WO2013042600A1 - Stress-strain relation simulation method, stress-strain relation simulation system, and stress-strain relation simulation program which use chaboche model - Google Patents

Stress-strain relation simulation method, stress-strain relation simulation system, and stress-strain relation simulation program which use chaboche model Download PDF

Info

Publication number
WO2013042600A1
WO2013042600A1 PCT/JP2012/073392 JP2012073392W WO2013042600A1 WO 2013042600 A1 WO2013042600 A1 WO 2013042600A1 JP 2012073392 W JP2012073392 W JP 2012073392W WO 2013042600 A1 WO2013042600 A1 WO 2013042600A1
Authority
WO
WIPO (PCT)
Prior art keywords
stress
strain
model
plastic
simulation method
Prior art date
Application number
PCT/JP2012/073392
Other languages
French (fr)
Japanese (ja)
Inventor
正博 石橋
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013042600A1 publication Critical patent/WO2013042600A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0092Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials
    • G01N2203/0094Visco-elasticity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • G01N2203/0218Calculations based on experimental data

Definitions

  • the present invention relates to a method, a system, and a program for simulating a stress-strain relationship of a material using a Chaboche model.
  • Resin materials are greatly inferior to metal materials in rigidity, strength, and temperature characteristics, and their deformation behavior is complex and difficult to predict. Therefore, resin materials are often used only in parts regions with relatively low strength requirements.
  • the demand for fiber reinforced resin has been increased for reducing the weight of automobiles and home appliances, and it has become important to predict strength characteristics and deformation characteristics.
  • linear viscoelasticity analysis has been performed on resin materials.
  • plastic strain cannot be calculated by linear viscoelastic analysis. For this reason, there is a drawback in that it is impossible to simulate the phenomenon of a resin material that yields or constricts and breaks depending on the application.
  • a stress-strain relationship simulation by a finite element method using various mechanical constitutive equations in consideration of plastic strain is generally performed and used for design of a structure.
  • Finite element method analysis is to divide an object into small and finite regions (elements) where force, heat, magnetic field, etc. are uniform, and calculate the balance of forces, thereby calculating stress and strain at each position of the object. It is a technique to do.
  • main general-purpose software include ABAQUS (registered trademark), LS-DYNA (registered trademark), ANSYS (registered trademark), and the like.
  • Non-Patent Document 1 JL Chaboche, G. Rousselier, Journal of Pressure Vessel Technology, Vol.
  • 105, p.153-158 1983 is a mechanical constitutive equation for simulating the stress-strain relationship.
  • J. L. Chaboche and G. A plastic constitutive equation (hereinafter referred to as a Chaboche model) by Rousselier is known.
  • ABAQUS, LS-DYNA, ANSYS, etc. are mentioned as general purpose finite element method analysis software which can calculate the plastic constitutive equation by the Chaboche model.
  • the Chaboche model is an Armstrong-Frederick type nonlinear kinematic hardening theory and can calculate the Bauschinger effect at the time of load reversal. Further, it is possible to apply an isotropic hardening rule to a yield function to develop a composite hardening model.
  • isotropic hardening is a yield curved surface centered on stress 0, which represents the yield condition at which the material starts plastic deformation as a curved surface.
  • the center does not move and the radius increases by the amount of increased stress.
  • Curing which represents work hardening of a material caused by plastic deformation.
  • kinematic hardening is hardening in which the center moves in that direction without changing the radius by the amount of increase in stress after yielding or the amount of increase in back stress in the above-described yield surface.
  • a decrease in yield stress, that is, the Bauschinger effect can be represented.
  • Patent Document 1 Japanese Patent No. 3897477
  • the characteristic of the first back stress component ⁇ 1 is shown in FIG.
  • FIG. 10A A means for analyzing the characteristics of the second back stress component ⁇ 2 by dividing it into the low strain region b and dividing it into the low strain region c, the medium strain region d and the high strain region e is disclosed.
  • FIG. 10B a means for sequentially determining an isotropic hardening constant, a kinematic hardening constant during tension, and a kinematic hardening constant during compression when the stress-strain relationship is accurately simulated is disclosed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2008-142774
  • Patent Document 1 Unlike metal materials, resin materials have viscous properties, and it is known that the stress caused by a load varies with strain rate. It is also known that various plastic properties are exhibited depending on the type of resin material and load conditions. That is, in the resin material, it is necessary to consider the strain rate dependency of the stress, which is not necessary in the metal material.
  • An object of the present invention is to disclose a method for calculating the strain rate dependence of stress generated in a material by applying the Chaboche model, and a method for efficiently determining a material constant therefor, and to simulate a stress-strain relationship of the material. To provide a method, a simulation system, and a program.
  • the stress-strain relationship simulation method in the present invention is a mechanical constitutive equation in which a material constant is determined by a global nonlinear numerical optimization method, in which a viscosity function and an isotropic hardening model are introduced into the yield stress of the Chaboche model. Is used.
  • the stress-strain relationship simulation system according to the present invention includes an improved Chaboche model setting means for introducing a viscosity function and an isotropic hardening model into a yield stress calculation part of the Chaboche model, and a dynamic configuration of the improved Chaboche model by a global nonlinear numerical optimization method.
  • the stress-strain relationship simulation program according to the present invention includes a process for setting a mechanical constitutive equation in which a viscosity function and an isotropic hardening model are introduced to the yield stress of the Chaboche model, and a dynamics in which material constants are determined by a global numerical nonlinear optimization method It has a process of constitutive formula and a process of calculating stress and strain using a dynamic constitutive formula.
  • FIG. 10 is a flowchart showing a flow of parameter identification processing of Patent Document 2.
  • FIG. 1 is a block diagram showing the configuration of the stress-strain relationship simulation of this embodiment.
  • measurement data is obtained by performing various material tests such as uniaxial and biaxial tests such as tension, compression, stress relaxation, and creep.
  • the plastic strain calculation means 1 performs a process of calculating the plastic strain from the measurement data. In the case where the plastic strain cannot be obtained directly, a means for calculating the elastic modulus from the measurement data and calculating the plastic strain is included.
  • the plastic strain rate calculating means 2 performs a process of calculating the plastic strain rate from the time change of the plastic strain.
  • the viscosity function setting means 3 sets a viscosity function using the plastic strain rate as a parameter.
  • the set viscosity function expresses the strain rate dependence of stress.
  • the isotropic hardening model setting means 4 sets a stress function of an isotropic hardening model using plastic strain as a parameter.
  • the improved Chaboche model setting means 5 introduces the viscosity function and the stress function of the isotropic hardening model into the yield stress term of the dynamic constitutive equation of the Chaboche model. Generally, the back stress is expressed by a function having a plastic strain as a parameter.
  • the improved Chaboche model means a model in which a viscosity function and an isotropic hardening model are introduced into the yield stress term of the Chaboche model.
  • the material constant determination means 6 determines the material constant of the mechanical constitutive equation using a global nonlinear numerical optimization method.
  • the global nonlinear numerical optimization method (hereinafter referred to as global optimization approximation) is a kind of nonlinear least square method that can minimize the difference between data and an approximate value over a wide range without being limited to a local minimum point.
  • the stress-strain calculation means 7 sets a load condition when obtaining measurement data, calculates a stress and strain using a finite element method stress analysis method using a mechanical constitutive equation to which material constants are applied.
  • the display means 8 plots the measurement data as data points, and displays the stress-strain curves obtained by the simulation in a superimposed manner.
  • FIG. 2 is a flowchart of the stress-strain relationship simulation of this embodiment.
  • measurement data is acquired (step 10).
  • the measurement data is converted into data to determine the material constant (step 20), is applied to a dynamic constitutive equation for which the material constant is not determined, and the material constant is determined by global optimization approximation (step 30).
  • the determined material constant is applied to the dynamic constitutive equation to determine the dynamic constitutive equation (step 40).
  • a stress analysis by the finite element method is performed using the determined mechanical constitutive equation (step 50), and the result is displayed as a stress-strain curve (step 60).
  • FIG. 3 is a conceptual diagram of an improved Chaboche model 50 showing that an additional extended function 54 including a viscosity function 55 and an isotropic hardening model 56 is added to the yield stress 52 of the Chaboche model.
  • the Chaboche model 51 is adopted as the base of the dynamic constitutive equation, and an additional extended function 54 is given thereto.
  • the dynamic constitutive equation used here may be a self-made program, or the additional extended function 54 may be incorporated into a general-purpose finite element method analysis software by a user subroutine.
  • the Chaboche model 51 calculates the stress as the sum of the yield stress 52 and the back stress 53.
  • the back stress 53 is used for calculating the Bauschinger effect in a kinematic hardening model.
  • the yield stress 52 is a constant, but various functions can be further expanded.
  • a model in which various isotropic hardening models 56 and a viscosity function 55 having a strain rate as a variable are added to the calculation portion of the yield stress 52 is used.
  • FIG. 4 is a flowchart showing the flow of processing for determining the material constant according to the present embodiment.
  • the (stress, strain) measurement data group obtained by the measurement is converted into a (stress, plastic strain) data group in the plastic strain calculation means 1, and further in the plastic strain rate calculation means 2 (stress, plasticity). Strain, plastic strain rate) data group, and the data is taken into a mechanical constitutive equation whose plastic strain material constant is not determined (step 31).
  • the material constant is estimated by global optimization approximation (step 32).
  • the global optimization approximation a plurality of material constants that minimize the error between the measurement data and the approximate value can be determined simultaneously (step 33). Therefore, the material constant can be determined at a time, and the calculation steps can be reduced and the calculation time can be reduced.
  • the approximate portion may be a self-made program or commercially available mathematical expression processing software such as Maple (registered trademark) or Mathematica (registered trademark).
  • the dynamic constitutive equation is determined by this flow (step 34).
  • FIG. 5 is a diagram illustrating an example of the isotropic hardening model of the present embodiment.
  • an isotropic hardening model is defined as the sum of these two stress functions, where the stress function for converging the stress against the plastic strain is the convergence type and the diverging stress function is the divergent type.
  • a convergent stress function is suitable when the stress gradient is substantially constant at large strains, such as rubber materials.
  • a divergent stress function is suitable when the stress gradient with respect to strain does not decrease, as with some hard plastics. If the convergent stress function and the divergent stress function are each linearly combined with a coefficient, the coefficient can be determined as a material constant. As a result, an optimal isotropic hardening model is selected and used for the stress-strain relationship simulation.
  • the stress expressed as a function of the plastic strain rate is added to the yield stress calculation part as a viscosity function.
  • the ratio of the stress that changes with the strain rate corresponds to the material constant.
  • Example 1 according to the present invention will be described in detail.
  • a material test was performed using a resin material containing 30% glass fiber as a reinforcing fiber in an ABS resin material which is a thermoplastic resin material.
  • a uniaxial tensile test was performed under the condition of a strain rate of 1 [1 / s].
  • the strain rate of 1 [1 / s] means a tensile test rate at which a test piece having a certain length is doubled in one second.
  • measurement data of stress ⁇ and strain ⁇ for each time were obtained in pairs. That is, a measurement data group (time, strain, stress) was obtained.
  • the plastic strain ⁇ p was calculated from the (time, strain, stress) measurement data group.
  • the plastic strain ⁇ p was calculated using Equation 1.
  • E is the elastic modulus
  • ⁇ e the elastic strain.
  • the elastic modulus E is the ratio of stress ⁇ and the elastic strain epsilon e, in the small strain range of elastic strain epsilon e can be considered as equivalent to the strain epsilon. Therefore, the elastic modulus E can be calculated from Equation 2 by obtaining the stress change amount ⁇ in the minute strain range ⁇ from the (time, strain, stress) measurement data group.
  • Equation 3 the time variation of the plastic strain epsilon p, plastic strain rate (Equation 3) is calculated.
  • the plastic strain rate means the amount of change in plastic strain per unit time. That is, a data group (time, strain, plastic strain, plastic strain rate, stress) was obtained. From the obtained (time, strain, plastic strain, plastic strain rate, stress) data group, the (plastic strain, stress) data group was extracted and indicated by ⁇ in FIG.
  • the mechanical constitutive equation in the first embodiment is based on the Chaboche model, and the stress ⁇ is calculated as the sum of the yield stress ⁇ y and the back stress ⁇ as shown in Equation 4.
  • ⁇ y + ⁇ (4)
  • the viscosity function of the additional extended function is a function for expressing the strain rate dependency of stress.
  • a and B are material constants for expressing the strain rate dependence of the stress which differs for each material.
  • Example 1 Formula 6 was used as an isotropic hardening model of an extended function.
  • C, D, F is a material constant, representing that the stress is changed by plastic strain epsilon p.
  • Equation 7, which is the first term of Equation 6, is a convergent stress function that converges to stress C at a rate determined by D as the plastic strain ⁇ p increases.
  • Efuipushiron p of the second term of Equation 6 is a stress function of diverging. To the proportionality coefficient F, the stress is increased in proportion to the plastic strain epsilon p.
  • Example 1 the data constant (plastic strain, plastic strain rate, stress) data group obtained by converting the (time, strain, stress) measurement data group is used as a data point, and the material constants of the above mechanical constitutive equation are calculated at once by global optimization approximation. Were determined.
  • the global optimization approximation is performed using the programming function of the mathematical formula processing software Maple.
  • the material constant obtained in this way is substituted into the mechanical constitutive equation and used for the finite element method stress analysis.
  • the test conditions and constraint conditions of the material test when the measurement data was obtained were given as load conditions, and an analysis model of the resin material test piece shape was created.
  • ANSYS general-purpose finite element method analysis software
  • ANSYS was used to calculate a (stress, strain) data group.
  • the calculation result was transferred from ANSYS to Maple, and a stress-strain curve was displayed on Maple.
  • FIG. 7 shows the material test result data and the simulation result superimposed.
  • the stress-strain curve of the resin material simulated by the method of Example 1 based on the Chaboche model was in good agreement with the original material test results.
  • Example 2 according to the present invention will be described in detail.
  • a material test was performed using a resin material containing 30% glass fiber as a reinforcing fiber in an ABS resin material which is a thermoplastic resin material.
  • the uniaxial tensile test was performed by changing the strain rate in four ways of 1, 0.1, 0.01, and 0.001 [1 / s].
  • the strain rate of 0.001 [1 / s] means a tensile test rate at which a test piece having a certain length becomes 1.001 times longer after 1 second.
  • 0.01 [1 / s], 0.1 [1 / s], and 1 [1 / s] mean that a test piece having a certain length is 1.01 times and 1.1 times after 1 second, respectively. It means a tensile test speed that is twice as long.
  • data groups time, strain, stress
  • the plastic strain ⁇ p was calculated using Equation 1 for each time.
  • the plastic strain rate is obtained.
  • a (plastic strain, stress) data group for each test speed is indicated by ⁇ in FIG.
  • the viscosity function of the additional extension function is represented by Equation 10.
  • a and B are material constants.
  • Formula 11 was used as an isotropic hardening model of an extended function.
  • C, D, and F are material constants.
  • the back stress ⁇ was defined by Expression 12.
  • a (1-exp ( ⁇ b ⁇ p )) (12)
  • a and b are material constants.
  • Example 2 the material constants of the above mechanical constitutive equation were determined by global optimization approximation using data groups of four types of test speeds (plastic strain, plastic strain rate, stress) obtained by converting the material test data as data points. .
  • mathematical expression processing software Maple is used for approximation by global optimization approximation.
  • the material constant obtained in this way is substituted into the previous mechanical constitutive equation and used for finite element method stress analysis.
  • the test conditions and restraint conditions of the resin material test were given as load conditions, and an analysis model of the resin material test piece shape was created.
  • general-purpose finite element method analysis software ANSYS was used to calculate a (stress, strain) data group.
  • FIG. 9 shows the material test data for each test speed. As shown in FIG. 9, both the measurement data and the simulation result agreed well. That is, according to the method of Example 2, the stress-strain curve of the fiber reinforced resin material could be calculated accurately and easily.
  • a specific example of a resin material in which an ABS resin is reinforced with glass fiber is given.
  • the simulation according to the embodiment of the present invention is not limited to the resin material. Other than the resin material, the simulation according to the embodiment of the present invention can be used for a metal material, for example.
  • the present invention it is possible to efficiently simulate the stress-strain relationship of a material whose stress increases as the strain rate increases.
  • the stress-strain relationship can be accurately simulated for various materials.
  • the stress-strain relationship of various resin materials can be obtained efficiently and accurately. Therefore, a simulation result close to the actual use condition can be obtained even for a product that has not been used due to the characteristics of the resin material, and it is possible to estimate whether or not it can be applied. In addition, even in products that have been used for resin materials, it is possible to accurately estimate the difference in material properties by replacing another resin material through simulation. Therefore, the quality of the product can be improved simply and at low cost.

Abstract

In this simulation method, a plastic strain is calculated from stress data and strain data, and a plastic strain rate is calculated from the temporal change of the plastic strain. A viscosity function with the plastic strain rate as a parameter is set, and an isotropic hardening model with the plastic strain as a parameter is set. Further, in this simulation method, the viscosity function and the isotropic hardening model are introduced into a yield stress of a dynamic constitutive equation of the Chaboche model, and a material constant of the dynamic constitutive equation is determined by a global nonlinear numerical optimization method. Furthermore, in this simulation method, a stress and a strain are calculated using the determined dynamic constitutive equation.

Description

Chabocheモデルを用いた応力−ひずみ関係シミュレーション方法、応力−ひずみ関係シミュレーションシステム、応力−ひずみ関係シミュレーションプログラムStress-strain relationship simulation method, stress-strain relationship simulation system, stress-strain relationship simulation program using Chaboche model
本発明は、Chabocheモデルを用いて、材料の応力−ひずみ関係をシミュレーションする方法、そのシステムおよびプログラムに関する。 The present invention relates to a method, a system, and a program for simulating a stress-strain relationship of a material using a Chaboche model.
 樹脂材料は、剛性、強度、温度特性が金属材料に比べて大きく劣り、変形挙動が複雑で予測し難いことから、比較的強度要求の少ない部品領域に限定されて使用することが多かった。しかしながら近年、自動車や家電製品の軽量化のために繊維強化樹脂が車体や筐体材料として用いられる等、その需要が高まり、強度特性や変形特性を予測することが重要になってきた。
 樹脂材料に対しては、これまで線形粘弾性解析が一般に行われてきた。しかし、線形粘弾性解析では塑性ひずみを計算できない。そのため、用途によっては降伏したり、くびれて破壊したりする樹脂材料の現象をシミュレーションできないという欠点があった。
 一方、金属材料に対しては、塑性ひずみを考慮した様々な力学構成式を用いた有限要素法による応力−ひずみ関係シミュレーションが一般に行われ、構造物の設計に利用されてきた。有限要素法解析とは、力、熱、磁場等が均一である微小で有限な領域(要素)に物体を分割し、力の釣合いを計算することにより、物体の各位置の応力やひずみを算出する手法である。主な汎用ソフトとしては、ABAQUS(登録商標)、LS−DYNA(登録商標)、ANSYS(登録商標)等を挙げられる。
 応力−ひずみ関係をシミュレーションするための力学構成式としては、非特許文献1(J.L.Chaboche、G.Rousselier、Journal of Pressure Vessel Technology、Vol.105、p.153−158 1983)にあるような、J.L.ChabocheとG.Rousselierによる塑性構成式(以下Chabocheモデルと呼ぶ)が知られている。Chabocheモデルによる塑性構成式を計算可能な汎用有限要素法解析ソフトとしては、ABAQUS、LS−DYNA、ANSYS等を挙げられる。Chabocheモデルは、Armstrong−Frederick型の非線形移動硬化理論であり、負荷反転時のバウシンガ効果を計算可能である。また、降伏関数に等方硬化則を組み合わせて複合硬化モデルに発展させる等の応用も可能である。
 ここで、等方硬化とは、材料が塑性変形を開始する降伏条件を曲面で表した、応力0を中心とする降伏曲面において、中心は移動せずに、応力が増加した分だけ半径が広がる硬化であり、塑性変形により生じる材料の加工硬化を表している。
 また、移動硬化とは、前述の降伏曲面において、降伏後に応力が増加した分、または背応力が増加した分だけ、半径は変わらずにその方向に中心が移動する硬化であり、負荷反転後の降伏応力の低下、すなわちバウシンガ効果を表すことができる。
 特許文献1(特許3897477号公報)では、20%ひずみのような金属の大ひずみに対して、図10Aのように、第1背応力成分αの特性を、極低ひずみ領域aと非極低ひずみ領域bに分けて解析するとともに、第2背応力成分αの特性を、低ひずみ領域cと中ひずみ領域dと高ひずみ領域eに分けて解析する手段が開示されている。また、応力−ひずみ関係を正確にシミュレーションする際に、図10Bのように、等方硬化の定数、引張時の移動硬化定数、圧縮時の移動硬化定数を順次決定する手段が開示されている。
 特許文献2(特開2008−142774号公報)では、図11のように、一部の材料定数を先に決定し、その結果を入力した塑性構成式を用いた計算結果から残りの材料定数を決定することにより、材料定数決定の計算の収束性を向上させる方法が開示されている。
 また、特許文献1および特許文献2では、バウシンガ効果を考慮し、金属材料が塑性変形後に弾性回復により変形が戻るスプリングバック変形量を予測できる。
 金属材料とは異なり、樹脂材料は粘性特性を持つため、負荷によって生じる応力がひずみ速度によって変化することが知られている。また、樹脂材料の種類や負荷条件によって、様々な塑性特性を示すことが知られている。すなわち、樹脂材料では、金属材料では考慮する必要がなかった、応力のひずみ速度依存性を考慮する必要が生じる。
 このため、有限要素法により応力−ひずみ関係をシミュレーションする場合には、ひずみ速度による応力変化を精度よく表現する必要がある。しかしながら、特許文献1や特許文献2に開示されているような一般的な方法では、金属材料に関しては精度よくシミュレーションできるものの、ゴムから硬質プラスチックまで様々な種類がある樹脂材料の変形や応力−ひずみ関係を、正確にしかも手軽にシミュレーションすることは難しいという課題がある。
 また、応力−ひずみ関係をシミュレーションする場合、力学構成式としてChabocheモデルを用いることによってバウシンガ効果を表現できる。しかしながら、Chabocheモデルを樹脂材料に応用するための具体的な方法や、材料定数の効率的な決定法がないという課題がある。
 本発明の目的は、Chabocheモデルを応用して、材料に生じる応力のひずみ速度依存性を計算する方法、およびそのための材料定数を効率よく決定する方法を開示し、材料の応力−ひずみ関係のシミュレーション方法、シミュレーションシステムおよびプログラムを提供することにある。
Resin materials are greatly inferior to metal materials in rigidity, strength, and temperature characteristics, and their deformation behavior is complex and difficult to predict. Therefore, resin materials are often used only in parts regions with relatively low strength requirements. However, in recent years, the demand for fiber reinforced resin has been increased for reducing the weight of automobiles and home appliances, and it has become important to predict strength characteristics and deformation characteristics.
Conventionally, linear viscoelasticity analysis has been performed on resin materials. However, plastic strain cannot be calculated by linear viscoelastic analysis. For this reason, there is a drawback in that it is impossible to simulate the phenomenon of a resin material that yields or constricts and breaks depending on the application.
On the other hand, for a metal material, a stress-strain relationship simulation by a finite element method using various mechanical constitutive equations in consideration of plastic strain is generally performed and used for design of a structure. Finite element method analysis is to divide an object into small and finite regions (elements) where force, heat, magnetic field, etc. are uniform, and calculate the balance of forces, thereby calculating stress and strain at each position of the object. It is a technique to do. Examples of main general-purpose software include ABAQUS (registered trademark), LS-DYNA (registered trademark), ANSYS (registered trademark), and the like.
Non-Patent Document 1 (JL Chaboche, G. Rousselier, Journal of Pressure Vessel Technology, Vol. 105, p.153-158 1983) is a mechanical constitutive equation for simulating the stress-strain relationship. J. L. Chaboche and G. A plastic constitutive equation (hereinafter referred to as a Chaboche model) by Rousselier is known. ABAQUS, LS-DYNA, ANSYS, etc. are mentioned as general purpose finite element method analysis software which can calculate the plastic constitutive equation by the Chaboche model. The Chaboche model is an Armstrong-Frederick type nonlinear kinematic hardening theory and can calculate the Bauschinger effect at the time of load reversal. Further, it is possible to apply an isotropic hardening rule to a yield function to develop a composite hardening model.
Here, isotropic hardening is a yield curved surface centered on stress 0, which represents the yield condition at which the material starts plastic deformation as a curved surface. The center does not move and the radius increases by the amount of increased stress. Curing, which represents work hardening of a material caused by plastic deformation.
In addition, kinematic hardening is hardening in which the center moves in that direction without changing the radius by the amount of increase in stress after yielding or the amount of increase in back stress in the above-described yield surface. A decrease in yield stress, that is, the Bauschinger effect can be represented.
In Patent Document 1 (Japanese Patent No. 3897477), the characteristic of the first back stress component α 1 is shown in FIG. 10A with respect to a large strain of a metal such as 20% strain. A means for analyzing the characteristics of the second back stress component α 2 by dividing it into the low strain region b and dividing it into the low strain region c, the medium strain region d and the high strain region e is disclosed. In addition, as shown in FIG. 10B, a means for sequentially determining an isotropic hardening constant, a kinematic hardening constant during tension, and a kinematic hardening constant during compression when the stress-strain relationship is accurately simulated is disclosed.
In Patent Document 2 (Japanese Patent Application Laid-Open No. 2008-142774), as shown in FIG. 11, a part of material constants are determined first, and the remaining material constants are calculated from the calculation results using the plastic constitutive equation in which the results are input. A method for improving the convergence of the calculation of the material constant determination by determining is disclosed.
Further, in Patent Document 1 and Patent Document 2, it is possible to predict a springback deformation amount in which the metal material is deformed by elastic recovery after plastic deformation in consideration of the Bauschinger effect.
Unlike metal materials, resin materials have viscous properties, and it is known that the stress caused by a load varies with strain rate. It is also known that various plastic properties are exhibited depending on the type of resin material and load conditions. That is, in the resin material, it is necessary to consider the strain rate dependency of the stress, which is not necessary in the metal material.
For this reason, when simulating the stress-strain relationship by the finite element method, it is necessary to accurately represent the stress change due to the strain rate. However, in general methods as disclosed in Patent Document 1 and Patent Document 2, although metal materials can be accurately simulated, there are various types of deformation and stress-strain of resin materials ranging from rubber to hard plastic. There is a problem that it is difficult to accurately and easily simulate the relationship.
Also, when simulating the stress-strain relationship, the Bauschinger effect can be expressed by using the Chaboche model as a dynamic constitutive equation. However, there is a problem that there is no specific method for applying the Chaboche model to a resin material and an efficient method for determining a material constant.
An object of the present invention is to disclose a method for calculating the strain rate dependence of stress generated in a material by applying the Chaboche model, and a method for efficiently determining a material constant therefor, and to simulate a stress-strain relationship of the material. To provide a method, a simulation system, and a program.
 本発明における応力−ひずみ関係シミュレーション方法は、Chabocheモデルの降伏応力に粘性関数及び等方硬化モデルを導入した力学構成式を設定し、大域的非線形数値最適化法によって材料定数が決定した力学構成式を用いる。
 本発明における応力−ひずみ関係シミュレーションシステムは、Chabocheモデルの降伏応力算出部分に粘性関数と等方硬化モデルを導入する改良Chabocheモデル設定手段と、大域的非線形数値最適化法によって改良Chabocheモデルの力学構成式の材料定数を決定する大域的非線形数値最適化近似手段と、力学構成式を用いて応力及びひずみを算出する応力−ひずみ算出手段を有する。
 本発明における応力−ひずみ関係シミュレーションプログラムは、Chabocheモデルの降伏応力に粘性関数と等方硬化モデルを導入した力学構成式を設定する処理と、大域的数値非線形最適化法によって材料定数を決定した力学構成式の処理と、力学構成式を用いて応力及びひずみを算出する処理を有する。
The stress-strain relationship simulation method in the present invention is a mechanical constitutive equation in which a material constant is determined by a global nonlinear numerical optimization method, in which a viscosity function and an isotropic hardening model are introduced into the yield stress of the Chaboche model. Is used.
The stress-strain relationship simulation system according to the present invention includes an improved Chaboche model setting means for introducing a viscosity function and an isotropic hardening model into a yield stress calculation part of the Chaboche model, and a dynamic configuration of the improved Chaboche model by a global nonlinear numerical optimization method. A global nonlinear numerical optimization approximating means for determining a material constant of the equation; and a stress-strain calculating means for calculating stress and strain using a dynamic constitutive equation.
The stress-strain relationship simulation program according to the present invention includes a process for setting a mechanical constitutive equation in which a viscosity function and an isotropic hardening model are introduced to the yield stress of the Chaboche model, and a dynamics in which material constants are determined by a global numerical nonlinear optimization method It has a process of constitutive formula and a process of calculating stress and strain using a dynamic constitutive formula.
本発明の実施形態の応力−ひずみ関係シミュレーションの構成を示すブロック図である。It is a block diagram which shows the structure of the stress-strain relationship simulation of embodiment of this invention. 本発明の実施形態の応力−ひずみ関係シミュレーションのフローチャートである。It is a flowchart of the stress-strain relationship simulation of embodiment of this invention. 本発明の実施形態のChabocheモデルの機能を示す概念図である。It is a conceptual diagram which shows the function of the Chaboche model of embodiment of this invention. 本発明の実施形態の材料定数決定の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process of material constant determination of embodiment of this invention. 本発明の実施形態の等方硬化モデルを示す図である。It is a figure which shows the isotropic hardening model of embodiment of this invention. 本発明の実施例1の材料定数決定の一例を示す図である。It is a figure which shows an example of material constant determination of Example 1 of this invention. 本発明の実施例1の応力−ひずみ曲線表示の一例を示す図である。It is a figure which shows an example of the stress-strain curve display of Example 1 of this invention. 本発明の実施例2の材料定数決定の一例を示す図である。It is a figure which shows an example of material constant determination of Example 2 of this invention. 本発明の実施例2のる応力−ひずみ曲線表示の一例を示す図である。It is a figure which shows an example of the stress-strain curve display which is Example 2 of this invention. 特許文献1のひずみ領域を分割することを示した図である。It is the figure which showed dividing | segmenting the distortion area | region of patent document 1. FIG. 塑性構成式同定プログラムを示すフローチャートである。It is a flowchart which shows a plastic constitutive equation identification program. 特許文献2のパラメータ同定処理の流れを示すフローチャートである。10 is a flowchart showing a flow of parameter identification processing of Patent Document 2.
 〔実施形態〕以下、本発明の実施形態について、図面を参照して説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。
 図1は、本実施形態の応力−ひずみ関係シミュレーションの構成を示すブロック図である。まず、対象とする材料について、引張、圧縮、応力緩和、クリープ等の単軸や2軸試験等、種々の材料試験を行って測定データを取得する。
 塑性ひずみ算出手段1では、測定データから塑性ひずみを算出する処理を行う。塑性ひずみを直接求めることができない場合は、測定データから弾性率を算出し、塑性ひずみを算出する手段を含む。塑性ひずみ速度算出手段2では、塑性ひずみの時間変化から、塑性ひずみ速度を算出する処理を行う。
 粘性関数設定手段3では、塑性ひずみ速度をパラメータとする粘性関数を設定する。設定した粘性関数は、応力のひずみ速度依存性を表現している。等方硬化モデル設定手段4では、塑性ひずみをパラメータとする等方硬化モデルの応力関数を設定する。改良Chabocheモデル設定手段5では、Chabocheモデルの力学構成式の降伏応力項に、粘性関数および等方硬化モデルの応力関数を導入する。一般に、背応力は塑性ひずみをパラメータとする関数で表される。なお、本発明の実施形態において、改良Chabocheモデルとは、Chabocheモデルの降伏応力項に粘性関数と等方硬化モデルを導入したモデルを意味する。
 材料定数決定手段6では、大域的非線形数値最適化法を用いて、力学構成式の材料定数の決定を行う。大域的非線形数値最適化法(以下、大域最適化近似と呼ぶ)とは、局所的な最小点にとらわれずに広範囲にわたってデータと近似値の差を最小にできる非線形最小二乗法の一種である。応力−ひずみ算出手段7では、測定データを得る際の負荷条件を設定し、材料定数を当てはめた力学構成式を用い、有限要素法応力解析手法を用いて、応力及びひずみを算出する。表示手段8では、測定データをデータ点としてプロットし、また、シミュレーションで得られた応力−ひずみ曲線を重ね合わせて表示する。
 図2は、本実施形態の応力−ひずみ関係シミュレーションのフローチャートである。
 まず、測定データを取得する(ステップ10)。測定データは、材料定数を決定するためにデータ変換し(ステップ20)、材料定数が決定していない力学構成式に当てはめ、大域最適化近似によって材料定数を決定する(ステップ30)。決定した材料定数を力学構成式に当てはめ、力学構成式を決定する(ステップ40)。決定した力学構成式を用いて有限要素法による応力解析を行い(ステップ50)、その結果を応力−ひずみ曲線として表示する(ステップ60)。
 図3は、Chabocheモデルの降伏応力52に、粘性関数55と等方硬化モデル56からなる追加拡張機能54を追加することを示した改良Chabocheモデル50の概念図である。本実施形態では、力学構成式のベースにChabocheモデル51を採用し、これに追加拡張機能54を与える構成とした。ここで用いる力学構成式は自作プログラムとしてもよく、追加拡張機能54をユーザサブルーチンで汎用有限要素法解析ソフトに組み込んで用いてもよい。
 一般にChabocheモデル51では、応力を降伏応力52と背応力53の和として算出する。ここで背応力53は、移動硬化モデルでバウシンガ効果の計算に使われる。通常、降伏応力52は定数であるが、これに種々の関数を追加拡張できる。本実施形態では、降伏応力52の算出部分に、種々の等方硬化モデル56と、ひずみ速度を変数とする粘性関数55を追加するモデルを用いる。
 図4は、本実施形態に係る材料定数決定の処理の流れを示すフローチャートである。本実施形態では、測定によって得られた(応力、ひずみ)測定データ群を、塑性ひずみ算出手段1において(応力、塑性ひずみ)データ群に変換し、さらに塑性ひずみ速度算出手段2において(応力、塑性ひずみ、塑性ひずみ速度)データ群に変換し、塑性ひずみ材料定数が決定していない力学構成式にデータを取り込む(ステップ31)。取り込んだデータをもとに、大域最適化近似によって材料定数を見積もる(ステップ32)。大域最適化近似を用いると、測定データと近似値との誤差が最小となるような材料定数を同時に複数決定することができる(ステップ33)。
 そのため、材料定数を一度に決定することができ、計算ステップの削減と計算時間の短縮が実現できる。この近似部分は自作プログラムを用いても、Maple(登録商標)やMathematica(登録商標)等の市販の数式処理ソフトを用いてもよい。このフローによって、力学構成式が決定する(ステップ34)。
 図5は、本実施形態の等方硬化モデルの例を示す図である。塑性ひずみに対して応力が収束する応力関数を収束型、発散する応力関数を発散型とし、この二つの応力関数の和として等方硬化モデルを定義した例である。例えば、ゴム材料のように、大ひずみでは応力勾配がほぼ一定になるような場合には、収束型の応力関数が適している。また、ある種の硬質プラスチックのように、ひずみに対する応力勾配が減少しない場合には、発散型の応力関数が適している。収束型応力関数と発散型応力関数のそれぞれに係数をかけて線形結合させておけば、係数を材料定数として決定することができる。その結果、最適な等方硬化モデルが選択され、応力−ひずみ関係のシミュレーションに使用される。
 さらに、降伏応力の算出部分には、塑性ひずみ速度の関数で表した応力を粘性関数として追加している。粘性関数においては、ひずみ速度に対して変化する応力の割合が材料定数に相当する。これらの機能が追加拡張された力学構成式を用いることによって、多様な樹脂材料の変形や応力−ひずみ関係を正確にシミュレーションすることが可能となる。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings. However, the preferred embodiments described below are technically preferable for carrying out the present invention, but the scope of the invention is not limited to the following.
FIG. 1 is a block diagram showing the configuration of the stress-strain relationship simulation of this embodiment. First, with respect to the target material, measurement data is obtained by performing various material tests such as uniaxial and biaxial tests such as tension, compression, stress relaxation, and creep.
The plastic strain calculation means 1 performs a process of calculating the plastic strain from the measurement data. In the case where the plastic strain cannot be obtained directly, a means for calculating the elastic modulus from the measurement data and calculating the plastic strain is included. The plastic strain rate calculating means 2 performs a process of calculating the plastic strain rate from the time change of the plastic strain.
The viscosity function setting means 3 sets a viscosity function using the plastic strain rate as a parameter. The set viscosity function expresses the strain rate dependence of stress. The isotropic hardening model setting means 4 sets a stress function of an isotropic hardening model using plastic strain as a parameter. The improved Chaboche model setting means 5 introduces the viscosity function and the stress function of the isotropic hardening model into the yield stress term of the dynamic constitutive equation of the Chaboche model. Generally, the back stress is expressed by a function having a plastic strain as a parameter. In the embodiment of the present invention, the improved Chaboche model means a model in which a viscosity function and an isotropic hardening model are introduced into the yield stress term of the Chaboche model.
The material constant determination means 6 determines the material constant of the mechanical constitutive equation using a global nonlinear numerical optimization method. The global nonlinear numerical optimization method (hereinafter referred to as global optimization approximation) is a kind of nonlinear least square method that can minimize the difference between data and an approximate value over a wide range without being limited to a local minimum point. The stress-strain calculation means 7 sets a load condition when obtaining measurement data, calculates a stress and strain using a finite element method stress analysis method using a mechanical constitutive equation to which material constants are applied. The display means 8 plots the measurement data as data points, and displays the stress-strain curves obtained by the simulation in a superimposed manner.
FIG. 2 is a flowchart of the stress-strain relationship simulation of this embodiment.
First, measurement data is acquired (step 10). The measurement data is converted into data to determine the material constant (step 20), is applied to a dynamic constitutive equation for which the material constant is not determined, and the material constant is determined by global optimization approximation (step 30). The determined material constant is applied to the dynamic constitutive equation to determine the dynamic constitutive equation (step 40). A stress analysis by the finite element method is performed using the determined mechanical constitutive equation (step 50), and the result is displayed as a stress-strain curve (step 60).
FIG. 3 is a conceptual diagram of an improved Chaboche model 50 showing that an additional extended function 54 including a viscosity function 55 and an isotropic hardening model 56 is added to the yield stress 52 of the Chaboche model. In the present embodiment, the Chaboche model 51 is adopted as the base of the dynamic constitutive equation, and an additional extended function 54 is given thereto. The dynamic constitutive equation used here may be a self-made program, or the additional extended function 54 may be incorporated into a general-purpose finite element method analysis software by a user subroutine.
In general, the Chaboche model 51 calculates the stress as the sum of the yield stress 52 and the back stress 53. Here, the back stress 53 is used for calculating the Bauschinger effect in a kinematic hardening model. Usually, the yield stress 52 is a constant, but various functions can be further expanded. In this embodiment, a model in which various isotropic hardening models 56 and a viscosity function 55 having a strain rate as a variable are added to the calculation portion of the yield stress 52 is used.
FIG. 4 is a flowchart showing the flow of processing for determining the material constant according to the present embodiment. In the present embodiment, the (stress, strain) measurement data group obtained by the measurement is converted into a (stress, plastic strain) data group in the plastic strain calculation means 1, and further in the plastic strain rate calculation means 2 (stress, plasticity). Strain, plastic strain rate) data group, and the data is taken into a mechanical constitutive equation whose plastic strain material constant is not determined (step 31). Based on the acquired data, the material constant is estimated by global optimization approximation (step 32). When the global optimization approximation is used, a plurality of material constants that minimize the error between the measurement data and the approximate value can be determined simultaneously (step 33).
Therefore, the material constant can be determined at a time, and the calculation steps can be reduced and the calculation time can be reduced. The approximate portion may be a self-made program or commercially available mathematical expression processing software such as Maple (registered trademark) or Mathematica (registered trademark). The dynamic constitutive equation is determined by this flow (step 34).
FIG. 5 is a diagram illustrating an example of the isotropic hardening model of the present embodiment. This is an example in which an isotropic hardening model is defined as the sum of these two stress functions, where the stress function for converging the stress against the plastic strain is the convergence type and the diverging stress function is the divergent type. For example, a convergent stress function is suitable when the stress gradient is substantially constant at large strains, such as rubber materials. Also, a divergent stress function is suitable when the stress gradient with respect to strain does not decrease, as with some hard plastics. If the convergent stress function and the divergent stress function are each linearly combined with a coefficient, the coefficient can be determined as a material constant. As a result, an optimal isotropic hardening model is selected and used for the stress-strain relationship simulation.
Furthermore, the stress expressed as a function of the plastic strain rate is added to the yield stress calculation part as a viscosity function. In the viscosity function, the ratio of the stress that changes with the strain rate corresponds to the material constant. By using a mechanical constitutive equation in which these functions are additionally expanded, it becomes possible to accurately simulate deformations and stress-strain relationships of various resin materials.
本発明に係る実施例1について詳細に説明する。実施例1では、熱可塑性樹脂材料であるABS樹脂材料に強化繊維としてガラス繊維を30%含有させた樹脂材料を用いて材料試験を行った。ここでは、ひずみ速度が1[1/s]の条件で単軸引張試験を行った。ただし、ひずみ速度が1[1/s]とは、ある長さの試験片が1秒間で2倍の長さになる引張試験速度を意味する。
 樹脂材料試験の結果、時間ごとの応力σとひずみεの測定データが対になって得られた。すなわち、(時間、ひずみ、応力)測定データ群が得られた。
 次に、(時間、ひずみ、応力)測定データ群から、塑性ひずみεを算出した。塑性ひずみεは式1を使って計算した。
 ε=ε−ε=ε−σ/E(1)
 式1において、Eは弾性率、εは弾性ひずみである。
 ここで、弾性率Eは、応力σと弾性ひずみεの比であり、微小なひずみの範囲においては、弾性ひずみεはひずみεと等しいとみなすことができる。そのため、(時間、ひずみ、応力)測定データ群から、微小ひずみ範囲δεにおける応力変化量δσを求めることによって、弾性率Eを式2から算出することができる。
 E=δσ/δε(2)
 (時間、ひずみ、応力)測定データ群と弾性率Eがあれば、式1を使って塑性ひずみεが計算される。
 また、塑性ひずみεの時間変化から、塑性ひずみ速度(式3)が計算される。塑性ひずみ速度とは、単位時間当たりの塑性ひずみの変化量を意味する。
Figure JPOXMLDOC01-appb-I000001
 すなわち、(時間、ひずみ、塑性ひずみ、塑性ひずみ速度、応力)データ群が得られた。得られた(時間、ひずみ、塑性ひずみ、塑性ひずみ速度、応力)データ群から、(塑性ひずみ、応力)データ群を抜き出して図6に○で示した。
 また、材料試験から得られた(時間、ひずみ、応力)データ群を、(塑性ひずみ、応力)データ群に変換し、これらをデータ点として、大域最適化近似によって材料定数を決定した。なお、近似で求めたデータ点は、図6には実線で示した。
 実施例1における力学構成式は、Chabocheモデルをベースにしており、式4のように、応力σは降伏応力σと背応力αの和として算出される。
 σ=σ+α(4)
 追加拡張機能の粘性関数は、応力のひずみ速度依存性を表現するための関数であり、実施例1では式5とした。
Figure JPOXMLDOC01-appb-I000002
 A、Bは材料ごとに異なる応力のひずみ速度依存性を表現するための材料定数である。
 実施例1では、拡張機能の等方硬化モデルとして式6を用いた。
 C[1−exp(−Dε)]+Fε(6)
 C、D、Fは材料定数であり、塑性ひずみεによって応力が変化することを表現する。
 式6の第一項である式7は収束型の応力関数であり、塑性ひずみεの増加に対して、Dで決まる速さで応力Cに収束する。
 C[1−exp(−Dε)](7)
 式6の第二項のFεは発散型の応力関数である。比例係数をFとするため、塑性ひずみεに比例して応力が増加する。このように、収束型の応力関数と発散型の応力関数の線形結合の形にしておけば、試験データと一致するように材料定数を決定することによって、最適な等方硬化モデルを得ることができる。
 Chabocheモデルの初期降伏応力をkとすれば、実施例1の力学構成式の降伏応力σは式8で表される。
Figure JPOXMLDOC01-appb-I000003
 実施例1では、背応力αを式9で定義した。
 α=a(1−exp(−bε))+c(1−exp(−dε))(9)
 a、b、c、dが材料定数である。
 実施例1では、(時間、ひずみ、応力)測定データ群を変換した(塑性ひずみ、塑性ひずみ速度、応力)データ群をデータ点として、上記力学構成式の材料定数を大域最適化近似によって一度に決定した。実施例1では、大域最適化近似は数式処理ソフトMapleのプログラミング機能を利用して行った。こうして得られた材料定数は、力学構成式に代入され、有限要素法応力解析に用いられる。
 ここでは、確認のために、測定データを得た際の材料試験の試験条件と拘束条件を負荷条件として与え、樹脂材料試験片形状の解析モデルを作成した。応力解析には汎用有限要素法解析ソフトANSYSを用い、(応力、ひずみ)データ群の算出を行った。その計算結果をANSYSからMapleに引き渡し、Maple上で応力−ひずみ曲線表示を行った。
 材料試験結果データとシミュレーション結果を重ねて示したものが図7である。
Chabocheモデルをベースにした実施例1の方法でシミュレーションした樹脂材料の応力−ひずみ曲線は、元の材料試験結果とよく一致した。
Example 1 according to the present invention will be described in detail. In Example 1, a material test was performed using a resin material containing 30% glass fiber as a reinforcing fiber in an ABS resin material which is a thermoplastic resin material. Here, a uniaxial tensile test was performed under the condition of a strain rate of 1 [1 / s]. However, the strain rate of 1 [1 / s] means a tensile test rate at which a test piece having a certain length is doubled in one second.
As a result of the resin material test, measurement data of stress σ and strain ε for each time were obtained in pairs. That is, a measurement data group (time, strain, stress) was obtained.
Next, the plastic strain ε p was calculated from the (time, strain, stress) measurement data group. The plastic strain ε p was calculated using Equation 1.
ε p = ε−ε e = ε−σ / E (1)
In Equation 1, E is the elastic modulus and ε e is the elastic strain.
Herein, the elastic modulus E is the ratio of stress σ and the elastic strain epsilon e, in the small strain range of elastic strain epsilon e can be considered as equivalent to the strain epsilon. Therefore, the elastic modulus E can be calculated from Equation 2 by obtaining the stress change amount δσ in the minute strain range δε from the (time, strain, stress) measurement data group.
E = δσ / δε (2)
(Time, strain, stress) If there is a measurement data group and an elastic modulus E, the plastic strain ε p is calculated using Equation 1.
Also, the time variation of the plastic strain epsilon p, plastic strain rate (Equation 3) is calculated. The plastic strain rate means the amount of change in plastic strain per unit time.
Figure JPOXMLDOC01-appb-I000001
That is, a data group (time, strain, plastic strain, plastic strain rate, stress) was obtained. From the obtained (time, strain, plastic strain, plastic strain rate, stress) data group, the (plastic strain, stress) data group was extracted and indicated by ○ in FIG.
Further, the (time, strain, stress) data group obtained from the material test was converted into a (plastic strain, stress) data group, and the material constants were determined by global optimization approximation using these as data points. The data points obtained by approximation are indicated by solid lines in FIG.
The mechanical constitutive equation in the first embodiment is based on the Chaboche model, and the stress σ is calculated as the sum of the yield stress σ y and the back stress α as shown in Equation 4.
σ = σ y + α (4)
The viscosity function of the additional extended function is a function for expressing the strain rate dependency of stress.
Figure JPOXMLDOC01-appb-I000002
A and B are material constants for expressing the strain rate dependence of the stress which differs for each material.
In Example 1, Formula 6 was used as an isotropic hardening model of an extended function.
C [1-exp (−Dε p )] + Fε p (6)
C, D, F is a material constant, representing that the stress is changed by plastic strain epsilon p.
Equation 7, which is the first term of Equation 6, is a convergent stress function that converges to stress C at a rate determined by D as the plastic strain ε p increases.
C [1-exp (−Dε p )] (7)
Efuipushiron p of the second term of Equation 6 is a stress function of diverging. To the proportionality coefficient F, the stress is increased in proportion to the plastic strain epsilon p. In this way, if it is in the form of a linear combination of a convergent stress function and a divergent stress function, an optimal isotropic hardening model can be obtained by determining the material constant so that it matches the test data. it can.
If the initial yield stress of the Chaboche model is k, the yield stress σ y of the mechanical constitutive equation of Example 1 is expressed by Equation 8.
Figure JPOXMLDOC01-appb-I000003
In Example 1, the back stress α was defined by Equation 9.
α = a (1−exp (−bε p )) + c (1−exp (−dε p )) (9)
a, b, c, and d are material constants.
In Example 1, the data constant (plastic strain, plastic strain rate, stress) data group obtained by converting the (time, strain, stress) measurement data group is used as a data point, and the material constants of the above mechanical constitutive equation are calculated at once by global optimization approximation. Were determined. In the first embodiment, the global optimization approximation is performed using the programming function of the mathematical formula processing software Maple. The material constant obtained in this way is substituted into the mechanical constitutive equation and used for the finite element method stress analysis.
Here, for confirmation, the test conditions and constraint conditions of the material test when the measurement data was obtained were given as load conditions, and an analysis model of the resin material test piece shape was created. For stress analysis, general-purpose finite element method analysis software ANSYS was used to calculate a (stress, strain) data group. The calculation result was transferred from ANSYS to Maple, and a stress-strain curve was displayed on Maple.
FIG. 7 shows the material test result data and the simulation result superimposed.
The stress-strain curve of the resin material simulated by the method of Example 1 based on the Chaboche model was in good agreement with the original material test results.
本発明に係る実施例2について詳細に説明する。実施例1と同様に、熱可塑性樹脂材料であるABS樹脂材料に強化繊維としてガラス繊維を30%含有させた樹脂材料を用いて材料試験を行った。ここでは、ひずみ速度を1、0.1、0.01、0.001[1/s]の4通りに変化させて単軸引張試験を行った。ここで、ひずみ速度が0.001[1/s]とは、ある長さの試験片が1秒後に1.001倍の長さになる引張試験速度を意味する。同様に、0.01[1/s]、0.1[1/s]、1[1/s]とは、それぞれある長さの試験片が1秒後に1.01倍、1.1倍、2倍の長さになる引張試験速度を意味する。
 樹脂材料試験の結果、測定データとして、試験速度ごとに(時間、ひずみ、応力)データ群が得られた。4通りの試験速度の測定データにおいて、それぞれの時間ごとに、式1を使って塑性ひずみεを計算した。さらに、時間による塑性ひずみεの変化から塑性ひずみ速度(式(3))を計算し、(時間、ひずみ、塑性ひずみ、塑性ひずみ速度、応力)データ群が得られた。得られたデータのうち、試験速度ごとの(塑性ひずみ、応力)データ群を、図8に○で示した。
 実施例2では、追加拡張機能の粘性関数は式10とした。
Figure JPOXMLDOC01-appb-I000004
 A、Bは材料定数である。
 実施例2では、拡張機能の等方硬化モデルとして式11を用いた。
 C×In(Dε−F)(11)
 C、D、Fは材料定数である。
 実施例2では、式12で背応力αを定義した。
 α=a(1−exp(−bε))(12)
 a、bが材料定数である。
 実施例2では、材料試験データを変換した、4通りの試験速度の(塑性ひずみ、塑性ひずみ速度、応力)データ群をデータ点として、上記力学構成式の材料定数を大域最適化近似によって決定した。実施例2では、大域最適化近似による近似に数式処理ソフトMapleを使用した。こうして得られた材料定数は、先の力学構成式に代入され、有限要素法応力解析に用いられる。
 ここでは、確認のために、樹脂材料試験の試験条件と拘束条件を負荷条件として与え、樹脂材料試験片形状の解析モデルを作成した。応力解析には汎用有限要素法解析ソフトANSYSを用い、(応力、ひずみ)データ群の算出を行った。その計算結果をANSYSからファイルに書出し、Mapleで読み込んで応力−ひずみ曲線を表示した。
 各試験速度の材料試験データと重ねて図9に示した。図9の通り、測定データとシミュレーション結果の両者はよく一致した。すなわち、実施例2の方法によれば、繊維強化された樹脂材料の応力−ひずみ曲線を精度良く、しかも簡便に算出することができた。
 本発明の実施形態においては、ABS樹脂をガラス繊維で強化した樹脂材料の具体例を挙げている。しかし、本発明の実施形態に係わるシミュレーションは、樹脂材料に限定されない。樹脂材料以外では、例えば金属材料などにも本発明の実施形態に係わるシミュレーションを用いることができる。
 本発明によれば、ひずみ速度が大きいほど応力が大きくなる材料の応力−ひずみ関係を効率的にシミュレーションすることが可能になる。また、多様な材料に関して、応力−ひずみ関係を正確にシミュレーションすることが可能になる。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2011年9月19日に出願された日本出願特願2011−203948を基礎とする優先権を主張し、その開示の全てをここに取り込む。
Example 2 according to the present invention will be described in detail. In the same manner as in Example 1, a material test was performed using a resin material containing 30% glass fiber as a reinforcing fiber in an ABS resin material which is a thermoplastic resin material. Here, the uniaxial tensile test was performed by changing the strain rate in four ways of 1, 0.1, 0.01, and 0.001 [1 / s]. Here, the strain rate of 0.001 [1 / s] means a tensile test rate at which a test piece having a certain length becomes 1.001 times longer after 1 second. Similarly, 0.01 [1 / s], 0.1 [1 / s], and 1 [1 / s] mean that a test piece having a certain length is 1.01 times and 1.1 times after 1 second, respectively. It means a tensile test speed that is twice as long.
As a result of the resin material test, data groups (time, strain, stress) for each test speed were obtained as measurement data. In the measurement data of four kinds of test speeds, the plastic strain ε p was calculated using Equation 1 for each time. Moreover, to calculate the plastic strain rate from the change in the plastic strain epsilon p with time (equation (3)), (time, strain, plastic strain, plastic strain rate, stress) data group is obtained. Among the obtained data, a (plastic strain, stress) data group for each test speed is indicated by ◯ in FIG.
In Example 2, the viscosity function of the additional extension function is represented by Equation 10.
Figure JPOXMLDOC01-appb-I000004
A and B are material constants.
In Example 2, Formula 11 was used as an isotropic hardening model of an extended function.
C × In (Dε p −F) (11)
C, D, and F are material constants.
In Example 2, the back stress α was defined by Expression 12.
α = a (1-exp (−bε p )) (12)
a and b are material constants.
In Example 2, the material constants of the above mechanical constitutive equation were determined by global optimization approximation using data groups of four types of test speeds (plastic strain, plastic strain rate, stress) obtained by converting the material test data as data points. . In the second embodiment, mathematical expression processing software Maple is used for approximation by global optimization approximation. The material constant obtained in this way is substituted into the previous mechanical constitutive equation and used for finite element method stress analysis.
Here, for confirmation, the test conditions and restraint conditions of the resin material test were given as load conditions, and an analysis model of the resin material test piece shape was created. For stress analysis, general-purpose finite element method analysis software ANSYS was used to calculate a (stress, strain) data group. The calculation result was written from ANSYS to a file and read with Maple to display a stress-strain curve.
FIG. 9 shows the material test data for each test speed. As shown in FIG. 9, both the measurement data and the simulation result agreed well. That is, according to the method of Example 2, the stress-strain curve of the fiber reinforced resin material could be calculated accurately and easily.
In the embodiment of the present invention, a specific example of a resin material in which an ABS resin is reinforced with glass fiber is given. However, the simulation according to the embodiment of the present invention is not limited to the resin material. Other than the resin material, the simulation according to the embodiment of the present invention can be used for a metal material, for example.
According to the present invention, it is possible to efficiently simulate the stress-strain relationship of a material whose stress increases as the strain rate increases. In addition, the stress-strain relationship can be accurately simulated for various materials.
Although the present invention has been described with reference to the exemplary embodiments and examples, the present invention is not limited to the above exemplary embodiments and examples. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2011-203948 for which it applied on September 19, 2011, and takes in those the indications of all here.
 本発明によれば、多様な樹脂材料の応力−ひずみ関係を効率的かつ正確に求めることができる。そのため、樹脂材料の特性上、使用実績がなかった製品においても、実使用条件に近いシミュレーション結果を得ることができ、適用できるか否かを見積もることが可能となる。また、これまで樹脂材料の使用実績がある製品においても、シミュレーションを通じて、別の樹脂材料を置き換えることによる材料特性の違いを正確に見積もることが可能となる。そのため、簡便かつ低コストで製品の品質を向上することができる。 According to the present invention, the stress-strain relationship of various resin materials can be obtained efficiently and accurately. Therefore, a simulation result close to the actual use condition can be obtained even for a product that has not been used due to the characteristics of the resin material, and it is possible to estimate whether or not it can be applied. In addition, even in products that have been used for resin materials, it is possible to accurately estimate the difference in material properties by replacing another resin material through simulation. Therefore, the quality of the product can be improved simply and at low cost.
1 塑性ひずみ算出手段
2 塑性ひずみ速度算出手段
3 粘性関数設定手段
4 等方硬化モデル設定手段
5 改良Chabocheモデル設定手段
6 材料定数決定手段
7 応力−ひずみ算出手段
8 表示手段
50 改良Chabocheモデル
51 Chabocheモデル
52 降伏応力
53 背応力(移動硬化モデル)
54 追加拡張機能
55 粘性関数
56 等方硬化モデル
DESCRIPTION OF SYMBOLS 1 Plastic strain calculation means 2 Plastic strain rate calculation means 3 Viscosity function setting means 4 Isotropic hardening model setting means 5 Improved Chaboche model setting means 6 Material constant determination means 7 Stress-strain calculation means 8 Display means 50 Improved Chaboche model 51 Chaboche model 52 Yield stress 53 Back stress (kinematic hardening model)
54 Additional extended functions 55 Viscosity function 56 Isotropic hardening model

Claims (10)

  1. Chabocheモデルの降伏応力に粘性関数及び等方硬化モデルを導入した力学構成式を設定し、大域的非線形数値最適化法によって材料定数が決定した前記力学構成式を用いることを特徴とする応力−ひずみ関係シミュレーション方法。 Stress-strain, characterized by setting a mechanical constitutive equation in which a viscosity function and an isotropic hardening model are introduced to the yield stress of the Chaboche model, and using the mechanical constitutive equation whose material constants are determined by a global nonlinear numerical optimization method Relationship simulation method.
  2. 応力データ及びひずみデータから塑性ひずみを算出し、
    前記等方硬化モデルに前記塑性ひずみを設定することを特徴とする請求項1の応力−ひずみ関係シミュレーション方法。
    Calculate plastic strain from stress data and strain data,
    2. The stress-strain relationship simulation method according to claim 1, wherein the plastic strain is set in the isotropic hardening model.
  3. 応力データ及びひずみデータから塑性ひずみを算出し、
    前記塑性ひずみの時間変化から塑性ひずみ速度を算出し、
    前記粘性関数に前記塑性ひずみ速度を設定することを特徴とする請求項1または2の応力−ひずみ関係シミュレーション方法。
    Calculate plastic strain from stress data and strain data,
    Calculate the plastic strain rate from the time variation of the plastic strain,
    3. The stress-strain relationship simulation method according to claim 1, wherein the plastic strain rate is set in the viscosity function.
  4. 応力データ及びひずみデータから弾性率を算出し、
    前記弾性率から塑性ひずみを算出することを特徴とする請求項1乃至3の応力−ひずみ関係シミュレーション方法。
    Calculate elastic modulus from stress data and strain data,
    4. The stress-strain relationship simulation method according to claim 1, wherein a plastic strain is calculated from the elastic modulus.
  5. 前記等方硬化モデルとして、収束型応力関数と発散型応力関数の線形結合を用いることを特徴とする請求項1乃至4の応力−ひずみ関係シミュレーション方法。 5. The stress-strain relationship simulation method according to claim 1, wherein a linear combination of a convergent stress function and a divergent stress function is used as the isotropic hardening model.
  6. 前記等方硬化モデルが、
     C[1−exp(−Dε)]+Fε
    ただし、
    C、D、F:定数
    ε:塑性ひずみ
    なる式で表されることを特徴とする請求項1乃至5の応力−ひずみ関係シミュレーション方法。
    The isotropic hardening model is
    C [1-exp (-D [epsilon] p )] + F [epsilon] p
    However,
    6. The stress-strain relationship simulation method according to claim 1, wherein C, D, F: constant ε p : plastic strain.
  7. 前記等方硬化モデルが、
     C×In(Dε−F)
    ただし、
    C、D、F:定数
    ε:塑性ひずみ
    なる式で表されることを特徴とする請求項1乃至4の応力−ひずみ関係シミュレーション方法。
    The isotropic hardening model is
    C x In (Dε p -F)
    However,
    5. The stress-strain relationship simulation method according to claim 1, wherein the stress-strain relationship simulation method is expressed by an equation: C, D, F: constant ε p : plastic strain.
  8. 試験速度の異なる複数の樹脂材料試験から得られた応力データ及びひずみデータを用いて前記粘性関数を設定することを特徴とする請求項1乃至7の応力−ひずみ関係シミュレーション方法。 8. The stress-strain relationship simulation method according to claim 1, wherein the viscosity function is set using stress data and strain data obtained from a plurality of resin material tests with different test speeds.
  9. Chabocheモデルの降伏応力算出部分に粘性関数と等方硬化モデルを導入する改良Chabocheモデル設定手段と、
    大域的非線形数値最適化法によって前記改良Chabocheモデルの力学構成式の材料定数を決定する大域的非線形数値最適化近似手段と、
    前記力学構成式を用いて応力及びひずみを算出する応力−ひずみ算出手段を有することを特徴とする応力−ひずみ関係シミュレーションシステム。
    Improved Chaboche model setting means for introducing a viscosity function and an isotropic hardening model into the yield stress calculation part of the Chaboche model;
    A global nonlinear numerical optimization approximation means for determining a material constant of a mechanical constitutive equation of the improved Chaboche model by a global nonlinear numerical optimization method;
    A stress-strain relationship simulation system comprising stress-strain calculation means for calculating stress and strain using the mechanical constitutive equation.
  10. Chabocheモデルの降伏応力に粘性関数と等方硬化モデルを導入した力学構成式を設定する処理と、
    大域的数値非線形最適化法によって材料定数を決定した前記力学構成式の処理と、
    前記力学構成式を用いて応力及びひずみを算出する処理を有することを特徴とする応力−ひずみ関係シミュレーションプログラム。
    A process of setting a mechanical constitutive equation in which a viscosity function and an isotropic hardening model are introduced into the yield stress of the Chaboche model;
    Processing of the mechanical constitutive equation in which material constants are determined by a global numerical nonlinear optimization method;
    A stress-strain relationship simulation program comprising a process of calculating stress and strain using the mechanical constitutive equation.
PCT/JP2012/073392 2011-09-19 2012-09-06 Stress-strain relation simulation method, stress-strain relation simulation system, and stress-strain relation simulation program which use chaboche model WO2013042600A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-203948 2011-09-19
JP2011203948 2011-09-19

Publications (1)

Publication Number Publication Date
WO2013042600A1 true WO2013042600A1 (en) 2013-03-28

Family

ID=47914370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073392 WO2013042600A1 (en) 2011-09-19 2012-09-06 Stress-strain relation simulation method, stress-strain relation simulation system, and stress-strain relation simulation program which use chaboche model

Country Status (2)

Country Link
JP (1) JPWO2013042600A1 (en)
WO (1) WO2013042600A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364261A (en) * 2013-07-09 2013-10-23 西安交通大学 Method for determining constitutive model parameters of material at ultrahigh strain rate
CN105910886A (en) * 2016-04-26 2016-08-31 上海电力学院 Browman constitutive optimization model of aluminum alloy stress-strain relation and application of Browman constitutive optimization model
CN107273590A (en) * 2017-05-31 2017-10-20 北京理工大学 A kind of Multipurpose Optimal Method determined for composite constitutive equation parameter
CN109238855A (en) * 2018-10-22 2019-01-18 中国科学院力学研究所 Constitutive parameter, the acquisition of dynamic failure parameter and verification method and device
CN111929156A (en) * 2020-07-15 2020-11-13 中国核动力研究设计院 Method and system for testing safety performance of nuclear energy equipment
CN112651089A (en) * 2020-08-27 2021-04-13 同济大学 Bending shear metal component hybrid reinforcement restoring force model and parameter determination method
CN113420391A (en) * 2021-07-02 2021-09-21 北京理工大学重庆创新中心 Method for obtaining high-precision hardening model parameters of material under complex stress state
KR20220096378A (en) * 2020-12-31 2022-07-07 한국화학연구원 Simulation Method for Stress-Strain Curve of Polymeric Materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275154A (en) * 1999-03-25 2000-10-06 Toyota Motor Corp Method for simulating relationship between stress and distortion
JP2006349495A (en) * 2005-06-15 2006-12-28 Central Res Inst Of Electric Power Ind Deterioration analysis method of polymeric material, and deterioration analysis program for polymeric material
JP2007309704A (en) * 2006-05-16 2007-11-29 Central Res Inst Of Electric Power Ind Numerical analytical method, analyzer, and program for lead material
JP2008142774A (en) * 2006-11-14 2008-06-26 Jfe Steel Kk Method, system and program for stress-strain relation simulation, and recording medium recording the program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275154A (en) * 1999-03-25 2000-10-06 Toyota Motor Corp Method for simulating relationship between stress and distortion
JP2006349495A (en) * 2005-06-15 2006-12-28 Central Res Inst Of Electric Power Ind Deterioration analysis method of polymeric material, and deterioration analysis program for polymeric material
JP2007309704A (en) * 2006-05-16 2007-11-29 Central Res Inst Of Electric Power Ind Numerical analytical method, analyzer, and program for lead material
JP2008142774A (en) * 2006-11-14 2008-06-26 Jfe Steel Kk Method, system and program for stress-strain relation simulation, and recording medium recording the program

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AKIHIRO MATSUDA ET AL.: "Thermodynamic finite element analysis for lead material used in seismic isolation and vibration control devices", CRIEPI RESEARCH REPORT N04040, CENTRAL RESEARCH INSTITUTE OF ELECTRIC POWER INDUSTRY, June 2006 (2006-06-01), pages 1 - 22 *
MASANORI OKA ET AL.: "Sonsho Rikigaku ni Motozuku Chutetsu no Hiro Jumyo Yosoku Simulation", DAI 30 KAI JAPAN SOCIETY FOR SIMULATION TECHNOLOGY TAIKAI HAPPYO RONBUNSHU (JSST2011), October 2011 (2011-10-01), pages 80 - 83 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364261A (en) * 2013-07-09 2013-10-23 西安交通大学 Method for determining constitutive model parameters of material at ultrahigh strain rate
CN103364261B (en) * 2013-07-09 2015-07-01 西安交通大学 Method for determining constitutive model parameters of material at ultrahigh strain rate
CN105910886A (en) * 2016-04-26 2016-08-31 上海电力学院 Browman constitutive optimization model of aluminum alloy stress-strain relation and application of Browman constitutive optimization model
CN105910886B (en) * 2016-04-26 2018-10-30 上海电力学院 The application of the Browman of aluminium alloy stress-strain relation this structure Optimized models
CN107273590A (en) * 2017-05-31 2017-10-20 北京理工大学 A kind of Multipurpose Optimal Method determined for composite constitutive equation parameter
CN107273590B (en) * 2017-05-31 2018-06-15 北京理工大学 A kind of Multipurpose Optimal Method determined for composite material constitutive equation parameter
CN109238855A (en) * 2018-10-22 2019-01-18 中国科学院力学研究所 Constitutive parameter, the acquisition of dynamic failure parameter and verification method and device
CN111929156A (en) * 2020-07-15 2020-11-13 中国核动力研究设计院 Method and system for testing safety performance of nuclear energy equipment
CN111929156B (en) * 2020-07-15 2022-05-20 中国核动力研究设计院 Method and system for testing safety performance of nuclear energy equipment
CN112651089A (en) * 2020-08-27 2021-04-13 同济大学 Bending shear metal component hybrid reinforcement restoring force model and parameter determination method
KR20220096378A (en) * 2020-12-31 2022-07-07 한국화학연구원 Simulation Method for Stress-Strain Curve of Polymeric Materials
KR102454216B1 (en) * 2020-12-31 2022-10-14 한국화학연구원 Simulation Method for Stress-Strain Curve of Polymeric Materials
CN113420391A (en) * 2021-07-02 2021-09-21 北京理工大学重庆创新中心 Method for obtaining high-precision hardening model parameters of material under complex stress state

Also Published As

Publication number Publication date
JPWO2013042600A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
WO2013042600A1 (en) Stress-strain relation simulation method, stress-strain relation simulation system, and stress-strain relation simulation program which use chaboche model
KR101085174B1 (en) Method of simulating deformation of rubber material
WO2014141794A1 (en) Stress-strain relationship simulation method, spring back prediction method, and spring back analyzing device
KR101801999B1 (en) Method for simulating rubber material
JP4469172B2 (en) Tire simulation method
EP2535828B1 (en) Method for simulating the loss tangent of rubber compound
JP3897477B2 (en) Stress-strain relationship simulation method and springback amount prediction method
JP5932290B2 (en) Mechanical property creation method considering parameters related to plastic volume change
JP3809374B2 (en) Stress-strain relationship simulation method and method for obtaining yield point in unloading process
JP5432549B2 (en) Rubber material simulation method
Sukiman et al. Design and numerical modeling of the thermoforming process of a WPC based formwork structure
Weng et al. A machine learning based approach for determining the stress-strain relation of grey cast iron from nanoindentation
Vajragupta et al. Micromechanical modeling approach to derive the yield surface for BCC and FCC steels using statistically informed microstructure models and nonlocal crystal plasticity
Rashetnia et al. Finite strain fracture analysis using the extended finite element method with new set of enrichment functions
JP2007265266A (en) Viscoelastic response performance prediction method, rubber product design method, and viscoelastic response performance prediction device
JP5001883B2 (en) Rubber material simulation method
JP6492440B2 (en) Evaluation method of analysis result of specific substance, computer program for evaluation of analysis result of specific substance, analysis method of specific substance, simulation method of specific substance, and computer program for simulation of specific substance
WO2017077735A1 (en) Method for simulation of viscoelastic material, method for simulation of structure, device for simulation of viscoelastic material, and program
JP2005345413A (en) Method for predicting elastic responsiveness of rubber product, and design method
WO2011108468A1 (en) Material constant estimation system and method of estimating material constant
CN110276045B (en) Analysis device
JP7024593B2 (en) Composite material analysis method and computer program for composite material analysis
KR101293982B1 (en) Method for simulating elastomer
Maier et al. Recent improvements in experimental investigation and parameter fitting for cellular materials subjected to crash loads
Chang et al. Evaluation of the energy change due to presence of multiple irregularly shaped inclusions in hyperelastic solids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013534677

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833881

Country of ref document: EP

Kind code of ref document: A1