JP5325194B2 - Method for evaluating fatigue characteristics of T-joints in T-type welded joint structures - Google Patents

Method for evaluating fatigue characteristics of T-joints in T-type welded joint structures Download PDF

Info

Publication number
JP5325194B2
JP5325194B2 JP2010258212A JP2010258212A JP5325194B2 JP 5325194 B2 JP5325194 B2 JP 5325194B2 JP 2010258212 A JP2010258212 A JP 2010258212A JP 2010258212 A JP2010258212 A JP 2010258212A JP 5325194 B2 JP5325194 B2 JP 5325194B2
Authority
JP
Japan
Prior art keywords
haz
joint
weld
weld toe
fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010258212A
Other languages
Japanese (ja)
Other versions
JP2011196986A (en
Inventor
栄一 田村
宏行 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010258212A priority Critical patent/JP5325194B2/en
Priority to CN 201110047097 priority patent/CN102192858B/en
Priority to KR1020110016984A priority patent/KR101195733B1/en
Publication of JP2011196986A publication Critical patent/JP2011196986A/en
Application granted granted Critical
Publication of JP5325194B2 publication Critical patent/JP5325194B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Description

本発明は、実際に溶接継手を作製して疲労試験を行なわなくても、T型溶接継手構造体におけるT継手部の疲労特性を簡便かつ迅速に評価(予測、推定)する方法に関するものである。本発明の評価方法は、例えば造船、海洋構造物、低温タンク、ラインパイプ、土木・建築構造物などのようなT型溶接継手構造体が適用される様々な分野に適用可能である。   The present invention relates to a method for simply and quickly evaluating (predicting and estimating) the fatigue characteristics of a T-joint portion in a T-type welded joint structure without actually producing a welded joint and conducting a fatigue test. . The evaluation method of the present invention can be applied to various fields to which T-type welded joint structures such as shipbuilding, offshore structures, low-temperature tanks, line pipes, civil engineering / building structures and the like are applied.

船舶や機械などのように厚鋼板が使用される溶接構造物の破壊の大半は疲労き裂の発生に起因しており、その疲労き裂の殆どは溶接継手部より発生する。溶接継手部の疲労強度は、母材に比べて著しく低いからである。   Most of the fractures in welded structures using thick steel plates such as ships and machines are caused by the occurrence of fatigue cracks, and most of the fatigue cracks are generated from welded joints. This is because the fatigue strength of the welded joint is significantly lower than that of the base material.

溶接継手部における疲労特性は、母材側の溶接止端部の形状(特に止端半径)の影響が大きいことが知られている。そこで従来では、溶接継手部の疲労特性を向上させるため、溶接止端部をグラインダーで研磨するなどして滑らかにし(溶接部形状の平坦化)、応力集中を低減する方法が行なわれている(例えば非特許文献1を参照)。   It is known that the fatigue characteristics of the welded joint are greatly affected by the shape of the weld toe on the base metal side (particularly the toe radius). Therefore, conventionally, in order to improve the fatigue characteristics of the welded joint, a method has been used in which the weld toe is smoothed by grinding with a grinder (flattening the shape of the weld) and stress concentration is reduced ( For example, refer nonpatent literature 1.).

一方、溶接継手部の材料特性(機械的特性)が疲労特性に及ぼす影響については明確でなく、これまで殆ど研究されていない。そのため、溶接継手部の疲労特性を評価(予測)するに当たっては、多くの溶接継手の疲労試験結果を統計処理するなどして決定されているというのが実情である。具体的には、溶接継手部の条件を変化させ、各条件を反映させた溶接継手構造試験体を作製して疲労試験を実施しており、多大なコストと時間がかかっており、非現実的である。   On the other hand, the influence of the material properties (mechanical properties) of the welded joints on the fatigue properties is not clear and has been hardly studied so far. For this reason, in evaluating (predicting) the fatigue characteristics of welded joints, the fact is that they are determined by statistically processing the fatigue test results of many welded joints. Specifically, we changed the conditions of the welded joint part, produced welded joint structural specimens that reflected each condition, and conducted a fatigue test. It is.

そこで、特許文献1では、実際に溶接を行わずに鋼材の溶接熱影響部における疲労破壊感受性を簡便・迅速に評価する試験方法が開示されている。ここでは、疲労き裂は応力集中の最も激しい溶接止端部から発生し、伝播するが、疲労き裂が最も発生し易い位置は、溶接熱影響部(HAZ)である点に注目し、所定の熱履歴と切欠加工を賦与した試験片を用いてHAZの疲労破壊感受性を評価している。しかしながら、上記特許文献1の方法は、溶接継手部の材料特性から検討されたものではないため、溶接継手部の疲労特性評価に有用な材料設計指針の提供が望まれている。   Therefore, Patent Document 1 discloses a test method for simply and quickly evaluating the fatigue fracture susceptibility of a welded heat-affected zone of a steel material without actually performing welding. Here, the fatigue crack is generated and propagated from the weld toe portion where the stress concentration is the most intense, but the position where the fatigue crack is most likely to occur is the weld heat affected zone (HAZ). The fatigue fracture susceptibility of HAZ is evaluated using a test piece imparted with heat history and notch processing. However, since the method of Patent Document 1 is not studied from the material characteristics of the welded joint, it is desired to provide a material design guideline useful for evaluating the fatigue characteristics of the welded joint.

特開平7−103871号公報JP 7-103871 A

「疲労設計便覧」、日本材料学会編、養賢堂発行、1995年1月発行"Fatigue Design Handbook", edited by the Japan Society of Materials Science, published by Yokendo, published in January 1995

本発明は上記事情に鑑みてなされたものであり、その目的は、T型溶接継手構造体におけるT継手部の疲労特性を、煩雑な疲労試験を行なうことなく、簡便かつ迅速に評価(予測・推定)し得る方法を提供することにある。   The present invention has been made in view of the above circumstances, and its object is to easily and quickly evaluate the fatigue characteristics of a T joint portion in a T-type welded joint structure without conducting a complicated fatigue test (prediction / It is to provide a method that can be estimated.

上記課題を解決することができた本発明の評価方法は、T型溶接継手構造体におけるT継手部の疲労特性を評価する方法であって、前記T継手部の溶接止端部曲率半径をρ(mm)、前記T継手部の溶接熱影響部の均一伸び(%)をUEHAZ、前記T継手部の溶接熱影響部の降伏応力(MPa)をYPHAZとしたとき、下記式(1)で表わされる溶接止端部歪み評価パラメータ(1)を用いることによってT型溶接継手構造体の疲労特性を評価するところに要旨を有するものである。
溶接止端部歪み評価パラメータ(1)
=(1.13×10-2×ρ-0.59)×(1.05×10-4×UEHAZ+1.64×10-2)×(5.15×YPHAZ -0.92) ・・・ (1)
The evaluation method of the present invention that has solved the above problems is a method for evaluating the fatigue characteristics of a T joint portion in a T-type welded joint structure, wherein the radius of curvature of the weld toe portion of the T joint portion is ρ. (Mm), when the uniform elongation (%) of the weld heat affected zone of the T joint is UE HAZ and the yield stress (MPa) of the weld heat affected zone of the T joint is YP HAZ , the following formula (1) Is used to evaluate the fatigue characteristics of the T-type welded joint structure by using the weld toe distortion evaluation parameter (1).
Weld toe distortion evaluation parameters (1)
= (1.13 × 10 −2 × ρ −0.59 ) × (1.05 × 10 −4 × UE HAZ + 1.64 × 10 −2 ) × (5.15 × YP HAZ −0.92 ) (1 )

また、上記課題を解決することができた本発明の他の評価方法は、T型溶接継手構造体におけるT継手部の疲労特性を評価する方法であって、前記T継手部の溶接止端部曲率半径をρ(mm)、前記T継手部の溶接熱影響部の10000回塑性歪負荷後の均一伸び(%)をUEHAZ,cycle、前記T継手部の溶接熱影響部の10000回塑性歪負荷後の降伏応力(MPa)をYPHAZ,cycleとしたとき、下記式(2)で表わされる溶接止端部歪み評価パラメータ(2)を用いることによってT型溶接継手構造体の疲労特性を評価するところに要旨を有するものである。
溶接止端部歪み評価パラメータ(2)
=(1.13×10-2×ρ-0.59)×(1.05×10-4×UEHAZ,cycle+1.64×10-2)×(5.15×YPHAZ,cycle -0.92) ・・・ (2)
Another evaluation method of the present invention that has solved the above-described problem is a method for evaluating fatigue characteristics of a T joint portion in a T-type welded joint structure, wherein the weld toe portion of the T joint portion The radius of curvature is ρ (mm), the uniform elongation (%) of the welded heat-affected zone of the T joint after 10,000 times of plastic strain is UE HAZ, cycle , and the welded heat-affected zone of the T joint is 10,000 times plastic strain. When the yield stress (MPa) after loading is YP HAZ, cycle , the fatigue characteristics of the T-type welded joint structure are evaluated by using the weld toe strain evaluation parameter (2) expressed by the following formula (2). Therefore, it has a gist.
Weld toe distortion evaluation parameters (2)
= (1.13 × 10 −2 × ρ −0.59 ) × (1.05 × 10 −4 × UE HAZ, cycle + 1.64 × 10 −2 ) × (5.15 × YP HAZ, cycle −0.92 ) (2)

本発明で規定する式(1)および式(2)のパラメータは、T型溶接継手構造体におけるT継手部の溶接止端部疲労特性の代替評価パラメータとして有用であり、実際に溶接継手を作製して疲労試験を行なわなくても、T継手部の疲労特性を評価(予測、推定)することができる。本発明に係るT継手部の疲労特性評価方法は、溶接止端部に局部的な塑性歪みが発生する場合だけでなく、溶接止端部に局部的な塑性歪みが繰返し負荷される場合にも適用可能であり、前者の場合は式(1)のパラメータを用い、後者の場合は式(2)のパラメータを用いることにより、T継手部の疲労特性を評価することができる。   The parameters of the formulas (1) and (2) defined in the present invention are useful as an alternative evaluation parameter for the weld toe fatigue characteristics of the T joint portion in the T-type welded joint structure. Thus, the fatigue characteristics of the T joint can be evaluated (predicted and estimated) without performing a fatigue test. The method for evaluating the fatigue characteristics of the T joint according to the present invention is not only when local plastic strain is generated at the weld toe, but also when local plastic strain is repeatedly applied to the weld toe. The fatigue characteristics of the T joint can be evaluated by using the parameter of the formula (1) in the former case and using the parameter of the formula (2) in the latter case.

図1は、溶接止端部に局部的に発生する局部塑性歪みによって疲労き裂が発生する様子を示す模式図である。FIG. 1 is a schematic diagram showing a state in which a fatigue crack is generated by local plastic strain generated locally at a weld toe. 図2は、T継手部の溶接熱影響部の均一伸びUEHAZ=5%、T継手部の溶接熱影響部の降伏応力YPHAZ=500MPaと一定であり、溶接止端部曲率半径ρのみを変化させたときの溶接止端部局部塑性歪み量に及ぼす影響を示すグラフである。FIG. 2 shows that the uniform elongation UE HAZ of the welded heat affected zone of the T joint is 5% and the yield stress YP HAZ = 500 MPa of the welded heat affected zone of the T joint is constant, and only the weld toe curvature radius ρ is obtained. It is a graph which shows the influence which it has on the welding toe part local plastic strain amount when making it change. 図3は、溶接止端部曲率半径ρ=0.5mm、T継手部の溶接熱影響部の降伏応力YPHAZ=500MPaと一定であり、T継手部の溶接熱影響部の均一伸びUEHAZのみを変化させたときの溶接止端部局部塑性歪み量に及ぼす影響を示すグラフである。FIG. 3 shows that the weld toe curvature radius ρ = 0.5 mm, the yield stress YP HAZ = 500 MPa of the weld heat affected zone of the T joint, and the uniform elongation UE HAZ of the weld heat affected zone of the T joint only. It is a graph which shows the influence which acts on the amount of local plastic strain of a weld toe part when changing. 図4は、溶接止端部曲率半径ρ=0.5mm、T継手部の溶接熱影響部の均一伸びUEHAZ=5%と一定であり、T継手部の溶接熱影響部の降伏応力YPHAZのみを変化させたときの溶接止端部局部塑性歪み量に及ぼす影響を示すグラフである。FIG. 4 shows that the welding toe portion curvature radius ρ = 0.5 mm, the uniform elongation UE HAZ = 5% of the weld heat affected zone of the T joint, and the yield stress YP HAZ of the weld heat affected zone of the T joint. It is a graph which shows the influence which it has on the welding toe part local plastic strain amount when only changing is carried out. 図5は、実施例で用いた微小切欠き試験片を用いて疲労試験を実施したとき、局部的に塑性歪みが発生する状況を模式的に示す図である。FIG. 5 is a diagram schematically illustrating a state in which plastic strain is locally generated when a fatigue test is performed using the micro-notched test piece used in the example. 図6は、実施例において、本発明で規定する溶接止端部歪み評価パラメータ(1)と、疲労き裂発生寿命105回に対応する応力範囲Δσ/TSとの関係を示すグラフである。FIG. 6 is a graph showing the relationship between the weld toe strain evaluation parameter (1) defined in the present invention and the stress range Δσ / TS corresponding to the fatigue crack initiation life of 10 5 times in the examples. 図7は、実施例において、本発明で規定する溶接止端部歪み評価パラメータ(2)と、疲労き裂発生寿命105回に対応する応力範囲Δσ/TSとの関係を示すグラフである。FIG. 7 is a graph showing the relationship between the weld toe strain evaluation parameter (2) defined in the present invention and the stress range Δσ / TS corresponding to the fatigue crack initiation life of 10 5 times in the examples.

本発明者らは、T型溶接継手構造体におけるT継手部の疲労特性を、煩雑な疲労試験を行なうことなく、材料設計学的観点から評価(予測、推定)し得る方法を提供するため、検討してきた。その結果、下記式(1)で表わされる溶接止端部歪み評価パラメータ(1)、または下記式(2)で表わされる溶接止端部歪み評価パラメータ(2)を用いれば、T継手部の疲労特性を簡便且つ迅速に評価できることを見出し、本発明を完成した。このうち溶接止端部歪み評価パラメータ(1)は、溶接止端部に局部的な塑性歪みが発生したときの疲労特性の評価に有用であり、溶接止端部歪み評価パラメータ(2)は、溶接止端部に局部的な塑性歪みが繰返し負荷されたときの疲労特性の評価に有用である。
溶接止端部歪み評価パラメータ(1)
=(1.13×10-2×ρ-0.59)×(1.05×10-4×UEHAZ+1.64×10-2)×(5.15×YPHAZ -0.92) ・・・ (1)
式中、ρは溶接止端部曲率半径(mm)
UEHAZは、T継手部の溶接熱影響部の均一伸び(%)
YPHAZは、T継手部の溶接熱影響部の降伏応力(MPa)を意味する。
In order to provide a method capable of evaluating (predicting and estimating) the fatigue characteristics of a T joint portion in a T-type welded joint structure from the viewpoint of material design without performing a complicated fatigue test, I have been considering it. As a result, if the weld toe part distortion evaluation parameter (1) represented by the following expression (1) or the weld toe part distortion evaluation parameter (2) represented by the following expression (2) is used, fatigue of the T joint part will be described. The inventors have found that the characteristics can be evaluated easily and quickly, and completed the present invention. Of these, the weld toe portion distortion evaluation parameter (1) is useful for evaluating fatigue characteristics when local plastic strain occurs at the weld toe portion, and the weld toe portion strain evaluation parameter (2) is: This is useful for evaluating fatigue characteristics when local plastic strain is repeatedly applied to the weld toe.
Weld toe distortion evaluation parameters (1)
= (1.13 × 10 −2 × ρ −0.59 ) × (1.05 × 10 −4 × UE HAZ + 1.64 × 10 −2 ) × (5.15 × YP HAZ −0.92 ) (1 )
In the formula, ρ is the radius of curvature of the weld toe (mm)
UE HAZ is the uniform elongation (%) of the weld heat affected zone of the T joint
YP HAZ means the yield stress (MPa) of the weld heat affected zone of the T joint.

溶接止端部歪み評価パラメータ(2)
=(1.13×10-2×ρ-0.59)×(1.05×10-4×UEHAZ,cycle+1.64×10-2)×(5.15×YPHAZ,cycle -0.92) ・・・ (2)
式中、ρは溶接止端部曲率半径(mm)
UEHAZ,cycleは、T継手部の溶接熱影響部の10000回塑性歪負荷後の
均一伸び(%)、
YPHAZ,cycleは、T継手部の溶接熱影響部の10000回塑性歪負荷後の
降伏応力(MPa)を意味する。
Weld toe distortion evaluation parameters (2)
= (1.13 × 10 −2 × ρ −0.59 ) × (1.05 × 10 −4 × UE HAZ, cycle + 1.64 × 10 −2 ) × (5.15 × YP HAZ, cycle −0.92 ) (2)
In the formula, ρ is the radius of curvature of the weld toe (mm)
UE HAZ, cycle is 10000 times after plastic strain loading of weld heat affected zone of T joint
Uniform elongation (%),
YP HAZ, cycle is the value after 10,000 times plastic strain loading of the weld heat affected zone of the T joint.
It means the yield stress (MPa).

以下、本発明に到達した経緯について、図1を参照しながら説明する。   Hereinafter, the background of the present invention will be described with reference to FIG.

本発明では、溶接継手形状の中でも溶接構造物において汎用されているT継手形状(T継手部)を対象とし、疲労特性とT継手部の材料特性との関係をシミュレーションにより明らかにするため、以下の基礎実験を行なった。ここでは、高強度鋼板を突き合わせ溶接した垂直部材と、高強度鋼板を突き合わせ溶接した水平部材を溶接によって接合してなるT型溶接継手構造体を用いた。基礎実験に用いた水平部材および垂直部材の板厚は60mmであり、水平部材の公称応力(母材のYPに相当)は490MPaであった。   In the present invention, a T joint shape (T joint portion) widely used in a welded structure among the weld joint shapes is targeted, and the relationship between fatigue characteristics and material properties of the T joint portion is clarified by simulation. A basic experiment was conducted. Here, a T-type welded joint structure is used in which a vertical member butt-welded with a high-strength steel plate and a horizontal member butt-welded with a high-strength steel plate are joined by welding. The plate thickness of the horizontal member and the vertical member used in the basic experiment was 60 mm, and the nominal stress (corresponding to YP of the base material) of the horizontal member was 490 MPa.

検討に当たっては、疲労特性との密接な関係が知られている溶接止端部曲率半径ρ(mm)だけでなく、材料特性因子として、特に均一伸び(UE)および降伏応力(YP)に着目した。これらに着目したのは、溶接止端部に発生する局部塑性歪み量が疲労特性の支配因子であり(図1を参照)、UEおよびYPは、塑性歪みに関連するからである。また、疲労き裂は、歪み集中の最も激しい溶接止端部から発生・伝播し、この止端部は溶接熱影響部(HAZ)であることから、本発明では特に、HAZ部のUEおよび降伏応力に着目した。本発明では、T継手部のHAZの均一伸び(%)をUEHAZ、T継手部の溶接熱影響部の降伏応力(MPa)をYPHAZとする。 In the study, we focused not only on the weld toe curvature radius ρ (mm), which has a close relationship with fatigue properties, but also on the uniform elongation (UE) and yield stress (YP) as material property factors. . This is because the amount of local plastic strain generated at the weld toe is a governing factor of fatigue characteristics (see FIG. 1), and UE and YP are related to plastic strain. In addition, fatigue cracks are generated and propagated from the weld toe where the strain concentration is the most intense, and this toe is a weld heat affected zone (HAZ). We focused on stress. In the present invention, the uniform elongation (%) of the HAZ of the T joint is UE HAZ , and the yield stress (MPa) of the weld heat affected zone of the T joint is YP HAZ .

そして、T継手部の条件(ρ、UEHAZ、およびYPHAZ)の夫々が溶接止端部塑性歪み量に及ぼす影響を調べたところ、図2〜図4の結果が得られた。 And when the influence which each of the conditions ((rho), UEHAZ , and YPHAZ ) of a T joint part has on the amount of plastic distortion of a weld toe part was investigated, the result of FIGS. 2-4 was obtained.

図2は、UEHAZ=5%、YPHAZ=500MPaと一定であり、ρのみを変化させたときの溶接止端部局部塑性歪み量に及ぼす影響を示すグラフである。 FIG. 2 is a graph showing the effect on the weld toe local plastic strain amount when only UE is changed and UE HAZ = 5% and YP HAZ = 500 MPa.

図2に示すように、ρ以外の条件を一定とした場合は、ρが大きくなるほど、溶接止端部局部塑性歪み量も指数関数的に減少する。この結果は、従来の知見とも合致している。前述したように、溶接止端部半径は歪み集中に影響を及ぼすことが知られており、止端部半径が大きいほど、応力集中が低減するため、局部塑性歪みも低減する。図2の結果より、下記関係式(1A)が導き出される。
溶接止端部局部塑性歪み量=1.13×10-2×ρ-0.59・・・(1A)
ρは溶接止端部曲率半径(mm)であり、T継手部の溶接熱影響部の均一伸びUEHAZ(%)、及びT継手部の溶接熱影響部の降伏応力YPHAZ(MPa)は一定である。
As shown in FIG. 2, when conditions other than ρ are constant, the amount of local plastic strain at the weld toe portion decreases exponentially as ρ increases. This result is consistent with conventional knowledge. As described above, it is known that the weld toe radius affects the strain concentration. As the toe radius is larger, the stress concentration is reduced, so that the local plastic strain is also reduced. The following relational expression (1A) is derived from the result of FIG.
Weld toe local plastic strain = 1.13 × 10 −2 × ρ −0.59 (1A)
ρ is the radius of curvature (mm) of the weld toe, and the uniform elongation UE HAZ (%) of the weld heat affected zone of the T joint and the yield stress YP HAZ (MPa) of the weld heat affected zone of the T joint are constant. It is.

図3は、ρ=0.5mm、YPHAZ=500MPaと一定であり、UEHAZのみを変化させたときの溶接止端部局部塑性歪み量に及ぼす影響を示すグラフである。 FIG. 3 is a graph showing the influence on the weld toe local plastic strain when only UE HAZ is changed, and ρ = 0.5 mm and YP HAZ = 500 MPa.

図3より、UEHAZの変化により局部塑性歪み発生挙動が大きく変動し、UEHAZが小さくなると溶接止端部局部塑性歪み量も小さくなることが分かる。図3の結果より、下記関係式(1B)が導き出される。
溶接止端部局部塑性歪み量=1.05×10-4×UEHAZ+1.64×10-2
・・・(1B)
UEHAZはT継手部の溶接熱影響部の均一伸び(%)であり、溶接止端部曲率半径ρ(mm)、及びT継手部の溶接熱影響部の降伏応力YPHAZ(MPa)は一定である。
Than 3, local plastic strain generating behavior fluctuates greatly by a change in the UE HAZ, also it can be seen as small as weld toe departments portions plastic strain amount UE HAZ decreases. From the result of FIG. 3, the following relational expression (1B) is derived.
Weld toe local plastic strain = 1.05 × 10 −4 × UE HAZ + 1.64 × 10 −2
... (1B)
UE HAZ is the uniform elongation (%) of the weld heat affected zone of the T joint, and the weld toe curvature radius ρ (mm) and the yield stress YP HAZ (MPa) of the weld heat affected zone of the T joint are constant. It is.

図4は、ρ=0.5mm、UEHAZ=5%と一定であり、YPHAZのみを変化させたときの止端部局部塑性歪み量に及ぼす影響を示すグラフである。図4より、YPHAZの変化によっても局部塑性歪み発生挙動が大きく変動し、YPHAZが大きくなると溶接止端部局部塑性歪み量も小さくなることが分かる。溶接熱影響部の降伏応力は疲労負荷時の止端部の変形挙動に大きな影響を及ぼすことから、止端部局部塑性歪みに対する影響も大きくなったと考えられる。図4の結果より、下記関係式(1C)が導き出される。
溶接止端部局部塑性歪み量=5.15×YPHAZ -0.92・・・(1C)
YPHAZはT継手部の溶接熱影響部の降伏応力(MPa)であり、溶接止端部曲率半径ρ(mm)、及びT継手部の溶接熱影響部の均一伸びUEHAZ(%)は一定である。
FIG. 4 is a graph showing the effect on the toe local plastic strain amount when only YP HAZ is changed and ρ = 0.5 mm and UE HAZ = 5%. From FIG. 4, the local plastic strain generating behavior varies greatly depending YP HAZ changes, also can be seen as small as weld toe departments portions plastic strain amount YP HAZ increases. Since the yield stress in the weld heat affected zone has a large effect on the deformation behavior of the toe during fatigue loading, it is thought that the effect on the local plastic strain at the toe was also increased. The following relational expression (1C) is derived from the result of FIG.
Weld toe local plastic strain = 5.15 x YP HAZ -0.92 (1C)
YP HAZ is the yield stress (MPa) of the welded heat-affected zone of the T joint, and the weld toe radius of curvature ρ (mm) and the uniform elongation UE HAZ (%) of the welded heat-affected zone of the T joint are constant. It is.

以上の基礎実験の結果を踏まえ、溶接止端部の局部塑性歪み量に対して上記要件(ρ、UEHAZ、およびYPHAZ)が総合的に及ぼす影響を詳細に検討した。その結果、上記要件以外の条件(例えば、水平部材および垂直部材の板厚、溶接方法など)は変化させずに同一条件であることを前提にした場合において、上記式(1A)、(1B)および(1C)を掛け合わせた溶接止端部局部塑性歪み量、すなわち、上記式(1)で表わされるパラメータ(1)は、溶接止端部の疲労特性と良好な相関関係を有することを見出し、本発明を完成した。上記式(1)で算出されるパラメータの値が小さいほど、溶接止端部の局部塑性歪み量は大きくなり、疲労特性に優れることを示している(後記する図6を参照)。 Based on the results of the above basic experiments, the influence of the above requirements (ρ, UE HAZ , and YP HAZ ) on the amount of local plastic strain at the weld toe was examined in detail. As a result, when it is assumed that conditions other than the above requirements (for example, plate thickness of the horizontal member and vertical member, welding method, etc.) are the same without changing, the above formulas (1A) and (1B) It is found that the weld toe local plastic strain amount multiplied by (1C), that is, the parameter (1) represented by the above formula (1) has a good correlation with the fatigue characteristics of the weld toe. The present invention has been completed. The smaller the value of the parameter calculated by the above formula (1), the greater the amount of local plastic strain at the weld toe, indicating better fatigue characteristics (see FIG. 6 described later).

更に上記パラメータは、溶接止端部に局部的な塑性歪みが繰返し負荷されたときの疲労特性の評価にも有用であり、この場合は、上記式(2)の評価パラメータを用いれば良いことが分かった。すなわち、鋼種などによっては、降伏応力を超える応力が繰返し負荷されることによって降伏応力および均一伸びが変化する場合があり、その場合、溶接止端部においても局部的な塑性歪みが繰返し負荷されることから、HAZ部の降伏応力および均一伸びが変化し、溶接止端部の疲労寿命に大きな影響を及ぼすようになる。上記式(2)を用いれば、繰返し負荷によって降伏応力および均一伸びが変化する場合の疲労寿命を高い精度で評価することができる。   Further, the above parameters are useful for evaluating fatigue characteristics when local plastic strain is repeatedly applied to the weld toe. In this case, the evaluation parameter of the above formula (2) may be used. I understood. That is, depending on the steel type, the yield stress and uniform elongation may change due to repeated loading of stress exceeding the yield stress. In this case, local plastic strain is repeatedly loaded even at the weld toe. For this reason, the yield stress and uniform elongation of the HAZ part change, and the fatigue life of the weld toe part is greatly affected. If the above formula (2) is used, the fatigue life when the yield stress and uniform elongation change due to repeated loading can be evaluated with high accuracy.

ここで上記式(2)は、上記式(1)において、UEHAZ(T継手部の溶接熱影響部の均一伸び)をUEHAZ,cycle(T継手部の溶接熱影響部の10000回塑性歪負荷後の均一伸び)に、YPHAZ(T継手部の溶接熱影響部の降伏応力)をYPHAZ,cycle(T継手部の溶接熱影響部の10000回塑性歪負荷後の降伏応力)に、それぞれ置き換えたこと以外は、上記式(1)と全く同じである。 Here, the above formula (2) is the same as the above formula (1), in which UE HAZ (uniform elongation of the weld heat affected zone of the T joint) is set to UE HAZ, cycle (10000 times plastic strain of the weld heat affected zone of the T joint). YP HAZ (yield stress of welded heat affected zone of T joint) to YP HAZ, cycle (yield stress after 10000 times plastic strain loading of welded heat affected zone of T joint) Except for the respective replacement, it is exactly the same as the above formula (1).

なお、上記式(2)において、繰返し回数を10000回と定めたのは、繰返し負荷後の降伏応力および均一伸びの変化は、1000〜5000回の繰返し負荷までは大きく変化するが、その後はほぼ一定となるとの経験則を考慮し、5000回以降のHAZ部の降伏応力および均一伸びの代表値として、10000回(0.5%歪)における各値を選択した次第である。   In the above formula (2), the number of repetitions was set to 10,000. The changes in yield stress and uniform elongation after repeated loading largely change up to 1000 to 5000 repeated loads, but thereafter Considering an empirical rule that it will be constant, it is as soon as each value at 10,000 times (0.5% strain) is selected as a representative value of the yield stress and uniform elongation of the HAZ part after 5000 times.

このように本発明は、上記式(1)または上記式(2)で表わされる溶接止端部歪み評価パラメータが、T型溶接継手構造体におけるT継手部の疲労特性の代替評価パラメータとして有用であることを見出した点に特徴がある。本発明によれば、従来のように溶接継手を作成して疲労試験を現実に行なわなくても、T継手部の疲労特性を評価することができる。   Thus, according to the present invention, the weld toe portion distortion evaluation parameter represented by the above formula (1) or the above formula (2) is useful as an alternative evaluation parameter for the fatigue characteristics of the T joint portion in the T-type welded joint structure. It is characterized in that it has been found. According to the present invention, it is possible to evaluate the fatigue characteristics of the T joint portion without creating a welded joint as in the prior art and actually conducting a fatigue test.

本発明では、上記のとおり、上記評価パラメータに含まれない条件は一定にし、且つ、溶接止端部に局所的な塑性歪みが発生することを前提として上記式(1)または上記式(2)を導出していることから、本発明の方法が適用されるための前提条件として、以下の事項が挙げられる。   In the present invention, as described above, the condition not included in the evaluation parameter is made constant, and the expression (1) or the expression (2) is based on the premise that local plastic strain is generated at the weld toe. Therefore, the following matters are listed as preconditions for applying the method of the present invention.

まず、溶接止端部に局所的な塑性変形を発生させるためには、水平部材(母材)の公称応力の範囲は、概ね300〜500MPaである。水平部材の公称応力が300MPa未満では、局所的に塑性変形しない可能性があり、一方、500MPaを超えると、鋼板全面が塑性変形する可能性がある。同様に、水平部材および溶接熱影響部(HAZ)の引張強度は、概ね、400〜700MPaである。   First, in order to cause local plastic deformation at the weld toe, the nominal stress range of the horizontal member (base material) is approximately 300 to 500 MPa. If the nominal stress of the horizontal member is less than 300 MPa, local plastic deformation may not occur. On the other hand, if it exceeds 500 MPa, the entire surface of the steel sheet may be plastically deformed. Similarly, the tensile strength of the horizontal member and the weld heat affected zone (HAZ) is approximately 400 to 700 MPa.

また、上記式(1)が適用されるρ、UEHAZ、及びYPHAZの許容範囲については特に限定されないが、溶接止端部に局所的な塑性変形を発生させるという観点からすれば、概ね、ρ:0.1mm以上2.0mm以下、UEHAZ:5%以上20%以下、YPHAZ:300MPa以上650MPa以下の範囲内であることが好ましい。 Further, the allowable ranges of ρ, UE HAZ and YP HAZ to which the above formula (1) is applied are not particularly limited, but from the viewpoint of generating local plastic deformation at the weld toe, ρ: 0.1 mm or more and 2.0 mm or less, UE HAZ : 5% or more and 20% or less, YP HAZ : 300 MPa or more and 650 MPa or less are preferable.

また、上記式(2)が適用されるρ、UEHAZ,cycle、及びYPHAZ,cycleの許容範囲については特に限定されないが、溶接止端部に局所的な塑性変形を発生させるという観点からすれば、概ね、ρ:0.1mm以上2.0mm以下、UEHAZ,cycle:5%以上20%以下、YPHAZ,cycle:300MPa以上650MPa以下の範囲内であることが好ましい。 Further, the allowable range of ρ, UE HAZ, cycle and YP HAZ, cycle to which the above formula (2) is applied is not particularly limited, but it is from the viewpoint of causing local plastic deformation at the weld toe. For example, it is generally preferable that ρ: 0.1 mm to 2.0 mm, UE HAZ, cycle : 5% to 20%, and YP HAZ, cycle : 300 MPa to 650 MPa.

本発明で対象とする溶接構造体を構成する水平部材の板厚は、溶接止端部の応力集中係数への影響を考慮すると、概ね、50〜80mmである。垂直部材についても、上記と同様、概ね、50〜80mmであることが好ましい。   The plate | board thickness of the horizontal member which comprises the welding structure made into object by this invention is 50-80 mm in general when the influence on the stress concentration factor of a weld toe part is considered. Also about a vertical member, it is preferable that it is 50-80 mm in general like the above.

上記要件以外については、本発明では特に限定されない。例えば垂直部材と水平部材を接合するための溶接方法は特に限定されず、例えばサブマージアーク溶接法や炭酸ガスアーク溶接法が挙げられる。   Other than the above requirements, the present invention is not particularly limited. For example, the welding method for joining a vertical member and a horizontal member is not specifically limited, For example, a submerged arc welding method and a carbon dioxide gas arc welding method are mentioned.

また、垂直部材および水平部材を構成する鋼板の種類についても特に限定されず、上記の引張強度などの要件を満足する限り、溶接構造体に通常用いられる鋼板を適用することができる。垂直部材および水平部材を構成する鋼板の種類は、同一であることが好ましい。   Moreover, it does not specifically limit about the kind of steel plate which comprises a vertical member and a horizontal member, The steel plate normally used for a welded structure is applicable as long as requirements, such as said tensile strength, are satisfied. The types of the steel plates constituting the vertical member and the horizontal member are preferably the same.

上記式(1)または上記式(2)で表わされる溶接止端部歪み評価パラメータは、溶接止端半径ρ、および材料特性(UEHAZ及びYPHAZ、またはUEHAZ,cycle及びYPHAZ,cycle)の少なくとも一つが異なるT継手部同士の疲労特性を比較検討するのに好適に用いられる。これらの式に基づいて算出される数値は、二種以上のT継手部間の疲労特性の優劣(疲労特性設計指針)を決定するための指標となるものであるが、数値自体に意味はなく、各T継手部の疲労特性を推定するための指標となるものではない。 The weld toe distortion evaluation parameters represented by the above formula (1) or the above formula (2) are the weld toe radius ρ and material characteristics (UE HAZ and YP HAZ , or UE HAZ, cycle and YP HAZ, cycle ). It is suitably used for comparing and examining the fatigue characteristics of T-joint portions in which at least one of the two is different. The numerical value calculated based on these formulas is an index for determining the superiority or inferiority (fatigue characteristic design guideline) of fatigue characteristics between two or more types of T joints, but the numerical value itself has no meaning. It is not an index for estimating the fatigue characteristics of each T joint.

具体的には、本発明の代表的な適用例として、水平部材および垂直部材の板厚の組み合わせが同じであるT型溶接継手を幾つか試作したとき、各継手に対して煩雑な疲労試験を行わなくても、ρを算出するための簡便な曲率調査と、上記材料特性(例えばUEHAZ及びYPHAZ)を算出するための引張試験を行って上記式(1)または上記式(2)で表わされる評価パラメータの値を算出して比較することにより、疲労特性に優れた溶接継手を決定することが挙げられる。数値が小さいものほど、疲労特性に優れているため、疲労特性に最も優れたT継手を選定することができる。 Specifically, as a typical application example of the present invention, when several T-type welded joints having the same combination of plate thicknesses of the horizontal member and the vertical member are prototyped, a complicated fatigue test is performed on each joint. Even if it is not performed, a simple curvature survey for calculating ρ and a tensile test for calculating the material properties (for example, UE HAZ and YP HAZ ) are performed, and the above formula (1) or (2) By calculating and comparing the value of the represented evaluation parameter, it is possible to determine a welded joint having excellent fatigue characteristics. The smaller the numerical value, the better the fatigue characteristics. Therefore, the T joint having the best fatigue characteristics can be selected.

更に、上記式で表わされる評価パラメータと必要な疲労特性との関係を、事前にデータベース化しておけば、疲労特性に優れたT継手部の材料設計指針や溶接条件などを決定することもできる。ここで、ρは溶接材料(詳細には、溶着金属を形成する溶接ワイヤ)の種類を変えることによって、一方、均一伸び及び降伏応力の材料特性(例えばUEHAZ及びYPHAZ)は溶接時の総熱量(J)を変化させることによって、いずれも変化させることが可能であるため、溶接条件と材料特性との関係をデータベース化することができる。 Furthermore, if the relationship between the evaluation parameter represented by the above formula and the necessary fatigue characteristics is created in advance in a database, the material design guidelines, welding conditions, and the like of the T joint portion having excellent fatigue characteristics can be determined. Here, ρ is by changing the type of welding material (specifically, the welding wire forming the weld metal), while the material properties of uniform elongation and yield stress (eg UE HAZ and YP HAZ ) are the total during welding. Since both can be changed by changing the amount of heat (J), the relationship between welding conditions and material properties can be made into a database.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. All of these are possible within the scope of the present invention.

実施例1
本実施例では、溶接継手を模擬する試験片として微小切欠き試験片を作製し、上記試験片を用いて疲労試験を行ったときの、疲労特性と、上記式(1)または上記式(2)で表わされる溶接止端部歪み評価パラメータ(1)または(2)との関係を検討した。
Example 1
In the present example, a micro-notch test piece was prepared as a test piece for simulating a welded joint, and fatigue characteristics when a fatigue test was performed using the test piece, the above formula (1) or the above formula (2) The relationship with the weld toe distortion evaluation parameter (1) or (2) represented by

詳細には、図5に示す平滑板状の切欠き試験片(溶接部などの不連続形状がない試験片であり、縦65mm×横16mm×厚さ4mm)を用意した。この試験片を用いると、切欠き部に歪みが集中して局部的な塑性歪みが発生することから、T継手の溶接止端部の歪み状態を再現することができる。   Specifically, a smooth plate-shaped notch test piece shown in FIG. 5 (a test piece having no discontinuous shape such as a welded portion, length 65 mm × width 16 mm × thickness 4 mm) was prepared. When this test piece is used, strain concentrates in the notch portion and local plastic strain is generated, so that the strain state of the weld toe portion of the T joint can be reproduced.

図5に示す平滑試験片の疲労特性(疲労き裂寿命)は、負荷応力範囲Δσ(疲労試験において作用する繰返し最大応力S1と繰返し最小応力S2の差)を試験片の引張強度TSで除した値(Δσ/TS)により評価した。本実施例では、以下の方法によって疲労試験を行い、疲労き裂発生寿命が105回に対応する応力範囲Δσ/TSを算出した。 The fatigue characteristics (fatigue crack life) of the smooth specimen shown in FIG. 5 is the load stress range Δσ (difference between repeated maximum stress S 1 and repeated minimum stress S 2 acting in the fatigue test) in terms of tensile strength TS of the specimen. Evaluation was made based on the divided value (Δσ / TS). In this example, a fatigue test was performed by the following method, and a stress range Δσ / TS corresponding to a fatigue crack generation life of 10 5 times was calculated.

(疲労試験)
試験片に対し、軸方向(図5の矢印方向)に引張荷重が加わるように試験片を油圧式疲労試験機に取り付け、S1とS2が一定となる条件で繰返し荷重を加えた。S1とS2は、試験片の切欠きから十分に離れた位置に貼付した歪みケージで測定した。また、同一の試験片を3本用意し(n=3)、疲労亀裂発生寿命が約104〜106の範囲に入る条件で応力負荷条件を変えて試験を行い、応力範囲と疲労亀裂発生寿命の関係を求め、応力範囲を疲労亀裂発生寿命の関数として定式化し、疲労亀裂発生寿命=105としたときの応力範囲を算出した。同様にして、繰返し塑性歪み10000サイクル(0.5%歪)負荷後の応力範囲と疲労亀裂発生寿命の関係を求め、疲労亀裂発生寿命=105としたときの応力範囲を算出した。
(Fatigue test)
The test piece was attached to a hydraulic fatigue testing machine so that a tensile load was applied to the test piece in the axial direction (the arrow direction in FIG. 5), and a repeated load was applied under the condition that S 1 and S 2 were constant. S 1 and S 2 were measured with a strain cage attached at a position sufficiently away from the notch of the test piece. In addition, three identical specimens were prepared (n = 3), and the stress load conditions were changed under conditions where the fatigue crack initiation life was in the range of about 10 4 to 10 6. The relationship of life was obtained, the stress range was formulated as a function of fatigue crack initiation life, and the stress range was calculated when fatigue crack initiation life = 10 5 . Similarly, the relationship between the stress range after cyclic plastic strain of 10,000 cycles (0.5% strain) and the fatigue crack initiation life was obtained, and the stress range when fatigue crack initiation life = 10 5 was calculated.

具体的には、降伏応力YP、均一伸びUE、および切欠き曲率Rが異なる表1の試験片1〜8を用いて上記の疲労試験を実施し、上記の方法によりΔσ/TSを測定した。更に、上記試験片1〜8について、溶接止端部歪み評価パラメータ(1)および(2)を、それぞれ算出した。ここで、上記試験片の切欠き曲率RはT継手の溶接止端部曲率半径ρに対応し、上記試験片の降伏応力YPおよび均一伸びUEはそれぞれ、T継手部のHAZ部の降伏応力YPHAZまたはYPHAZ,cycle、および均一伸びUEHAZまたはUEHAZ,cycleに対応している。 Specifically, the fatigue test was performed using the test pieces 1 to 8 in Table 1 having different yield stress YP, uniform elongation UE, and notch curvature R, and Δσ / TS was measured by the above method. Furthermore, the weld toe part distortion evaluation parameters (1) and (2) were calculated for the test pieces 1 to 8, respectively. Here, the notch curvature R of the test piece corresponds to the weld toe curvature radius ρ of the T joint, and the yield stress YP and uniform elongation UE of the test piece are the yield stress YP of the HAZ part of the T joint part, respectively. It corresponds to HAZ or YP HAZ, cycle and uniform elongation UE HAZ or UE HAZ, cycle .

これらの結果を表1に併記する。更に、図6に溶接止端部歪み評価パラメータ(1)とΔσ/TSとの関係をグラフ化して示し、図7に溶接止端部歪み評価パラメータ(2)とΔσ/TSとの関係をグラフ化して示す。   These results are also shown in Table 1. FIG. 6 is a graph showing the relationship between the weld toe portion distortion evaluation parameter (1) and Δσ / TS, and FIG. 7 is a graph showing the relationship between the weld toe portion distortion evaluation parameter (2) and Δσ / TS. Shown in the form.

表1、並びに図6および図7より、以下のように考察することができる。   From Table 1 and FIGS. 6 and 7, the following can be considered.

上述したように、評価パラメータ(1)または(2)の数値が小さいほど、疲労特性が高い傾向にあることを示しているが、図6および図7の結果は、この傾向とほぼ合致している。例えば図6を参照すると、試験片1〜8のうち評価パラメータ(1)の数値が最も小さい試験片2、4は、他の試験片に比べてΔσ/TSが大きくなり、疲労特性が向上した。図6と同様の傾向は図7においても見られた。   As described above, the smaller the numerical value of the evaluation parameter (1) or (2), the higher the fatigue characteristics tend to be. However, the results of FIGS. 6 and 7 almost agree with this tendency. Yes. For example, referring to FIG. 6, among test pieces 1 to 8, test pieces 2 and 4 having the smallest evaluation parameter (1) have a larger Δσ / TS and improved fatigue characteristics than other test pieces. . The same tendency as in FIG. 6 was also observed in FIG.

詳細には、例えば表1の試験片1および3(いずれも切欠き曲率R=0.8mm)と、試験片2および4(いずれも切欠き曲率R=1.6mm)とを対比すると、試験片1および3に比べて切欠き曲率Rが大きい試験片2および4は、Δσ/TSが大きくなり、上記評価パラメータ(1)および(2)の数値が小さくなっている(図6を参照)が、この結果は、従来の知見(溶接止端部曲率半径ρが大きい程、疲労特性が向上する)と合致している。   Specifically, for example, when test pieces 1 and 3 in Table 1 (both are notched curvature R = 0.8 mm) and test pieces 2 and 4 (both are notched curvature R = 1.6 mm) are compared, The test pieces 2 and 4 having a larger notch curvature R than the pieces 1 and 3 have a large Δσ / TS and the numerical values of the evaluation parameters (1) and (2) are small (see FIG. 6). However, this result is consistent with the conventional knowledge (the larger the weld toe curvature radius ρ, the better the fatigue characteristics).

一方、切欠き曲率Rが同じであっても材料特性によって疲労特性は相違する場合がある。詳細には、切欠き曲率R=1.6mmである試験片2および4は、試験片のYPおよびUE(T継手部のYPHAZおよび均一伸びUEHAZに対応)が異なるために、上記評価パラメータ(1)および(2)の数値が異なる例であるが、試験片4に比べて上記評価パラメータ(1)および(2)の数値が小さい試験片2は、疲労特性に優れている。同様に、切欠き曲率R=0.8mmである試験片1および3は、試験片のYPおよびUE(T継手部のYPHAZおよび均一伸びUEHAZに対応)が異なるために上記評価パラメータ(1)および(2)の数値が異なる例であるが、試験片3に比べて上記評価パラメータ(1)および(2)の数値が小さい試験片1は、疲労特性に優れている。 On the other hand, even if the notch curvature R is the same, the fatigue characteristics may differ depending on the material characteristics. Specifically, since the test pieces 2 and 4 having the notch curvature R = 1.6 mm have different YP and UE (corresponding to YP HAZ and uniform elongation UE HAZ of the T joint portion), the above evaluation parameters Although the numerical values of (1) and (2) are different, the test piece 2 having a smaller numerical value of the evaluation parameters (1) and (2) than the test piece 4 is excellent in fatigue characteristics. Similarly, the test pieces 1 and 3 having the notch curvature R = 0.8 mm have different evaluation parameters (1) because YP and UE of the test piece (corresponding to YP HAZ and uniform elongation UE HAZ of the T joint portion) are different. ) And (2) are different examples, but the test piece 1 having smaller evaluation parameters (1) and (2) than the test piece 3 is excellent in fatigue characteristics.

これらの結果は、本発明で規定する上記パラメータを用いることによって初めて導き出されるものであり、本発明によれば、従来では判別できなかった材料特性に起因する試験片同士の疲労特性も評価することができた点で、非常に有用である。   These results are derived for the first time by using the above-mentioned parameters defined in the present invention, and according to the present invention, the fatigue properties between test pieces caused by material properties that could not be discriminated in the past are also evaluated. It is very useful in that it was able to.

Claims (2)

T型溶接継手構造体におけるT継手部の疲労特性を評価する方法であって、
前記T継手部の溶接止端部曲率半径をρ(mm)、前記T継手部の溶接熱影響部の均一伸び(%)をUEHAZ、前記T継手部の溶接熱影響部の降伏応力(MPa)をYPHAZとしたとき、下記式(1)で表わされる溶接止端部歪み評価パラメータ(1)を用いることによってT型溶接継手構造体の疲労特性を評価することを特徴とするT継手部の疲労特性評価方法。
溶接止端部歪み評価パラメータ(1)
=(1.13×10-2×ρ-0.59)×(1.05×10-4×UEHAZ+1.64×10-2)×(5.15×YPHAZ -0.92) ・・・ (1)
A method for evaluating fatigue characteristics of a T-joint portion in a T-type welded joint structure,
The radius of curvature of the weld toe of the T joint is ρ (mm), the uniform elongation (%) of the weld heat affected zone of the T joint is UE HAZ , and the yield stress (MPa) of the weld heat affected zone of the T joint. ) Is YP HAZ, and the fatigue characteristics of the T-type welded joint structure is evaluated by using the weld toe distortion evaluation parameter (1) represented by the following formula (1). Fatigue property evaluation method.
Weld toe distortion evaluation parameters (1)
= (1.13 × 10 −2 × ρ −0.59 ) × (1.05 × 10 −4 × UE HAZ + 1.64 × 10 −2 ) × (5.15 × YP HAZ −0.92 ) (1 )
T型溶接継手構造体におけるT継手部の疲労特性を評価する方法であって、
前記T継手部の溶接止端部曲率半径をρ(mm)、前記T継手部の溶接熱影響部の10000回塑性歪負荷後の均一伸び(%)をUEHAZ,cycle、前記T継手部の溶接熱影響部の10000回塑性歪負荷後の降伏応力(MPa)をYPHAZ,cycleとしたとき、下記式(2)で表わされる溶接止端部歪み評価パラメータ(2)を用いることによってT型溶接継手構造体の疲労特性を評価することを特徴とするT継手部の疲労特性評価方法。
溶接止端部歪み評価パラメータ(2)
=(1.13×10-2×ρ-0.59)×(1.05×10-4×UEHAZ,cycle+1.64×10-2)×(5.15×YPHAZ,cycle -0.92) ・・・ (2)
A method for evaluating fatigue characteristics of a T-joint portion in a T-type welded joint structure,
The radius of curvature of the weld toe of the T joint is ρ (mm), the uniform elongation (%) of the weld heat affected zone of the T joint after 10000 plastic strain loading is UE HAZ, cycle , By using the weld toe strain evaluation parameter (2) represented by the following formula (2) when the yield stress (MPa) after 10000 times plastic strain loading of the weld heat affected zone is YP HAZ, cycle , the T-type A method for evaluating fatigue characteristics of a T-joint portion, characterized by evaluating fatigue characteristics of a welded joint structure.
Weld toe distortion evaluation parameters (2)
= (1.13 × 10 −2 × ρ −0.59 ) × (1.05 × 10 −4 × UE HAZ, cycle + 1.64 × 10 −2 ) × (5.15 × YP HAZ, cycle −0.92 ) (2)
JP2010258212A 2010-02-26 2010-11-18 Method for evaluating fatigue characteristics of T-joints in T-type welded joint structures Expired - Fee Related JP5325194B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010258212A JP5325194B2 (en) 2010-02-26 2010-11-18 Method for evaluating fatigue characteristics of T-joints in T-type welded joint structures
CN 201110047097 CN102192858B (en) 2010-02-26 2011-02-24 Fatigue characteristic evaluation method for t joint part of t-type welding joint structure
KR1020110016984A KR101195733B1 (en) 2010-02-26 2011-02-25 Method for evaluating fatigue property of t-joint portion at t-type welding joint structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010041870 2010-02-26
JP2010041870 2010-02-26
JP2010258212A JP5325194B2 (en) 2010-02-26 2010-11-18 Method for evaluating fatigue characteristics of T-joints in T-type welded joint structures

Publications (2)

Publication Number Publication Date
JP2011196986A JP2011196986A (en) 2011-10-06
JP5325194B2 true JP5325194B2 (en) 2013-10-23

Family

ID=44875384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010258212A Expired - Fee Related JP5325194B2 (en) 2010-02-26 2010-11-18 Method for evaluating fatigue characteristics of T-joints in T-type welded joint structures

Country Status (2)

Country Link
JP (1) JP5325194B2 (en)
KR (1) KR101195733B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210044927A (en) 2019-10-15 2021-04-26 한국조선해양 주식회사 Apparatus for evaluating fatigue life of welds
CN113722857B (en) * 2021-09-02 2024-04-16 福州大学 Method for evaluating fatigue performance of corrugated steel web-steel pipe welded joint

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309339A (en) * 2001-04-16 2002-10-23 Nippon Steel Corp Welded joint having heat affected zone with excellent toughness and fatigue resistance
JP3809374B2 (en) * 2001-12-27 2006-08-16 トヨタ自動車株式会社 Stress-strain relationship simulation method and method for obtaining yield point in unloading process
JP4394860B2 (en) * 2002-04-08 2010-01-06 新日本製鐵株式会社 Welding method using ultra low temperature transformation melt, high fatigue strength joint and ultra low temperature transformation melt
JP3870266B2 (en) 2003-05-02 2007-01-17 国立大学法人大阪大学 Material life evaluation method and fatigue failure prevention method

Also Published As

Publication number Publication date
KR20110098668A (en) 2011-09-01
KR101195733B1 (en) 2012-10-29
JP2011196986A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
Shiozaki et al. Effect of weld toe geometry on fatigue life of lap fillet welded ultra-high strength steel joints
Caccese et al. Effect of weld geometric profile on fatigue life of cruciform welds made by laser/GMAW processes
Zadpoor et al. Mechanics of tailor welded blanks: an overview
Shams-Hakimi et al. Experimental study of transverse attachment joints with 40 and 60 mm thick main plates, improved by high-frequency mechanical impact treatment (HFMI)
Manai et al. A probabilistic study of welding residual stresses distribution and their contribution to the fatigue life
Singh et al. Influence of notch radius and strain rate on the mechanical properties and fracture behavior of TIG-welded 6061 aluminum alloy
Wang et al. Effect of pitting degradation on ductile fracture initiation of steel butt-welded joints
Ravindra et al. Fatigue life prediction of gas metal arc welded crucifrom joints of AA7075 aluminium alloy failing from root region
JP5554761B2 (en) Method for evaluating fatigue characteristics of T-joints in T-type welded joint structures
Behravesh et al. Fatigue characterization and modeling of AZ31B magnesium alloy spot-welds
Barsoum et al. Ultimate strength capacity of welded joints in high strength steels
JP5325194B2 (en) Method for evaluating fatigue characteristics of T-joints in T-type welded joint structures
Schjødt-Thomsen et al. Low cycle fatigue behaviour of welded T-joints in high strength steel
CN102192858B (en) Fatigue characteristic evaluation method for t joint part of t-type welding joint structure
Gkatzogiannis et al. Investigating the fatigue behaviour of small scale and real size HFMI-treated components of high strength steels
Hanji et al. Low-and high-cycle fatigue behavior of load-carrying cruciform joints with incomplete penetration and strength under-match
Beretta et al. Fatigue assessment of root failures in HSLA steel welded joints: A comparison among local approaches
JP5754203B2 (en) Fracture toughness specimen
Seto et al. Fatigue properties of arc‐welded lap joints with weld start and end points
Carlucci et al. Crack initiation and growth in bimetallic girth welds
JP5505280B2 (en) Use limit prediction method of steel structure
Kim et al. Fatigue life assessment of load-carrying fillet-welded cruciform joints inclined to uniaxial cyclic loading
Beltrão et al. Fractographic analysis of weld metal and HAZ regions of API X-80 steel subjected to simulation of the Reel-Lay method
Harati Fatigue strength of welds in 800 MPa yield strength steels: Effects of weld toe geometry and residual stress
JP5736896B2 (en) Introduction of fatigue precrack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130719

R150 Certificate of patent or registration of utility model

Ref document number: 5325194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees