JP5932290B2 - Mechanical property creation method considering parameters related to plastic volume change - Google Patents

Mechanical property creation method considering parameters related to plastic volume change Download PDF

Info

Publication number
JP5932290B2
JP5932290B2 JP2011231175A JP2011231175A JP5932290B2 JP 5932290 B2 JP5932290 B2 JP 5932290B2 JP 2011231175 A JP2011231175 A JP 2011231175A JP 2011231175 A JP2011231175 A JP 2011231175A JP 5932290 B2 JP5932290 B2 JP 5932290B2
Authority
JP
Japan
Prior art keywords
relationship
strain
true
volume change
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011231175A
Other languages
Japanese (ja)
Other versions
JP2013088365A (en
Inventor
邦夫 竹越
邦夫 竹越
一邦 丹羽
一邦 丹羽
Original Assignee
株式会社テラバイト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テラバイト filed Critical 株式会社テラバイト
Priority to JP2011231175A priority Critical patent/JP5932290B2/en
Publication of JP2013088365A publication Critical patent/JP2013088365A/en
Application granted granted Critical
Publication of JP5932290B2 publication Critical patent/JP5932290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、弾性領域の機械特性測定に加え、測定範囲に塑性領域を含めた「真ひずみ−体積変化に関係するパラメータ」関係をデジタル画像相関法等により求め、それらの結果を利用して、各種材料の機械特性「公称ひずみ−公称応力」関係から、弾性ひずみ増分および塑性ひずみ増分を直列結合する種類の弾塑性材料構成則(以下、材料構成則)に入力する機械特性を求める方法に関するものである。In the present invention, in addition to the measurement of the mechanical properties of the elastic region, the “parameter related to true strain-volume change” including the plastic region in the measurement range is obtained by a digital image correlation method or the like, and using these results, Mechanical properties of various materials, relating to the method of obtaining mechanical properties input to the elasto-plastic material constitutive law (hereinafter referred to as material constitutive law) of the type in which the elastic strain increment and the plastic strain increment are connected in series from the "nominal strain-nominal stress" relationship It is.

有限要素法によるシミュレーション(以下、シミュレーション)において、ある材料の塑性変形挙動を表現するには、その機械特性を入力することが必要である。          In the simulation by the finite element method (hereinafter, simulation), in order to express the plastic deformation behavior of a certain material, it is necessary to input the mechanical characteristics.

多くの材料構成則では弾性ひずみと塑性ひずみは直列結合することを仮定して定式化され、材料の塑性変形挙動は表現される。ここで、体積変化に関係するパラメータをポアソン比でとらえて注意する。ポアソン比は弾性ひずみに対して適用される物理量であり、塑性ひずみには適用されないことに注意する。金属材料の場合、塑性変形はせん断変形であるため、体積塑性ひずみ増分が0となるような塑性ひずみ増分(テンソル量)が決定される。便宜上、塑性ひずみ増分の縦横比(数1)を塑性ポアソン比と定義すれば、金属材料の場合、塑性ポアソン比は0.5と考えることが可能である。一方、樹脂材料の引張変形においては、体積が膨張する現象が観察される。塑性ポアソン比が塑性変形量によって変化すると仮定することで、この現象を表現する手法が提案されている(非特許文献1)。

Figure 0005932290
Many material constitutive laws are formulated assuming that elastic strain and plastic strain are coupled in series, and the plastic deformation behavior of the material is expressed. Here, attention should be paid to the parameter related to the volume change in terms of Poisson's ratio. Note that Poisson's ratio is a physical quantity applied to elastic strain and not plastic strain. In the case of a metal material, since plastic deformation is shear deformation, a plastic strain increment (a tensor amount) such that the volume plastic strain increment becomes 0 is determined. For convenience, if the aspect ratio (Equation 1) of the plastic strain increment is defined as the plastic Poisson's ratio, the plastic Poisson's ratio can be considered to be 0.5 in the case of a metal material. On the other hand, in the tensile deformation of the resin material, a phenomenon that the volume expands is observed. There has been proposed a method for expressing this phenomenon by assuming that the plastic Poisson's ratio varies depending on the amount of plastic deformation (Non-patent Document 1).
Figure 0005932290

従来、「真ひずみ−真応力」関係は「公称ひずみ−公称応力」関係とポアソン比から見積もられてきた(数2、数3)。ここで、数2は一軸引張り、一軸圧縮の変換式、数3は二軸引張り、二軸圧縮の変換式である。しかし、この見積もり方法では、塑性ポアソン比を考慮していないため、塑性変形に伴う体積変化を高精度に表現することは出来ない。このため、例えば座屈挙動(非特許文献2)等、部品同士の接触・変形で解が分岐する繊細な問題では、部品の体積変化に伴う変形も考慮に入れなければ、実現象と異なる接触が誘発される恐れがあり、結果として、樹脂材料部品の複雑な変形挙動をシミュレーションで再現できない問題が起きる。

Figure 0005932290
Figure 0005932290
Conventionally, the “true strain-true stress” relationship has been estimated from the “nominal strain-nominal stress” relationship and Poisson's ratio (Equations 2 and 3). Here, Formula 2 is a conversion formula for uniaxial tension and uniaxial compression, and Formula 3 is a conversion formula for biaxial tension and biaxial compression. However, since this estimation method does not take into account the plastic Poisson's ratio, the volume change accompanying plastic deformation cannot be expressed with high accuracy. For this reason, for delicate problems such as buckling behavior (Non-Patent Document 2) where the solution branches due to contact / deformation between parts, contact that differs from the actual phenomenon is necessary unless deformation due to volume change of the part is taken into account. As a result, there arises a problem that the complicated deformation behavior of the resin material part cannot be reproduced by simulation.
Figure 0005932290
Figure 0005932290

例えば、特許文献1においてはボイドが誘発される塑性域の曲線、すなわち「真応力−対数塑性ひずみ」曲線の降伏後の曲線に任意の傾きを加えて、ボイド発生の効果を反映させるフィッティングによって、新たに推定された構成方程式を用いて再度弾塑性モデル解析を行い、解析結果から解析「真応力−公称ひずみ」曲線と解析「体積ひずみ−公称ひずみ」曲線を求め、解析値と実測値をそれぞれ比較し、一致したデータより真の「真応力−対数塑性ひずみ」曲線を構成方程式とする試みがされている。それを求める作業は7工程を経る工程の繰り返しを行っている。しかし、解析「体積ひずみ−公称ひずみ」曲線と「真応力−対数塑性ひずみ」曲線の両方を同時に決定することを試みるため、フィッティングの自由度が増加し、フィッティング試行回数は解析「体積ひずみ−公称ひずみ」曲線の試行錯誤回数g回と「真応力−対数塑性ひずみ」曲線の試行錯誤回数h回の掛け算(g×h回)と同程度となってしまい、収束解が得られにくい問題がある。その為に膨大な労力と時間を掛けて同定している問題があった。しかも、広い範囲の体積ひずみ実測値を扱うためにネッキング等の局部的な塑性領域を扱えず、フィッティングのターゲットが誤差の大きな実測値となり精度が低いものとなる。また、収束解を得るために繰り返し作業を減らすことも併せ、精度の低下を許容せざるを得なくなる問題があった。          For example, in Patent Document 1, by fitting an arbitrary slope to a curve of a plastic region in which a void is induced, that is, a yielded curve of a “true stress-logarithmic plastic strain” curve, and reflecting the effect of void generation, Re-analyze the elasto-plastic model analysis using the newly estimated constitutive equation, and obtain the analysis “true stress-nominal strain” curve and analysis “volume strain-nominal strain” curve from the analysis results. Attempts have been made to use a true “true stress-logarithmic plastic strain” curve as a constitutive equation from the matched data. The operation | work which calculates | requires has performed the process of passing through 7 processes. However, since it tries to determine both the analysis "volume strain-nominal strain" curve and the "true stress-logarithmic plastic strain" curve simultaneously, the degree of fitting freedom increases, and the number of fitting trials is The number of trial and error times of the “strain” curve is multiplied by the number of trial and error times h of the “true stress-logarithmic plastic strain” curve (g × h times). . For this reason, there has been a problem of identifying with enormous effort and time. Moreover, since a local plastic region such as necking cannot be handled in order to handle a wide range of volume strain measured values, the fitting target becomes a measured value with a large error and accuracy is low. In addition, there is a problem that it is necessary to allow a reduction in accuracy together with reducing the number of repeated operations to obtain a convergent solution.

特開2006−337343号公報JP 2006-337343 A

S. Kolling et al., 4th German LS-DYNA Users Conf.,A-II-27/57, 2005S. Kolling et al., 4th German LS-DYNA Users Conf., A-II-27 / 57, 2005 P. A. Du Bois et al., 10th Int. LS-DYNA Users Conf.,19-35/42, 2008P. A. Du Bois et al., 10th Int. LS-DYNA Users Conf., 19-35 / 42, 2008

本発明は、運用する任意の材料構成則へ入力される機械特性を求めるに当たって、実材料の試験によって得られる「公称ひずみ−公称応力」関係、「変位−荷重」関係及び「真ひずみ−体積変化に関係するパラメータ」関係とその試験を模擬するシミュレーションによって得られるそれらの関係について、両者の一致性が高くなるように、機械特性を求める作業を容易に且つ早く行うこと。          In determining the mechanical properties input to an arbitrary material constitutive law to be used, the present invention obtains a “nominal strain-nominal stress” relationship, a “displacement-load” relationship, and a “true strain-volume change” obtained by testing an actual material. For the "parameters related to the relationship" and those relationships obtained by simulation simulating the test, the task of obtaining the mechanical properties should be performed easily and quickly so that the consistency between the two is high.

それらの一致性高い機械特性を求めるに当たって、実材料の試験方法をより微細な試験方法により塑性領域の測定精度を高める必要がある。          In order to obtain the mechanical characteristics having high coincidence, it is necessary to increase the measurement accuracy of the plastic region by using a finer test method of the actual material.

本発明は、飛躍的に少ない試行錯誤の繰返しで材料構成則に入力する適正な機械特性を作成する方法であって、適正な機械特性の作成に多大な労力が掛かる要因の一つが塑性に伴う体積変化に関係するパラメータの測定が困難であることに着目して、塑性の進行の大小をより微細に仕分けて扱う測定手法を用い「真ひずみ−体積変化に関係するパラメータ」関係を得る工程含むことと、要因の二つ目が複数の推定が直列的に関わるアルゴリズムであることに着目して仮の「真ひずみ−真応力(S-S)」関係の試行錯誤法プロセス1と仮の「相当塑性ひずみ−塑性に伴う体積変化に関係するパラメータ」関係の 試行錯誤法プロセス2を用い二つの推定を独立した回路を用いるアルゴリズムで行える 含むことを特徴とする方法であり、
詳細なアルゴリズムとして後に説明するステップ1からステップ10で構成される工程 含むことを特徴とする方法である。
体積変化に関係するパラメータはポアソン比、体積塑性ひずみ、塑性変形に伴うボイド率など様々あるが、以下の説明ではポアソン比を用いる。
          The present invention is dramatically lessTrialCreate appropriate mechanical properties to input into material constitutive law through repeated mistakesMethodHowever, paying attention to the fact that it is difficult to measure parameters related to volume changes accompanying plasticity, which is one of the factors that require a great deal of effort to create appropriate mechanical properties. Using a measurement method that sorts and handles, obtains "true strain-parameter related to volume change" relationshipProcessTheIncludeAnd that the second factor is an algorithm involving multiple estimations in series, there is a temporary “true strain-true stress (SS)” relationship.TrialThe relationship between the error process 1 and the provisional "equivalent plastic strain-parameter related to volume change accompanying plasticity" TrialUsing the error-and-error process 2, the two estimations can be performed with an algorithm that uses independent circuits.Craft AboutTheIncludeIt is characterized byMethodAnd
It is composed of Step 1 to Step 10 described later as a detailed algorithmProcessThe IncludeIt is characterized byMethodIt is.
There are various parameters related to the volume change, such as Poisson's ratio, volume plastic strain, void ratio accompanying plastic deformation, etc., but Poisson's ratio is used in the following explanation.

本発明における方法は、始めに運用する材料構成則を定めシミュレーションとの関係で必要な条件を設定する工程と、対象とする材料を用いて材料試験を行い、デジタル画像相関法等による微細な領域の塑性領域を含む精度の高い2次元ないし3次元変形データを取得し、縦ひずみ・横ひずみ・応力等データを取得し、「変位−荷重」関係(A1)及び「公称ひずみ−公称応力」関係(C1)に加え、塑性領域を含む「真ひずみ−見かけポアソン比」関係(B1)を得る工程(ステップ1)を含む How definitive to the present invention includes the steps of setting the necessary conditions in relation to the simulation defines the material constitutive model for operating the first, it performs material tested using the materials of interest, fine by digital image correlation method Acquire high-precision 2D or 3D deformation data including the plastic region of the region, acquire data such as longitudinal strain, lateral strain, stress, etc., `` displacement-load '' relationship (A1) and `` nominal strain-nominal stress '' In addition to the relationship (C1), a step (step 1) of obtaining a “true strain-apparent Poisson ratio” relationship (B1) including a plastic region is included .

本発明における方法は、ステップ1によって得られたC1を、数2または数3を用いて、仮の「S−S」関係(A2)に変換する工程(ステップ2)を含む How definitive to the present invention, the C1 obtained by step 1, including using a number 2 or number 3, the temporary step of converting the "S-S" relationship (A2) (Step 2).

本発明における方法は、ステップ1で設定された条件をA2に適用して、それを材料構成則に入力して材料試験を模擬するシミュレーションを行い、「変位−荷重」関係(A3-i, i=1, 2, …, 試行回数n)を得る工程(ステップ3-i, i=1, 2, …, 試行回数n)を含む How definitive to the present invention, by applying the conditions set in the step 1 to A2, a simulation to simulate the material testing by entering it in the material constitutive model, "displacement - load" relationship (A3-i, i = 1, 2, ..., number of trials n) a step of obtaining (step 3-i, i = 1, 2, ..., includes a number of trials n).

本発明における方法は、ステップ1で得られたA1とステップ3-iで得られたA3-iを比較し、得られた差が目標精度の範囲に入っているかを判定し、判定がYESとなった仮の「S−S」関係(A2又はA5-i)をA4と定義する工程(ステップ4-i, i=1, 2, …, 試行回数n)を含む How definitive to the present invention compares the A3-i obtained in A1 and Step 3-i obtained in step 1, the difference obtained is determined whether within the range of target accuracy, the determination is YES By now, the temporary "S-S" relationship (A2 or A5-i) the step of defining the A4 (step 4-i, i = 1, 2, ..., number of trials n) including.

本発明における方法は、ステップ4-iよって得られた比較を参考に目標精度を上回るように推定し、仮の「S-S」関係(A5-i, i=2,3, …, 試行回数n)を作成する (ステップ5-i, i= 2,3, …, 試行回数n)を含む How definitive to the present invention, Step 4-i Thus obtained comparative estimated to exceed the target accuracy reference, "S-S" relationship provisional (A5-i, i = 2,3 , ..., trial as engineering to create a number of times n) (step 5-i, i = 2,3, ..., including the number of attempts n).

本発明における方法は、ステップ4-iよってYESの判定が出るまでステップ5-iとステップ3-iとステップ4-iを繰返しで行う工程(仮の「S−S」関係推定の試行錯誤法試行錯誤法のプロセス)1を含む How definitive to the present invention, trial and error steps 4-i Therefore YES determination exits to step 5-i and Step 3-i and performing at repeat step 4-i (tentative "S-S" relation acquiring including the legal process of trying and error method) 1.

本発明における方法は、ステップ1によって得られたB1を参考にして推定し、仮の「相当塑性ひずみ−塑性ポアソン比(S-P)」関係(B6)を作成する工程(ステップ6)を含む How definitive to the present invention estimates and the B1 obtained by Step 1 reference, provisional - the "equivalent plastic strain plastic Poisson's ratio (S-P)" step of creating relationships (B6) (Step 6) Including .

本発明における方法は、ステップ4-i よって得られたA4をB6又はB10-j(j=2,3,…,試行回数m)に対応した真の「S-S」関係(A7-j, j=1, 2, …, 試行回数m)に数式を用いて変換する(ステップ7-j, j=1, 2, …, 試行回数m)工程含む。変換に用いる数式は一軸引張り及び一軸圧縮の変換方程式の場合は数2、数4、数5、数6、数7、数8であり、二軸引張り、二軸圧縮の変換方程式の場合は数3、数6、数7、数8、数9、数10、数11、数12である。

Figure 0005932290
Figure 0005932290
Figure 0005932290
Figure 0005932290
Figure 0005932290
Figure 0005932290
Figure 0005932290
Figure 0005932290
Figure 0005932290
How definitive to the present invention, Step 4-i Therefore A4 obtained a B6 or B10-j (j = 2,3, ..., attempts m) True corresponding to "S-S" relationship (A7-j , j = 1, 2, ... , is converted using the formula in attempts m) (step 7-j, j = 1, 2, ..., includes a number of trials m) step. The mathematical formula used for the conversion is Equation 2, Equation 4, Equation 5, Equation 6, Equation 7, Equation 8 for the conversion equation of uniaxial tension and uniaxial compression, and the number for the conversion equation of biaxial tension and biaxial compression. 3, Equation 6, Equation 7, Equation 8, Equation 9, Equation 10, Equation 11, and Equation 12.
Figure 0005932290
Figure 0005932290
Figure 0005932290
Figure 0005932290
Figure 0005932290
Figure 0005932290
Figure 0005932290
Figure 0005932290
Figure 0005932290

本発明における方法は、A7-jとB6又はB10-jを材料構成則に入力して材料試験を模擬するシミュレーションを行い、「真ひずみ−見かけポアソン比」関係(B8-j, j=1,
2, …, 試行回数m)を得る工程(ステップ8-j, j=1, 2, …, 試行回数m)を含む
How definitive to the present invention performs a simulation to simulate the input to material testing A7-j and B6 or B10-j in the material constitutive model, "true strain - Apparent Poisson ratio" relationship (B8-j, j = 1 ,
2, ..., to obtain a number of trials m) (Step 8-j, j = 1, 2, ..., includes a number of trials m).

本発明における方法は、ステップ1よって得られた B1とステップ8-jで得られたB8-jを比較し得られた差が目標精度の範囲に入っているかを判定し、判定がYESとなった仮の「S−P」関係(B6またはB10-j)をB9と定義する工程(ステップ9-j, j=1, 2, …, 試行回数m)を含む How definitive to the present invention judges whether the step difference that is obtained by comparing the B8-j obtained in 1 Thus obtained B1 and Step 8-j is in the range of the target accuracy, the determination is the YES became temporary "S-P" relationship (B6 or B10-j) the step of defining the B9 (step 9-j, j = 1, 2, ..., number of trials m) including.

本発明における方法は、ステップ9-jよってYESの判定が出るまでステップ10-jとステップ7-jとステップ8-jとステップ9-jを試行錯誤法の繰返しを行う工程(仮の「S−P」関係の試行錯誤法プロセス)2を含む How definitive to the present invention, Step 9-j Hence YES determination exits to step 10-j and the step 7-j and Step 8-j and step 9-j a step for repetition of trial and error method (tentative " including the trial-and-error method process) 2 S-P "relationship.

本発明における方法は、ステップ6の工程で仮の「S−P」関係を既知のものと断定して設定する場合に、ステップ8‐j、ステップ9−jでの判定を省略してステップ9−jでB6をB9と定義する短絡プロセス3の工程含む How definitive to the present invention, in the case of setting to assert the "S-P" relationship provisional and those known in the process of Step 6, is omitted Step 8-j, the determination in Step 9-j Step 9-j, including the steps of short circuit process 3 in which B6 is defined as B9.

本発明における方法は、以上の工程の構成により、材料構成則に入力する適正な機械特性A9とB9を出力する工程含む How definitive to the present invention, the structure of the above steps, the proper mechanical properties A9 for inputting the material constitutive model comprising the step of outputting the B9.

本発明における方法を体積変化に関係するパラメータをポアソン比を用いて説明したが、「真ひずみ−見かけポアソン比」関係及び「S−P」関係は、ステップ3-i、ステップ8-jで運用する材料構成則の入力に合わせて、体積変化に関係するパラメータ(体積塑性ひずみ、塑性変形に伴うボイド率など)に相関条件を与えて置き換えた関係を運用する工程含むWhile parameters relating how definitive the present invention change in volume has been described with reference to Poisson's ratio, "true strain - Apparent Poisson ratio" relationship and "S-P" relationship, Step 3-i, in step 8-j according to the input of the material constitutive model for operating, (strain volume plastic, such as void ratio due to plastic deformation) parameters related to the volume change includes the step of operating the relationship replaced giving a correlation condition.

本発明による直接的な効果は
一つに、体積変化に関係するパラメータを測定できる試験法を導入し、ネッキング状態の局部塑性を含む測定データから精度の高い比較基準「S−P」関係を得ることで、試行錯誤の回数が少なくても従来の手法より大幅に精度の高い機械特性を得ることが出来ることにある。
二つ目に、推定の試行錯誤の回路を二つに分けることでそれぞれの回路が短縮され、推定を容易にすることで試行錯誤の繰り返し数が減ることにある。
三つ目に、推定の試行錯誤の回路を二つに分け独立した試行錯誤をすることで、試行錯誤の繰返し回数は、二つの試行錯誤を同じ回路で行う場合の回数に対し大幅に少なくなることである。推定の容易さからg>n、h>mは明らかであり、試行錯誤の繰り返し回数は(g×h)>(n×m)>(n+m)、(ただし、g、h、m、nはすべて2以上)となる。
四つ目に、試行錯誤の繰り返しが削減されるため、遺伝的アルゴリズム等の導入による機械特性決定の自動化を促進できることにある。
五つ目に、弾性ひずみ増分および塑性ひずみ増分を直列結合する種類の弾塑性材料構成則すべてに適用できる汎用性があり、体積塑性ひずみ増分を0として金属材料構成則にも適用できることにある。
これらの総合効果は、幅広い種類の弾塑性材料構成則に適用でき、精度の高い機械特性を早く作成することができる。
One of the direct effects of the present invention is to introduce a test method capable of measuring parameters related to volume change, and obtain a highly accurate comparison reference “SP” relationship from measurement data including local plasticity in the necking state. it is, in fact capable of even small number of trial and error to obtain the mechanical properties significantly accurate than conventional approaches.
Second, by dividing the estimation trial-and-error circuit into two, each circuit is shortened, and by making the estimation easier, the number of trial-and-error repetitions is reduced.
Thirdly, the circuit of the trial and error of estimation by the independent trial and error divided into two, the number of repetitions of trial and error becomes significantly less to the number in the case of performing the two trial and error in the same circuit That is. G> n and h> m are clear from the ease of estimation, and the number of trial and error iterations is (g × h)> (n × m)> (n + m) (where g, h, m, n are All are 2 or more).
The Fourth, since the repetition of trial and error is reduced is to be promoted automated mechanical characterization by the introduction of such a genetic algorithm.
Fifth, there is versatility that can be applied to all types of elastoplastic material constitutive law in which elastic strain increments and plastic strain increments are connected in series, and the volume plastic strain increment can be set to 0 and can also be applied to metal material constitutive laws.
These comprehensive effects can be applied to a wide variety of elastoplastic material constitutive laws, and high-precision mechanical properties can be created quickly.

本発明における方法の具体的なアルゴリズムを示すフロー図である。It is a flow diagram showing a specific algorithm of the method definitive to the present invention. 本発明による実施例ステップ1から得られた「変位−荷重」関係A1を示す。The “displacement-load” relationship A1 obtained from Example Step 1 according to the present invention is shown. 本発明による実施例ステップ1から得られた「公称ひずみ−公称応力」関係C1を示す。Fig. 4 shows the "nominal strain-nominal stress" relationship C1 obtained from Example Step 1 according to the present invention. 本発明による実施例ステップ1で使用したデジタル画像相関法における試験片上の見かけポアソン比の計測地点α点、β点の位置を示す。The position of the measurement point α and β of the apparent Poisson's ratio on the test piece in the digital image correlation method used in Example Step 1 of the present invention is shown. 本発明による実施例ステップ1から得られた「真ひずみ−見かけポアソン比」関係(B1−α、B1−β)を示す。The "true strain-apparent Poisson's ratio" relationship (B1-α, B1-β) obtained from Example Step 1 according to the present invention is shown. 本発明による実施例ステップ2から得られた仮の「S-S」関係A2を示す。The provisional “SS” relationship A2 obtained from Example Step 2 according to the present invention is shown. 本発明による実施例ステップ4‐1でNo判定された「変位−荷重」関係A3‐1とA1の比較を示す。A comparison between the “displacement-load” relationship A3-1 and A1 determined No in the embodiment step 4-1 according to the present invention is shown. 本発明による実施例ステップ5‐iをn-1回繰り返し試行錯誤して得られた仮の「S-S」関係A5‐nを示す。The temporary “SS” relationship A5-n obtained by repeating trial and error n-1 times of the embodiment step 5-i according to the present invention is shown. 本発明による実施例ステップ3‐nでYES判定が得られた「変位−荷重」関係A1とA3‐nの比較を示す。A comparison between the “displacement-load” relationship A1 and A3-n, in which YES is obtained in Example step 3-n according to the present invention, is shown. 本発明による実施例ステップ4‐nでYES判定が得られた仮の「S-S」関係A5‐nを正とするA4を示す。A4 is shown in which the provisional “SS” relationship A5-n for which a YES determination is obtained in the embodiment step 4-n according to the present invention is positive. 本発明による実施例ステップ6で作成した仮の「S-P」関係B6を示す。The temporary “SP” relationship B6 created in the embodiment step 6 according to the present invention is shown. 本発明による実施例ステップ7-1から得られた、B6に対応した「S-S」関係A7‐1を示す。The “SS” relationship A7-1 corresponding to B6, obtained from Example Step 7-1 according to the present invention, is shown. 本発明による実施例ステップ9-1でNo判定をされた「真ひずみ−見かけポアソン比」関係B8‐α‐1とB1‐αの比較を示す。The comparison of the “true strain-apparent Poisson ratio” relationship B8-α-1 and B1-α determined No in Example Step 9-1 of the present invention is shown. 本発明による実施例ステップ9‐1でNo判定をされた「真ひずみ−見かけポアソン比」関係B8‐β‐1とB1‐βの比較を示す。A comparison of the “true strain-apparent Poisson ratio” relationship B8-β-1 and B1-β determined No in Example Step 9-1 of the present invention is shown. 本発明による実施例ステップ10‐jをm-1回繰り返し試行錯誤して得られた仮の「S-P」関係B10‐mを示す。The provisional “SP” relationship B10-m obtained by repeating trial and error of Example Step 10-j according to the present invention m−1 times is shown. 本発明による実施例ステップ7-mから得られた、B10-mに対応した「S-S」関係A7‐mを示す。また、A7−1との比較を合わせて示す。The “SS” relationship A7-m corresponding to B10-m, obtained from Example step 7-m according to the present invention is shown. In addition, the comparison with A7-1 is also shown. 本発明による実施例ステップ9‐mでYES判定をされた「真ひずみ−見かけポアソン比」関係B8‐α‐mとB1‐αの比較を示す。A comparison of the “true strain-apparent Poisson ratio” relationship B8-α-m and B1-α determined YES in Example step 9-m according to the present invention is shown. 本発明による実施例ステップ9‐mでYES判定を得た「真ひずみ−見かけポアソン比」関係B8‐β−mとB1‐βの比較を示す。A comparison of the “true strain-apparent Poisson's ratio” relationship B8-β-m and B1-β obtained as YES in Example Step 9-m of the present invention is shown. 本発明による実施例ステップ9‐mでYES判定を得たB10−mを正とするB9を示す。B9 which makes positive B10-m which obtained YES determination in Example step 9-m according to the present invention is shown. 本発明による実施例ステップ9‐mでYES判定を得たA7−mを正とするA9を示す。また、A4との比較を合わせて示す。A9 in which A7-m obtained as YES in Example Step 9-m according to the present invention is positive. The comparison with A4 is also shown.

本発明を実施するための形態を図1に示すアルゴリズムのフローに沿って説明する。
本発明における方法は、初めに運用する材料構成則を定めシミュレーションとの関係で必要な相関条件を設定する。次に対象とする材料を用いてステップ1で、縦ひずみ・横ひずみ・応力等データを取得する。材料試験の方法は一軸引張り試験法、二軸引張り試験法、一軸圧縮試験法、二軸圧縮試験法の何れかを適用する事が出来る。全ひずみの縦横比を取得するためにデジタル画像相関法を用いた試験データから「変位−荷重」関係(A1)及び「真ひずみ−見かけポアソン比」関係(B1) 、「公称ひずみ−公称応力」関係(C1)を出力する。
A mode for carrying out the present invention will be described along the algorithm flow shown in FIG.
How definitive to the present invention, set the required correlation condition in relation to the simulation defines the material constitutive model to operate initially. Next, in step 1, using the target material, obtain data such as longitudinal strain, lateral strain, and stress. As a material test method, any one of a uniaxial tensile test method, a biaxial tensile test method, a uniaxial compression test method, and a biaxial compression test method can be applied. From the test data using the digital image correlation method to obtain the aspect ratio of the total strain, the "displacement-load" relationship (A1) and the "true strain-apparent Poisson ratio" relationship (B1), "nominal strain-nominal stress" Output relationship (C1).

本発明における方法は、ステップ1から出力されたA1,B1を、A1を試行錯誤法プロセス1に運用し、B1を試行錯誤法プロセス2に運用する。 How definitive to the present invention, the A1, B1 output from Step 1, was operated in a trial and error method processes 1 to A1, to operate the B1 trial and error method the process 2.

本発明における方法は、ステップ2で、ポアソン比と塑性ポアソン比が等しく一定とみなした条件で、A1を仮の「S-S」関係(A2)に変換する。 How definitive to the present invention, in step 2, under the condition that Poisson's ratio and the plastic Poisson's ratio were considered equally constant, for converting the A1 to the "S-S" relationship provisional (A2).

本発明における方法は、ステップ3-iで、ステップ1で設定された相関条件をA2に適用して、それを材料構成則に入力し、ステップ1の材料試験を模擬するシミュレーションを行い「変位−荷重」関係(A3-i)を得る。 How definitive to the present invention, in step 3-i, by applying the set correlation condition in step 1 to A2, and inputs it to the material constitutive law, a simulation to simulate the material testing of Step 1 "displacement Obtain the “load” relationship (A3-i).

本発明における方法は、ステップ4-iで、ステップ3-iで得られたA3-iをステップ1で得られたA1と比較して得られた差が目標精度の許容誤差に対して同じ又は小さい場合にYESの判定をする。比較して得られた差が目標精度の許容誤差より大きい場合にNOの判定をする。目標精度は予め決められていても良いし、この段階で設定することもできる。
判定がYESを得たときA2を正とする仮の「S-S」関係(A4)を得る。
判定がNoであれば試行錯誤法のプロセス1を用いた推定と判定の繰返しを行う。
How definitive to the present invention, in step 4-i, the difference resulting A3-i obtained in step 3-i as compared to the A1 obtained in Step 1 is the same for tolerances target accuracy Or, if it is small, a determination of YES is made. If the difference obtained by the comparison is larger than the tolerance of the target accuracy, NO is determined. The target accuracy may be determined in advance or may be set at this stage.
When the determination is YES, a temporary “SS” relationship (A4) with A2 being positive is obtained.
Determination makes a repetition of determination and estimation using process 1 of trial and error method, if No.

本発明における方法は、ステップ4-iで判定がNoの場合にステップ4-iで比較されたA3-iを参考にして、ステップ5-iで改めて目標精度を上回るように推定した仮の「S-S」関係(A5-i)を作成する。 How definitive to the present invention, the determination in Step 4-i and the A3-i, which is compared in step 4-i as a reference in the case of No, the provisional estimated to exceed again target accuracy in Step 5-i Create an “SS” relationship (A5-i).

本発明における方法は、改めてステップ3-iで、ステップ1で設定された条件をA5-iに適用して、それを材料構成則に入力して、実施した材料試験を模擬するシミュレーションを行い「変位−荷重」関係(A3-i)を得る。 How definitive to the present invention, anew Step 3-i, by applying the conditions set in step 1 to the A5-i, by entering it in the material constitutive law, a simulation to simulate the material tests performed Obtain the “displacement-load” relationship (A3-i).

本発明における方法は、改めてステップ4-iで、シミュレーションで得られたA3‐iを材料試験で得られたA1と比較して得られた差が目標精度の許容誤差に対して同じ又は小さい場合にYESの判定をする。比較して得られた差が目標精度の許容誤差より大きい場合にNOの判定をする。
判定がYESを得たときにA2又はA5-iを正とする仮の「S-S」関係(A4)を得る。
判定がNoであれば試行錯誤法プロセス1を用いた推測と判定を繰返して行う。
How definitive to the present invention, anew Step 4-i, a difference obtained by comparing A3-i and A1 obtained in the material testing obtained the same or smaller than the allowable error of the target accuracy in the simulation In that case, a determination of YES is made. If the difference obtained by the comparison is larger than the tolerance of the target accuracy, NO is determined.
When the determination is YES, a temporary “SS” relationship (A4) with A2 or A5-i as positive is obtained.
If the determination is No, the estimation and determination using the trial and error process 1 is repeated.

本発明における方法は、ステップ4-iでの判定がYESになるまで、ステップ5-i、ステップ3-i、ステップ4-iの試行錯誤法プロセス1を試行錯誤法で繰り返しn−1回行う。この試行錯誤は予めステップ5-1の工程でn-1個の推定を行いステップ4-1の工程でn-1個の「変位−荷重」関係を同時に比較し、最も誤差の少ない仮の「「S-S」関係(A4)を選択することもできる。試行錯誤の繰り返しを遺伝的アルゴリズム等により自動計算による判定を行い、A4を選択することも出来る。 How definitive to the present invention, the step determination in 4-i until the YES, a step 5-i, Step 3-i, repeated n-1 times trial and error method processes the first step 4-i by trial and error method Do. In this trial and error, n-1 estimations are made in advance in the process of step 5-1, and n-1 "displacement-load" relations are simultaneously compared in the process of step 4-1. The “SS” relationship (A4) can also be selected. The repetition of trial and error a judgment automatically calculated by the genetic algorithm or the like, can also be selected A4.

本発明における方法は、ステップ6で、ステップ1の出力B1を用いて仮の「S-P」関係(B6)推定する。B6を既知のものと断定して設定することも出来る。 How definitive to the present invention, in step 6, the "S-P" relationship (B6) estimated provisional using the output B1 of the step 1. B6 can be determined to be known and set.

本発明における方法は、ステップ7-jで、B6を用いて仮の「S-S」関係A4を「S-S」関係 (A7-j)に変換する。仮の「S-P」関係(B6)が既知のものと断定して設定された場合は、「S-S」関係 (A7-j)に変換されたあと、B6とB7-jは短絡プロセス3でステップ8−jを省略してステップB9-jで処理される。 How definitive to the present invention, in step 7-j, to convert the "S-S" relationship A4 mock "S-S" relationship (A7-j) with B6. If the provisional “SP” relationship (B6) is determined to be known, it is converted to the “SS” relationship (A7-j), and then B6 and B7-j are short circuit processes. In step 3, step 8-j is omitted, and processing is performed in step B9-j.

本発明における方法は、ステップ8-jで、ステップ1で設定された相関条件をB6に適用してA7-jと共に材料構成則に入力して、材料実験を模擬するシミュレーションを行い「みかけポアソン比−真ひずみ」関係(B8-j)を出力する。 How definitive to the present invention, in step 8-j, enter the set correlation condition in step 1 to the material constitutive model with application to A7-j in B6, to simulate to simulate the material experimental "apparent Poisson The ratio-true strain relationship (B8-j) is output.

本発明における方法は、ステップ9-jで、シミュレーションで得られたB8-jを、材料試験で得られたB1と比較して得られた差が目標精度の許容誤差に対して同じ又は小さい場合にYESの判定をする。比較して得られた差が目標精度の許容誤差より大きい場合にNOの判定をする。目標精度は予め決められていても良いし、この段階で設定することもできる。
判定がYESを得たときB6又はB10-jを正とする仮の「S-P」関係(B9)を得る。同時に、A7-jを正とするA9を得る。
判定がNoであれば試行錯誤法プロセス2を用いた推定と判定の繰返しを行う。
How definitive to the present invention, in step 9-j, the B8-j obtained in the simulation, the difference obtained by comparing the B1 obtained in materials testing are the same or smaller than the allowable error of the target accuracy In that case, a determination of YES is made. If the difference obtained by the comparison is larger than the tolerance of the target accuracy, NO is determined. The target accuracy may be determined in advance or may be set at this stage.
When the determination is YES, a provisional “SP” relationship (B9) with B6 or B10-j as positive is obtained. At the same time, A9 with A7-j as positive is obtained.
If the determination is No, the estimation and determination using the trial and error method process 2 is repeated.

本発明における方法は、ステップ9-jで判定がNoの場合にステップ8-jで比較されたB8-jを参考にして、ステップ10-jで改めて目標精度を上回るように推定した仮の「S-P」関係(B10-j)を作成する。 How definitive to the present invention, the determination in Step 9-j to the B8-j, which is compared in step 8-j as a reference in the case of No, the provisional estimated to exceed again target accuracy in step 10-j The “SP” relationship (B10-j) is created.

本発明における方法は、改めてステップ7-jで、B10-jを用いて仮の「S-S」関係A4を「S-S」関係 (A7-j)に変換する。 How definitive to the invention, again in step 7-j, to convert the "S-S" relationship A4 mock "S-S" relationship (A7-j) with B10-j.

本発明における方法は、ステップ8-jで、ステップ1で設定された相関条件をB10-jに適用してA7-jと共に材料構成則に入力して、材料実験を模擬するシミュレーションを行い「みかけポアソン比−真ひずみ」関係(B8-j)を出力する。 How definitive to the present invention, in step 8-j, is input to the material constitutive model with A7-j by applying the set correlation condition in step 1 in B10-j, a simulation to simulate the material experiments " The “apparent Poisson ratio−true strain” relationship (B8-j) is output.

本発明における方法は、改めてステップ8-jで、シミュレーションで得られたB8-jを材料試験で得られたB1と比較して得られた差が目標精度の許容誤差に対して同じ又は小さい場合にYESの判定をする。比較して得られた差が目標精度の許容誤差より大きい場合にNOの判定をする。
判定がYESを得たときB10-jを正とする「S-P」関係(B9)を得る。同時に、A7を正とするA9を得る。
判定がNoであれば試行錯誤法プロセス2を用いた推定と判定を繰返して行う。
How definitive to the present invention, anew Step 8-j, the difference obtained by comparing the B1 obtained the B8-j in materials testing obtained the same or smaller than the allowable error of the target accuracy in the simulation In that case, a determination of YES is made. If the difference obtained by the comparison is larger than the tolerance of the target accuracy, NO is determined.
When the determination is YES, an “SP” relationship (B9) with B10-j as positive is obtained. At the same time, A9 is obtained with A7 being positive.
If the determination is No, the estimation and determination using the trial and error method process 2 is repeated.

本発明における方法は、ステップ9-jでの判定がYESになるまで、ステップ10-j、ステップ7-j、ステップ8-j、ステップ9-jのプロセス2を試行錯誤法で繰り返しm−1回行う。この試行錯誤は予めステップ10-1の工程でm−1個の推定を行いステップ9-1の工程でm−1個の「真ひずみ−見かけポアソン比」関係を同時に比較し、最も誤差の少ない「S-P」関係(B9)を選択することもできる。試行錯誤の繰り返しを遺伝的アルゴリズム等により自動計算による判定を行い、B9を選択することも出来る。同時に、A7-jを正とするA9を得る。 How definitive to the present invention, until the determination in Step 9-j becomes to YES, repeat step 10-j, Step 7-j, Step 8-j, the process 2 of step 9-j by trial and error method m- Perform once. In this trial and error, m-1 is estimated in the process of step 10-1, and m-1 "true strain-apparent Poisson ratio" relations are simultaneously compared in the process of step 9-1. The “SP” relationship (B9) can also be selected. The repetition of trial and error a judgment automatically calculated by the genetic algorithm or the like, can also be selected B9. At the same time, A9 with A7-j as positive is obtained.

本発明における方法は、ステップ9-jで、ステップ6で仮の「S-P」関係(B6)が既知のものと断定して設定された場合に、短絡プロセス3を経たB6とA7-1を正とするB9とA9を得る。 How definitive to the present invention, in step 9-j, in step 6 if the "S-P" relationship provisional (B6) is set to conclude that those known, and B6 passing through a short process 3 The A7- B9 and A9 with 1 being positive are obtained.

以上の実施によって、材料構成則に必要な機械特性A9とB9が出力される。Through the above implementation, the mechanical properties A9 and B9 necessary for the material constitutive law are output.

非晶性樹脂材料であるポリカーボネートは引張り試験においてクレイズを生じ、塑性中の体積変化を起すことが知られている。この材料を用いてS.Kollingらによって開発された材料構成則Semi-Anakytycal Model for Polymers with C1-differentiable yeald(以降SAMP‐1と呼ぶ)に用いる「S-S」曲線及び「S-P」曲線を求めた実施例を説明する。図2〜図20は各工程で得られた出力が示されている。Polycarbonate, which is an amorphous resin material, is known to cause craze in a tensile test and cause a volume change during plasticity. “SS” curve and “SP” curve used for the material constitutive law Semi-Anakytycal Model for Polymers with C1-differentiable yeald (hereinafter referred to as SAMP-1) developed by S. Kolling et al. The example which calculated | required is demonstrated. 2 to 20 show outputs obtained in the respective steps.

ステップ1で、運用する材料構成則をSAMP1と設定した。
本実施例で扱う樹脂用材料構成則SAMP-1は非関連塑性構成式で記述される(非特許文献1)。数10に降伏関数 f 、数7に塑性ポテンシャルgを示す.数10に示す係数は、3種類の静的材料試験結果から決定する。例えば、引張・圧縮・せん断特性の「真応力−塑性ひずみ」曲線を入力することで、それら係数は決まる。塑性ポアソン比は体積塑性ひずみ増分を決定するパラメータである。例えば、1軸引張状態では、体積塑性ひずみ増分は数12のように比例する。塑性ポアソン比が 0.5 の場合は体積ひずみ増分が0となり、つまり塑性変形は非圧縮性となる。一方、塑性ポアソン比が0より大きく0.5より小さい場合は体積ひずみ分が0 より大きくなるため、塑性変形に伴い体積は変化する.クレイズ現象のボイド拡張は、この材料構成則では、塑性ポアソン比によって表現することが可能である。
従って、シミュレーションとの関係する相関条件は、仮の「真ひずみ−真応力」関係と仮の「相当塑性ひずみー塑性ポアソン比」をダイレクトに入力する条件とする。

Figure 0005932290
Figure 0005932290
In step 1, the material constitutive law to be used was set to SAMP1.
The resin material constitutive law SAMP-1 handled in this example is described by an unrelated plastic constitutive equation (Non-patent Document 1). Equation 10 shows the yield function f and Equation 7 shows the plastic potential g. The coefficient shown in Equation 10 is determined from three types of static material test results. For example, the coefficients are determined by inputting a “true stress-plastic strain” curve of tensile / compressive / shear characteristics. The plastic Poisson's ratio is a parameter that determines the volume plastic strain increment. For example, in the uniaxial tension state, the volume plastic strain increment is proportional as shown in Equation 12. When the plastic Poisson's ratio is 0.5, the volumetric strain increment is 0, that is, the plastic deformation is incompressible. On the other hand, when the plastic Poisson's ratio is larger than 0 and smaller than 0.5, the volume strain becomes larger than 0, so the volume changes with plastic deformation. The void expansion of the Craze phenomenon can be expressed by the plastic Poisson's ratio in this material constitutive law.
Accordingly, the correlation condition related to the simulation is a condition for directly inputting the temporary “true strain-true stress” relationship and the temporary “equivalent plastic strain-plastic Poisson ratio”.
Figure 0005932290
Figure 0005932290

ステップ1で、静的引張試験(JISK7113-2準拠、引張速度5mm/min)を実施し、「変位−荷重」関係A1(図2)および「公称ひずみ−公称応力」関係C1(図3)を得た。また同時に、デジタル画像相関法を用いて、(図4)に示す試験片中央付近における縦ひずみ、および横ひずみを測定し、「真ひずみ−見かけポアソン比」関係(B1−α、B1−β)(図5)を得た。In Step 1, a static tensile test (JISK7113-2 compliant, tensile speed 5 mm / min) was performed, and the “displacement-load” relationship A1 (FIG. 2) and the “nominal strain-nominal stress” relationship C1 (FIG. 3) Obtained. At the same time, the digital image correlation method was used to measure the longitudinal strain and lateral strain near the center of the specimen shown in (Fig. 4), and the "true strain-apparent Poisson's ratio" relationship (B1-α, B1-β) (FIG. 5) was obtained.

ステップ2の工程の実施により仮の「S-S」関係A2(図6)を得た。Provisional “SS” relationship A2 (FIG. 6) was obtained by carrying out the process of step 2.

ステップ3-1の工程実施によりシミュレーションによる「変位−荷重」関係A3-1を得て、ステップ4-1の工程実施によりステップ1の試験による「変位−荷重」関係A1との比較(図7)からNoの判定を得た。A “displacement-load” relationship A3-1 by simulation is obtained by performing the process of step 3-1, and a comparison with the “displacement-load” relationship A1 by the test of step 1 by performing the process of step 4-1 (FIG. 7). To No.

ステップ5-iの工程を24回実施し、仮の「S-S」関係A5-n,(n=24)(図8)を再度推定したStep 5-i was performed 24 times, and the temporary “SS” relationship A5-n, (n = 24) (FIG. 8) was estimated again.

試行錯誤のプロセス1を24回繰返し試行錯誤の結果YESの判定を得た「荷重−ひずみ」関係A3-n(n=24)(図9)を得た。同時にYES判定によって正とした仮の「S-S」関係A5-n,(n=24)(図10)が得られた。A5-nは判定後A4と呼ぶ。Process 1 of trial and error to obtain a decision of YES 24 iterations trial and error result "Load - Strain" was obtained relationship A3-n (n = 24) ( Fig. 9). At the same time, a temporary “SS” relationship A5-n, (n = 24) (FIG. 10), which was determined positive by the YES determination, was obtained. A5-n is called A4 after determination.

ステップ6の工程を実施。塑性ポアソン比を0.5一定とする「S-P」関係B6(図11)を作成した。Step 6 is performed. An “SP” relationship B6 (FIG. 11) was created in which the plastic Poisson's ratio was constant at 0.5.

ステップ7-1の工程の実施し、塑性ポアソン比とポアソン比が一定時における仮の「S-S」関係A4を変換して、B6対応した「S-S」関係A7-1(図12)を得た。Step 7-1 is performed, and the temporary “SS” relationship A4 when the plastic Poisson's ratio and the Poisson's ratio are constant is converted, and the “SS” relationship A7-1 corresponding to B6 (FIG. 12) Got.

ステップ9-1の工程にて、ステップ8-1の工程を実施しシミュレーションによって得られた「見かけのポアソン比−真ひずみ」関係(B8-α-1)が、ステップ1の試験によって得られた「見かけのポアソン比−真ひずみ」関係(B1-α)に比較され(図13)、併せてステップ8-1の工程を実施し、シミュレーションによって得られた(B8-β-1)が、ステップ9-1の工程にて、ステップ1の試験によって得られた(B1-β)に比較され(図14)No判定となった。In the process of step 9-1, the "apparent Poisson ratio-true strain" relationship (B8-α-1) obtained by the simulation of the process of step 8-1 was obtained by the test of step 1. Compared to the “apparent Poisson ratio-true strain” relationship (B1-α) (FIG. 13), the process of step 8-1 was also performed, and (B8-β-1) obtained by simulation was In the process of 9-1, it was compared with (B1-β) obtained by the test of Step 1 (FIG. 14), and No determination was made.

ステップ9-1の工程のNo判定を受けて、試行錯誤のプロセス2を19回繰り返し実施され、ステップ10-m,(m=19)の工程の実施で推定された仮の「S-P」関係B10-m,(m=19)(図15)が得られた。In response to the No determination of the step 9-1, the trial and error process 2 is repeatedly performed 19 times, and the provisional “SP” estimated in the execution of the step 10-m, (m = 19) is performed. The relationship B10-m, (m = 19) (FIG. 15) was obtained.

プロセス2の試行錯誤が19回行われ、ステップ9-m(m=19)の工程で「真ひずみ−見かけポアソン比」関係B8-α-mがB1-αと比較され(図16)、B8-1-βがB1-βと比較され(図17)YESの判定を行い、仮の「S-P」関係(B10-m)が真の「S-P」関係として得られた。B10-mは判定後B9と呼ぶ。併せてB9に対応する「S-S」関係がA9(図18)として得られた。The trial and error of process 2 was performed 19 times, and in the process of step 9-m (m = 19), the “true strain-apparent Poisson ratio” relationship B8-α-m was compared with B1-α (FIG. 16), and B8 -1-β was compared with B1-β (FIG. 17), and a determination of YES was made, and a provisional “SP” relationship (B10-m) was obtained as a true “SP” relationship. B10-m is called after determination B9. In addition, an “SS” relationship corresponding to B9 was obtained as A9 (FIG. 18).

本実施例で得られた「S-S」関係の精度は「変位−荷重」関係において、目標誤差5%に対して 1%以内、部分的には3%以内の結果が得られた。
従来手法の誤差30%を大幅に上回る成果を得た。
The accuracy of the “SS” relationship obtained in this example was within 1% and partially within 3% for a target error of 5% in the “displacement-load” relationship.
The result was much higher than the 30% error of the conventional method.

繰返し回数が実際に43回行われ、推定される従来手法457回以上に対して非常に少ない回数で必要とする機械特性を作成することが出来た。The number of repetitions was actually performed 43 times, and the required mechanical characteristics could be created with a very small number of times compared to the estimated conventional method of 457 times or more.

本発明が産業に寄与する効果として、樹脂材料や発泡金属など塑性に伴う体積変化を高精度に表現・再現する機械特性を、経験豊富な専門家でなくても作成できるようになる事である。高精度な機械特性作成の敷居が低くなった事により、高精度な機械特性を用いたシミュレーションの運用を幅広くエンジニアリングに広げることを期待できる。As an effect that the present invention contributes to the industry, it is possible to create mechanical characteristics that accurately represent and reproduce volume changes accompanying plasticity, such as resin materials and foamed metals, even without an experienced expert. . Since the threshold for creating high-accuracy mechanical properties has been lowered, it is expected that the operation of simulation using high-accuracy mechanical properties can be widely extended to engineering.

1 : 仮の「真ひずみ−真応力」関係推定の試行錯誤法プロセス
2 : 仮の「相当塑性ひずみ−塑性ポアソン比」関係の試行錯誤法プロセス
3 : 仮の「相当塑性ひずみ−塑性ポアソン比」関係を既知のものと断定して設定した場合の短絡プロセス

1: Temporary “true strain-true stress” relationship estimation trial-and-error process 2: Temporary “equivalent plastic strain-plastic Poisson ratio” trial-error process 3: Temporary “equivalent plastic strain-plastic Poisson ratio” Short circuit process when the relationship is determined to be known

Claims (1)

塑性ポアソン比がポアソン比と異なる材料からなる構造体の「真ひずみ−真応力」関係と「相当塑性ひずみ−運用するところの材料構成則に応じた塑性に伴う体積変化に関係するパラメータ」関係から有限要素法等シミュレーションに用いる機械特性を求める方法であって、
1)材料引張試験又は圧縮試験で「変位−荷重」関係、「真ひずみ−体積変化に関係する パラメータ」関係を測定によって得る工程、
2)前記1)の工程で得られた「変位−荷重」関係(「公称ひずみ−公称応力」関係)を 変換して仮の「真ひずみ−真応力」関係を得る工程、
3)前記2)、または後記5)の工程で得られた仮の「真ひずみ−真応力」関係を用いて 材料引張試験又は圧縮試験を模擬するシミュレーションによって「変位−荷重」関係を得 る工程、
4)前記1)の工程で得られた「変位−荷重」関係と前記3)の工程で得られた「変位− 荷重」関係の一致性を判定し後記7)の工程に用いる仮の「真ひずみ−真応力」関係を決 定する工程、
5)前記4)の工程で得られた「変位−荷重」関係の一致性の判定を用いて新たな仮の「 真ひずみ−真応力」関係を得る工程、
6)前記1)の工程で得られた「真ひずみ−体積変化に関係するパラメータ」関係、また は後記8)の工程で得られた「真ひずみ−体積変化に関係するパラメータ」関係の一致性 の判定から仮の「相当塑性ひずみ−塑性に伴う体積変化に関係するパラメータ」関係を得 る工程、
7)前記4)の工程で得られた仮の「真ひずみ−真応力」関係、前記6)の工程で得られ た仮の「相当塑性ひずみ−塑性に伴う体積変化に関係するパラメータ」関係から材料引張 試験又は圧縮試験を模擬するシミュレーションによって得られる「真ひずみ−体積変化に 関係するパラメータ」関係を得る工程、
8)前記1)の工程で得られた「真ひずみ−体積変化に関係するパラメータ」関係と前記 7)の工程で得られた「真ひずみ−体積変化に関係するパラメータ」関係の一致性を判定 し、「相当塑性ひずみ−体積変化に関係するパラメータ」関係及び「真ひずみ−真応力」 関係を決定する工程を含む方法。
Plastic Poisson's ratio is a structure made of a material different from the Poisson's ratio from - - "parameter relating to the volume change associated with the plastic corresponding to the material constitutive model where to operate equivalent plastic strain" relationship "true strain true stress" associated with A method for obtaining mechanical characteristics used in simulation such as a finite element method ,
1) A step of obtaining a “displacement-load” relationship and a “true strain- parameter related to volume change ” relationship by measurement in a material tensile test or compression test ,
2) Converting the “displacement-load” relationship (“nominal strain-nominal stress” relationship) obtained in the step 1) to obtain a temporary “true strain-true stress” relationship;
3) the two), or below 5), the provisional obtained in step "true strain - true stress" relationship by simulation to simulate the material tensile test or compression test using a "displacement - load" give relationship Ru step ,
4) The coincidence between the “displacement- load” relationship obtained in the step 1) and the “displacement-load” relationship obtained in the step 3) is determined, and the provisional “true” used in the later step 7) strain - a process that determine the true stress "relationship,
5) A step of obtaining a new temporary “ true strain-true stress” relationship by using the determination of the coincidence of the “displacement-load” relationship obtained in the step 4) .
6) wherein 1) the obtained in the step "true strain - parameters related to the volume change" relationship, or obtained in step described later 8) "true strain - parameters related to the volume change" match of the relationship from the determination of the provisional "equivalent plastic strain - parameters related to the volume change associated with the plastic" process give Ru relationships,
7) From the provisional “true strain-true stress” relationship obtained in the step 4) and from the provisional “equivalent plastic strain—parameter related to volume change accompanying plasticity” obtained in the step 6). Obtaining a "true strain- parameter related to volume change " relationship obtained by simulation simulating a material tensile test or compression test ;
8) Determine the coincidence between the “parameters related to true strain-volume change ” relationship obtained in the step 1) and the “parameters related to true strain-volume change” relationship obtained in the step 7). And determining the “parameters related to equivalent plastic strain-volume change” relationship and the “true strain-true stress” relationship.
JP2011231175A 2011-10-20 2011-10-20 Mechanical property creation method considering parameters related to plastic volume change Active JP5932290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011231175A JP5932290B2 (en) 2011-10-20 2011-10-20 Mechanical property creation method considering parameters related to plastic volume change

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011231175A JP5932290B2 (en) 2011-10-20 2011-10-20 Mechanical property creation method considering parameters related to plastic volume change

Publications (2)

Publication Number Publication Date
JP2013088365A JP2013088365A (en) 2013-05-13
JP5932290B2 true JP5932290B2 (en) 2016-06-08

Family

ID=48532398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011231175A Active JP5932290B2 (en) 2011-10-20 2011-10-20 Mechanical property creation method considering parameters related to plastic volume change

Country Status (1)

Country Link
JP (1) JP5932290B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110702513A (en) * 2019-10-15 2020-01-17 吉林大学 Test measurement method for large-strain-range hardening curve of metal bar

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6502874B2 (en) * 2015-04-07 2019-04-17 東芝メモリ株式会社 Semiconductor device manufacturing method
CN111090950A (en) * 2018-10-08 2020-05-01 中国石油化工股份有限公司 Method for solving constitutive model parameters of hydrogenated nitrile rubber in different environments
JP7356823B2 (en) 2019-06-11 2023-10-05 株式会社構造計画研究所 Parameter estimation device, parameter estimation method and program
CN111272551B (en) * 2020-02-17 2022-08-05 本钢板材股份有限公司 High-speed tensile test data curve processing method
CN112651153B (en) * 2020-12-09 2024-04-09 中南大学 Method for determining material parameters of crystal plasticity finite element model
WO2023133732A1 (en) * 2022-01-12 2023-07-20 万华化学(宁波)有限公司 Method and system for calibrating mechanical properties of material to be tested, and storage medium
CN117350105B (en) * 2023-09-22 2024-03-22 河北工程大学 Method for correcting and checking data in consideration of bulging in metal compression experiment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337343A (en) * 2005-06-06 2006-12-14 Yazaki Corp Estimation system of true stress-logarithmic strain curve of structure comprising crystalline polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110702513A (en) * 2019-10-15 2020-01-17 吉林大学 Test measurement method for large-strain-range hardening curve of metal bar

Also Published As

Publication number Publication date
JP2013088365A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
JP5932290B2 (en) Mechanical property creation method considering parameters related to plastic volume change
WO2014141794A1 (en) Stress-strain relationship simulation method, spring back prediction method, and spring back analyzing device
Hamdia et al. Assessment of computational fracture models using Bayesian method
Nam et al. Application of engineering ductile tearing simulation method to CRIEPI pipe test
Antunes et al. Numerical study of contact forces for crack closure analysis
Dirik et al. Fatigue crack growth under variable amplitude loading through XFEM
Fouaidi et al. Nonlinear bending analysis of functionally graded porous beams using the multiquadric radial basis functions and a Taylor series-based continuation procedure
WO2013042600A1 (en) Stress-strain relation simulation method, stress-strain relation simulation system, and stress-strain relation simulation program which use chaboche model
JP3809374B2 (en) Stress-strain relationship simulation method and method for obtaining yield point in unloading process
Chen et al. Describing the non-saturating cyclic hardening behavior with a newly developed kinematic hardening model and its application in springback prediction of DP sheet metals
Guzmán et al. Damage characterization in a ferritic steel sheet: Experimental tests, parameter identification and numerical modeling
Hammoud et al. A reduced simulation applied to the viscoelastic fatigue of polymers
Kamal et al. Multiaxial fatigue life modelling using hybrid approach of critical plane and genetic algorithm
CN111695207B (en) Crane test model design method based on similarity theory
CN108548720B (en) Method for obtaining ductile material J resistance curve by I-type crack elastoplasticity theoretical formula
Davey et al. Scaled cohesive zone models for fatigue crack propagation
Tran et al. Microstructure-sensitive uncertainty quantification for crystal plasticity finite element constitutive models using stochastic collocation methods
CN109388833B (en) Elastic element structure optimization design method based on fatigue life
Scibetta et al. Numerical simulations to support the normalization data reduction technique
CN115831295B (en) Material constitutive equation parameter calibration method and device and computer equipment
Ranjbaran Buckling analysis of stiffened frames
Lipina et al. Implementation of polycarbonate material mechanical properties of rapid prototyping into system CREO, laboratory verification of the results
JP2017054203A (en) Structural design support device and structural design support program
Agarwal Markovian software reliability model for two types of failures with imperfect debugging rate and generation of errors
Saxena et al. Evaluating the geometric variation of critical SZW in Mod9Cr1Mo Steel

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20111024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160428

R150 Certificate of patent or registration of utility model

Ref document number: 5932290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250