JP3870266B2 - Material life evaluation method and fatigue failure prevention method - Google Patents

Material life evaluation method and fatigue failure prevention method Download PDF

Info

Publication number
JP3870266B2
JP3870266B2 JP2003127357A JP2003127357A JP3870266B2 JP 3870266 B2 JP3870266 B2 JP 3870266B2 JP 2003127357 A JP2003127357 A JP 2003127357A JP 2003127357 A JP2003127357 A JP 2003127357A JP 3870266 B2 JP3870266 B2 JP 3870266B2
Authority
JP
Japan
Prior art keywords
spontaneous magnetization
stress
repetitions
correlation
fracture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003127357A
Other languages
Japanese (ja)
Other versions
JP2004333231A (en
Inventor
佑吉 馬越
弘行 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2003127357A priority Critical patent/JP3870266B2/en
Publication of JP2004333231A publication Critical patent/JP2004333231A/en
Application granted granted Critical
Publication of JP3870266B2 publication Critical patent/JP3870266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、原子炉材料などの安全面への特別な配慮が必要な材料などに好適に用いることのできる材料の寿命評価方法、及び前記材料の疲労破壊防止方法に関する。
【0002】
【従来の技術】
従来の非破壊検査法としては、磁粉探傷法及び電磁誘導探傷法などがあるが、これらの方法はいずれも疲労破壊により材料中に亀裂が発生して初めて異常を検出できるものがほとんどであり、疲労亀裂発生前の損傷過程を捉えることができなかった。このため、原子炉材料などの安全面への特別な配慮が必要な材料などに好適に用いることはできなかった。
【0003】
【発明が解決しようとする課題】
本発明は、疲労亀裂発生前に材料の損傷過程を捉えることのできる新規な材料の寿命評価方法を提供するとともに、材料の疲労破壊を未然に防止する方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記目的を達成すべく、本発明は、所定の材料に対して応力を繰り返し負荷し、前記材料に対する前記応力の負荷開始から破断までの自発磁化の変化を予めモニターして、前記材料の、前記応力負荷の繰り返し数と前記自発磁化との相関を導出し、前記材料の実際の使用において、前記材料の自発磁化を随時モニターし、その自発磁化の大きさを前記応力負荷の繰り返し数と前記自発磁化との前記相関と比較することにより、前記材料に対して応力を繰り返し負荷し、前記材料中の、変形誘起磁気遷移を通じて生じた自発磁化の大きさから前記材料の寿命を評価することを特徴とする、材料の寿命評価方法に関する。
【0005】
本発明者らは上記目的を達成すべく鋭意検討を実施した。その結果、本発明者らは、材料の変形に伴って生じる格子欠陥と、前記変形に伴って誘起される磁気遷移、すなわち変形誘起磁気遷移を通じて生じる自発磁化との間に相関があることを見出した。換言すれば、前記材料中に生じる格子欠陥の増大に伴って前記材料の自発磁化が増大し、前記材料の破断直前には前記自発磁化が急激に上昇することを見出した。
【0006】
具体的には、前記材料に対する応力負荷の繰り返し数と前記材料の自発磁化との相関を、前記応力負荷の開始から前記材料の破断までの間で予め求めておく。定常的な使用においては、応力負荷の繰り返し数と使用時間とは略比例するので、現在使用中の前記材料の自発磁化を随時モニターし、前記自発磁化の大きさを前記相関と比較検討すれば、前記材料の現在の疲労度を定量的に見出すことができ、さらには破壊に至るまでの寿命を定量的に知ることができるようになる。
【0007】
また、前記材料の使用において、前記材料の自発磁化が破断時の自発磁化より小さい状態で前記材料の使用を中断するようにすれば、前記材料の疲労破壊を未然に防止できるようになる。
【0008】
したがって、本発明の疲労破壊の防止方法は、所定の材料に対して応力を繰り返し負荷し、前記材料に対する前記応力の負荷開始から破断までの自発磁化の変化を予めモニターして、前記材料の、前記応力負荷の繰り返し数と前記自発磁化との相関を導出し、前記材料の実際の使用において、前記材料の自発磁化を随時モニターし、その自発磁化の大きさを前記応力負荷の繰り返し数と前記自発磁化との前記相関と比較し、前記材料の疲労破壊を未然に防止することを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明を発明の実施の形態に則して詳細に説明する。
本発明の方法に供する材料として、Fe−40at%Al単結晶を採用し、この材料に基づいて本発明を具体的に説明する。
【0010】
Fe−40at%Al単結晶に対して、所定の温度範囲において、例えば300MPaの引張応力及び圧縮応力を繰り返し負荷した後、振動試料型磁力計を用いて温度77Kで自発磁化を測定する。本来、Fe−40at%Al単結晶は常磁性体であるため、自発磁化を持たないが、上述した応力の繰り返し負荷により、前記単結晶中には変形によって逆位相境界と呼ばれる欠陥が導入される。
【0011】
前記欠陥の導入により、前記単結晶の原子配列が乱れ、Fe原子が磁化を有するようになって、強磁性体へ遷移するようになる。この結果、前記単結晶は自発磁化を有するようになるが、その自発磁化の大きさは欠陥密度に依存して2次関数的に増大するようになる。
【0012】
図1は、室温大気中において、前記Fe−40at%Al単結晶に300MPaの引張応力及び圧縮応力を繰り返し負荷した際の、繰り返し数と自発磁化の大きさとの関係を示すグラフである。図1から明らかなように、繰り返し数の増大、すなわち欠陥密度の増大とともに自発磁化の大きさが2次関数的に増大し、破断直前においては急激に増大することが分かる。
【0013】
定常的な使用においては、応力負荷の繰り返し数と使用時間とは略比例するので、現在使用中の前記Fe−40at%Al単結晶の自発磁化を随時モニターし、前記自発磁化の大きさを図1における相関グラフと比較検討すれば、前記単結晶の現在の疲労度を定量的に見出すことができ、さらには破壊に至るまでの寿命を定量的に知ることができるようになる。
【0014】
例えば、使用中のFe−40at%Al単結晶の自発磁化を測定した際、図中のプロットXで示すような自発磁化の値を得、この時までの使用時間がT時間であるとすると、破断時までの使用時間TBを導出することができ、前記単結晶の寿命を知ることができるようになる。さらには、TB−Tより前記単結晶の使用可能な残時間を導出することもできる。
【0015】
また、使用中の前記Fe−40at%Al単結晶の自発磁化を測定した際、図中のプロットYで示すような自発磁化の値を得た場合、前記自発磁化の大きさは破断直前の自発磁化が急激に増大する過程の大きさに相当するので、前記単結晶の使用を中止することにより、前記単結晶の疲労破壊を未然に防止することができるようになる。
【0016】
以上、具体例を示しながら発明の実施の形態に則して本発明を説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない範囲において、あらゆる変形や変更が可能である。例えば、上記具体例においては、Fe−40at%Al単結晶の場合について説明したが、本発明は前記単結晶に限らずあらゆる種類の材料に対して適用することができる。特に、安全面で特別な配慮が必要な原子炉材料などに好適に用いることができる。
【0017】
【発明の効果】
以上説明したように、本発明によれば、疲労亀裂発生前に材料の損傷過程を捉えることのできる新規な材料の寿命評価方法を提供するとともに、材料の疲労破壊を未然に防止する方法を提供することができる。
【図面の簡単な説明】
【図1】 Fe−40at%Al単結晶の、応力負荷の繰り返し数と自発磁化の大きさとの関係を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for evaluating the life of a material that can be suitably used for a material that requires special consideration for safety, such as a nuclear reactor material, and a method for preventing fatigue failure of the material.
[0002]
[Prior art]
As conventional nondestructive inspection methods, there are a magnetic particle inspection method and an electromagnetic induction inspection method, but most of these methods can detect an abnormality only when a crack occurs in a material due to fatigue failure. The damage process before fatigue cracks could not be captured. For this reason, it could not be suitably used for materials that require special safety considerations, such as reactor materials.
[0003]
[Problems to be solved by the invention]
It is an object of the present invention to provide a novel material life evaluation method capable of capturing the damage process of a material before the occurrence of fatigue cracks, and to provide a method for preventing fatigue fracture of the material.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention repeatedly applies stress to a predetermined material, and monitors in advance a change in spontaneous magnetization from the start of loading of the stress to breakage of the material. A correlation between the number of repetitions of stress load and the spontaneous magnetization is derived, and in the actual use of the material, the spontaneous magnetization of the material is monitored as needed, and the magnitude of the spontaneous magnetization is determined based on the number of repetitions of the stress load and the spontaneous magnetization. By comparing with the correlation with magnetization , stress is repeatedly applied to the material, and the lifetime of the material is evaluated from the magnitude of spontaneous magnetization generated through deformation-induced magnetic transition in the material. The present invention relates to a material life evaluation method.
[0005]
The inventors of the present invention have intensively studied to achieve the above object. As a result, the present inventors have found that there is a correlation between lattice defects caused by the deformation of the material and the magnetic transition induced by the deformation, that is, the spontaneous magnetization generated through the deformation-induced magnetic transition. It was. In other words, it has been found that the spontaneous magnetization of the material increases with an increase in lattice defects generated in the material, and the spontaneous magnetization rapidly increases immediately before the material breaks.
[0006]
Specifically, a correlation between the number of repeated stress loads on the material and the spontaneous magnetization of the material is obtained in advance from the start of the stress load to the fracture of the material. In steady use, the number of stress load repetitions and usage time are approximately proportional, so if you monitor the spontaneous magnetization of the material currently in use as needed and compare the magnitude of the spontaneous magnetization with the correlation Thus, the current fatigue level of the material can be found quantitatively, and further, the life until failure can be known quantitatively.
[0007]
Further, in the use of the material, if the use of the material is interrupted in a state where the spontaneous magnetization of the material is smaller than the spontaneous magnetization at the time of rupture, the material can be prevented from fatigue fracture.
[0008]
Therefore, the fatigue fracture prevention method of the present invention repeatedly applies stress to a predetermined material, monitors in advance the change in spontaneous magnetization from the start of stress loading to fracture of the material, A correlation between the number of repetitions of the stress load and the spontaneous magnetization is derived, and in actual use of the material, the spontaneous magnetization of the material is monitored as needed, and the magnitude of the spontaneous magnetization is determined based on the number of repetitions of the stress load and the Compared with the correlation with spontaneous magnetization, the material is prevented from fatigue fracture in advance.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail according to embodiments of the invention.
Fe-40 at% Al single crystal is adopted as a material to be used in the method of the present invention, and the present invention will be specifically described based on this material.
[0010]
For example, after repeatedly applying tensile stress and compressive stress of 300 MPa to a Fe-40 at% Al single crystal in a predetermined temperature range, spontaneous magnetization is measured at a temperature of 77 K using a vibrating sample magnetometer. Originally, the Fe-40 at% Al single crystal is a paramagnetic material and does not have spontaneous magnetization. However, due to the repeated loading of the stress described above, defects called antiphase boundaries are introduced into the single crystal due to deformation. .
[0011]
Due to the introduction of the defects, the atomic arrangement of the single crystal is disturbed, and the Fe atoms become magnetized and transition to a ferromagnetic material. As a result, the single crystal has spontaneous magnetization, but the magnitude of the spontaneous magnetization increases in a quadratic function depending on the defect density.
[0012]
FIG. 1 is a graph showing the relationship between the number of repetitions and the magnitude of spontaneous magnetization when 300 MPa tensile stress and compressive stress are repeatedly applied to the Fe-40 at% Al single crystal in room temperature air. As is clear from FIG. 1, it can be seen that as the number of repetitions increases, that is, as the defect density increases, the magnitude of the spontaneous magnetization increases as a quadratic function, and increases rapidly immediately before fracture.
[0013]
In steady use, the number of stress load repetitions and use time are approximately proportional, so the spontaneous magnetization of the Fe-40 at% Al single crystal currently in use is monitored as needed to show the magnitude of the spontaneous magnetization. If the comparison graph is compared with the correlation graph in FIG. 1, the present fatigue degree of the single crystal can be found quantitatively, and further, the life until failure can be quantitatively known.
[0014]
For example, when the spontaneous magnetization of the Fe-40 at% Al single crystal in use is measured, the value of the spontaneous magnetization as shown by the plot X in the figure is obtained, and the usage time up to this time is T time. The use time TB until the time of fracture can be derived, and the lifetime of the single crystal can be known. Furthermore, the remaining usable time of the single crystal can be derived from TB-T.
[0015]
In addition, when the spontaneous magnetization of the Fe-40 at% Al single crystal in use was measured, when the value of the spontaneous magnetization as shown by the plot Y in the figure was obtained, the magnitude of the spontaneous magnetization was Since this corresponds to the magnitude of the process in which the magnetization rapidly increases, it is possible to prevent fatigue breakdown of the single crystal by stopping the use of the single crystal.
[0016]
As mentioned above, the present invention has been described according to the embodiments of the present invention by showing specific examples. However, the present invention is not limited to the above contents, and all modifications and changes can be made without departing from the scope of the present invention. It can be changed. For example, in the above specific example, the case of an Fe-40 at% Al single crystal has been described, but the present invention is not limited to the single crystal and can be applied to all kinds of materials. In particular, it can be suitably used for nuclear reactor materials that require special considerations in terms of safety.
[0017]
【The invention's effect】
As described above, according to the present invention, a novel material life evaluation method that can grasp the damage process of a material before occurrence of a fatigue crack is provided, and a method for preventing fatigue fracture of the material is provided. can do.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the number of repeated stress loads and the magnitude of spontaneous magnetization of an Fe-40 at% Al single crystal.

Claims (6)

所定の材料に対して応力を繰り返し負荷し、前記材料に対する前記応力の負荷開始から破断までの自発磁化の変化を予めモニターして、前記材料の、前記応力負荷の繰り返し数と前記自発磁化との相関を導出し、前記材料の実際の使用において、前記材料の自発磁化を随時モニターし、その自発磁化の大きさを前記応力負荷の繰り返し数と前記自発磁化との前記相関と比較することにより、前記材料に対して応力を繰り返し負荷し、前記材料中の、変形誘起磁気遷移を通じて生じた自発磁化の大きさから前記材料の寿命を評価することを特徴とする、材料の寿命評価方法。 A stress is repeatedly applied to a predetermined material, and a change in spontaneous magnetization from the start of stress loading to fracture of the material is monitored in advance, and the number of repetitions of the stress load and the spontaneous magnetization of the material are Deriving a correlation, in the actual use of the material, monitoring the spontaneous magnetization of the material from time to time, comparing the magnitude of the spontaneous magnetization with the correlation between the number of repetitions of the stress load and the spontaneous magnetization, A material life evaluation method, wherein stress is repeatedly applied to the material, and the life of the material is evaluated from the magnitude of spontaneous magnetization generated through deformation-induced magnetic transition in the material. 前記材料は原子炉材料であることを特徴とする、請求項に記載の材料の寿命評価方法。The material life evaluation method according to claim 1 , wherein the material is a reactor material. 前記材料の前記自発磁化は破断直前に急激に上昇することを特徴とする、請求項1または2に記載の材料の寿命評価方法。The spontaneous magnetization is characterized by rapidly increased just before rupture life evaluation method of the material according to claim 1 or 2 of the material. 所定の材料に対して応力を繰り返し負荷し、前記材料に対する前記応力の負荷開始から破断までの自発磁化の変化を予めモニターして、前記材料の、前記応力負荷の繰り返し数と前記自発磁化との相関を導出し、前記材料の実際の使用において、前記材料の自発磁化を随時モニターし、その自発磁化の大きさを前記応力負荷の繰り返し数と前記自発磁化との前記相関と比較し、前記材料の疲労破壊を未然に防止することを特徴とする、疲労破壊の防止方法。  Stress is repeatedly applied to a predetermined material, and a change in spontaneous magnetization from the start of stress loading to fracture of the material is monitored in advance, and the number of repetitions of the stress load and the spontaneous magnetization of the material are Deriving a correlation, in the actual use of the material, monitoring the spontaneous magnetization of the material as needed, comparing the magnitude of the spontaneous magnetization with the correlation between the number of repetitions of the stress load and the spontaneous magnetization, A method for preventing fatigue fracture, characterized by preventing fatigue fracture of the material. 前記材料は原子炉材料であることを特徴とする、請求項に記載の疲労破壊の防止方法The material is characterized by a nuclear reactor materials, method for preventing fatigue failure of claim 4. 前記材料の、前記応力負荷の繰り返し数と前記自発磁化との相関において、前記自発磁化は破断直前に急激に上昇することを特徴とする、請求項4又は5に記載の疲労破壊の防止方法6. The method for preventing fatigue fracture according to claim 4 , wherein in the correlation between the number of repetitions of the stress load of the material and the spontaneous magnetization, the spontaneous magnetization rapidly increases immediately before fracture.
JP2003127357A 2003-05-02 2003-05-02 Material life evaluation method and fatigue failure prevention method Expired - Lifetime JP3870266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003127357A JP3870266B2 (en) 2003-05-02 2003-05-02 Material life evaluation method and fatigue failure prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003127357A JP3870266B2 (en) 2003-05-02 2003-05-02 Material life evaluation method and fatigue failure prevention method

Publications (2)

Publication Number Publication Date
JP2004333231A JP2004333231A (en) 2004-11-25
JP3870266B2 true JP3870266B2 (en) 2007-01-17

Family

ID=33503935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003127357A Expired - Lifetime JP3870266B2 (en) 2003-05-02 2003-05-02 Material life evaluation method and fatigue failure prevention method

Country Status (1)

Country Link
JP (1) JP3870266B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4805046B2 (en) * 2006-07-20 2011-11-02 聰 島本 Metal material damage evaluation apparatus using high sensitivity magnetic flux density meter, damage evaluation method and damage evaluation system
JP5325194B2 (en) 2010-02-26 2013-10-23 株式会社神戸製鋼所 Method for evaluating fatigue characteristics of T-joints in T-type welded joint structures

Also Published As

Publication number Publication date
JP2004333231A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
Sagar et al. Magnetic Barkhausen emission to evaluate fatigue damage in a low carbon structural steel
Stefanita et al. Plastic versus elastic deformation effects on magnetic Barkhausen noise in steel
Leng et al. Metal magnetic memory signal response to plastic deformation of low carbon steel
Ren et al. Studies on laws of stress-magnetization based on magnetic memory testing technique
Shi et al. Metal magnetic memory effect caused by static tension load in a case-hardened steel
Ren et al. Studies on influences of initial magnetization state on metal magnetic memory signal
JP4117902B2 (en) Method for measuring and extending the useful life of fatigue limited metal parts
Huang et al. Characterizing the magnetic memory signals on the surface of plasma transferred arc cladding coating under fatigue loads
JP3870266B2 (en) Material life evaluation method and fatigue failure prevention method
Wang et al. Electromagnetic sensors for assessing and monitoring civil infrastructures
CN106018543A (en) Bolt connecting part damage in-situ monitoring device based on magnetic memory effect
Bi et al. The dependence of magnetic properties on fatigue in A533B nuclear pressure vessel steels
JP4087312B2 (en) Inspection method and apparatus for deterioration of metal using high sensitivity magnetic sensor
Witoś et al. NDE and SHM of critical parts using magnetic and electromagnetic methods
Mandache et al. Investigation of optimum field amplitude for stress dependence of magnetic Barkhausen noise
Moorthy et al. Magnetic Barkhausen emission technique for detecting the overstressing during bending fatigue in case-carburised En36 steel
JPH05142203A (en) Method for diagnosing environmental stress cracking of high-strength material
Govindaraju et al. Evaluation of fatigue damage in steel structural components by magnetoelastic Barkhausen signal analysis
Silva et al. Evaluation of mechanical ductile damage in sheet metal based on low-field magnetic analysis
Vourna et al. Magnetic evaluation of Bauschinger effect in marine engineering steels
Gao et al. The effect of variable tensile stress on the MFL signal response of defective wire ropes
US5311126A (en) Magnetic field strength threshold indicator for use in a magnetic particle inspection device
Lazreg et al. Detection of fatigue limit thanks to piezomagnetic measurements
Chen et al. Estimation of fatigue exposure from magnetic coercivity
Li et al. Investigation of the variation in magnetic field induced by cyclic tensile-compressive stress

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

R150 Certificate of patent or registration of utility model

Ref document number: 3870266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term