JP3809374B2 - Stress-strain relationship simulation method and method for obtaining yield point in unloading process - Google Patents

Stress-strain relationship simulation method and method for obtaining yield point in unloading process Download PDF

Info

Publication number
JP3809374B2
JP3809374B2 JP2001396596A JP2001396596A JP3809374B2 JP 3809374 B2 JP3809374 B2 JP 3809374B2 JP 2001396596 A JP2001396596 A JP 2001396596A JP 2001396596 A JP2001396596 A JP 2001396596A JP 3809374 B2 JP3809374 B2 JP 3809374B2
Authority
JP
Japan
Prior art keywords
stress
strain
function
yield
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001396596A
Other languages
Japanese (ja)
Other versions
JP2003194686A (en
Inventor
洋 石倉
徳利 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2001396596A priority Critical patent/JP3809374B2/en
Publication of JP2003194686A publication Critical patent/JP2003194686A/en
Application granted granted Critical
Publication of JP3809374B2 publication Critical patent/JP3809374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、弾塑性材料の応力−ひずみ関係シミュレート方法および除荷過程における降伏点を求める方法に関する。
【0002】
【従来の技術】
材料を金型内でプレス加工により外力を加えて塑性領域まで変形させ、その後金型から取出し製品を得る場合、塑性加工後外力が取り除かれる除荷の際、材料の変形量がいくらか元に戻る、いわゆるスプリングバック現象が起こる。この除荷過程に起こるスプリングバック量は、製品の外形寸法に影響を与えるので、予めスプリングバック量を予測し金型形状、加工条件に盛り込む必要がある。
【0003】
一般的な弾塑性材料の応力−ひずみ曲線を、横軸にひずみ、縦軸に応力を取って示した図6を用いて、スプリングバック現象の様子を示す。材料に引っ張りの外力を与えると、弾性変形領域を経て、降伏点Aを境に塑性変形が起こる。この降伏点Aは、材料の塑性変形がはじめて開始されるときの降伏点であるから、特に初期降伏点と名づけ、そのときの応力を初期降伏応力Y0ということとする。初期降伏点Aを越えてさらに外力を与え続け、材料を塑性変形させ、所望の形状に対応する所定ひずみに至る点Bで加工をやめ、そこで外力を除荷し取り除く。塑性変形した材料から外力を取り除くと、材料内の残留応力がバランスするバランス点Dの状態までいくらかひずみが元へもどり、このようにしてスプリングバック現象が起こる。
【0004】
スプリングバック量は、除荷点Bのときのひずみ量と、バランス点Dにおけるひずみ量との差で与えられる。除荷点Bの後、材料は、まず弾性特性に従って逆方向に戻る。等方硬化モデルと呼ばれるモデルでは、応力ゼロの点Cに対し、除荷点Bと対象の点Eまで弾性領域と考えるので、バランス点Dに対応する弾性特性曲線上の図示したひずみd1から、スプリングバック量を予測することになる。
【0005】
しかし、実際上ほとんどの材料は、点Eより少ない応力下の点Fで降伏が起こり、弾性特性から外れる。この降伏を、初期降伏点と区別し、除荷過程における降伏点Fということにする。除荷過程の降伏点F以後の材料の応力―ひずみ曲線は、最初の引張り塑性変形のときの初期降伏点Aと除荷点Bの間の応力―ひずみ曲線より、より傾きが大きくなる。このように、除荷後において、降伏点が低下し、応力―ひずみ曲線の傾きがより大きくなる現象は、バウシンガ効果と呼ばれる。バウシンガ効果を考慮してもその評価いかんにより、バランス点Dにおけるひずみ量が図示したd2かd3により、スプリングバック量の予測に差が生ずる。
【0006】
したがって、スプリングバック量の正確な予測のためには、バウシンガ効果を表現できる応力―ひずみ関係の精度良いシミュレートが必要である。特開2000―275154は、弾塑性材料の応力−ひずみ関係を、等方硬化モデルと移動硬化モデルとを組合せた複合硬化モデルで近似し、応力−ひずみ関係を与える塑性構成式としての降伏関数を、等方硬化量と背応力とを変数とする関数として定義し、その材料のバウシンガ効果を表現する応力−ひずみ関係をシミュレートする方法を開示している。ここにおいて、背応力は、線形移動硬化の成分と非線形移動硬化の成分とからなり、材料の相当塑性ひずみを変数とする係数関数を有する背応力関数で定義する。
【0007】
すなわち、降伏関数(f)を、式(1)で表す2次降伏関数を用いる。
【数4】
f=(1/2)*[(Sx−α´x2+(Sy−α´y2+(Sz−α´z2+2(Sxy−α´xy2+2(Syz−α´yz2+2(Szx−α´zx2]−(1/3)*(Y0+R)2 (1)
ここで、
i(i=x,y,z)は、指標iに対応する座標系に垂直な面に作用する垂直応力σiに関する偏差応力、
ij(i,j=x,y,z)は、指標iに対応する座標系に垂直な面に、指標jに対応する座標軸の方向に作用するせん断応力σijに関する偏差応力、
α´i(i=x,y,z)は、指標iに対応する座標系に垂直な面に作用する背応力に関する偏差成分、
α´ij(i,j=x,y,z)は、指標iに対応する座標系に垂直な面に、指標jに対応する座標軸の方向に作用する背応力に関する偏差成分、
0は、材料の塑性変形がはじめて開始されるときの降伏応力である初期降伏応力、
Rは等方硬化量である。
【0008】
また、背応力の偏差成分(α´i,α´ij)をあらわすテンソル[α´]につき、数式(2)で表せる背応力関数とする。ここで、多次テンソルである塑性ひずみをスカラー量で表現する相当塑性ひずみ(εp eq)を用いている。
【数5】
[α´]=[α´1]+[α´2]
[dα´1]=C[2/3(a*[dεp])−dεp eq*[α´1]]
[dα´2]=2/3(H*[dεp])
C=C´/2*(εp eq+ε01/2 (2)
ここで、
[α´1]は、背応力のうち移動硬化の非線形性に依存する成分である第一背応力偏差成分を表すテンソル、
[α´2]は、背応力のうち移動硬化の線形性に依存する成分である第二背応力偏差成分を表すテンソル、
[dεp]は、塑性ひずみ増分を表すテンソル、
dεp eqは、相当塑性ひずみ増分、
ε0は、相当塑性ひずみεp eqが0である場合に、Cが無限大となることを防止するための変数、
Cは、非線形移動硬化の収束の速さを表す係数、
C´は、定数、
(2/3)aは、非線形移動硬化の収束値、
Hは、線形移動硬化の大きさを表す係数である。
【0009】
また、上記線形移動硬化の大きさを表す係数Hは、相当塑性ひずみ(εp eq)の大きさにより、式(3)で示す関数とした。
【数6】
εp eq<ε1のとき H=H1
ε1<εp eq<ε2のとき H=p*ln(εp eq)+q
ε2<εp eqのとき H=H2 (3)
【0010】
さらに、等方硬化量(R)は、式(4)の関数とした。
【数7】
dR=b*(dεp eq) (4)
【0011】
このように、特開2000―275154に開示される応力−ひずみ関係をシミュレートする方法においては、応力−ひずみ関係を与える塑性構成式としての降伏関数に含まれる係数を、相当塑性ひずみ(εp eq)の関数である係数関数とした。そして、応力−ひずみ関係の実験値を複数の離散値として取得し、取得された複数の実験値に基き、係数関数を同定し、同定により定まった塑性構成式を用いて、応力−ひずみ関係をシミュレートする。
【0012】
【発明が解決しようとする課題】
上記従来技術を用いることで、対象加工に用いる材料と材質が実質的に同一な標準試験片により、試験片について応力−ひずみ関係の実験を行い、複数の離散的な実験値から係数関数を同定し、試験片についての塑性構成式を得ることができる。そして、求まった塑性構成式と有限要素法を用いて、実際の被加工材料の複雑な三次元形状の加工の各段階をシミュレートし、スプリングバック量を予測することができる。
【0013】
上記従来技術を用いるに当たり、除荷過程における降伏点を求める必要がある。この除荷過程における降伏点以後の相当塑性ひずみ(εp eq)の関数として、各係数関数が定められているからである。材料の降伏点を定める方法で代表的な例を図7、図8に示す。第一の方法は、図7に示すように、応力−ひずみ曲線で、顕著な一次降伏X、二次降伏Yが観察されるときにこれらを降伏点とする方法である。しかし、除荷過程における降伏は、このような顕著な一次降伏X、二次降伏Yが観察されないので用いることができない。第二の方法は、顕著な一次降伏X、二次降伏Yが観察されない材料につき、図8に示すように、除荷後に残る塑性ひずみが0.2%となる印加応力点Zを降伏点とする方法である。しかし、バウシンガ効果の現われる除荷過程において、塑性ひずみ0.2%という値は、かなり塑性領域に入った後であり、このときを降伏点としてシミュレートするときは、スプリングバック量を正確に予測できず、不適当である。
【0014】
これらの従来の各方法に対し、本発明者等は、図9に示す第三の方法を考案した。すなわち、第三の方法は、応力−ひずみ曲線において、特性曲線の勾配が変化する点を降伏点とする方法である。この方法によれば、上記第一、第二の方法のもつ欠点は解決できる。すなわち、図示するように、除荷過程における応力−ひずみ曲線は、除荷点から初期のうちは直線的な特性をもつので、この直線から特性曲線の勾配が外れる点を、除荷過程における降伏点X0として用いる。
【0015】
上記第三の方法で求めた除荷過程における降伏点を用い、従来技術による塑性構成式に基き、応力−ひずみ関係をシミュレートし、実験値と比較した結果が図10である。このように、この方法によって、実際のバウシンガ効果のデータ1と、シミュレーション結果3との間で、除荷過程において塑性ひずみの大きい領域では、良い近似が得られた。
【0016】
しかし、この第三の方法では、除荷過程における応力−ひずみ曲線の勾配が変化する点を除荷過程における降伏点とするとき、求めた降伏点にばらつきが生ずることが本発明者等の解析により判明した。また、応力−ひずみ曲線において、除荷過程における降伏点から塑性ひずみが増大する領域では、実際のバウシンガ効果のデータ1と、シミュレーション結果3との間にかなりの差異があり、スプリングバック量の予測に大きな狂いが出ることも明らかになった。
【0017】
本発明は、かかる従来技術の課題を解決し、除荷過程における降伏点をばらつき少なく求め、また応力−ひずみ曲線において、除荷過程における降伏点から塑性ひずみが増大する領域も含め、実験結果と高い精度で整合する、弾塑性材料の応力−ひずみ関係シミュレート方法および除荷過程における降伏点を求める方法を提供することである。
【0018】
【課題を解決するための手段】
本発明は、従来技術の課題につき、除荷過程、特に弾性領域から塑性領域へ遷移する領域を注意深く解析することで二つの新しい知見を得たことに基く。その一は、この遷移領域において、応力−ひずみ曲線の接線勾配の変化が特徴的であり、このことから除荷過程における降伏点をばらつき少なく求められることを見出したことである。その二は、このようにして求めた、ばらつきが少なく精度の高い除荷過程における降伏点を用いたとき、従来技術の係数関数は、実際のバウシンガ効果を表現するには十分でないことが明らかになり、これに代わる係数関数を見出したことである。最初にこれらの内容を説明する。
【0019】
1.除荷過程における降伏点について
図1は、除荷過程における応力σ−ひずみε曲線において、接線勾配δσ/δεを各応力値に付き算出し、横軸に応力、縦軸に接線勾配δσ/δεをとって示した図である。この図から明らかなように、接線勾配δσ/δεの挙動は、四つの領域に分けることができる。第一の領域(1)は、除荷点近傍の応力状態における領域で、接線勾配δσ/δεは高い値であるが、応力の変化につれ、小さな変化率で直線的に変化する。第二の領域(2)では、除荷点からの応力の差が大きくなるにつれ、接線勾配δσ/δεの値は非線形的に小さくなる。第三の領域(3)では、応力の変化に対し接線勾配δσ/δεは大きな変化率でほぼ直線的に減少する。第四の領域(4)では、応力の変化に対し、接線勾配δσ/δεはゼロにむけて非線形的に小さくなる。
【0020】
除荷過程における応力−ひずみ曲線の勾配が変化する点を除荷過程における降伏点とする従来の方法では、接線勾配δσ/δεが一定の領域を前提としていたが、実験結果からは、そのような領域はみられない。したがって、応力−ひずみ曲線の勾配が変化する点を求めようとしてもばらつく結果になる。
【0021】
そこで、図1における接線勾配δσ/δεと応力σとの関係を注意深く解析すると、接線勾配δσ/δεは応力の変化につれ低下してゆくが、初期の段階ではその変化は小さく、直線的に変化し、次いで直線的変化が非線形的になって、接線勾配δσ/δεの低下も急に大きく起こる。したがって、接線勾配δσ/δεと応力σとの関係が線形性から外れる点を、応力−ひずみ関係が実質的に変化する点と考え、これを除荷過程における降伏点と考えることができる。すなわち、図1における第一の領域と第二の領域の境界点を除荷過程における降伏点と定める。
【0022】
材料の除荷過程における応力σ−ひずみε曲線が与えられれば、接線勾配δσ/δεと応力σとの関係が線形性から外れる点は一意に定めることができるので、この方法により、除荷過程における降伏点をばらつき少なく求めることができる。
【0023】
2.係数関数について
図2は、このようにして求めた、ばらつきが少なく精度の高い除荷過程における降伏点を用い、塑性構成式は、実験値により同定した係数関数を有する塑性構成式に基いて、応力−ひずみ関係をシミュレートした結果を示す。実際のバウシンガ効果のデータ5と、シミュレーション結果7との間に差異がある。このように、除荷過程における降伏点を一意に定めたときに、従来の係数関数を用いたのでは、実際のバウシンガ効果を十分表現できない。
【0024】
そこで、係数関数を注意深く解析し、以下の係数関数を用いることで、実際のバウシンガ効果を十分表現できることを見出した。すなわち、等方硬化量(R)と背応力関数の係数とを、相当塑性ひずみ(εp eq)と除荷開始時の相当塑性ひずみ(εp T)を変数とする係数関数とする。
【0025】
そして、等方硬化量(R)は、従来技術では式(4)で示すように相当塑性ひずみ(εp eq)の線形関数であったものを、式(5)で示される非線形関数とする。
【数8】
R=K*(εp eqn (5)
ここで、K、nは材料で定まる定数である。
【0026】
また、線形移動硬化の大きさを表す係数(H)は、従来技術では式(3)で示すように、相当塑性ひずみ(εp eq)の大きさにより三つの場合に分け、相当塑性ひずみ(εp eq)の小さい第一の場合等は定数であったものを、全領域にわたり相当塑性ひずみ(εp eq)の関数とする。関数として、例えば式(6)を用いることができる。
【数9】
H=p*(εp eq)+q (6)
【0027】
また、非線形移動硬化の収束の速さを表す係数Cを式(7)で表すとき、ε0は、従来技術では定数であったものを、除荷時の相当塑性ひずみ(εp T)の関数とする。
【数10】
C=C´/2*(εp eq+ε01/2 (7)
【0028】
図3は、等方硬化量(R)、線形移動硬化の大きさを表す係数(H)および非線形移動硬化の収束の速さを表す係数Cを表す式の中のε0につき、上記見出した関数を適用し、応力−ひずみ関係をシミュレートした結果を示す。実際のバウシンガ効果のデータ9と、シミュレーション結果11とは良い一致を示す。このように、適切な関数の係数関数とすることで、実際のバウシンガ効果を十分に表現できる。
【0029】
3.課題解決手段
本発明の目的を達成するため、本発明に係る応力−ひずみ関係シミュレート方法は、弾塑性材料の応力−ひずみ関係を、等方硬化モデルと移動硬化モデルとを組合せた複合硬化モデルで近似し、応力−ひずみ関係を与える塑性構成式としての降伏関数を、等方硬化量と背応力を変数とする関数で定義し、ここで背応力は、線形移動硬化の成分と非線形移動硬化の成分とからなり、材料の相当塑性ひずみを変数とする係数関数を有する背応力関数で定義して、弾塑性材料のバウシンガー効果を表現する応力−ひずみ関係をシミュレートする方法であって、前記等方硬化量Rと、背応力関数の係数とを、相当塑性ひずみ(ε eq)と除荷開始時の相当塑性ひずみ(ε )を変数とする係数関数とし、等方硬化量Rは、ε eq の非線形関数R=K*(ε eqただしnは1以外の数とし、背応力関数の係数の1つである線形移動硬化の大きさを表す係数Hは、相当塑性ひずみε eqの関数とし背応力関数の係数の1つである非線形移動硬化の収束の速さを表す係数Cを、C=C´/2*(ε eq+ε1/2と表すときのεは、除荷開始時の相当塑性ひずみε を変数とする数とし、応力−ひずみ関係の実験値を複数の離散値として取得する実験値取得工程と、材料で定まるK、n、C´を含め前記係数関数を、前記複数の実験値に基き同定する係数関数同定工程と、を含み、前記同定された係数関数を用い、応力−ひずみ関係をシミュレートすることを特徴とする。
【0030】
また、本発明に係る応力−ひずみ関係シミュレート方法において、前記実験値取得工程において、さらに、引張り応力を加え、塑性ひずみを生じさせた後、引張り応力を除荷する除荷過程において、応力−ひずみ曲線における接線勾配δσ/δεを各応力値に付き算出し、前記接線勾配δσ/δεと応力σとの関係が線形性から外れる点を除荷過程における降伏点として算出する降伏点算出工程を備え、この算出された降伏点以降のひずみから相当塑性ひずみεp eqを求めることを特徴とする。
【0031】
また、本発明に係る応力−ひずみ関係シミュレート方法において、Si(i=x,y,z)を、指標iに対応する座標系に垂直な面に作用する垂直応力σiに関する偏差応力、Sij(i,j=x,y,z)を、指標iに対応する座標系に垂直な面に、指標jに対応する座標軸の方向に作用するせん断応力σijに関する偏差応力、α´i(i=x,y,z)を、指標iに対応する座標系に垂直な面に作用する背応力に関する偏差成分、α´ij(i,j=x,y,z)を、指標iに対応する座標系に垂直な面に、指標jに対応する座標軸の方向に作用する背応力に関する偏差成分、Y0を、材料の塑性変形がはじめて開始されるときの降伏応力である初期降伏応力、としたとき、前記降伏関数(f)は、
【数11】
f=(1/2)*[(Sx−α´x2+(Sy−α´y2+(Sz−α´z2+2(Sxy−α´xy2+2(Syz−α´yz2+2(Szx−α´zx2]−(1/3)*(Y0+R)2
であることを特徴とする。
【0032】
また、本発明に係る応力−ひずみ関係シミュレート方法において、Si(i=x,y,z)を、指標iに対応する座標系に垂直な面に作用する垂直応力σiに関する拡張偏差応力、Sij(i,j=x,y,z)を、指標iに対応する座標系に垂直な面に、指標jに対応する座標軸の方向に作用するせん断応力σijに関する拡張偏差応力、α´i(i=x,y,z)を、指標iに対応する座標系に垂直な面に作用する背応力に関する偏差成分、α´ij(i,j=x,y,z)を、指標iに対応する座標系に垂直な面に、指標jに対応する座標軸の方向に作用する背応力に関する偏差成分、Y0を、材料の塑性変形がはじめて開始されるときの降伏応力である初期降伏応力、としたとき、 前記降伏関数(f)は、
【数12】
f=(1/4)*[(Sx−α´x4+(Sy−α´y4+(Sz−α´z4+2(Sxy−α´xy4+2(Syz−α´yz4+2(Szx−α´zx4]−(1/9)*(Y0+R)4
であることを特徴とする。
【0033】
また、本発明に係る応力−ひずみ関係シミュレート方法において、[α´1]を、背応力のうち移動硬化の非線形性に依存する成分である第一背応力偏差成分を表すテンソル、[α´2]を、背応力のうち移動硬化の線形性に依存する成分である第二背応力偏差成分を表すテンソル、[dεp]を、塑性ひずみ増分を表すテンソル、dεp eqを、相当塑性ひずみ増分、Cを、非線形移動硬化の収束の速さを表す係数、C´を、定数、(2/3)aを、非線形移動硬化の収束値、ε0を、相当塑性ひずみεp eqが0である場合に、Cが無限大となることを防止するための変数、Hを、線形移動硬化の大きさを表す係数、としたとき、前記背応力の偏差成分(α´)をあらわすテンソル[α´]は、
【数13】
[α´]=[α´1]+[α´2]
[dα´1]=C[2/3(a*[dεp])−dεp eq*[α´1]]
[dα´2]=2/3(H*[dεp])
C=C´/2*(εp eq+ε01/2
であることを特徴とする。
【0034】
また、本発明に係る除荷過程における降伏点を求める方法は、材料の応力−ひずみ関係において、引張り応力を加え、塑性ひずみを生じさせた後、引張り応力を除荷する除荷過程における降伏点を求める方法であって、応力−ひずみ曲線における接線勾配δσ/δεを各応力値に付き算出する接線勾配算出工程と、前記接線勾配δσ/δεと応力σとの関係が線形性から外れる点を除荷過程における降伏点として算出する降伏点算出工程と、を備えることを特徴とする。
【0035】
本発明に係る応力−ひずみ関係シミュレート方法は、応力−ひずみ関係の実験値を複数の離散値として取得する実験値取得工程と、材料で定まるK、n、C´を含め前記係数関数を、前記複数の実験値に基き同定する係数関数同定工程と、を含み、前記同定された係数関数を用い、応力−ひずみ関係をシミュレートする。そして、等方硬化量と背応力関数の係数とを、相当塑性ひずみ(εp eq)と除荷開始時の相当塑性ひずみ(εp T)を変数とする係数関数とし、等方硬化量Rは、R=K*(εp eqnと、線形移動硬化の大きさを表す係数Hは、相当塑性ひずみ(εp eq)の関数と、非線形移動硬化の収束の速さを表す係数Cを、C=C´/2*(εp eq+ε01/2と表すとき、ε0はεp Tの関数とする。このことにより、応力−ひずみ曲線において、除荷過程における降伏点から塑性ひずみが増大する領域も含め、実験結果と高い精度で整合させることができる。
【0036】
また、本発明に係る応力−ひずみ関係シミュレート方法は、応力−ひずみ曲線における接線勾配δσ/δεを各応力値に付き算出し、前記接線勾配δσ/δεと応力σとの関係が線形性から外れる点を除荷過程における降伏点として算出する。したがって、除荷過程における降伏点をばらつき少なく求め、また応力−ひずみ曲線において、除荷過程における降伏点から塑性ひずみが増大する領域も含め、実験結果と高い精度で整合させることができる。
【0037】
また、本発明に係る応力−ひずみ関係シミュレート方法において、塑性構成式としての降伏関数を偏差応力と背応力の偏差成分の2次関数とする。また、塑性構成式としての降伏関数を偏差応力と背応力の偏差成分の4次関数とする。このことにより、降伏関数の関数が2次の場合、4次の場合につき、除荷過程における降伏点をばらつき少なく求め、また応力−ひずみ曲線において、除荷過程における降伏点から塑性ひずみが増大する領域も含め、実験結果と高い精度で整合させることができる。
【0038】
【発明の実施の形態】
図4、図5は、本発明の実施の形態に係るフローチャートである。図4は、応力−ひずみ関係シミュレート方法のフローチャート、図5に除荷過程における降伏点を求める方法のフローチャートを示す。
【0039】
図4のS1は、除荷過程降伏点算出工程で、シミュレーション対象の加工材料と実質同一の材質の試験片を用い、最初引張り応力を印加し、所定の塑性ひずみに達したとき除荷し、除荷過程の応力−ひずみ曲線を取得し、除荷過程の降伏点を求める工程である。この工程の詳細な内容については、後に図5を用いて説明する。
【0040】
S3は、降伏点以外の実験値取得工程で、S1の除荷過程降伏点算出工程と同じ材質の試験片を用い、除荷過程の降伏点以外の、応力−ひずみ関係を、実験により複数の離散値として取得する工程である。例えば、等方硬化量Rと相当塑性ひずみ(εp eq)との関係、線形移動硬化の大きさを表す係数Hと相当塑性ひずみ(εp eq)との関係、非線形移動硬化の収束の速さを表す係数Cを、C=C´/2*(εp eq+ε01/2と表すとき、ε0と除荷時の相当塑性ひずみεp Tの関係等につき、複数の離散値を取得する。
【0041】
S5は、係数関数同定工程で、S3の降伏点以外の実験値取得工程で取得した応力−ひずみ関係の複数の離散値から、材料で定まるK,n,C´を含め、係数関数の関数を同定する工程である。例えば等方硬化量Rについて、複数の相当塑性ひずみ(εp eq)に対する実験値からK,nを定め、R=K*(εp eqnの関数が具体的に同定される。線形移動硬化の大きさを表す係数Hは、相当塑性ひずみ(εp eq)に対する実験値から、関数そのものを同定し、ε0は、除荷時の相当塑性ひずみεp Tに対する実験値から、関数そのものを同定する。
【0042】
S7は、応力−ひずみ関係算出工程で、S5で同定された係数関数を用いて、塑性構成式である降伏関数を定め、応力−塑性ひずみ関係を算出する。弾性領域の応力−ひずみ関係の算出式は、塑性領域に比べ容易であるので、弾性領域と塑性領域を接続し、弾塑性領域全体の応力−ひずみ関係を算出することもできる。
【0043】
S9は、スプリングバック量算出工程で、S7の応力−ひずみ関係算出工程の結果求まった塑性構成式と、有限要素法を用いて、実際の被加工材料の複雑な三次元形状の加工の各段階をシミュレートし、スプリングバック量を算出する工程である。
【0044】
図5に、図4のS1における除荷過程の降伏点算出工程の詳細なフローチャートを示す。S21は応力―ひずみ関係取得工程で、シミュレーション対象の加工材料と実質同一の材質の試験片を用い、最初引張り応力を印加し、所定の塑性ひずみに達したとき除荷し、除荷過程の応力−ひずみ曲線を取得する工程である。
【0045】
S23は、接線勾配算出工程で、S21の応力―ひずみ関係取得工程で取得した応力σ−ひずみε曲線から、各応力値に付き接線勾配δσ/δεを算出する工程である。
【0046】
S25は、降伏点算出工程で、S23の接線勾配算出工程で求められた接線勾配δσ/δεと応力σとの関係につき、応力の変化に対する接線勾配δσ/δεの変化が線形性から外れる点を、除荷過程における降伏点として算出する工程である。具体的には、図1における第一の領域と第二の領域の境界点を除荷過程における降伏点として算出する。
【0047】
【発明の効果】
本発明に係る応力−ひずみ関係シミュレート方法は、除荷過程における降伏点をばらつき少なく求め、また応力−ひずみ曲線において、除荷過程における降伏点から塑性ひずみが増大する領域も含め、実験結果と高い精度で整合する。また、本発明に係る除荷過程における降伏点を求める方法は、除荷過程における降伏点をばらつき少なく求めることができる。
【図面の簡単な説明】
【図1】 本発明に係る実施の形態において、除荷過程における応力σ−ひずみε曲線の接線勾配δσ/δεを各応力値に付き算出し、横軸に応力、縦軸に接線勾配δσ/δεをとって示した図である。
【図2】 本発明に係る実施の形態の、除荷過程における降伏点を用い、塑性構成式は、従来技術に基いて、応力−ひずみ関係をシミュレートした結果を示す図である。
【図3】 本発明の実施の形態に係る、応力−ひずみ関係をシミュレートした結果を示す図である。
【図4】 本発明の実施の形態に係る、応力−ひずみ関係シミュレート方法のフローチャートである。
【図5】 本発明の実施の形態に係る、除荷過程における降伏点を求める方法のフローチャートである。
【図6】 横軸にひずみ、縦軸に応力を取って、スプリングバック現象の様子を示す図である。
【図7】 材料の降伏点を定める第一の方法を示す図である。
【図8】 材料の降伏点を定める第二の方法を示す図である。
【図9】 材料の降伏点を定める第三の方法を示す図である。
【図10】 第三の方法で求めた除荷過程における降伏点を用い、従来技術の塑性構成式に基き、応力−ひずみ関係をシミュレートし、実験で求められた結果と比較した結果を示す図である。
【符号の説明】
1,5,9 実際のバウシンガ効果のデータ、3,7,11 シミュレーション結果。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for simulating a stress-strain relationship of an elastoplastic material and a method for obtaining a yield point in an unloading process.
[0002]
[Prior art]
When the material is deformed to the plastic region by applying an external force by pressing in the mold, and then the product is taken out from the mold, the amount of deformation of the material is somewhat restored at the time of unloading, where the external force is removed after the plastic working. A so-called springback phenomenon occurs. Since the amount of springback that occurs during this unloading process affects the outer dimensions of the product, it is necessary to predict the amount of springback in advance and incorporate it into the mold shape and processing conditions.
[0003]
The state of the springback phenomenon is shown using FIG. 6 in which a stress-strain curve of a general elastic-plastic material is shown with strain on the horizontal axis and stress on the vertical axis. When a tensile external force is applied to the material, plastic deformation occurs at the yield point A through the elastic deformation region. Since this yield point A is the yield point when plastic deformation of the material is started for the first time, it is particularly named the initial yield point, and the stress at that time is the initial yield stress Y.0That is to say. The external force is continuously applied beyond the initial yield point A, the material is plastically deformed, and the processing is stopped at a point B that reaches a predetermined strain corresponding to a desired shape, where the external force is unloaded and removed. When the external force is removed from the plastically deformed material, some strain returns to the state of the balance point D where the residual stress in the material balances, and thus the springback phenomenon occurs.
[0004]
The springback amount is given by the difference between the strain amount at the unloading point B and the strain amount at the balance point D. After the unloading point B, the material first returns in the opposite direction according to the elastic properties. In the model called the isotropic hardening model, the point C where the stress is zero is considered to be an elastic region from the unloading point B and the target point E. Therefore, from the strain d1 shown on the elastic characteristic curve corresponding to the balance point D, The amount of springback will be predicted.
[0005]
However, practically most materials yield at point F under stress less than point E and deviate from elastic properties. This yield is distinguished from the initial yield point and is referred to as the yield point F in the unloading process. The stress-strain curve of the material after the yield point F in the unloading process has a larger slope than the stress-strain curve between the initial yield point A and the unloading point B during the first tensile plastic deformation. Thus, after unloading, the phenomenon that the yield point decreases and the slope of the stress-strain curve becomes larger is called the Bauschinger effect. Even if the Bauschinger effect is taken into account, depending on the evaluation, the amount of strain at the balance point D differs depending on d2 or d3 shown in the figure, so that a difference in prediction of the springback amount occurs.
[0006]
Therefore, in order to accurately predict the springback amount, it is necessary to accurately simulate the stress-strain relationship that can express the Bauschinger effect. Japanese Patent Laid-Open No. 2000-275154 approximates the stress-strain relationship of an elastoplastic material with a composite hardening model that combines an isotropic hardening model and a kinematic hardening model. And a method of simulating a stress-strain relationship that defines the amount of isotropic hardening and back stress as variables and expresses the Bauschinger effect of the material. Here, the back stress includes a linear kinematic hardening component and a non-linear kinematic hardening component, and is defined by a back stress function having a coefficient function with the equivalent plastic strain of the material as a variable.
[0007]
That is, a secondary yield function is used as the yield function (f) expressed by the equation (1).
[Expression 4]
f = (1/2) * [(Sx−α ′x)2+ (Sy−α ′y)2+ (Sz−α ′z)2+2 (Sxy−α ′xy)2+2 (Syz−α ′yz)2+2 (Szx−α ′zx)2]-(1/3) * (Y0+ R)2              (1)
here,
Si(I = x, y, z) is a normal stress σ acting on a plane perpendicular to the coordinate system corresponding to the index i.iDeviation stress,
Sij(I, j = x, y, z) is the shear stress σ acting on the plane perpendicular to the coordinate system corresponding to the index i in the direction of the coordinate axis corresponding to the index j.ijDeviation stress,
α´i(I = x, y, z) is a deviation component related to the back stress acting on a plane perpendicular to the coordinate system corresponding to the index i,
α´ij(I, j = x, y, z) is a deviation component related to the back stress acting in the direction of the coordinate axis corresponding to the index j on a plane perpendicular to the coordinate system corresponding to the index i,
Y0Is the initial yield stress, which is the yield stress when plastic deformation of the material is first started,
R is the amount of isotropic curing.
[0008]
Also, the deviation component of back stress (α ′i, Α ′ij) Is a back stress function that can be expressed by Equation (2). Here, the equivalent plastic strain (εp eq) Is used.
[Equation 5]
[α ′] = [α′1] + [α′2]
[dα′1] = C [2/3 (a * [dεp])-Dεp eq* [Α'1]]
[dα′2] = 2/3 (H * [dεp])
C = C ′ / 2 * (εp eq+ Ε0)1/2        (2)
here,
[α′1] is a tensor representing a first back stress deviation component which is a component depending on the nonlinearity of kinematic hardening in the back stress,
[α′2] is a tensor representing a second back stress deviation component which is a component depending on the linearity of kinematic hardening in the back stress,
[dεp] Is the tensor representing the plastic strain increment,
p eqIs the equivalent plastic strain increment,
ε0Is equivalent plastic strain εp eqA variable for preventing C from becoming infinite when
C is a coefficient representing the convergence speed of nonlinear kinematic hardening,
C ′ is a constant,
(2/3) a is the convergence value of nonlinear kinematic hardening,
H is a coefficient representing the magnitude of linear kinematic hardening.
[0009]
Further, the coefficient H representing the magnitude of the linear kinematic hardening is equivalent plastic strain (εp eq) To obtain a function represented by equation (3).
[Formula 6]
εp eq<When ε1 H = H1
ε1 <εp eq<Ε2 H = p * ln (εp eq) + Q
ε2 <εp eqWhen H = H2 (3)
[0010]
Furthermore, the amount of isotropic cure (R) was a function of equation (4).
[Expression 7]
dR = b * (dεp eq(4)
[0011]
As described above, in the method of simulating the stress-strain relationship disclosed in Japanese Patent Application Laid-Open No. 2000-275154, the coefficient included in the yield function as a plastic constitutive equation that gives the stress-strain relationship is expressed as the equivalent plastic strain (εp eq) Is a coefficient function. Then, experimental values of the stress-strain relationship are acquired as a plurality of discrete values, a coefficient function is identified based on the acquired experimental values, and the stress-strain relationship is determined using a plastic constitutive equation determined by the identification. Simulate.
[0012]
[Problems to be solved by the invention]
By using the above-mentioned conventional technology, a stress-strain relationship experiment is performed on a test piece using a standard test piece that is substantially the same as the material used for processing, and a coefficient function is identified from a plurality of discrete experimental values. Thus, a plastic constitutive equation for the test piece can be obtained. Then, using the obtained plastic constitutive equation and the finite element method, it is possible to simulate each stage of processing a complex three-dimensional shape of an actual workpiece material and predict the amount of springback.
[0013]
In using the above prior art, it is necessary to obtain the yield point in the unloading process. Equivalent plastic strain after the yield point in this unloading process (εp eqThis is because each coefficient function is defined as a function of). A typical example of the method for determining the yield point of a material is shown in FIGS. In the first method, as shown in FIG. 7, when remarkable primary yield X and secondary yield Y are observed in the stress-strain curve, these are used as yield points. However, the yield in the unloading process cannot be used because such remarkable primary yield X and secondary yield Y are not observed. In the second method, as shown in FIG. 8, the applied stress point Z at which the plastic strain remaining after unloading becomes 0.2% is taken as the yield point for the material in which no remarkable primary yield X and secondary yield Y are observed. It is a method to do. However, in the unloading process where the Bauschinger effect appears, the value of 0.2% plastic strain is after entering the plastic region, and when simulating this point as the yield point, the springback amount is accurately predicted. It cannot be done and is inappropriate.
[0014]
For these conventional methods, the present inventors have devised a third method shown in FIG. That is, the third method is a method in which the yield point is a point where the slope of the characteristic curve changes in the stress-strain curve. According to this method, the disadvantages of the first and second methods can be solved. That is, as shown in the figure, the stress-strain curve in the unloading process has a linear characteristic at the initial stage from the unloading point. Therefore, the point where the slope of the characteristic curve deviates from this straight line is the yield in the unloading process. Used as point X0.
[0015]
FIG. 10 shows the result of simulating the stress-strain relationship based on the plastic constitutive equation according to the prior art using the yield point in the unloading process obtained by the third method, and comparing it with the experimental value. Thus, by this method, a good approximation was obtained between the actual Bauschinger effect data 1 and the simulation result 3 in the region of large plastic strain in the unloading process.
[0016]
However, in the third method, when the point at which the slope of the stress-strain curve changes during the unloading process is used as the yield point in the unloading process, the obtained yield point varies. Was found out. In the stress-strain curve, in the region where the plastic strain increases from the yield point in the unloading process, there is a considerable difference between the actual Bausinger effect data 1 and the simulation result 3, and the springback amount is predicted. It became clear that there was a big madness.
[0017]
The present invention solves the problems of the prior art, obtains the yield point in the unloading process with less variation, and includes the experimental results including the region where the plastic strain increases from the yield point in the unloading process in the stress-strain curve. It is to provide a method for simulating the stress-strain relationship of an elastoplastic material and a method for obtaining a yield point in the unloading process, which can be matched with high accuracy.
[0018]
[Means for Solving the Problems]
The present invention is based on the fact that two new findings have been obtained by carefully analyzing the unloading process, in particular, the transition region from the elastic region to the plastic region, as a problem of the prior art. One of them is that in this transition region, the change in the tangential gradient of the stress-strain curve is characteristic, and from this, it has been found that the yield point in the unloading process can be obtained with little variation. Second, it is clear that the coefficient function of the prior art is not sufficient to express the actual Bauschinger effect when using the yield point in the unloading process with low variability and high accuracy obtained in this way. Thus, an alternative coefficient function has been found. First, these contents will be described.
[0019]
1. Yield point in unloading process
FIG. 1 is a diagram showing a stress σ-strain ε curve in the unloading process, in which a tangential gradient δσ / δε is calculated for each stress value, stress is plotted on the horizontal axis and tangential gradient δσ / δε is plotted on the vertical axis. is there. As is clear from this figure, the behavior of the tangential gradient δσ / δε can be divided into four regions. The first region (1) is a region in the stress state near the unloading point, and the tangential gradient δσ / δε has a high value, but changes linearly with a small change rate as the stress changes. In the second region (2), the value of the tangential gradient δσ / δε decreases nonlinearly as the difference in stress from the unloading point increases. In the third region (3), the tangential gradient δσ / δε decreases almost linearly with a large change rate with respect to the change in stress. In the fourth region (4), the tangential gradient δσ / δε decreases nonlinearly toward zero as the stress changes.
[0020]
In the conventional method in which the point at which the stress-strain curve gradient in the unloading process changes is the yield point in the unloading process, the region where the tangential gradient δσ / δε is constant is assumed. There is no significant area. Therefore, even if an attempt is made to obtain a point at which the slope of the stress-strain curve changes, the result varies.
[0021]
Therefore, if the relationship between the tangential gradient δσ / δε and the stress σ in FIG. 1 is carefully analyzed, the tangential gradient δσ / δε decreases as the stress changes, but the change is small at the initial stage and changes linearly. Then, the linear change becomes non-linear, and the tangential gradient δσ / δε rapidly decreases greatly. Therefore, a point where the relationship between the tangential gradient δσ / δε and the stress σ deviates from linearity can be considered as a point where the stress-strain relationship changes substantially, and this can be considered as a yield point in the unloading process. That is, the boundary point between the first region and the second region in FIG. 1 is determined as the yield point in the unloading process.
[0022]
If the stress σ-strain ε curve in the material unloading process is given, the point where the relationship between the tangential gradient δσ / δε and the stress σ deviates from linearity can be uniquely determined. Yield point can be obtained with little variation.
[0023]
2. About coefficient functions
FIG. 2 shows the yield point in the unloading process with small variation and high accuracy obtained in this way. The plastic constitutive equation is based on the plastic constitutive equation having the coefficient function identified by the experimental value. The result of simulating the relationship is shown. There is a difference between the actual Bauschinger effect data 5 and the simulation result 7. As described above, when the yield point in the unloading process is uniquely determined, the actual Bauschinger effect cannot be expressed sufficiently by using the conventional coefficient function.
[0024]
Therefore, it was found that the actual Bausinger effect can be expressed sufficiently by carefully analyzing the coefficient function and using the following coefficient function. That is, the amount of isotropic hardening (R) and the coefficient of the back stress function are expressed as equivalent plastic strain (εp eq) And equivalent plastic strain at the start of unloading (εp T) As a variable function.
[0025]
In the prior art, the amount of isotropic hardening (R) is equivalent to the equivalent plastic strain (εp eq) Is a non-linear function represented by Expression (5).
[Equation 8]
R = K * (εp eq)n                (5)
Here, K and n are constants determined by the material.
[0026]
Also, the coefficient (H) representing the magnitude of linear kinematic hardening is equivalent to the equivalent plastic strain (εp eq) Depending on the size of the three cases, the equivalent plastic strain (εp eq) In the first case where the constant is small, the equivalent plastic strain (εp eq) Function. For example, Expression (6) can be used as the function.
[Equation 9]
H = p * (εp eq) + Q (6)
[0027]
Further, when the coefficient C representing the convergence speed of the nonlinear kinematic hardening is expressed by the equation (7), ε0Is the constant plastic strain at the time of unloading (εp T) Function.
[Expression 10]
C = C ′ / 2 * (εp eq+ Ε0)1/2      (7)
[0028]
FIG. 3 shows the amount of isotropic hardening (R), the coefficient representing the magnitude of linear kinematic hardening (H), and ε in the equation representing the coefficient C representing the speed of convergence of nonlinear kinematic hardening.0The results of simulating the stress-strain relationship by applying the above-described function are shown below. The actual Bauschinger effect data 9 and the simulation result 11 are in good agreement. In this way, the actual Bauschinger effect can be sufficiently expressed by using an appropriate coefficient function.
[0029]
  3. Problem solving means
In order to achieve the object of the present invention, the stress-strain relationship simulation method according to the present invention approximates the stress-strain relationship of an elastoplastic material with a composite curing model combining an isotropic curing model and a kinematic curing model. The yield function as a plastic constitutive equation that gives the stress-strain relationship is defined as a function with the amount of isotropic hardening and the back stress as variables, where the back stress is a component of linear kinematic hardening and a component of non-linear kinematic hardening. A stress-strain relationship that expresses the Bauschinger effect of an elastoplastic material by defining a back stress function having a coefficient function with the equivalent plastic strain of the material as a variable. The amount of hardening R and the coefficient of the back stress function are expressed as equivalent plastic strain (εp eq) And equivalent plastic strain at the start of unloading (εp T) As a variableTheThe isotropic cure amount R isε p eq Nonlinear functionR = K * (εp eq)n,However, n is a number other than 1 and is one of the coefficients of the back stress function.The coefficient H representing the magnitude of linear kinematic hardening is the equivalent plastic strain εp eqFunctionsage,One of the coefficients of the back stress functionA coefficient C representing the convergence speed of nonlinear kinematic hardening is expressed as C = C ′ / 2 * (εp eq+ Ε0)1/2Ε0IsEquivalent plastic strain at the start of unloadingεp T Is a variableSekiNumber andAnd an experimental value acquisition step for acquiring stress-strain-related experimental values as a plurality of discrete values, and a coefficient function for identifying the coefficient function including K, n, and C ′ determined by the material based on the plurality of experimental values. An identification step, and using the identified coefficient function to simulate a stress-strain relationship.
[0030]
Further, in the stress-strain relationship simulating method according to the present invention, in the experimental value acquisition step, after applying tensile stress to generate plastic strain, in the unloading process of unloading the tensile stress, A yield point calculation step of calculating a tangential gradient δσ / δε in a strain curve with each stress value, and calculating a point where the relationship between the tangential gradient δσ / δε and the stress σ deviates from linearity as a yield point in the unloading process. Equivalent plastic strain ε from the strain after the calculated yield pointp eqIt is characterized by calculating | requiring.
[0031]
In the stress-strain relationship simulation method according to the present invention, Si(I = x, y, z) is a normal stress σ acting on a plane perpendicular to the coordinate system corresponding to the index i.iDeviation stress with respect to Sij(I, j = x, y, z) is applied to the plane perpendicular to the coordinate system corresponding to the index i, and the shear stress σ acting in the direction of the coordinate axis corresponding to the index jijDeviation stress with respect to α ′i(I = x, y, z) is a deviation component relating to a back stress acting on a plane perpendicular to the coordinate system corresponding to the index i, α ′ij(I, j = x, y, z) is a deviation component related to the back stress acting in the direction of the coordinate axis corresponding to the index j on a plane perpendicular to the coordinate system corresponding to the index i, Y0Is the initial yield stress, which is the yield stress when plastic deformation of the material is first started, the yield function (f) is
## EQU11 ##
f = (1/2) * [(Sx−α ′x)2+ (Sy−α ′y)2+ (Sz−α ′z)2+2 (Sxy−α ′xy)2+2 (Syz−α ′yz)2+2 (Szx−α ′zx)2]-(1/3) * (Y0+ R)2
It is characterized by being.
[0032]
In the stress-strain relationship simulation method according to the present invention, Si(I = x, y, z) is a normal stress σ acting on a plane perpendicular to the coordinate system corresponding to the index i.iExtended deviation stress with respect to Sij(I, j = x, y, z) is applied to the plane perpendicular to the coordinate system corresponding to the index i, and the shear stress σ acting in the direction of the coordinate axis corresponding to the index jijExtended deviation stress with respect to α ′i(I = x, y, z) is a deviation component relating to a back stress acting on a plane perpendicular to the coordinate system corresponding to the index i, α ′ij(I, j = x, y, z) is a deviation component related to the back stress acting in the direction of the coordinate axis corresponding to the index j on a plane perpendicular to the coordinate system corresponding to the index i, Y0Is the initial yield stress that is the yield stress when plastic deformation of the material is first started, the yield function (f) is
[Expression 12]
f = (1/4) * [(Sx−α ′x)Four+ (Sy−α ′y)Four+ (Sz−α ′z)Four+2 (Sxy−α ′xy)Four+2 (Syz−α ′yz)Four+2 (Szx−α ′zx)Four]-(1/9) * (Y0+ R)Four
It is characterized by being.
[0033]
In the stress-strain relationship simulating method according to the present invention, [α′1] is a tensor representing a first back stress deviation component that is a component depending on the nonlinearity of kinematic hardening in the back stress, [α ′ 2] is a tensor representing a second back stress deviation component which is a component depending on the linearity of kinematic hardening in the back stress, [dεp], A tensor representing the plastic strain increment, dεp eqIs an equivalent plastic strain increment, C is a coefficient representing the convergence speed of nonlinear kinematic hardening, C ′ is a constant, (2/3) a is a convergence value of non-linear kinematic hardening, ε0Equivalent plastic strain εp eqRepresents a deviation component (α ′) of the back stress when a variable for preventing C from being infinite when H is 0, and H is a coefficient representing the magnitude of linear kinematic hardening. The tensor [α´] is
[Formula 13]
[α ′] = [α′1] + [α′2]
[dα′1] = C [2/3 (a * [dεp])-Dεp eq* [Α'1]]
[dα′2] = 2/3 (H * [dεp])
C = C ′ / 2 * (εp eq+ Ε0)1/2
It is characterized by being.
[0034]
In addition, the method for obtaining the yield point in the unloading process according to the present invention is that the yield point in the unloading process of unloading the tensile stress after applying a tensile stress in the stress-strain relationship of the material to cause plastic strain. A tangential gradient calculating step for calculating a tangential gradient δσ / δε in each stress-strain curve with respect to each stress value, and a point where the relationship between the tangential gradient δσ / δε and the stress σ deviates from linearity. A yield point calculating step of calculating as a yield point in the unloading process.
[0035]
The stress-strain relationship simulation method according to the present invention includes an experimental value acquisition step for acquiring stress-strain relationship experimental values as a plurality of discrete values, and the coefficient function including K, n, and C ′ determined by the material. A coefficient function identifying step for identifying based on the plurality of experimental values, and using the identified coefficient function, a stress-strain relationship is simulated. Then, the amount of isotropic hardening and the coefficient of the back stress function are expressed as equivalent plastic strain (εp eq) And equivalent plastic strain at the start of unloading (εp T) As a variable function, and the isotropic hardening amount R is R = K * (εp eq)nAnd the coefficient H representing the magnitude of linear kinematic hardening is equivalent plastic strain (εp eq) And a coefficient C representing the convergence speed of nonlinear kinematic hardening, C = C ′ / 2 * (εp eq+ Ε0)1/2Ε0Is εp TIs a function of As a result, the stress-strain curve can be matched with the experimental result with high accuracy including the region where the plastic strain increases from the yield point in the unloading process.
[0036]
In the stress-strain relationship simulation method according to the present invention, the tangential gradient δσ / δε in the stress-strain curve is calculated for each stress value, and the relationship between the tangential gradient δσ / δε and the stress σ is linear. The point that falls off is calculated as the yield point in the unloading process. Therefore, the yield point in the unloading process can be obtained with less variation, and the stress-strain curve can be matched with the experimental results with high accuracy including the region where the plastic strain increases from the yield point in the unloading process.
[0037]
In the stress-strain relationship simulating method according to the present invention, the yield function as the plastic constitutive equation is a quadratic function of the deviation component of the deviation stress and the back stress. The yield function as a plastic constitutive equation is a quartic function of the deviation component of the deviation stress and the back stress. As a result, when the function of the yield function is quadratic, the yield point in the unloading process is obtained with little variation in the case of the fourth order, and the plastic strain increases from the yield point in the unloading process in the stress-strain curve. It is possible to match the experimental results including the region with high accuracy.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
4 and 5 are flowcharts according to the embodiment of the present invention. FIG. 4 shows a flowchart of a stress-strain relationship simulation method, and FIG. 5 shows a flowchart of a method for obtaining a yield point in the unloading process.
[0039]
S1 in FIG. 4 is an unloading process yield point calculating step, using a test piece made of substantially the same material as the workpiece to be simulated, first applying a tensile stress and unloading when a predetermined plastic strain is reached, This is a process of obtaining a stress-strain curve in the unloading process and obtaining a yield point in the unloading process. The detailed contents of this process will be described later with reference to FIG.
[0040]
S3 is an experimental value acquisition process other than the yield point, and using a test piece made of the same material as the unloading process yield point calculating process of S1, a plurality of stress-strain relationships other than the yield point of the unloading process are obtained through experiments. It is a process of acquiring as a discrete value. For example, the isotropic hardening amount R and the equivalent plastic strain (εp eq), The coefficient H representing the magnitude of linear kinematic hardening and the equivalent plastic strain (εp eq), The coefficient C representing the convergence speed of nonlinear kinematic hardening is expressed as C = C ′ / 2 * (εp eq+ Ε0)1/2Ε0And equivalent plastic strain at unloading εp TA plurality of discrete values are acquired for the relationship.
[0041]
S5 is a coefficient function identification step, and a function of the coefficient function including K, n, C ′ determined by the material from a plurality of discrete values of the stress-strain relationship acquired in the experimental value acquisition step other than the yield point of S3. It is the process of identifying. For example, for the isotropic hardening amount R, a plurality of equivalent plastic strains (εp eq), K and n are determined from experimental values, and R = K * (εp eq)nIs specifically identified. The coefficient H representing the magnitude of linear kinematic hardening is equivalent plastic strain (εp eq) To identify the function itself and0Is equivalent plastic strain ε at unloadingp TThe function itself is identified from the experimental value for.
[0042]
S7 is a stress-strain relationship calculation step, which uses the coefficient function identified in S5 to determine a yield function, which is a plastic constitutive equation, and calculates a stress-plastic strain relationship. Since the calculation formula for the stress-strain relationship in the elastic region is easier than in the plastic region, the elastic region and the plastic region can be connected to calculate the stress-strain relationship for the entire elastic-plastic region.
[0043]
S9 is a spring back amount calculation step, and each step of processing a complex three-dimensional shape of the actual work material using the plastic constitutive equation obtained as a result of the stress-strain relationship calculation step of S7 and the finite element method. Is a step of calculating the amount of springback.
[0044]
FIG. 5 shows a detailed flowchart of the yield point calculation step of the unloading process in S1 of FIG. S21 is a stress-strain relationship acquisition step, using a test piece made of substantially the same material as the workpiece to be simulated, applying a tensile stress first, unloading when a predetermined plastic strain is reached, and stress in the unloading process. A step of obtaining a strain curve;
[0045]
S23 is a step of calculating a tangential gradient δσ / δε for each stress value from the stress σ-strain ε curve acquired in the stress-strain relationship acquisition step of S21 in the tangential gradient calculation step.
[0046]
S25 is a yield point calculation step, and the relationship between the tangent gradient δσ / δε and the stress σ obtained in the tangential gradient calculation step of S23 is a point where the change of the tangential gradient δσ / δε with respect to the change of stress deviates from the linearity. It is a process of calculating as a yield point in the unloading process. Specifically, the boundary point between the first region and the second region in FIG. 1 is calculated as the yield point in the unloading process.
[0047]
【The invention's effect】
The stress-strain relationship simulating method according to the present invention obtains the yield point in the unloading process with little variation, and in the stress-strain curve, including the region where the plastic strain increases from the yield point in the unloading process, Match with high accuracy. Moreover, the method for obtaining the yield point in the unloading process according to the present invention can obtain the yield point in the unloading process with little variation.
[Brief description of the drawings]
In the embodiment according to the present invention, the tangential gradient δσ / δε of the stress σ-strain ε curve in the unloading process is calculated with each stress value, the stress is plotted on the horizontal axis, and the tangential gradient δσ / FIG. 6 is a diagram showing δε.
FIG. 2 is a diagram showing a result of simulating a stress-strain relationship based on a conventional technique using a yield point in an unloading process according to an embodiment of the present invention.
FIG. 3 is a diagram showing a result of simulating a stress-strain relationship according to the embodiment of the present invention.
FIG. 4 is a flowchart of a stress-strain relationship simulation method according to an embodiment of the present invention.
FIG. 5 is a flowchart of a method for obtaining a yield point in an unloading process according to an embodiment of the present invention.
FIG. 6 is a diagram showing the state of the springback phenomenon, with strain on the horizontal axis and stress on the vertical axis.
FIG. 7 is a diagram showing a first method for determining a yield point of a material.
FIG. 8 is a diagram showing a second method for determining a yield point of a material.
FIG. 9 is a diagram showing a third method for determining the yield point of a material.
FIG. 10 shows the result of simulating the stress-strain relationship based on the plastic constitutive equation of the prior art, using the yield point in the unloading process obtained by the third method, and comparing the result with the experimental result. FIG.
[Explanation of symbols]
1, 5, 9 Actual bauschinger effect data, 3, 7, 11 Simulation results.

Claims (6)

弾塑性材料の応力−ひずみ関係を、等方硬化モデルと移動硬化モデルとを組合せた複合硬化モデルで近似し、
応力−ひずみ関係を与える塑性構成式としての降伏関数を、等方硬化量と背応力を変数とする関数で定義し、
ここで背応力は、
線形移動硬化の成分と非線形移動硬化の成分とからなり、材料の相当塑性ひずみを変数とする係数関数を有する背応力関数で定義して、
弾塑性材料のバウシンガー効果を表現する応力−ひずみ関係をシミュレートする方法であって、
前記等方硬化量Rと、背応力関数の係数とを、相当塑性ひずみ(ε eq)と除荷開始時の相当塑性ひずみ(ε )を変数とする係数関数とし
等方硬化量Rは、ε eq の非線形関数R=K*(ε eqただしnは1以外の数とし、
背応力関数の係数の1つである線形移動硬化の大きさを表す係数Hは、相当塑性ひずみε eqの関数とし
背応力関数の係数の1つである非線形移動硬化の収束の速さを表す係数Cを、
C=C´/2*(ε eq+ε1/2と表すときのεは、除荷開始時の相当塑性ひずみε を変数とする数とし、
応力−ひずみ関係の実験値を複数の離散値として取得する実験値取得工程と、
材料で定まるK、n、C´を含め前記係数関数を、前記複数の実験値に基き同定する係数関数同定工程と、
を含み、
前記同定された係数関数を用い、応力−ひずみ関係をシミュレートすることを特徴とする応力−ひずみ関係シミュレート方法。
Approximate the stress-strain relationship of an elastoplastic material with a composite hardening model that combines an isotropic hardening model and a kinematic hardening model,
The yield function as a plastic constitutive equation giving the stress-strain relationship is defined as a function with the amount of isotropic hardening and back stress as variables,
Where the back stress is
It is composed of a component of linear kinematic hardening and a component of non-linear kinematic hardening, and is defined by a back stress function having a coefficient function with the equivalent plastic strain of the material as a variable.
A method for simulating a stress-strain relationship expressing the Bauschinger effect of an elastoplastic material,
Said isotropic hardening amount R, the coefficient of the back stress function, and the equivalent plastic strain (ε p eq) and unloading at the start of the equivalent plastic strain (epsilon p T) the coefficient function whose variable,
The amount of isotropic hardening R is a nonlinear function of ε p eq R = K * (ε p eq ) n , where n is a number other than 1,
Factor H that represents the magnitude of the linear kinematic hardening, which is one of the coefficients of the back stress function, a function of the equivalent plastic strain epsilon p eq,
A coefficient C representing the convergence speed of nonlinear kinematic hardening, which is one of the coefficients of the back stress function ,
C = C'/ 2 * (ε p eq + ε 0) ε 0 when expressed as 1/2, the functions that the variable equivalent plastic strain epsilon p T at the start of unloading,
An experimental value acquisition step of acquiring stress-strain-related experimental values as a plurality of discrete values;
A coefficient function identifying step for identifying the coefficient function including K, n, and C ′ determined by the material based on the plurality of experimental values;
Including
A stress-strain relationship simulation method, wherein the stress-strain relationship is simulated using the identified coefficient function.
請求項1に記載の応力−ひずみ関係シミュレート方法において、
前記実験値取得工程において、さらに、
引張り応力を加え、塑性ひずみを生じさせた後、引張り応力を除荷する除荷過程において、応力−ひずみ曲線における接線勾配δσ/δεを各応力値に付き算出し、前記接線勾配δσ/δεと応力σとの関係が線形性から外れる点を除荷過程における降伏点として算出する降伏点算出工程
を備え、この算出された降伏点以降のひずみから相当塑性ひずみε eqを求めることを特徴とする応力−ひずみ関係シミュレート方法。
The stress-strain relationship simulation method according to claim 1,
In the experimental value acquisition step,
In the unloading process in which tensile stress is applied and plastic strain is generated and then the tensile stress is unloaded, a tangential gradient δσ / δε in the stress-strain curve is calculated for each stress value, and the tangential gradient δσ / δε is calculated. A yield point calculating step of calculating a yield point in the unloading process at a point where the relationship with the stress σ deviates from linearity, and obtaining an equivalent plastic strain ε p eq from the strain after the calculated yield point. To simulate stress-strain relationship.
請求項1または請求項2に記載の応力−ひずみ関係シミュレート方法において、
(i=x,y,z)を、指標iに対応する座標系に垂直な面に作用する垂直応力σに関する偏差応力、
ij(i,j=x,y,z)を、指標iに対応する座標系に垂直な面に、指標jに対応する座標軸の方向に作用するせん断応力σijに関する偏差応力、
α´(i=x,y,z)を、指標iに対応する座標系に垂直な面に作用する背応力に関する偏差成分、
α´ij(i,j=x,y,z)を、指標iに対応する座標系に垂直な面に、指標jに対応する座標軸の方向に作用する背応力に関する偏差成分、
を、材料の塑性変形がはじめて開始されるときの降伏応力である初期降伏応力、
としたとき、
前記降伏関数(f)は、
(数1)
f=(1/2)*[(S−α´+(S−α´+(S−α´+2(Sxy−α´xy+2(Syz−α´yz+2(Szx−α´zx]−(1/3)*(Y+R)
であることを特徴とする応力−ひずみ関係シミュレート方法。
In the stress-strain relationship simulation method according to claim 1 or 2,
S i (i = x, y, z) is a deviation stress with respect to a normal stress σ i acting on a plane perpendicular to the coordinate system corresponding to the index i,
S ij (i, j = x, y, z) is applied to the plane perpendicular to the coordinate system corresponding to the index i, the deviation stress relating to the shear stress σ ij acting in the direction of the coordinate axis corresponding to the index j,
α ′ i (i = x, y, z) is a deviation component related to the back stress acting on a plane perpendicular to the coordinate system corresponding to the index i,
α ′ ij (i, j = x, y, z) is a deviation component related to the back stress acting in the direction of the coordinate axis corresponding to the index j on a plane perpendicular to the coordinate system corresponding to the index i,
Y 0 is the initial yield stress, which is the yield stress when plastic deformation of the material is first started,
When
The yield function (f) is
(Equation 1)
f = (1/2) * [(S x −α ′ x ) 2 + (S y −α ′ y ) 2 + (S z −α ′ z ) 2 +2 (S xy −α ′ xy ) 2 +2 ( S yz −α ′ yz ) 2 +2 (S zx −α ′ zx ) 2 ] − (1/3) * (Y 0 + R) 2
A stress-strain relationship simulation method characterized by:
請求項1または請求項2に記載の応力−ひずみ関係シミュレート方法において、
(i=x,y,z)を、指標iに対応する座標系に垂直な面に作用する垂直応力σに関する拡張偏差応力、
ij(i,j=x,y,z)を、指標iに対応する座標系に垂直な面に、指標jに対応する座標軸の方向に作用するせん断応力σijに関する拡張偏差応力、
α´(i=x,y,z)を、指標iに対応する座標系に垂直な面に作用する背応力に関する偏差成分、
α´ij(i,j=x,y,z)を、指標iに対応する座標系に垂直な面に、指標jに対応する座標軸の方向に作用する背応力に関する偏差成分、
を、材料の塑性変形がはじめて開始されるときの降伏応力である初期降伏応力、
としたとき、
前記降伏関数(f)は、
(数2)
f=(1/4)*[(S−α´+(S−α´+(S−α´+2(Sxy−α´xy+2(Syz−α´yz+2(Szx−α´zx]−(1/9)*(Y+R)
であることを特徴とする応力−ひずみ関係シミュレート方法。
In the stress-strain relationship simulation method according to claim 1 or 2,
S i (i = x, y, z) is an extended deviation stress with respect to a normal stress σ i acting on a plane perpendicular to the coordinate system corresponding to the index i,
S ij (i, j = x, y, z) is applied to the plane perpendicular to the coordinate system corresponding to the index i, the expanded deviation stress with respect to the shear stress σ ij acting in the direction of the coordinate axis corresponding to the index j,
α ′ i (i = x, y, z) is a deviation component related to the back stress acting on a plane perpendicular to the coordinate system corresponding to the index i,
α ′ ij (i, j = x, y, z) is a deviation component related to the back stress acting in the direction of the coordinate axis corresponding to the index j on a plane perpendicular to the coordinate system corresponding to the index i,
Y 0 is the initial yield stress, which is the yield stress when plastic deformation of the material is first started,
When
The yield function (f) is
(Equation 2)
f = (1/4) * [(S x −α ′ x ) 4 + (S y −α ′ y ) 4 + (S z −α ′ z ) 4 +2 (S xy −α ′ xy ) 4 +2 ( S yz −α ′ yz ) 4 +2 (S zx −α ′ zx ) 4 ] − (1/9) * (Y 0 + R) 4
A stress-strain relationship simulation method characterized by:
請求項3または請求項4に記載の応力−ひずみ関係シミュレート方法において、
{α´1}を、背応力のうち移動硬化の非線形性に依存する成分である第一背応力偏差成分を表すテンソル、
{α´2}を、背応力のうち移動硬化の線形性に依存する成分である第二背応力偏差成分を表すテンソル、
{dε}を、塑性ひずみ増分を表すテンソル、
dε eqを、相当塑性ひずみ増分、
Cを、非線形移動硬化の収束の速さを表す係数、
C´を、定数、
(2/3)aを、非線形移動硬化の収束値、
εを、相当塑性ひずみε eqが0である場合に、Cが無限大となることを防止するための変数、
Hを、線形移動硬化の大きさを表す係数、
としたとき、
前記背応力の偏差成分(α´)をあらわすテンソル{α´}は、
(数3)
{α´}={α´1}+{α´2}
{dα´1}=C[2/3(a*{dε})−dε eq*{α´1}]
{dα´2}=2/3(H*{dε})
C=C´/2*(ε eq+ε1/2
であることを特徴とする応力−ひずみ関係シミュレート方法。
In the stress-strain relationship simulation method according to claim 3 or 4,
{α′1} is a tensor representing a first back stress deviation component that is a component of back stress that depends on kinematic nonlinearity;
{α′2} is a tensor representing a second back stress deviation component which is a component depending on linearity of kinematic hardening among back stresses,
{dε p } is a tensor representing the plastic strain increment,
p eq is equivalent plastic strain increment,
C is a coefficient representing the convergence speed of nonlinear kinematic hardening,
C ′ is a constant,
(2/3) a is a convergence value of nonlinear kinematic hardening,
ε 0 is a variable for preventing C from becoming infinite when the equivalent plastic strain ε p eq is 0,
H is a coefficient representing the magnitude of linear kinematic hardening,
When
The tensor {α ′} representing the deviation component (α ′) of the back stress is:
(Equation 3)
{α ′} = {α′1} + {α′2}
{dα'1} = C [2/3 ( a * {dε p}) - dε p eq * {α'1}]
{dα′2} = 2/3 (H * {dε p })
C = C ′ / 2 * (ε p eq + ε 0 ) 1/2
A stress-strain relationship simulation method characterized by:
材料の応力−ひずみ関係において、引張り応力を加え、塑性ひずみを生じさせた後、引張り応力を除荷する除荷過程における降伏点を求める方法であって、
応力−ひずみ曲線における接線勾配δσ/δεを各応力値に付き算出する接線勾配算出工程と、
前記接線勾配δσ/δεと応力σとの関係が線形性から外れる点を除荷過程における降伏点として算出する降伏点算出工程と、
を備えることを特徴とする除荷過程における降伏点を求める方法。
In the stress-strain relationship of the material, after applying tensile stress and generating plastic strain, it is a method for obtaining the yield point in the unloading process of unloading the tensile stress,
A tangential gradient calculating step of calculating a tangential gradient δσ / δε in the stress-strain curve with each stress value;
A yield point calculating step of calculating a point where the relationship between the tangential gradient δσ / δε and the stress σ deviates from linearity as a yield point in the unloading process;
A method for obtaining a yield point in an unloading process characterized by comprising:
JP2001396596A 2001-12-27 2001-12-27 Stress-strain relationship simulation method and method for obtaining yield point in unloading process Expired - Fee Related JP3809374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001396596A JP3809374B2 (en) 2001-12-27 2001-12-27 Stress-strain relationship simulation method and method for obtaining yield point in unloading process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001396596A JP3809374B2 (en) 2001-12-27 2001-12-27 Stress-strain relationship simulation method and method for obtaining yield point in unloading process

Publications (2)

Publication Number Publication Date
JP2003194686A JP2003194686A (en) 2003-07-09
JP3809374B2 true JP3809374B2 (en) 2006-08-16

Family

ID=27602643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001396596A Expired - Fee Related JP3809374B2 (en) 2001-12-27 2001-12-27 Stress-strain relationship simulation method and method for obtaining yield point in unloading process

Country Status (1)

Country Link
JP (1) JP3809374B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141794A1 (en) 2013-03-14 2014-09-18 Jfeスチール株式会社 Stress-strain relationship simulation method, spring back prediction method, and spring back analyzing device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4620609B2 (en) * 2006-02-28 2011-01-26 住友金属工業株式会社 Prediction method for stress-strain relationship of steel
WO2009124421A1 (en) * 2008-04-11 2009-10-15 北京联合大学 Method for determining the initial straight line segment of material load deformation curve and mechanical performance parameters
JP5325194B2 (en) * 2010-02-26 2013-10-23 株式会社神戸製鋼所 Method for evaluating fatigue characteristics of T-joints in T-type welded joint structures
JP5866892B2 (en) * 2011-09-06 2016-02-24 Jfeスチール株式会社 Stress-strain relationship evaluation method and springback amount prediction method
JP2014094392A (en) * 2012-11-09 2014-05-22 Hitachi Ltd Sheet metal processing method and sheet metal processing equipment
JP6582892B2 (en) * 2015-11-04 2019-10-02 日本製鉄株式会社 Hot rolling method for steel
CN109145417B (en) * 2018-08-07 2023-01-17 中国科学院金属研究所 Method for directly determining indentation strain method stress calculation function based on mechanical properties of material
CN110008620B (en) * 2019-04-15 2023-06-16 中国科学院宁波材料技术与工程研究所 Method for analyzing alpha-Fe strain rate sensitivity coefficient under dynamic load condition
CN110096809B (en) * 2019-04-30 2023-03-14 中煤科工集团重庆研究院有限公司 Modeling method for material unstable roadway rock burst based on double-yield contour model
CN111929156B (en) * 2020-07-15 2022-05-20 中国核动力研究设计院 Method and system for testing safety performance of nuclear energy equipment
CN112541285B (en) * 2020-11-11 2024-03-12 北京交通大学 Numerical simulation method suitable for constitutive relation of timber for Chinese ancient building wood structure
CN113420391B (en) * 2021-07-02 2023-03-10 北京理工大学重庆创新中心 Method for obtaining high-precision hardening model parameters of material under complex stress state
CN113764056B (en) * 2021-09-06 2023-04-07 北京理工大学重庆创新中心 Method for obtaining high-precision hardening model parameters of material under multiple strain rates
CN114112685B (en) * 2021-12-29 2023-07-25 国网新源控股有限公司 Method for determining early consolidation stress of field compacted earth-rock mixture
CN117367972B (en) * 2023-12-07 2024-02-09 道生天合材料科技(上海)股份有限公司 Method for predicting stability of structural adhesive tape in mold closing process of wind power blade shell
CN117558381B (en) * 2024-01-12 2024-03-22 四川大学 Calculation method of plastic hardening model related to temperature and strain rate of metal material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141794A1 (en) 2013-03-14 2014-09-18 Jfeスチール株式会社 Stress-strain relationship simulation method, spring back prediction method, and spring back analyzing device
JP2014178168A (en) * 2013-03-14 2014-09-25 Jfe Steel Corp Stress-distortion relation simulating method, spring-back extent predicting method, and spring-back analyzing apparatus
US10089422B2 (en) 2013-03-14 2018-10-02 Jfe Steel Corporation Stress-strain relation simulation method, springback-amount prediction method, and springback analyzer

Also Published As

Publication number Publication date
JP2003194686A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
JP3809374B2 (en) Stress-strain relationship simulation method and method for obtaining yield point in unloading process
JP5582211B1 (en) Stress-strain relationship simulation method, springback amount prediction method, and springback analysis device
JP5866892B2 (en) Stress-strain relationship evaluation method and springback amount prediction method
Jensen et al. Formulation of a mixed-mode multilinear cohesive zone law in an interface finite element for modelling delamination with R-curve effects
JP3897477B2 (en) Stress-strain relationship simulation method and springback amount prediction method
Costa et al. A cohesive zone element for mode I modelling of adhesives degraded by humidity and fatigue
Hambli Finite element simulation of fine blanking processes using a pressure-dependent damage model
JP5932290B2 (en) Mechanical property creation method considering parameters related to plastic volume change
Peters et al. A strain rate dependent anisotropic hardening model and its validation through deep drawing experiments
Antunes et al. Numerical study of contact forces for crack closure analysis
JPWO2013042600A1 (en) Stress-strain relationship simulation method, stress-strain relationship simulation system, stress-strain relationship simulation program using Chaboche model
CN111855458A (en) Porous material constitutive relation solving method based on nanoindentation theory
Ha et al. Continuous strain path change simulations for sheet metal
Holcomb et al. Inelastic constitutive properties and shear localization in Tennessee marble
Gozin et al. Quarter elliptical crack growth using three dimensional finite element method and crack closure technique
Ilg et al. Constitutive model parameter identification via full-field calibration
JP7292755B2 (en) Elastic-plastic analysis method and elastic-plastic analysis program
Chen Testing and modeling tensile stress-strain curve for prestressing wires in railroad ties
Hambli et al. Finite element damage modeling in bending processes
Fariba et al. A New Method for Correcting the Stress-Strain Curves after Bulging in Metals
Sklad et al. Modelling of Die Tryout
Fariba A new technique based on strain energy for correction of stress-strain curve
Pirondi et al. Simulating fatigue failure in bonded composite joints using a modified cohesive zone model
Gontarz Comparative study of the flow characteristics of AlCu2SiMn alloy
Cvitanić et al. Comparison of simple and full approach for non-associated formulation based on Karafillis-Boyce stress function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees