regarding the anisotropy prediction of the shrinkage rate, only the prediction of the anisotropy based on the flow direction and the prediction of the anisotropy due to the molecular orientation can be seen. In the above-mentioned Patent Document 8, there is a description that the orientation analysis is performed and the distribution of shrinkage strain in each direction, that is, the anisotropy is considered based on the result, but a specific method is shown. Absent. The relationship between the orientation degree of the filler and the shrinkage strain is not a simple relationship (for example, if the orientation degree is doubled, the shrinkage strain becomes 1/2). It is difficult to consider anisotropy from a simple description alone.
本発明は、上記の事情を鑑みてなされたもので、成形品の成形中の冷却による収縮率を精度よく予測することができる収縮率予測装置、収縮率予測モデル学習装置、及びプログラムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a shrinkage rate prediction device, a shrinkage rate prediction model learning device, and a program capable of accurately predicting a shrinkage rate due to cooling during molding of a molded product. For the purpose.
上記の目的を達成するために第1の発明に係る収縮率予測装置は、所定の成形条件での樹脂材料の射出成形により得られる予測対象の成形品モデルの、前記所定の成形条件に対応する樹脂成形解析から計算された成形履歴情報を取得する成形履歴取得部と、成形品の成形履歴情報から前記成形品の成形中の冷却による収縮率を予測するための予め学習された予測モデルに基づいて、前記成形履歴取得部によって取得された前記成形履歴情報に対する、前記成形品の前記収縮率を予測する収縮率予測部と、を含んで構成されている。 In order to achieve the above object, the shrinkage rate predicting apparatus according to the first invention corresponds to the predetermined molding condition of a molded article model to be predicted obtained by injection molding of a resin material under a predetermined molding condition. Based on a molding history acquisition unit that acquires molding history information calculated from resin molding analysis, and a pre-learned prediction model for predicting the shrinkage rate due to cooling during molding of the molded product from the molding history information of the molded product A shrinkage rate prediction unit that predicts the shrinkage rate of the molded product with respect to the molding history information acquired by the molding history acquisition unit.
第2の発明に係るプログラムは、コンピュータを、所定の成形条件での樹脂材料の射出成形により得られる予測対象の成形品モデルの、前記所定の成形条件に対応する樹脂成形解析から計算された成形履歴情報を取得する成形履歴取得部、及び成形品の成形履歴情報から前記成形品の成形中の冷却による収縮率を予測するための予め学習された予測モデルに基づいて、前記成形履歴取得部によって取得された前記成形履歴情報に対する、前記成形品の前記収縮率を予測する収縮率予測部として機能させるためのプログラムである。 According to a second aspect of the present invention, there is provided a program for calculating a molding calculated from a resin molding analysis corresponding to a predetermined molding condition of a predicted molding model obtained by injection molding of a resin material under a predetermined molding condition. Based on a molding history acquisition unit that acquires history information, and a molding history acquisition unit that predicts a shrinkage rate due to cooling during molding of the molded product from the molding history information of the molded product. It is a program for functioning as a shrinkage rate prediction unit for predicting the shrinkage rate of the molded product with respect to the obtained molding history information.
第1の発明及び第2の発明によれば、成形履歴取得部が、所定の成形条件での樹脂材料の射出成形により得られる予測対象の成形品モデルの、前記所定の成形条件に対応する樹脂成形解析から計算された成形履歴情報を取得する。そして、収縮率予測部が、成形品の成形履歴情報から前記成形品の成形中の冷却による収縮率を予測するための予め学習された予測モデルに基づいて、前記成形履歴取得部によって取得された前記成形履歴情報に対する、前記成形品の前記収縮率を予測する。 According to the first invention and the second invention, the resin corresponding to the predetermined molding condition of the molded article model to be predicted obtained by the molding history obtaining unit by injection molding of the resin material under the predetermined molding condition. Obtain molding history information calculated from molding analysis. Then, the shrinkage rate prediction unit is acquired by the molding history acquisition unit based on a previously learned prediction model for predicting the shrinkage rate due to cooling during molding of the molded product from the molding history information of the molded product. The shrinkage rate of the molded product with respect to the molding history information is predicted.
このように、成形品の成形履歴情報から前記成形品の成形中の冷却による収縮率を予測するための予測モデルに基づいて、取得された前記成形履歴情報に対する、前記成形品の前記収縮率を予測することにより、成形品の成形中の冷却による収縮率を精度よく予測することができる。 Thus, based on the prediction model for predicting the shrinkage rate due to cooling during molding of the molded product from the molding history information of the molded product, the shrinkage rate of the molded product with respect to the acquired molding history information is calculated. By predicting, the shrinkage rate due to cooling during the molding of the molded product can be accurately predicted.
第3の発明に係る収縮率予測モデル学習装置は、所定の成形条件での樹脂材料の射出成形により得られた実際の成形品の、前記所定の成形条件に対応する樹脂成形解析から計算された成形履歴情報を取得する成形履歴取得部と、前記実際の成形品について測定した、成形中の冷却による収縮率と、前記成形履歴取得部によって取得された成形履歴情報とに基づいて、成形品の成形履歴情報から前記成形品の収縮率を予測するための予測モデルを学習する学習部とを含んで構成されている。 The shrinkage rate prediction model learning device according to the third invention is calculated from a resin molding analysis corresponding to the predetermined molding condition of an actual molded product obtained by injection molding of a resin material under a predetermined molding condition. Based on the molding history acquisition unit that acquires molding history information, the shrinkage rate due to cooling during molding measured for the actual molded product, and the molding history information acquired by the molding history acquisition unit. And a learning unit that learns a prediction model for predicting the shrinkage rate of the molded product from the molding history information.
第4の発明に係るプログラムは、コンピュータを、所定の成形条件での樹脂材料の射出成形により得られた実際の成形品の、前記所定の成形条件に対応する樹脂成形解析から計算された成形履歴情報を取得する成形履歴取得部、及び前記実際の成形品について測定した、成形中の冷却による収縮率と、前記成形履歴取得部によって取得された成形履歴情報とに基づいて、成形品の成形履歴情報から前記成形品の収縮率を予測するための予測モデルを学習する学習部として機能させるためのプログラムである。 According to a fourth aspect of the present invention, there is provided a program for calculating a molding history calculated from a resin molding analysis corresponding to a predetermined molding condition of an actual molded product obtained by injection molding of a resin material under a predetermined molding condition. A molding history acquisition unit that acquires information, and a molding history of the molded product based on the shrinkage rate due to cooling during molding and the molding history information acquired by the molding history acquisition unit, measured for the actual molded product It is a program for functioning as a learning unit for learning a prediction model for predicting the shrinkage rate of the molded product from information.
第3の発明及び第4の発明によれば、成形履歴取得部が、所定の成形条件での樹脂材料の射出成形により得られた実際の成形品の、前記所定の成形条件に対応する樹脂成形解析から計算された成形履歴情報を取得する。そして、学習部が、前記実際の成形品について測定した、成形中の冷却による収縮率と、前記成形履歴取得部によって取得された成形履歴情報とに基づいて、成形品の成形履歴情報から前記成形品の収縮率を予測するための予測モデルを学習する。 According to the third invention and the fourth invention, the molding history acquisition unit is a resin molding corresponding to the predetermined molding condition of an actual molded product obtained by injection molding of the resin material under the predetermined molding condition. Acquire molding history information calculated from the analysis. Then, the learning unit measures the molding from the molding history information of the molded product based on the shrinkage rate due to cooling during molding and the molding history information acquired by the molding history acquisition unit, measured for the actual molded product. Learn predictive models for predicting product shrinkage.
このように、所定の成形条件での樹脂材料の射出成形により得られた実際の成形品について測定した、成形中の冷却による収縮率と、前記所定の成形条件に対応する成形品の樹脂成形解析から計算された成形履歴情報とに基づいて、成形品の成形履歴情報から前記成形品の収縮率を予測するための予測モデルを学習することにより、成形品の成形中の冷却による収縮率を精度よく予測することができる。 As described above, the actual shrinkage obtained by injection molding of the resin material under the predetermined molding conditions was measured, and the shrinkage ratio due to cooling during molding and the resin molding analysis of the molded article corresponding to the predetermined molding conditions. The accuracy of shrinkage due to cooling during molding of a molded product is learned by learning a prediction model for predicting the shrinkage rate of the molded product from the molding history information of the molded product based on the molding history information calculated from Can be predicted well.
以上説明したように、本発明の収縮率予測装置、収縮率予測モデル学習装置、及びプログラムによれば、成形品の成形中の冷却による収縮率を精度よく予測することができる、という効果が得られる。 As described above, according to the shrinkage rate prediction device, the shrinkage rate prediction model learning device, and the program of the present invention, it is possible to accurately predict the shrinkage rate due to cooling during molding of a molded product. It is done.
以下、図面を参照して本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<本発明の実施の形態の概要>
本発明の実施の形態では、実測の収縮率を用いて予測式を作成していることから、高精度な収縮率の予測が可能となる。
<Outline of Embodiment of the Present Invention>
In the embodiment of the present invention, since the prediction formula is created using the actually measured shrinkage rate, it is possible to predict the shrinkage rate with high accuracy.
一方、収縮率の実測値を用いても、適切な成形履歴のパラメータを使わなければ、実測値へのフィッティング精度が低下し、高精度な収縮率予測は困難である。そこで、本発明の実施の形態では次の考え方に基づき、成形履歴パラメータの選択を行った。 On the other hand, even if the actual measurement value of the shrinkage rate is used, unless an appropriate molding history parameter is used, the accuracy of fitting to the actual measurement value is lowered, and it is difficult to predict the shrinkage rate with high accuracy. Therefore, in the embodiment of the present invention, the molding history parameter is selected based on the following concept.
樹脂成形解析より得られる線収縮率は、成形中の温度履歴、圧力履歴を反映して、PVT特性に基づき計算されている。従って、収縮率の計算方法としては妥当なものである。しかし、PVT特性データが徐冷条件で測定されていることから、実成形での急冷状態の予測には精度低下が生じる。また、体積収縮率より等方性を仮定して線収縮率を計算するため、繊維強化樹脂などの異方性材料では各方向の比率が不明で、それぞれの方向の収縮率を求めることができない。しかし、上記の2点以外の大きな精度低下要因は見当たらないことから、解析より得られた線収縮率に対して、それらを補正することで実測の収縮率は表現可能であると考える。 The linear shrinkage rate obtained from the resin molding analysis is calculated based on the PVT characteristics, reflecting the temperature history and pressure history during molding. Therefore, it is an appropriate method for calculating the shrinkage rate. However, since the PVT characteristic data is measured under slow cooling conditions, there is a decrease in accuracy in predicting the rapid cooling state in actual molding. In addition, since the linear shrinkage rate is calculated on the assumption that the volume shrinkage rate is isotropic, the ratio of each direction is unknown in anisotropic materials such as fiber reinforced resin, and the shrinkage rate in each direction cannot be obtained. . However, since there are no major factors that reduce the accuracy other than the above two points, it is considered that the actual shrinkage rate can be expressed by correcting the linear shrinkage rate obtained from the analysis.
そこで、補正対象となる基準のパラメータとして、線収縮率を用いる。 Therefore, the linear contraction rate is used as a reference parameter to be corrected.
次に、急冷を考慮した補正は以下の方針で行った。すなわち、収縮率の絶対値の補正はその実測値を用いて行う。そこで、急冷を表すパラメータでは、成形品内の部位ごとの相対的な冷却速度の差異を表現できればよい。この目的のため、本発明の実施の形態では充填直後の温度変化をパラメータとして用いた。これ以外にも、部位ごとでの冷却速度の違いを表すことができるパラメータであれば構わない。ただし、樹脂温度が高い方が部位ごとでの差が生じやすいことから、充填直後の温度変化が好適である。 Next, the correction considering rapid cooling was performed according to the following policy. That is, correction of the absolute value of the contraction rate is performed using the actually measured value. Therefore, it is only necessary that the parameter representing the rapid cooling can express the difference in relative cooling rate for each part in the molded product. For this purpose, in the embodiment of the present invention, the temperature change immediately after filling is used as a parameter. In addition to this, any parameter can be used as long as it can represent the difference in cooling rate for each part. However, the higher the resin temperature, the easier the difference between the parts, so the temperature change immediately after filling is preferable.
また、異方性の補正を行うため、つまり等方性を仮定して得られた線収縮率を補正して、各方向の収縮率を求めるために、パラメータとして繊維配向テンソルを用いた。本テンソルは、繊維配向解析の結果として得られる、繊維の配向状態を表す量であるから、繊維配向に基づく異方性を表すためには最適である。本テンソルの適用に当たっては、固有値解析を行い、各主軸方向での固有値つまり配向度を求めた。そして、一般座標系では収縮時にひずみのせん断成分も生じ得るが、主軸座標系では各座標軸の方向が繊維配向の主軸方向であることから、収縮ひずみにせん断成分は生じないと仮定し、収縮ひずみの法線成分つまり主軸方向の収縮率がその主軸方向の配向度により表現できると考えた。 In addition, in order to correct the anisotropy, that is, to correct the linear shrinkage obtained by assuming isotropic property, the fiber orientation tensor was used as a parameter in order to obtain the shrinkage in each direction. Since this tensor is an amount representing the fiber orientation state obtained as a result of fiber orientation analysis, it is optimal for representing anisotropy based on fiber orientation. In applying this tensor, eigenvalue analysis was performed to determine eigenvalues in each principal axis direction, that is, the degree of orientation. In the general coordinate system, a shear component of strain may also occur during contraction, but in the main axis coordinate system, since the direction of each coordinate axis is the principal axis direction of the fiber orientation, it is assumed that no shear component occurs in the contraction strain. It was thought that the normal component of, ie the contraction rate in the main axis direction, can be expressed by the degree of orientation in the main axis direction.
上記より、各主軸方向の収縮率(これは実測の収縮率よりひずみの座標変換により導出できる)は、対応する主軸方向の配向度、充填直後の温度変化および等方性を仮定して得られた収縮率の3つのパラメータで表現できるとして、予測式を決定した。さらに、線収縮率を補正する役割を担う配向度および温度変化の寄与は線形であるとは考えにくい。そこで、予測式の中では配向度および温度変化を使った多項式により、それらの寄与を表し、収縮率の予測性能を向上させる。 From the above, the shrinkage rate in each principal axis direction (this can be derived by coordinate transformation of strain from the actual shrinkage rate) is obtained assuming the corresponding orientation degree in the principal axis direction, the temperature change immediately after filling, and isotropic properties. The prediction formula was determined so that it could be expressed by three parameters of the shrinkage rate. Further, it is difficult to think that the degree of orientation and the contribution of temperature change that play a role in correcting the linear shrinkage rate are linear. Therefore, in the prediction formula, their contribution is expressed by a polynomial using the degree of orientation and temperature change, and the shrinkage rate prediction performance is improved.
また、成形品の各部位において、樹脂成形解析により、主軸方向の配向度、充填直後の温度変化および等方性を仮定して得られた線収縮率を計算し、それらを用いて予測式により収縮率を計算することから、成形品内の収縮率の分布を高精度に予測することができる。 Also, in each part of the molded product, the resin shrinkage analysis calculates the degree of orientation in the principal axis direction, the temperature change immediately after filling and the isotropic property, and calculates the linear shrinkage rate. Since the shrinkage rate is calculated, the shrinkage rate distribution in the molded product can be predicted with high accuracy.
<本発明の実施の形態の収縮率予測モデル学習装置の構成>
図1に示すように、本発明の実施の形態に係る収縮率予測モデル学習装置10は、CPU12、ROM14、RAM16、HDD18、通信インタフェース21、及びこれらを相互に接続するためのバス22を備えている。
<Configuration of Shrinkage Rate Prediction Model Learning Device of Embodiment of the Present Invention>
As shown in FIG. 1, a contraction rate prediction model learning device 10 according to an embodiment of the present invention includes a CPU 12, a ROM 14, a RAM 16, an HDD 18, a communication interface 21, and a bus 22 for connecting them together. Yes.
CPU12は、各種プログラムを実行する。ROM14には、各種プログラムやパラメータ等が記憶されている。RAM16は、CPU12による各種プログラムの実行時におけるワークエリア等として用いられる。記録媒体としてのHDD18には、後述する収縮率予測モデル学習処理ルーチンを実行するためのプログラムを含む各種プログラムや各種データが記憶されている。 The CPU 12 executes various programs. The ROM 14 stores various programs, parameters, and the like. The RAM 16 is used as a work area when the CPU 12 executes various programs. The HDD 18 as a recording medium stores various programs and various data including a program for executing a contraction rate prediction model learning processing routine described later.
本実施の形態における収縮率予測モデル学習装置10を、収縮率予測モデル学習処理ルーチンを実行するためのプログラムに沿って、機能ブロックで表すと、図2に示すようになる。収縮率予測モデル学習装置10は、入力部20、演算部30、及び出力部50を備えている。 When the contraction rate prediction model learning device 10 according to the present embodiment is expressed as a functional block along a program for executing a contraction rate prediction model learning processing routine, it is as shown in FIG. The contraction rate prediction model learning device 10 includes an input unit 20, a calculation unit 30, and an output unit 50.
入力部20は、所定の成形条件の各々についての、当該所定の成形条件での樹脂材料の射出成形により得られた実際の成形品について測定した、成形中の冷却による収縮率と、形状データ、当該所定の成形条件および樹脂の材料特性を示す情報とを入力として受け付ける。 The input unit 20 is measured for an actual molded product obtained by injection molding of the resin material under the predetermined molding condition for each of the predetermined molding conditions, and a shrinkage rate due to cooling during molding, shape data, The predetermined molding conditions and information indicating the material characteristics of the resin are received as inputs.
入力される、実際の成形品の成形中の冷却による収縮率は、例えば、金型に施したけがき線の間隔の変化を測定したものである。 The shrinkage rate due to cooling during the molding of the actual molded product that is input is, for example, a measurement of the change in the spacing between the marking lines applied to the mold.
ここで、ガラス繊維(20wt%)強化ポリプロピレンを対象に、収縮率を測定した結果の例を示す。 Here, an example of the result of measuring the shrinkage rate for glass fiber (20 wt%) reinforced polypropylene is shown.
例えば、図3(A)に示すような、けがき線付き平板を標準の成形条件(樹脂温度:230℃、金型温度:70℃、充填時間:0.75sec、保持圧力:20MPa、保圧時間:7sec、冷却時間:20sec)にて射出成形する。さらに、冷却時間以外の条件を変化させた成形条件でも射出成形を行い、平板を成形する。 For example, as shown in FIG. 3A, a flat plate with a marking line is formed by standard molding conditions (resin temperature: 230 ° C., mold temperature: 70 ° C., filling time: 0.75 sec, holding pressure: 20 MPa, holding pressure time. : 7 seconds, cooling time: 20 seconds). Further, injection molding is performed under molding conditions in which conditions other than the cooling time are changed to mold a flat plate.
けがき線で囲まれた各マス目(図3(B))ごとにx,y方向のけがき線間距離および板厚を計測し、各方向の収縮率を求める。測定結果の一例として、図3(A)中のA-A’におけるx方向収縮率の測定結果を図4に示す。 The distance between the marking lines and the plate thickness in the x and y directions are measured for each square (FIG. 3B) surrounded by the marking lines, and the shrinkage rate in each direction is obtained. As an example of the measurement result, FIG. 4 shows the measurement result of the shrinkage in the x direction at A-A ′ in FIG.
なお、入力される、実際の成形品の成形中の冷却による収縮率は、金型に施したシボ模様の変化を画像相関法で処理することにより測定したものであってもよい。 In addition, the shrinkage | contraction rate by cooling during the shaping | molding of the actual molded article input may be measured by processing the change of the embossed pattern given to the metal mold | die by the image correlation method.
演算部30は、成形解析部32、固有値解析部34、及び予測モデル学習部36を備えている。なお、成形解析部32が、成形履歴取得部の一例である。 The calculation unit 30 includes a shaping analysis unit 32, an eigenvalue analysis unit 34, and a prediction model learning unit 36. The molding analysis unit 32 is an example of a molding history acquisition unit.
成形解析部32は、所定の成形条件に対応して、上記実際の成形品をモデル化した成形品モデルの有限要素の樹脂成形解析を行い、有限要素毎に、成形履歴情報を計算する。成形履歴情報は、成形中に樹脂材料が受ける履歴を表すものであり、樹脂の温度変化、成形終了時の繊維配向テンソル、及び線収縮率を含む。 The molding analysis unit 32 performs resin molding analysis of a finite element of a molded product model obtained by modeling the actual molded product corresponding to a predetermined molding condition, and calculates molding history information for each finite element. The molding history information represents a history that the resin material receives during molding, and includes a temperature change of the resin, a fiber orientation tensor at the end of molding, and a linear shrinkage rate.
例えば、平板成形品を有限要素で分割した形状モデルを成形品モデルとして用いて、樹脂成形解析ソフト3DTIMON(東レエンジニアリング(R))により、各成形条件に対応した樹脂成形解析を行う。これにより、各成形条件ごとの平板内での繊維配向テンソルD、線収縮率ε0、および充填直後の温度変化ΔTの分布を得る。 For example, a resin model analysis corresponding to each molding condition is performed by a resin molding analysis software 3DTIMON (Toray Engineering (R)) using a shape model obtained by dividing a flat molded product by finite elements as a molded product model. Thereby, the distribution of the fiber orientation tensor D, the linear shrinkage ε 0 , and the temperature change ΔT immediately after filling in the flat plate for each molding condition is obtained.
固有値解析部34は、成形品モデルの有限要素毎に、当該有限要素について得られた成形終了時の繊維配向テンソルに対して固有値解析を行い、3つの主軸方向(固有ベクトル)と各軸方向の配向度(固有値)λi (i=1,2,3)を求める。 The eigenvalue analysis unit 34 performs eigenvalue analysis on the fiber orientation tensor at the end of molding obtained for each finite element of the molded product model, and performs three principal axis directions (eigenvectors) and orientations in the respective axial directions. Degree (eigenvalue) λ i (i = 1,2,3) is obtained.
予測モデル学習部36は、所定の成形条件での樹脂材料の射出成形により得られた実際の成形品について測定した、成形中の冷却による収縮率と、所定の成形条件に対応する成形品モデルの樹脂成形解析から計算された成形履歴情報とに基づいて、成形品の成形履歴情報から成形品の収縮率を予測するための予測モデルを学習する。 The predictive model learning unit 36 measures the actual shrinkage obtained by injection molding of the resin material under the predetermined molding conditions, the shrinkage rate due to cooling during molding, and the molding model corresponding to the predetermined molding conditions. Based on the molding history information calculated from the resin molding analysis, a prediction model for predicting the shrinkage rate of the molded product from the molding history information of the molded product is learned.
ここで、予測モデルとしての予測式の係数を学習する原理について説明する。 Here, the principle of learning the coefficient of the prediction formula as the prediction model will be described.
上記の本発明の実施の形態の概要で述べたように、各主軸方向の収縮率εiは、λi、ΔTおよびε0により多項式を使って、(1)式で表現できるとする。ここで、ak(k=0〜25)は係数である。また、主軸座標系では収縮時にひずみのせん断成分が生じないと仮定すると、成形品全体で定義された全体座標系での収縮率εX(X=x,y,z)は、ひずみの座標変換により(2)式で表される。 As described in the outline of the embodiment of the present invention, it is assumed that the contraction rate ε i in each principal axis direction can be expressed by the equation (1) by using a polynomial with λ i , ΔT, and ε 0 . Here, a k (k = 0 to 25) is a coefficient. Also, assuming that no shear component of strain occurs during shrinkage in the main axis coordinate system, the shrinkage rate ε X (X = x, y, z) in the overall coordinate system defined for the entire part is the coordinate transformation of the strain. Is expressed by equation (2).
(1)
ここで、
(2)
(1)
here,
(2)
さらに、成形品中のマス目単位で測定される収縮率EX(X=x,y,z)は、マス目を構成する各有限要素のεXを使って、(3)式のように体積平均で得られるとすると、樹脂成形解析より各要素単位で計算されるλi、ΔTおよびε0とマス目単位で実測されるEXは(1)〜(3)式で関連付けられるので、重回帰分析により係数akが求められる。 Furthermore, the shrinkage rate E X (X = x, y, z) measured in the unit of the grid in the molded product is expressed by the equation (3) using ε X of each finite element constituting the grid. Assuming that the volume average is obtained, λ i , ΔT and ε 0 calculated in each element unit from the resin molding analysis and E X actually measured in the grid unit are related by the equations (1) to (3). The coefficient a k is obtained by multiple regression analysis.
(3)
(3)
ここで、l1は、主軸1と x軸との間の方向余弦を表し、l2 は、主軸2とx軸との間の方向余弦を表し、l3 は、主軸3と x軸との間の方向余弦を表し、m1は、主軸1と y軸との間の方向余弦を表し、m2 は、主軸2とy軸との間の方向余弦を表し、m3 は、主軸3と y軸との間の方向余弦を表し、n1は、主軸1と z軸との間の方向余弦を表し、n2 は、主軸2とz軸との間の方向余弦を表し、n3 は、主軸3と z軸との間の方向余弦を表す。また、Vkは有限要素kの体積を表す。 Where l 1 represents the direction cosine between the main axis 1 and the x axis, l 2 represents the direction cosine between the main axis 2 and the x axis, and l 3 represents the difference between the main axis 3 and the x axis. M 1 represents the direction cosine between the main axis 1 and the y axis, m 2 represents the direction cosine between the main axis 2 and the y axis, and m 3 represents the main cosine 3 represents the direction cosine between the y-axis, n 1 represents the direction cosine between the main axis 1 and the z-axis, n 2 represents the direction cosine between the main axis 2 and the z-axis, and n 3 represents , Represents the direction cosine between the main axis 3 and the z-axis. V k represents the volume of the finite element k.
上記で説明した原理に従って、予測モデル学習部36は、マス目単位毎に、当該マス目について実測された収縮率と、上記(3)式により当該マス目について計算される収縮率とが一致するように、重回帰分析により係数ak(k=0〜25)を学習し、学習結果を出力部50により出力する。 In accordance with the principle described above, the prediction model learning unit 36 matches the shrinkage rate actually measured for the square with the shrinkage rate calculated for the square according to the above equation (3) for each square unit. As described above, the coefficient a k (k = 0 to 25) is learned by multiple regression analysis, and the learning result is output by the output unit 50.
ここで、上記(3)式により当該マス目について計算される収縮率は、当該マス目に含まれる、各有限要素についての、上記の予測式と、当該有限要素について得られた樹脂の温度変化、及び線収縮率と、当該有限要素についての成形終了時の繊維配向テンソルの固有値解析より得られた3つの主軸方向(固有ベクトル)と各軸方向の配向度(固有値)λi (i=1,2,3)とに基づいて計算される。 Here, the shrinkage rate calculated for the square by the above equation (3) is the above-described prediction formula for each finite element included in the square and the temperature change of the resin obtained for the finite element. , And the linear shrinkage rate, the three principal axis directions (eigenvectors) obtained from the eigenvalue analysis of the fiber orientation tensor at the end of molding for the finite element, and the degree of orientation (eigenvalue) λ i (i = 1, 2,3) and calculated.
<本発明の実施の形態の収縮率予測装置の構成>
上記図1に示すように、本発明の実施の形態に係る収縮率予測装置60は、CPU12、ROM14、RAM16、HDD18、通信インタフェース21、及びこれらを相互に接続するためのバス22を備えている。
<Configuration of Shrinkage Rate Prediction Device of Embodiment of the Present Invention>
As shown in FIG. 1, the shrinkage rate prediction apparatus 60 according to the embodiment of the present invention includes a CPU 12, a ROM 14, a RAM 16, an HDD 18, a communication interface 21, and a bus 22 for connecting them to each other. .
CPU12は、各種プログラムを実行する。ROM14には、各種プログラムやパラメータ等が記憶されている。RAM16は、CPU12による各種プログラムの実行時におけるワークエリア等として用いられる。記録媒体としてのHDD18には、後述する収縮率予測処理ルーチンを実行するためのプログラムを含む各種プログラムや各種データが記憶されている。 The CPU 12 executes various programs. The ROM 14 stores various programs, parameters, and the like. The RAM 16 is used as a work area when the CPU 12 executes various programs. The HDD 18 as a recording medium stores various programs and various data including a program for executing a shrinkage rate prediction processing routine described later.
本実施の形態における収縮率予測装置60を、収縮率予測処理ルーチンを実行するためのプログラムに沿って、機能ブロックで表すと、図5に示すようになる。収縮率予測装置60は、入力部70、演算部80、及び出力部90を備えている。 When the contraction rate prediction device 60 in the present embodiment is represented by a functional block along a program for executing a contraction rate prediction processing routine, it is as shown in FIG. The contraction rate prediction device 60 includes an input unit 70, a calculation unit 80, and an output unit 90.
入力部70は、所定の成形条件での樹脂材料の射出成形により得られる予測対象の成形品における形状データ、当該所定の成形条件および樹脂の材料特性を示す情報を入力として受け付ける。 The input unit 70 receives, as inputs, shape data of a predicted molded product obtained by injection molding of a resin material under predetermined molding conditions, information indicating the predetermined molding conditions and resin material characteristics.
演算部80は、成形解析部82、固有値解析部84、及び収縮率予測部86を備えている。なお、成形解析部82が、成形履歴取得部の一例である。 The calculation unit 80 includes a molding analysis unit 82, an eigenvalue analysis unit 84, and a shrinkage rate prediction unit 86. The molding analysis unit 82 is an example of a molding history acquisition unit.
成形解析部82は、入力された形状データ、所定の成形条件および樹脂の材料特性を示す情報に基づいて、当該所定の成形条件に対応して、当該所定の成形条件での樹脂材料の射出成形により得られる予測対象の成形品モデルの有限要素の樹脂成形解析を行い、有限要素毎に、成形履歴情報を計算する。成形履歴情報は、成形中に樹脂材料が受ける履歴を表すものであり、樹脂の温度変化、成形終了時の繊維配向テンソル、及び線収縮率を含む。成形履歴情報として、更に、樹脂の圧力変化、せん断速度変化、粘度変化などを含んでもよい。 The molding analysis unit 82 performs injection molding of the resin material under the predetermined molding conditions in accordance with the predetermined molding conditions based on the input shape data, predetermined molding conditions, and information indicating the material characteristics of the resin. The resin molding analysis of the finite element of the molding model to be predicted obtained by the above is performed, and the molding history information is calculated for each finite element. The molding history information represents a history that the resin material receives during molding, and includes a temperature change of the resin, a fiber orientation tensor at the end of molding, and a linear shrinkage rate. The molding history information may further include resin pressure change, shear rate change, viscosity change, and the like.
固有値解析部84は、予測対象の成形品モデルの有限要素毎に、当該有限要素について得られた成形終了時の繊維配向テンソルに対して固有値解析を行い、3つの主軸方向(固有ベクトル)と各軸方向の配向度(固有値)λi (i=1,2,3)を求める。 The eigenvalue analysis unit 84 performs eigenvalue analysis on the fiber orientation tensor at the end of molding obtained for each finite element of the molding model to be predicted, and performs three principal axis directions (eigenvectors) and each axis. The degree of orientation (eigenvalue) λ i (i = 1, 2, 3) is obtained.
収縮率予測部86は、予測対象の成形品モデルの有限要素毎に、収縮率予測モデル学習装置10により学習された予測モデルとしての予測式と、当該有限要素について得られた樹脂の温度変化、及び線収縮率と、当該有限要素についての成形終了時の繊維配向テンソルの固有値解析より得られた3つの主軸方向(固有ベクトル)と各軸方向の配向度(固有値)λi (i=1,2,3)とに基づいて、上記(1)式〜(2)式に従って、成形履歴情報に対する、当該有限要素の収縮率を予測することにより、予測対象の成形品の収縮率分布を予測する。 The shrinkage rate prediction unit 86 includes, for each finite element of the prediction target molded product model, a prediction formula as a prediction model learned by the shrinkage rate prediction model learning device 10, and a temperature change of the resin obtained for the finite element, And the linear shrinkage rate, and the three principal axis directions (eigenvectors) and the degree of orientation (eigenvalues) λ i (i = 1,2) obtained from the eigenvalue analysis of the fiber orientation tensor at the end of molding for the finite element. 3), the shrinkage rate distribution of the prediction target molded product is predicted by predicting the shrinkage rate of the finite element with respect to the molding history information according to the above formulas (1) to (2).
具体的には、予測対象の成形品モデルの有限要素毎に、繊維配向テンソルの固有値解析により得られる主軸座標系にて、冷却による収縮時にせん断成分が生じないと仮定することにより、上記(1)式に従って、主軸座標系での収縮ひずみの各成分を求め、主軸座標系での収縮ひずみの各成分に基づいて、上記(2)式に従って、全体座標系での収縮ひずみの各成分を求め、全体座標系での収縮ひずみの各成分に基づいて、当該有限要素の収縮率を予測する。 Specifically, for each finite element of the molding model to be predicted, in the principal axis coordinate system obtained by eigenvalue analysis of the fiber orientation tensor, the above (1) ) To determine each component of contraction strain in the main axis coordinate system, and to determine each component of contraction strain in the global coordinate system according to the above equation (2) based on each component of contraction strain in the main axis coordinate system. The shrinkage rate of the finite element is predicted based on each component of shrinkage strain in the global coordinate system.
出力部90は、予測対象の成形品モデルの有限要素毎に予測された収縮率を、収縮率分布の予測結果として出力する。そして、予測対象の成形品モデルの収縮率分布から、例えば、成形品の反り変形が予測される。反り変形の予測時に、全体座標系での収縮ひずみのせん断成分(γyz,γzx,γxy)が必要な場合は、(4)式より、それらを求めることができる。なお、予測対象の成形品モデルの収縮率分布の予測結果は、反り変形以外の変形予測に用いられてもよい。
(4)
The output unit 90 outputs the shrinkage rate predicted for each finite element of the prediction target molded article model as a prediction result of the shrinkage rate distribution. Then, for example, warpage deformation of the molded product is predicted from the shrinkage rate distribution of the predicted molded product model. When warping deformation is predicted, if the shear components (γ yz , γ zx , γ xy ) of the shrinkage strain in the global coordinate system are required, they can be obtained from the equation (4). In addition, the prediction result of the shrinkage rate distribution of the molding model to be predicted may be used for deformation prediction other than warp deformation.
(4)
<収縮率予測モデル学習装置の動作>
次に、本発明の実施の形態に係る収縮率予測モデル学習装置10の動作について説明する。
<Operation of shrinkage prediction model learning device>
Next, the operation of the contraction rate prediction model learning device 10 according to the embodiment of the present invention will be described.
入力部20によって、所定の成形条件での樹脂材料の射出成形により得られた実際の成形品について測定した、成形中の冷却による収縮率と、形状データ、当該所定の成形条件および樹脂の材料特性を示す情報とを入力として受け付けると、収縮率予測モデル学習装置10によって、図6に示す収縮率予測モデル学習処理ルーチンが実行される。 The shrinkage rate due to cooling during molding, shape data, the predetermined molding conditions, and the material characteristics of the resin, measured for the actual molded product obtained by injection molding of the resin material under the predetermined molding conditions by the input unit 20 6 is received as an input, the contraction rate prediction model learning apparatus 10 executes a contraction rate prediction model learning process routine shown in FIG.
まず、ステップS100において、成形解析部32は、所定の成形条件に対応して、上記実際の成形品をモデル化した成形品モデルの有限要素の樹脂成形解析を行い、有限要素毎に、成形履歴情報を計算する。 First, in step S100, the molding analysis unit 32 performs resin molding analysis of a finite element of a molded product model obtained by modeling the actual molded product corresponding to a predetermined molding condition, and a molding history for each finite element. Calculate information.
ステップS102において、固有値解析部34は、成形品モデルの有限要素毎に、当該有限要素について得られた成形終了時の繊維配向テンソルに対して固有値解析を行い、3つの主軸方向(固有ベクトル)と各軸方向の配向度(固有値)λi (i=1,2,3)を求める。 In step S102, the eigenvalue analysis unit 34 performs eigenvalue analysis on the fiber orientation tensor at the end of molding obtained for each finite element of the molded product model, and performs three principal axis directions (eigenvectors) and each. Obtain the degree of axial orientation (eigenvalue) λ i (i = 1,2,3).
ステップS104において、予測モデル学習部36は、所定の成形条件での樹脂材料の射出成形により得られた実際の成形品について測定した、成形中の冷却による収縮率と、所定の成形条件に対応する成形品モデルの樹脂成形解析から計算された成形履歴情報と、固有値解析結果とに基づいて、成形品の成形履歴情報から成形品の収縮率を予測するための予測モデルを学習し、出力部50により出力し、収縮率予測モデル学習処理ルーチンを終了する。 In step S <b> 104, the prediction model learning unit 36 corresponds to the shrinkage rate due to cooling during molding and the predetermined molding conditions measured for an actual molded product obtained by injection molding of the resin material under the predetermined molding conditions. Based on the molding history information calculated from the resin molding analysis of the molded product model and the eigenvalue analysis result, a prediction model for predicting the shrinkage rate of the molded product from the molding history information of the molded product is learned, and the output unit 50 To terminate the shrinkage rate prediction model learning process routine.
<収縮率予測装置の動作>
次に、本発明の実施の形態に係る収縮率予測装置60の動作について説明する。
<Operation of shrinkage rate prediction device>
Next, the operation of the contraction rate prediction apparatus 60 according to the embodiment of the present invention will be described.
入力部70によって、所定の成形条件での樹脂材料の射出成形により得られる予測対象の成形品における形状データ、当該所定の成形条件および樹脂の材料特性を示す情報を入力として受け付けると、収縮率予測装置60によって、図7に示す収縮率予測処理ルーチンが実行される。 When the input unit 70 receives, as input, shape data of a molded article to be predicted obtained by injection molding of a resin material under a predetermined molding condition, and information indicating the predetermined molding condition and the material characteristics of the resin, the shrinkage rate prediction is performed. The contraction rate prediction processing routine shown in FIG.
まず、ステップS110において、成形解析部82は、入力された形状データ、所定の成形条件および樹脂の材料特性を示す情報に基づいて、当該所定の成形条件に対応して、所定の成形条件での樹脂材料の射出成形により得られる予測対象の成形品モデルの有限要素の樹脂成形解析を行い、有限要素毎に、成形履歴情報を計算する。 First, in step S110, the molding analysis unit 82 corresponds to the predetermined molding condition based on the input shape data, the predetermined molding condition, and information indicating the material characteristics of the resin. Resin molding analysis of a finite element of a molding model to be predicted obtained by injection molding of a resin material is performed, and molding history information is calculated for each finite element.
ステップS112において、固有値解析部84は、予測対象の成形品モデルの有限要素毎に、当該有限要素について得られた成形終了時の繊維配向テンソルに対して固有値解析を行い、3つの主軸方向(固有ベクトル)と各軸方向の配向度(固有値)λi (i=1,2,3)を求める。 In step S112, the eigenvalue analysis unit 84 performs eigenvalue analysis on the fiber orientation tensor at the end of molding obtained for the finite element for each finite element of the molding model to be predicted, and performs three principal axis directions (eigenvectors). ) And the degree of orientation (eigenvalue) λ i (i = 1, 2, 3) in each axial direction.
ステップS114において、収縮率予測部86は、予測対象の成形品モデルの有限要素毎に、収縮率予測モデル学習装置10により学習された予測モデルとしての予測式と、当該有限要素について得られた樹脂の温度変化、及び線収縮率と、当該有限要素についての成形終了時の繊維配向テンソルの固有値解析より得られた3つの主軸方向(固有ベクトル)と各軸方向の配向度(固有値)λi (i=1,2,3)とに基づいて、上記(1)式〜(2)式に従って、成形履歴情報に対する、当該有限要素の収縮率を予測することにより、予測対象の成形品の収縮率分布を予測して、出力部90により出力し、収縮率予測処理ルーチンを終了する。 In step S <b> 114, the shrinkage rate prediction unit 86 calculates a prediction formula as a prediction model learned by the shrinkage rate prediction model learning device 10 for each finite element of the prediction target molded product model, and the resin obtained for the finite element. The three principal axis directions (eigenvectors) obtained from the eigenvalue analysis of the fiber orientation tensor at the end of molding of the finite element and the degree of orientation (eigenvalue) λ i (i = 1, 2, 3) According to the above formulas (1) to (2), by predicting the shrinkage rate of the finite element for the molding history information, the shrinkage rate distribution of the molding to be predicted Is output by the output unit 90, and the contraction rate prediction processing routine is terminated.
以上説明したように、本発明の実施の形態に係る収縮率予測装置によれば、成形品の成形履歴情報から成形品の成形中の冷却による収縮率を予測するための予測モデルに基づいて、取得された成形履歴情報に対する、成形品の前記収縮率を予測することにより、成形品の成形中の冷却による収縮率を精度よく予測することができる。 As described above, according to the shrinkage rate prediction apparatus according to the embodiment of the present invention, based on the prediction model for predicting the shrinkage rate due to cooling during molding of the molded product from the molding history information of the molded product, By predicting the shrinkage rate of the molded product with respect to the acquired molding history information, the shrinkage rate due to cooling during molding of the molded product can be accurately predicted.
ここで、収縮率予測モデル学習装置により求めたakを使って、上記(1)〜(3)式から計算したEXが、実測値をどの程度再現できるかを検討した。その結果を図8に示す。両者の相関係数は0.92であり、(1)〜(3)式を用いて実測の収縮率をほぼ予測できることがわかる。 Here, using a k obtained by shrinkage prediction model learning device, the (1) ~ (3) E X calculated from equation was examined whether the measured values can extent reproduced. The result is shown in FIG. The correlation coefficient between them is 0.92, and it can be seen that the measured shrinkage rate can be almost predicted using the equations (1) to (3).
また、本発明の実施の形態に係る収縮率予測モデル学習装置によれば、所定の成形条件での樹脂材料の射出成形により得られた実際の成形品について測定した、成形中の冷却による収縮率と、所定の成形条件に対応する成形品モデルの樹脂成形解析から計算された成形履歴情報とに基づいて、成形品の成形履歴情報から前記成形品の収縮率を予測するための予測モデルを学習することにより、成形品の成形中の冷却による収縮率を精度よく予測することができる。 Further, according to the shrinkage rate prediction model learning device according to the embodiment of the present invention, the shrinkage rate due to cooling during molding, measured for an actual molded product obtained by injection molding of a resin material under predetermined molding conditions. And a prediction model for predicting the shrinkage rate of the molded product from the molding history information of the molded product based on the molding history information calculated from the resin molding analysis of the molded product model corresponding to a predetermined molding condition. By doing so, it is possible to accurately predict the shrinkage rate due to cooling during the molding of the molded product.
また、一般的な樹脂成形解析ソフトより計算される収縮率は線収縮率であるために、等方性で、しかも徐冷の場合しか正確な値を与えない。本発明の実施の形態では、実測の収縮率と樹脂成形解析から計算される繊維配向テンソルおよび充填後の温度変化により線収縮率を補正するために、異方性で、実成形時の急冷に対応した収縮率を予測することができる。 Further, since the shrinkage rate calculated by general resin molding analysis software is a linear shrinkage rate, it is isotropic and gives an accurate value only in the case of slow cooling. In the embodiment of the present invention, in order to correct the linear shrinkage rate by the fiber orientation tensor calculated from the actually measured shrinkage rate and the resin molding analysis and the temperature change after filling, it is anisotropic and is used for rapid cooling during actual molding. Corresponding shrinkage can be predicted.
また、樹脂成形品の反り変形は、成形品内の各部位の収縮が全体として生じた結果として発現する。本発明の実施の形態により、成形品の収縮率分布を高精度に予測できることから、その結果として成形品の反り変形解析の精度向上を図ることができる。 Further, the warp deformation of the resin molded product appears as a result of contraction of each part in the molded product as a whole. According to the embodiment of the present invention, the shrinkage ratio distribution of a molded product can be predicted with high accuracy. As a result, the accuracy of warping deformation analysis of the molded product can be improved.
なお、本発明は、上述した実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。 Note that the present invention is not limited to the above-described embodiment, and various modifications and applications are possible without departing from the gist of the present invention.
例えば、上記の実施の形態において、実測された収縮率と計算された成形履歴情報から、線形の重回帰分析により、収縮率の予測式を学習する場合を例に説明したが、これに限定されるものではなく、ニューラルネットワーク法などを使った非線形の重回帰分析を用いて、収縮率の予測モデルを学習するようにしてもよい。 For example, in the above-described embodiment, the case where the prediction formula of the shrinkage rate is learned by the linear multiple regression analysis from the actually measured shrinkage rate and the calculated molding history information is described as an example. Instead, the prediction model of the contraction rate may be learned using nonlinear multiple regression analysis using a neural network method or the like.
また、収縮率予測モデル学習装置と収縮率予測装置とを別の装置として構成する場合を例に説明したが、これに限定されるものではなく、収縮率予測モデル学習装置と収縮率予測装置とを一つの装置として構成するようにしてもよい。 Also, the case where the contraction rate prediction model learning device and the contraction rate prediction device are configured as separate devices has been described as an example, but the present invention is not limited to this, and the contraction rate prediction model learning device and the contraction rate prediction device May be configured as one apparatus.
また、平板以外の成形品に対して本発明を適用してもよい。また、本発明のプログラムは、記憶媒体に格納して提供するようにしてもよい。 Moreover, you may apply this invention with respect to molded articles other than a flat plate. The program of the present invention may be provided by being stored in a storage medium.
10 収縮率予測モデル学習装置
20、70 入力部
30、80 演算部
32、82 成形解析部
34、84 固有値解析部
36 予測モデル学習部
50、90 出力部
60 収縮率予測装置
86 収縮率予測部
DESCRIPTION OF SYMBOLS 10 Shrinkage rate prediction model learning apparatus 20, 70 Input part 30, 80 Calculation part 32, 82 Molding analysis part 34, 84 Eigenvalue analysis part 36 Prediction model learning part 50, 90 Output part 60 Shrinkage rate prediction apparatus 86 Shrinkage rate prediction part
Claims (9)
成形品の成形履歴情報から前記成形品の成形中の冷却による収縮率を予測するための予め学習された予測モデルに基づいて、前記成形履歴取得部によって取得された前記成形履歴情報に対する、前記成形品の前記収縮率を予測する収縮率予測部と、
を含む収縮率予測装置。 A molding history acquisition unit that acquires molding history information calculated from a resin molding analysis corresponding to the predetermined molding condition of a prediction target molded product model obtained by injection molding of a resin material under a predetermined molding condition;
The molding with respect to the molding history information acquired by the molding history acquisition unit based on a previously learned prediction model for predicting the shrinkage rate due to cooling during molding of the molded product from the molding history information of the molded product. A shrinkage rate prediction unit for predicting the shrinkage rate of the product,
A shrinkage rate prediction apparatus including:
前記収縮率予測部は、前記成形品モデルの要素毎に、前記予測モデルに基づいて、前記成形履歴取得部によって取得された前記成形履歴情報に対する、前記要素の収縮率を予測することにより、前記成形品の収縮率分布を予測する請求項1又は2記載の収縮率予測装置。 The molding history acquisition unit acquires molding history information calculated from a resin molding analysis of the element corresponding to the predetermined molding condition for each element of the molded product model,
The shrinkage rate prediction unit predicts the shrinkage rate of the element with respect to the molding history information acquired by the molding history acquisition unit based on the prediction model for each element of the molded product model. The shrinkage rate prediction apparatus according to claim 1, wherein the shrinkage rate distribution of a molded product is predicted.
前記収縮率予測部は、前記成形品モデルの要素毎に、前記繊維配向テンソルの固有値解析により得られる主軸座標系にて、冷却による収縮時にせん断成分が生じないと仮定することにより、前記予測モデルに基づいて、前記主軸座標系での収縮ひずみの各成分を求め、前記主軸座標系での収縮ひずみの各成分に基づいて、全体座標系での収縮ひずみの各成分を求め、前記全体座標系での収縮ひずみの各成分に基づいて、前記要素の収縮率を予測する請求項3記載の収縮率予測装置。 The molding history information represents the history that the resin material undergoes during molding, and includes the temperature change of the resin, the fiber orientation tensor at the end of molding, and the linear shrinkage rate,
The shrinkage rate prediction unit assumes that no shear component occurs during shrinkage due to cooling in the principal axis coordinate system obtained by eigenvalue analysis of the fiber orientation tensor for each element of the molded product model. Each component of the contraction strain in the main axis coordinate system, and each component of the contraction strain in the global coordinate system based on each component of the contraction strain in the main axis coordinate system. The shrinkage rate predicting apparatus according to claim 3, wherein the shrinkage rate of the element is predicted based on each component of shrinkage strain at.
前記実際の成形品について測定した、成形中の冷却による収縮率と、前記成形履歴取得部によって取得された成形履歴情報とに基づいて、成形品の成形履歴情報から前記成形品の収縮率を予測するための予測モデルを学習する学習部と
を含む収縮率予測モデル学習装置。 A molding history acquisition unit that acquires molding history information calculated from a resin molding analysis corresponding to the predetermined molding condition of an actual molded product obtained by injection molding of a resin material under a predetermined molding condition;
The shrinkage rate of the molded product is predicted from the molding history information of the molded product based on the shrinkage rate due to cooling during molding and the molding history information acquired by the molding history acquisition unit measured for the actual molded product. A contraction rate prediction model learning device including: a learning unit that learns a prediction model for performing the operation.
所定の成形条件での樹脂材料の射出成形により得られる予測対象の成形品モデルの、前記所定の成形条件に対応する樹脂成形解析から計算された成形履歴情報を取得する成形履歴取得部、及び
成形品の成形履歴情報から前記成形品の成形中の冷却による収縮率を予測するための予め学習された予測モデルに基づいて、前記成形履歴取得部によって取得された前記成形履歴情報に対する、前記成形品の前記収縮率を予測する収縮率予測部
として機能させるためのプログラム。 Computer
A molding history acquisition unit that acquires molding history information calculated from a resin molding analysis corresponding to the predetermined molding condition of a molding model to be predicted obtained by injection molding of a resin material under a predetermined molding condition, and molding The molded product with respect to the molding history information acquired by the molding history acquisition unit based on a previously learned prediction model for predicting the shrinkage rate due to cooling during molding of the molded product from the molding history information of the product. A program for functioning as a contraction rate predicting unit for predicting the contraction rate of.
所定の成形条件での樹脂材料の射出成形により得られた実際の成形品の、前記所定の成形条件に対応する樹脂成形解析から計算された成形履歴情報を取得する成形履歴取得部、及び
前記実際の成形品について測定した、成形中の冷却による収縮率と、前記成形履歴取得部によって取得された成形履歴情報とに基づいて、成形品の成形履歴情報から前記成形品の収縮率を予測するための予測モデルを学習する学習部
として機能させるためのプログラム。 Computer
A molding history acquisition unit that acquires molding history information calculated from a resin molding analysis corresponding to the predetermined molding condition of an actual molded product obtained by injection molding of a resin material under a predetermined molding condition, and the actual In order to predict the shrinkage rate of the molded product from the molding history information of the molded product based on the shrinkage rate due to cooling during molding and the molding history information acquired by the molding history acquisition unit. A program for functioning as a learning unit for learning prediction models.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018075372A JP6844577B2 (en) | 2018-04-10 | 2018-04-10 | Shrinkage rate prediction device, shrinkage rate prediction model learning device, and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018075372A JP6844577B2 (en) | 2018-04-10 | 2018-04-10 | Shrinkage rate prediction device, shrinkage rate prediction model learning device, and program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019181801A true JP2019181801A (en) | 2019-10-24 |
JP6844577B2 JP6844577B2 (en) | 2021-03-17 |
Family
ID=68338177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018075372A Active JP6844577B2 (en) | 2018-04-10 | 2018-04-10 | Shrinkage rate prediction device, shrinkage rate prediction model learning device, and program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6844577B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113466426A (en) * | 2021-06-30 | 2021-10-01 | 中国航发动力股份有限公司 | Method for obtaining shrinkage rate of sample casting and method for determining shrinkage rate of blade |
CN114354675A (en) * | 2021-12-31 | 2022-04-15 | 新凤鸣集团股份有限公司 | Polyester FDY fiber shrinkage rate test method |
JP7542399B2 (en) | 2020-10-27 | 2024-08-30 | ポリプラスチックス株式会社 | Method for predicting shrinkage behavior of resin molded product, method for predicting deformation of resin molded product, method for predicting factors of mold release failure of resin molded product, method for predicting occurrence of weak parts in resin molded product, method for determining molding conditions for resin molded product, method for designing mold for molding resin molded product, method for manufacturing resin molded product, program, and computer-readable recording medium |
JP7567410B2 (en) | 2020-12-02 | 2024-10-16 | 株式会社プロテリアル | Shrinkage ratio estimation device, shrinkage ratio estimation method, program, recording medium, and method for manufacturing extrusion molded product |
-
2018
- 2018-04-10 JP JP2018075372A patent/JP6844577B2/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7542399B2 (en) | 2020-10-27 | 2024-08-30 | ポリプラスチックス株式会社 | Method for predicting shrinkage behavior of resin molded product, method for predicting deformation of resin molded product, method for predicting factors of mold release failure of resin molded product, method for predicting occurrence of weak parts in resin molded product, method for determining molding conditions for resin molded product, method for designing mold for molding resin molded product, method for manufacturing resin molded product, program, and computer-readable recording medium |
JP7567410B2 (en) | 2020-12-02 | 2024-10-16 | 株式会社プロテリアル | Shrinkage ratio estimation device, shrinkage ratio estimation method, program, recording medium, and method for manufacturing extrusion molded product |
CN113466426A (en) * | 2021-06-30 | 2021-10-01 | 中国航发动力股份有限公司 | Method for obtaining shrinkage rate of sample casting and method for determining shrinkage rate of blade |
CN114354675A (en) * | 2021-12-31 | 2022-04-15 | 新凤鸣集团股份有限公司 | Polyester FDY fiber shrinkage rate test method |
CN114354675B (en) * | 2021-12-31 | 2023-08-22 | 新凤鸣集团股份有限公司 | Polyester FDY fiber shrinkage test method |
Also Published As
Publication number | Publication date |
---|---|
JP6844577B2 (en) | 2021-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019181801A (en) | Shrinkage rate prediction device, shrinkage rate prediction model learning device, and program | |
Baran et al. | A review on the mechanical modeling of composite manufacturing processes | |
US20100036646A1 (en) | Analytical model preparation method, and simulation system method for predicting molding failure | |
WO2013042600A1 (en) | Stress-strain relation simulation method, stress-strain relation simulation system, and stress-strain relation simulation program which use chaboche model | |
JP3809374B2 (en) | Stress-strain relationship simulation method and method for obtaining yield point in unloading process | |
US20230105651A1 (en) | Injection molding warp prediction | |
Vajragupta et al. | Micromechanical modeling approach to derive the yield surface for BCC and FCC steels using statistically informed microstructure models and nonlocal crystal plasticity | |
JP5241310B2 (en) | Method and apparatus for predicting deformed shape of molded product, program for predicting deformed shape and storage medium thereof | |
JP6061982B2 (en) | Method for structural analysis of anisotropic resin molding | |
JP2009233882A (en) | Void generation prediction method of resin molded article | |
Nau et al. | Improved calibration coefficients for the hole-drilling method considering the influence of the Poisson ratio | |
CN115938507A (en) | Injection Molding Warpage Prediction | |
Chockalingam et al. | Development of thermal and structural deformation model to predict the part build dimensional error in fused deposition modeling | |
JP2001293748A (en) | Injection molding process simulation apparatus and shape accuracy estimating method | |
JP5349859B2 (en) | Molded product shape prediction method, molded product manufacturing method, molded product shape prediction program and storage medium thereof | |
JP5889077B2 (en) | Molded product shrinkage deformation prediction apparatus, molded product shrinkage deformation prediction method, and molded product shrinkage deformation prediction program | |
JP5899004B2 (en) | Molded product warpage deformation prediction device, molded product warpage deformation prediction method, and molded product warpage deformation prediction program | |
Frank et al. | Real-time prediction of curing processes using model order reduction | |
Berger et al. | An arbitrary lagrangian eulerian formulation for tire production simulation | |
KR102091815B1 (en) | Intelligent super precision plastic mold design apparatus | |
US20180267011A1 (en) | Method of predicting deformation of resin molded article | |
Panteghini et al. | Numerical integration of a pressure‐dependent, non‐linear kinematic hardening constitutive model for large strain cyclic plasticity of metals | |
JP2002219739A (en) | Method for estimating amount of change in shape of injection-molded article | |
Henz et al. | Process modeling of composites by resin transfer molding: practical applications of sensitivity analysis for isothermal considerations | |
JP6053525B2 (en) | Method for predicting physical properties of resin molded products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190620 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200903 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210126 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210208 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6844577 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |