JP2006204876A - Method of manufacturing polysulfone-based hollow fiber membrane - Google Patents

Method of manufacturing polysulfone-based hollow fiber membrane Download PDF

Info

Publication number
JP2006204876A
JP2006204876A JP2005111462A JP2005111462A JP2006204876A JP 2006204876 A JP2006204876 A JP 2006204876A JP 2005111462 A JP2005111462 A JP 2005111462A JP 2005111462 A JP2005111462 A JP 2005111462A JP 2006204876 A JP2006204876 A JP 2006204876A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
polysulfone
dissolution
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005111462A
Other languages
Japanese (ja)
Other versions
JP4748350B2 (en
Inventor
Hideyuki Yokota
英之 横田
Koyo Mabuchi
公洋 馬淵
Katsuro Kuze
勝朗 久世
Masahiro Kato
政弘 加藤
Toshio Sakura
利男 佐倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2005111462A priority Critical patent/JP4748350B2/en
Publication of JP2006204876A publication Critical patent/JP2006204876A/en
Application granted granted Critical
Publication of JP4748350B2 publication Critical patent/JP4748350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a polysulfone-based hollow fiber membrane suitable for a blood dialyzing method hollow fiber type blood purifier having high safety and stability of performance, and having high water permeable performance particularly used for a treatment of chronic renal failure. <P>SOLUTION: This invention is a manufacturing method of the polysulfone-based hollow fiber membrane characterized by maintaining at 70°C or less up to supplying a provided spinning solution to a spinning process, by preparing the spinning solution by dissolving at least three components composed of polyvinyl pyrolidone, a polysulfone-based high polymer and a common solvent of these at 70°C or less in an inert gas atmosphere. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、安全性や性能の安定性が高く、特に血液浄化器用等に適したポリスルホン系中空糸膜の製造方法に関する。   The present invention relates to a method for producing a polysulfone-based hollow fiber membrane having high safety and high performance stability, and particularly suitable for use in blood purifiers and the like.

腎不全治療などにおける血液浄化療法では、血液中の尿毒素、老廃物を除去する目的で、天然素材であるセルロース、またその誘導体であるセルロースジアセテート、セルローストリアセテート、合成高分子としてはポリスルホン、ポリメチルメタクリレート、ポリアクリロニトリルなどの高分子を用いた透析膜や限外濾過膜を分離材として用いた血液透析器、血液濾過器あるいは血液透析濾過器などのモジュールが広く使用されている。特に中空糸型の膜を分離材として用いたモジュールは体外循環血液量の低減、血中の物質除去効率の高さ、さらにモジュール生産時の生産性などの利点から透析器分野での重要度が高い。   In blood purification therapy for the treatment of renal failure, natural materials such as cellulose, cellulose diacetate, cellulose triacetate, and synthetic polymers such as polysulfone and polysulfate are used to remove urine toxins and waste products in the blood. Modules such as hemodialyzers, hemofilters or hemodialyzers using dialysis membranes using polymers such as methyl methacrylate and polyacrylonitrile and ultrafiltration membranes as separation materials are widely used. In particular, modules using hollow fiber membranes as separation materials are important in the dialyzer field due to advantages such as reduction of the amount of blood circulating outside the body, high efficiency of removing substances in the blood, and productivity during module production. high.

上記した膜素材の中で透析技術の進歩に最も合致したものとして透水性能が高いポリスルホン系樹脂が注目されている。しかし、ポリスルホン単体で半透膜を作った場合は、ポリスルホン系樹脂が疎水性であるために血液との親和性に乏しく、エアーロック現象を起こしてしまうため、そのまま血液処理用などに用いることはできない。   Among the above-mentioned membrane materials, polysulfone-based resins having high water permeability are attracting attention as the best match with the progress of dialysis technology. However, when a semi-permeable membrane is made of a single polysulfone, the polysulfone resin is hydrophobic, so it has poor affinity with blood and causes an air lock phenomenon. Can not.

上記した課題の解決方法として、ポリスルホン系樹脂に親水性高分子を配合し製膜し、膜に親水性を付与する方法が提案されている。例えば、ポリエチレングリコール等の多価アルコールを配合する方法が開示されている(例えば、特許文献1,2参照)。
特開昭61−232860号公報 特開昭58−114702号公報
As a method for solving the above-described problems, a method has been proposed in which a hydrophilic polymer is blended with a polysulfone-based resin to form a film, thereby imparting hydrophilicity to the film. For example, a method of blending a polyhydric alcohol such as polyethylene glycol is disclosed (for example, see Patent Documents 1 and 2).
JP-A-61-232860 JP 58-114702 A

また、ポリビニルピロリドンを配合する方法が開示されている(例えば、特許文献3、4参照)。
特公平5−54373号公報 特公平6−75667号公報
Moreover, the method of mix | blending polyvinylpyrrolidone is disclosed (for example, refer patent document 3, 4).
Japanese Patent Publication No. 5-54373 Japanese Examined Patent Publication No. 6-75667

特に、後者のポリビニルピロリドンを用いた方法が安全性や経済性の点より注目されており、該方法により上記した課題は解決される。しかしながら、親水性高分子を配合することによる親水性化技術に於いては、透析時に親水性高分子が溶出し浄化された血液に混入するという課題が発生する。該親水性高分子の溶出が多くなると人体に取り異物である親水性高分子の長期透析時の体内蓄積が増え副作用や合併症等を引き起こす可能性がある。そこで、親水性高分子の溶出量は、透析型人工腎臓装置製造承認基準により定められている。該透析型人工腎臓装置製造承認基準においては、ポリビニルピロリドン等の溶出量はUV吸光度で定量されている。該透析型人工腎臓装置製造承認基準で溶出量制御の効果を判定した技術が開示されている(例えば、特許文献5〜7参照)。また、特許文献8には、親水性高分子の半透膜中からの溶出量が10ppm以下である血液処理用半透膜が開示されている。該文献は、血液処理用半透膜からの親水性高分子の溶出を抑える技術について開示しているが、中空糸膜の保存にまで及ぶ経時的な親水性高分子の劣化・分解に関わる過酸化水素の影響については全く言及されていない。
特許第3314861号公報 特開平6−165926号公報 特開2000−350926号公報 特開2001−170171号公報
In particular, the latter method using polyvinyl pyrrolidone is attracting attention from the viewpoint of safety and economy, and the above-described problems are solved by this method. However, in the hydrophilization technique by blending a hydrophilic polymer, there arises a problem that the hydrophilic polymer is eluted and mixed into purified blood during dialysis. When elution of the hydrophilic polymer increases, the hydrophilic polymer, which is a foreign substance taken up by the human body, increases in the body during long-term dialysis and may cause side effects and complications. Therefore, the elution amount of the hydrophilic polymer is determined by the dialysis artificial kidney device manufacturing approval standard. In the dialysis artificial kidney device production approval standard, the amount of elution of polyvinylpyrrolidone and the like is quantified by UV absorbance. Techniques have been disclosed for determining the effect of elution control based on the dialysis-type artificial kidney device manufacturing approval criteria (see, for example, Patent Documents 5 to 7). Patent Document 8 discloses a semipermeable membrane for blood treatment in which the elution amount of hydrophilic polymer from the semipermeable membrane is 10 ppm or less. This document discloses a technique for suppressing elution of a hydrophilic polymer from a semipermeable membrane for blood treatment, but it is a process related to deterioration / degradation of the hydrophilic polymer over time, which extends to storage of a hollow fiber membrane. No mention is made of the effects of hydrogen oxide.
Japanese Patent No. 3314861 JP-A-6-165926 JP 2000-350926 A JP 2001-170171 A

本発明者等は該ポリビニルピロリドンの溶出挙動について、詳細に検討した結果、上記の透析型人工腎臓装置製造承認基準により定められた試験法で抽出された抽出液中には、従来公知のUV吸光度では測定できない過酸化水素が含まれていることを見出した。過酸化水素が血液浄化器内および中空糸膜内に存在すると、例えばポリビニルピロリドンの酸化劣化を促進し、中空糸膜を保存した時に該ポリビニルピロリドンの溶出量が増加するという保存安定性が悪化する事を見出した。   As a result of detailed studies on the elution behavior of the polyvinyl pyrrolidone, the present inventors have found that the extract extracted by the test method defined by the above dialysis-type artificial kidney device manufacturing approval criteria contains a conventionally known UV absorbance. Then, it was found that hydrogen peroxide that cannot be measured was included. When hydrogen peroxide is present in the blood purifier and in the hollow fiber membrane, for example, the oxidative degradation of polyvinyl pyrrolidone is promoted, and the storage stability of the polyvinyl pyrrolidone elution increases when the hollow fiber membrane is stored. I found a thing.

さらに、上記した特許文献5〜8に開示されている従来技術においては、いずれもが中空糸膜の特定部位について評価されたものである。現実には、モジュール組み立て等において中空糸膜を乾燥する等の処理を行うと乾燥条件の変動等の影響により、中空糸膜内で上記した溶出量が大きく変動することが判明し、上記特定部位のみの評価では高度な安全性の要求には答えられない。特に、本発明者らが明らかにした過酸化水素が、中空糸膜の特定部位に存在した場合、その個所より中空糸膜素材の劣化反応が開始され中空糸膜の全体に伝播していくため、モジュールと用いられる中空糸膜の長さ方向の存在量が全領域に渡り、一定量以下を確保する必要がある。   Furthermore, in the prior art disclosed in Patent Documents 5 to 8 described above, all have been evaluated for specific parts of the hollow fiber membrane. Actually, it has been found that when the treatment such as drying of the hollow fiber membrane is performed in module assembly or the like, the above-described elution amount largely varies in the hollow fiber membrane due to the influence of fluctuations in the drying conditions, etc. Only the evaluation cannot satisfy the high safety requirement. In particular, when hydrogen peroxide as clarified by the present inventors is present in a specific part of the hollow fiber membrane, the deterioration reaction of the hollow fiber membrane material is started from that point and propagates to the entire hollow fiber membrane. It is necessary to ensure that the amount of the hollow fiber membrane used in the module in the longitudinal direction is below a certain amount over the entire region.

ポリビニルピロリドンの架橋処理によりポリビニルピロリドンの溶出量を低減させる方法が上記の特許文献7や8を含め多数が開示されている(例えば特許文献9〜18参照)。しかしながら、架橋処理は血液適合性や蛋白質分離の選択性性能等の特性が悪化する傾向があるので、架橋処理を排除した上で溶出量が抑制された製造方法の確立が嘱望されている。
特開平6−339620号公報 特開平9−70524号公報 特開平9−70525号公報 特開平9−70526号公報 特開平9−103664号公報 特開平10−230148号公報 特開2001−170167号公報 特開2003−201383号公報 特開2003−245526号公報 特許第3474205号公報
Many methods including the above-mentioned Patent Documents 7 and 8 have been disclosed for reducing the amount of polyvinylpyrrolidone eluted by crosslinking treatment of polyvinylpyrrolidone (see, for example, Patent Documents 9 to 18). However, since the crosslinking treatment tends to deteriorate characteristics such as blood compatibility and protein separation selectivity, establishment of a production method in which the elution amount is suppressed after eliminating the crosslinking treatment is desired.
JP-A-6-339620 JP-A-9-70524 JP-A-9-70525 Japanese Patent Laid-Open No. 9-70526 JP-A-9-103664 Japanese Patent Laid-Open No. 10-230148 JP 2001-170167 A JP 2003-201383 A JP 2003-245526 A Japanese Patent No. 3474205

ポリスルホンを溶液法で成型する際に溶媒に溶解、送液および濾過等を80℃以上の温度に維持することにより、ポリスルホン中に含まれるポリスルホンオリゴマーの析出によるポリスルホン溶液の白濁を抑制するポリスルホン溶液の調製方法が開示されており、親水性高分子としてポリビニルピロリドンを含有する系での中空糸膜の製造方法が例示されている(特許文献19参照)。
しかしながら、該製造時における構成成分の劣化や上記した過酸化水素の生成および得られた中空糸膜の長期安定性に関しては全く配慮がなされていない。
特開平11−60738号公報
When the polysulfone is molded by the solution method, the polysulfone solution is prevented from becoming clouded due to precipitation of the polysulfone oligomer contained in the polysulfone by maintaining dissolution, liquid feeding, filtration, etc. in the solvent at a temperature of 80 ° C. or higher. A preparation method is disclosed, and a method for producing a hollow fiber membrane in a system containing polyvinylpyrrolidone as a hydrophilic polymer is exemplified (see Patent Document 19).
However, no consideration is given to the deterioration of the components during the production, the generation of hydrogen peroxide as described above, and the long-term stability of the resulting hollow fiber membrane.
Japanese Patent Laid-Open No. 11-60738

ポリスルホン系樹脂とポリビニルピロリドンよりなる中空糸膜の製造において、低温で長時間をかけて溶解する例が実施例において記載されている(例えば、特許文献20および21参照)。
しかしながら、溶解時の雰囲気に関しては配慮されていない。また、低温溶解の効果に関しても何ら言及されていない。
特開平11−350239号公報 特開2000−140589号公報
In the production of a hollow fiber membrane composed of a polysulfone-based resin and polyvinylpyrrolidone, examples in which dissolution takes place over a long time at a low temperature are described in the examples (see, for example, Patent Documents 20 and 21).
However, no consideration is given to the atmosphere during dissolution. There is no mention of the effect of low-temperature dissolution.
Japanese Patent Laid-Open No. 11-350239 JP 2000-140589 A

本発明は、安全性や性能の安定性が高く、特に慢性腎不全の治療に用いる高透水性能を有する血液透析法中空糸型血液浄化器用等に適したポリスルホン系中空糸膜の製造方法を提供することにある。   The present invention provides a method for producing a polysulfone-based hollow fiber membrane suitable for use in hemodialysis hollow fiber blood purifiers, etc., which has high safety and stability in performance and has high water permeability especially used for the treatment of chronic renal failure. There is to do.

本発明は、ポリビニルピロリドン、ポリスルホン系高分子およびそれらの共通溶媒からなる少なくとも3成分を不活性ガス雰囲気下、70℃以下で溶解して紡糸溶液を調製し、得られた紡糸溶液を紡糸工程に供給するまでの間70℃以下に維持することを特徴とするポリスルホン系中空糸膜の製造方法である。
この場合において、溶解後の紡糸溶液の紡糸工程で使用するまでの貯留時間を最大3日間(72時間)とすることが好ましい。
また、この場合において、フルード数が0.7〜1.3、撹拌レイノルズ数が50〜250の条件で溶解することが好ましい。
この場合において、ポリスルホン系高分子およびポリビニルピロリドンの溶解槽への供給を少なくとも2回以上に分割し、かつポリスルホン系高分子とポリビニルピロリドンを交互に供給し溶解することが好ましい。
また、この場合において、中空糸膜の構成成分を予備混練した後、溶解槽に供給して溶解することが好ましい。
また、この場合において、紡糸溶液の調製を混練機能を有する溶解槽で行うことが好ましい。
また、この場合において、紡糸溶液調製時の溶解を10時間以内で行うことが好ましい。
また、この場合において、少なくともポリビニルピロリドンの供給、混練および紡糸溶液の貯留は不活性ガス雰囲気下で行うことが好ましい。
また、この場合において、溶解工程における系内の酸素濃度を1容量%以下とすることが好ましい。
また、この場合において、過酸化水素含有量が300ppm以下のポリビニルピロリドンを用いることが好ましい。
また、この場合において、ポリビニルピロリドンを実質的に架橋しないことが好ましい。
In the present invention, a spinning solution is prepared by dissolving at least three components comprising polyvinylpyrrolidone, a polysulfone polymer and a common solvent thereof under an inert gas atmosphere at 70 ° C. or less, and the obtained spinning solution is used in a spinning process. It is the manufacturing method of the polysulfone type | system | group hollow fiber membrane characterized by maintaining below 70 degreeC until supply.
In this case, it is preferable that the storage time until the spinning solution is used in the spinning step after dissolution is a maximum of 3 days (72 hours).
Moreover, in this case, it is preferable to dissolve under conditions where the fluid number is 0.7 to 1.3 and the stirring Reynolds number is 50 to 250.
In this case, it is preferable that the supply of the polysulfone polymer and polyvinyl pyrrolidone to the dissolution tank is divided at least twice and the polysulfone polymer and polyvinyl pyrrolidone are alternately supplied and dissolved.
In this case, it is preferable that the components of the hollow fiber membrane are pre-kneaded and then supplied to the dissolution tank for dissolution.
In this case, the spinning solution is preferably prepared in a dissolution tank having a kneading function.
Further, in this case, it is preferable to perform dissolution during preparation of the spinning solution within 10 hours.
In this case, it is preferable that at least the supply of polyvinylpyrrolidone, the kneading, and the storage of the spinning solution are performed in an inert gas atmosphere.
In this case, it is preferable that the oxygen concentration in the system in the dissolving step is 1% by volume or less.
In this case, it is preferable to use polyvinyl pyrrolidone having a hydrogen peroxide content of 300 ppm or less.
In this case, it is preferable that polyvinyl pyrrolidone is not substantially crosslinked.

本発明のポリスルホン系中空糸膜の製造方法は、その製造工程中の紡糸溶液の調製およびその貯留工程における構成成分の劣化、特に、ポリビニルピロリドンの酸化劣化による過酸化水素の発生が抑制されるので、過酸化水素溶出量の少ない中空糸膜が得られる。従って、中空糸膜を長期に渡り保存した場合に該過酸化水素により引起されるポリビニルピロリドン等の劣化が抑制されるので、中空糸膜を長期保存をしても透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の最大値を0.10以下に維持するができるので、慢性腎不全の治療に用いる血液浄化器用等として好適に用いることができるという利点がある。また、本発明の製造方法により上記した中空糸膜が、経済的に、かつ安定して製造できるという利点がある。   The production method of the polysulfone-based hollow fiber membrane of the present invention suppresses the generation of hydrogen peroxide due to the deterioration of the components in the preparation of the spinning solution during the production process and the storage process, in particular, the oxidative degradation of polyvinylpyrrolidone. A hollow fiber membrane with a small amount of hydrogen peroxide elution can be obtained. Therefore, when hollow fiber membranes are stored for a long period of time, degradation of polyvinyl pyrrolidone and the like caused by the hydrogen peroxide is suppressed. The maximum value of UV (220-350 nm) absorbance can be maintained at 0.10 or less, so that there is an advantage that it can be suitably used for blood purifiers used for the treatment of chronic renal failure. Moreover, there exists an advantage that the above-mentioned hollow fiber membrane can be manufactured economically and stably by the manufacturing method of this invention.

以下、本発明を詳細に説明する。
本発明に用いる中空糸膜は、ポリビニルピロリドンを含有するポリスルホン系樹脂で構成されているところに特徴を有する。本発明におけるポリスルホン系樹脂とは、スルホン結合を有する樹脂の総称であり特に限定されないが、例を挙げると
で示される繰り返し単位をもつポリスルホン樹脂やポリエーテルスルホン樹脂がポリスルホン系樹脂として広く市販されており、入手も容易なため好ましい。
Hereinafter, the present invention will be described in detail.
The hollow fiber membrane used in the present invention is characterized by being composed of a polysulfone resin containing polyvinylpyrrolidone. The polysulfone resin in the present invention is a general term for resins having a sulfone bond and is not particularly limited.
A polysulfone resin or a polyethersulfone resin having a repeating unit represented by is widely available as a polysulfone resin and is preferable because it is easily available.

本発明に用いられる親水性高分子としては、ポリスルホン系樹脂とミクロな相分離構造を形成するものが好ましく用いられる。ポリエチレングリコール、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン等を挙げる事ができるが、安全性や経済性の面よりポリビニルピロリドンを用いるのが好ましい実施態様である。該ポリビニルピロリドンは、N−ビニルピロリドンをビニル重合させた水溶性の高分子化合物であり、BASF社より「コリドン」、ISP社より「プラスドン」、第一工業製薬社より「ピッツコール」の商品名で市販されており、それぞれ各種の分子量の製品がある。一般には、親水性の付与効率では低分子量のものが、一方、溶出量を低くする点では高分子量のものを用いるのが好適であるが、最終製品の中空糸膜の要求特性に合わせて適宜選択される。単一の分子量のものを用いても良いし、分子量の異なる製品を2種以上混合して用いても良い。また、市販の製品を精製し、例えば分子量分布をシャープにしたものを用いても良い。   As the hydrophilic polymer used in the present invention, those that form a micro phase separation structure with a polysulfone resin are preferably used. Polyethylene glycol, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone and the like can be mentioned, but it is a preferred embodiment that polyvinyl pyrrolidone is used from the viewpoint of safety and economy. The polyvinyl pyrrolidone is a water-soluble polymer compound obtained by vinyl polymerization of N-vinyl pyrrolidone. The product names are “Collidon” from BASF, “Prasdon” from ISP, and “Pittscall” from Daiichi Kogyo Seiyaku. There are products of various molecular weights. In general, it is preferable to use a low molecular weight in terms of hydrophilicity imparting efficiency, while it is preferable to use a high molecular weight in terms of reducing the amount of elution, but depending on the required characteristics of the final hollow fiber membrane, Selected. Those having a single molecular weight may be used, or two or more products having different molecular weights may be mixed and used. Moreover, you may use what refine | purified a commercial product and sharpened molecular weight distribution, for example.

本発明の選択透過中空糸膜の製造方法は何ら限定されるものではないが、例えば特開2000−300663号公報で知られるような方法で製造できる中空糸膜タイプのものが好ましい。例えば、該特許文献に開示されているポリエーテルスルホン(4800P、住友化学社製)16質量部とポリビニルピロリドン(K−90、BASF社製)5質量部、ジメチルアセトアミド74質量部、水5質量部を混合溶解し、脱泡したものを製膜溶液として、50%ジメチルアセトアミド水溶液を芯液として使用し、これを2重管オリフィスの外側、内側より同時に吐出し、50cmの空走部を経て、75℃、水からなる凝固浴中に導き中空糸膜を形成し、水洗後まきとり、60℃で乾燥する方法が例示できる。   The method for producing the permselective hollow fiber membrane of the present invention is not limited in any way, but a hollow fiber membrane type that can be produced by a method as disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-300663 is preferable. For example, 16 parts by mass of polyethersulfone (4800P, manufactured by Sumitomo Chemical Co., Ltd.) and 5 parts by mass of polyvinyl pyrrolidone (K-90, manufactured by BASF) disclosed in the patent document, 74 parts by mass of dimethylacetamide, 5 parts by mass of water Was dissolved and defoamed as a film-forming solution, and a 50% dimethylacetamide aqueous solution was used as a core solution, and this was simultaneously discharged from the outside and inside of the double-tube orifice, An example is a method in which a hollow fiber membrane is formed in a coagulation bath made of water at 75 ° C., and is washed after washing with water and dried at 60 ° C.

本発明におけるポリスルホン系高分子に対するポリビニルピロリドンの膜中の構成割合は、中空糸膜に十分な親水性や、高い含水率を付与できる範囲であれば良く、ポリスルホン系高分子が99〜80質量%、ポリビニルピロリドンが1〜20質量%である事が好ましい。ポリスルホン系高分子に対してポリビニルピロリドンの割合が少なすぎる場合、膜の親水性付与効果が不足する可能性があるため、該割合は、1.5質量%以上がより好ましく、2.0質量%以上がさらに好ましく、2.5質量%以上がよりさらに好ましい。一方、該割合が多すぎると、親水性付与効果が飽和し、かつポリビニルピロリドンおよび/または酸化劣化物の膜からの溶出量が増大し、後述するポリビニルピロリドンの膜からの溶出量が10ppmを超える場合がある。したがって、より好ましくは18質量%以下、さらに好ましくは15質量%以下、よりさらに好ましくは13質量%以下、特に好ましくは10質量%以下である。   The composition ratio of the polyvinyl pyrrolidone in the membrane with respect to the polysulfone polymer in the present invention is not limited as long as it is in a range that can provide sufficient hydrophilicity and high water content to the hollow fiber membrane, and the polysulfone polymer is 99 to 80% by mass. The polyvinyl pyrrolidone content is preferably 1 to 20% by mass. When the proportion of polyvinyl pyrrolidone relative to the polysulfone-based polymer is too small, the effect of imparting hydrophilicity to the membrane may be insufficient. Therefore, the proportion is more preferably 1.5% by mass or more, and 2.0% by mass. The above is more preferable, and 2.5% by mass or more is more preferable. On the other hand, when the ratio is too large, the hydrophilicity-imparting effect is saturated, and the amount of polyvinylpyrrolidone and / or oxidatively deteriorated material eluted from the membrane increases, and the amount of polyvinylpyrrolidone eluted from the membrane described later exceeds 10 ppm. There is a case. Therefore, it is more preferably 18% by mass or less, further preferably 15% by mass or less, still more preferably 13% by mass or less, and particularly preferably 10% by mass or less.

本発明で得られる中空糸膜は、過酸化水素の溶出量が5ppm以下であることが好ましい。4ppm以下がより好ましく、3ppm以下がさらに好ましい。該過酸化水素の溶出量が5ppmを超えた場合は、前記したように該過酸化水素によるポリビニルピロリドンの酸化劣化のために保存安定性が悪化し、例えば、長期保存した場合にポリビニルピロリドンの溶出量が増大することがある。保存安定性としては、該ポリビニルピロリドンの溶出量の増加が最も顕著な現象であるが、その他、ポリスルホン系高分子の劣化が引き起こされて中空糸膜が脆くなるとか、モジュール組み立てに用いるポリウレタン系接着剤の劣化を促進しウレタンオリゴマー等の劣化物の溶出量が増加し、安全性の低下に繋がる可能性がある。長期保存における過酸化水素の酸化作用により引き起こされる劣化起因の溶出物量の増加は透析型人工腎臓装置製造承認基準により設定されているUV(220−350nm)吸光度の測定により評価できる。   The hollow fiber membrane obtained in the present invention preferably has an elution amount of hydrogen peroxide of 5 ppm or less. 4 ppm or less is more preferable, and 3 ppm or less is more preferable. When the elution amount of the hydrogen peroxide exceeds 5 ppm, as described above, the storage stability deteriorates due to the oxidative degradation of the polyvinyl pyrrolidone by the hydrogen peroxide. For example, the elution of the polyvinyl pyrrolidone when stored for a long period of time. The amount may increase. In terms of storage stability, the increase in the amount of polyvinylpyrrolidone eluted is the most prominent phenomenon. In addition, deterioration of the polysulfone-based polymer causes the hollow fiber membrane to become brittle, or polyurethane-based adhesive used for module assembly. This may accelerate the deterioration of the agent and increase the elution amount of deteriorated products such as urethane oligomers, possibly leading to a decrease in safety. The increase in the amount of eluate caused by deterioration caused by the oxidizing action of hydrogen peroxide during long-term storage can be evaluated by measuring UV (220-350 nm) absorbance set by the dialysis-type artificial kidney device manufacturing approval standard.

過酸化水素の溶出量も透析型人工腎臓装置製造承認基準の溶出試験法に準じた方法で抽出された抽出液を用いて定量したものである。すなわち、乾燥状態の中空糸膜から任意に中空糸膜を取り出し1.0gをはかりとる。これに100mlのRO水を加え、70℃で1時間抽出を行うことにより得られた抽出液について定量したものである。   The elution amount of hydrogen peroxide was also quantified using an extract extracted by a method according to the dissolution test method of the dialysis artificial kidney device manufacturing approval standard. That is, the hollow fiber membrane is arbitrarily taken out from the dry hollow fiber membrane, and 1.0 g is weighed. The extract obtained by adding 100 ml of RO water and extracting at 70 ° C. for 1 hour was quantified.

先述したように、過酸化水素は中空糸膜の特定部位に存在しても、その個所より中空糸膜素材の劣化反応が開始され中空糸膜の全体に伝播していくため、モジュールと用いられる中空糸膜の長さ方向の存在量が全領域に渡り、一定量以下を確保する必要がある。すなわち、特定部位の過酸化水素により開始されたポリビニルピロリドンの酸化劣化が連鎖的に中空糸膜の全体に広がって行き、劣化により過酸化水素量がさらに増大すると共に、劣化したポリビニルピロリドンは分子量が低下するために、中空糸膜より溶出し易くなる。この劣化反応は連鎖的に進行する。従って、該中空糸膜は長期保存すると、過酸化水素やポリビニルピロリドンの溶出量が増大し血液浄化器用として使用する場合の安全性の低下に繋がることがある。従って、本発明においては、中空糸膜の長手方向に10個に分割し、各々について測定した時の過酸化水素の溶出量が全ての部位で5ppm以下であることが好ましい実施態様である。3ppm以下がより好ましく、2ppm以下がさらに好ましい。   As described above, even when hydrogen peroxide is present in a specific part of the hollow fiber membrane, the deterioration reaction of the hollow fiber membrane material starts from that point and propagates to the entire hollow fiber membrane, so it is used as a module. The abundance in the length direction of the hollow fiber membrane needs to be secured below a certain amount over the entire region. That is, the oxidative degradation of polyvinyl pyrrolidone initiated by hydrogen peroxide at a specific site spreads throughout the hollow fiber membrane, and the amount of hydrogen peroxide further increases due to the degradation. The degraded polyvinyl pyrrolidone has a molecular weight. Since it falls, it becomes easy to elute from a hollow fiber membrane. This deterioration reaction proceeds in a chain. Accordingly, when the hollow fiber membrane is stored for a long period of time, the elution amount of hydrogen peroxide and polyvinylpyrrolidone increases, which may lead to a decrease in safety when used for a blood purifier. Therefore, in the present invention, it is a preferred embodiment that the hydrogen peroxide elution amount is 5 ppm or less at all sites when it is divided into 10 pieces in the longitudinal direction of the hollow fiber membrane and measured for each. 3 ppm or less is more preferable, and 2 ppm or less is more preferable.

また、本発明の方法により得られたポリスルホン系中空糸膜は、該中空糸膜を用いて製造した血液浄化器を滅菌処理後、室温で1年間保存した後にモジュール中の中空糸膜を長手方向に10個に分割し透析型人工腎臓装置製造承認基準により定められた試験を実施した時の中空糸膜の抽出液におけるUV(220〜350nm)吸光度を各々について測定した時の最大値が0.10以下であることが好ましい。0.08以下であることがより好ましい。モジュールに液が充填されたモジュールの場合は、まず充填液を抜き、つぎに透析液側流路に純水を500mL/minで5分間流した後、血液側流路に同じように純水を200mL/minで5分間流す。最後に血液側から透析液側に膜を透過するように200mL/minの純水を通液し洗浄処理を終了する。得られたモジュールより中空糸膜を取り出し、フリーズドライしたものを測定用サンプルとする。乾燥中空糸膜モジュールの場合も、同様の洗浄処理を行い測定用サンプルとする。   In addition, the polysulfone-based hollow fiber membrane obtained by the method of the present invention is obtained by sterilizing a blood purifier produced using the hollow fiber membrane and storing the hollow fiber membrane in the module in the longitudinal direction after storage at room temperature for 1 year. When the UV (220 to 350 nm) absorbance in the extract of the hollow fiber membrane when the test determined according to the dialysis-type artificial kidney device manufacturing approval criteria was performed, the maximum value when each was measured was 0.00. It is preferable that it is 10 or less. More preferably, it is 0.08 or less. In the case of a module in which a liquid is filled in the module, the filling liquid is first withdrawn, and then pure water is allowed to flow at 500 mL / min for 5 minutes in the dialysate side flow path, and then pure water is similarly applied to the blood side flow path. Flow for 5 minutes at 200 mL / min. Finally, 200 mL / min of pure water is passed through the membrane from the blood side to the dialysate side to finish the washing process. A hollow fiber membrane is taken out from the obtained module and freeze-dried to obtain a measurement sample. In the case of a dry hollow fiber membrane module, the same washing treatment is performed to obtain a measurement sample.

本発明においては、中空糸膜からのポリビニルピロリドンの溶出量は10ppm以下であるのが好ましい。該溶出量が10ppmを超えた場合は、この溶出するポリビニルピロリドンによる長期透析時の副作用や合併症が起こることがある。該特性を満足させる方法は限定無く任意であるが、例えば、ポリスルホン系高分子に対するポリビニルピロリドンの構成割合を上記した範囲にしたり、中空糸膜の製膜条件を最適化する等により達成できる。より好ましいポリビニルピロリドンの溶出量は9ppm以下、さらに好ましくは8ppm以下、よりさらに好ましくは7ppm以下である。また、生体に対する安全性の点より、ポリビニルピロリドンの溶出量はゼロであることが好ましいが、ポリビニルピロリドンの溶出量をゼロにすると血液接触面の親水性の度合いが低下し、血液適合性が低くなる可能性があるので、親水性高分子の溶出量は0.1ppm程度の溶出は許容範囲と思われる。   In the present invention, the amount of polyvinylpyrrolidone eluted from the hollow fiber membrane is preferably 10 ppm or less. When the elution amount exceeds 10 ppm, side effects and complications during long-term dialysis due to the eluted polyvinylpyrrolidone may occur. A method for satisfying the characteristics is optional without limitation, and can be achieved, for example, by setting the composition ratio of polyvinyl pyrrolidone to the polysulfone-based polymer within the above range or optimizing the film forming conditions of the hollow fiber membrane. More preferably, the elution amount of polyvinylpyrrolidone is 9 ppm or less, more preferably 8 ppm or less, and still more preferably 7 ppm or less. In addition, from the viewpoint of safety to living organisms, it is preferable that the amount of polyvinylpyrrolidone eluted is zero, but if the amount of polyvinylpyrrolidone eluted is zero, the degree of hydrophilicity of the blood contact surface decreases and blood compatibility is low. Therefore, it is considered that the elution amount of the hydrophilic polymer is about 0.1 ppm.

前述のごとく、中空糸膜からのポリビニルピロリドンの溶出量を抑制する方策としてポリビニルピロリドンを架橋する方法が知られているが、架橋処理は血液適合性や蛋白質分離の選択性性能等の特性が悪化する傾向があるので、本発明においては、架橋処理は排除するのが好ましい。従って、該架橋処理を排除した方法においては、溶出量を抑制するための技術強化が必要となる。   As described above, a method of crosslinking polyvinylpyrrolidone is known as a measure for suppressing the elution amount of polyvinylpyrrolidone from the hollow fiber membrane, but the crosslinking treatment deteriorates characteristics such as blood compatibility and protein separation selectivity. In the present invention, it is preferable to eliminate the crosslinking treatment. Therefore, in the method that excludes the crosslinking treatment, it is necessary to enhance the technique for suppressing the amount of elution.

本発明は、上記特性を満足するポリスルホン系中空糸膜を経済的に、かつ安定して製造できる製造方法の確立を目指し鋭意検討して本発明を完成した。即ち、本発明は、中空糸膜の品質、性能および取り扱い等に支障となる過酸化水素の発生を、例えば10ppm以下というように極力抑えた中空糸膜の製造方法について、本発明者等は多観点からその課題を解決する手法を追求した結果、紡糸溶液の取り扱い条件が関与していること、即ち紡糸溶液調整工程に配慮したポリスルホン系中空糸膜の製造方法がその課題を解決することにおいて著しく有益であることを知見したものである。   The present invention has been completed through intensive studies aimed at establishing a production method capable of economically and stably producing a polysulfone-based hollow fiber membrane satisfying the above characteristics. That is, the present inventor has disclosed a method for producing a hollow fiber membrane in which the generation of hydrogen peroxide which hinders the quality, performance, handling, etc. of the hollow fiber membrane is suppressed to, for example, 10 ppm or less as much as possible. As a result of pursuing a method for solving the problem from the viewpoint, the handling conditions of the spinning solution are involved, that is, the production method of the polysulfone-based hollow fiber membrane in consideration of the spinning solution adjustment process is remarkably effective in solving the problem. It has been found that it is beneficial.

本発明においては、上記本質的にポリビニルピロリドンおよびポリスルホン系高分子からなる中空糸膜の製造方法において、ポリビニルピロリドン、ポリスルホン系高分子およびそれらの共通溶媒からなる少なくとも3成分を不活性ガス雰囲気下、70℃以下で溶解して紡糸溶液を調製し、得られた紡糸溶液を紡糸工程に供給するまでの間70℃以下に維持するという条件が上記品質の良い中空糸膜を得るために好ましい。溶解工程および溶解してから紡糸工程に至るまでの温度は、65℃以下がより好ましく、60℃以下がさらに好ましい。後述の溶解時間やランニングコストを考慮すると溶解温度は5℃以上が好ましく、10℃以上がより好ましい。   In the present invention, in the method for producing a hollow fiber membrane consisting essentially of polyvinylpyrrolidone and a polysulfone-based polymer, at least three components comprising polyvinylpyrrolidone, a polysulfone-based polymer and a common solvent thereof under an inert gas atmosphere, The condition of preparing a spinning solution by dissolving at 70 ° C. or lower and maintaining the obtained spinning solution at 70 ° C. or lower until the spinning solution is supplied to the spinning process is preferable in order to obtain a hollow fiber membrane of good quality. The temperature from the melting step to the spinning step after the melting step is more preferably 65 ° C. or lower, and further preferably 60 ° C. or lower. In view of the dissolution time and running cost described later, the dissolution temperature is preferably 5 ° C. or higher, more preferably 10 ° C. or higher.

この紡糸溶液の調製温度が、製造された中空糸膜の製品にいかなる影響を与えるかという挙動を解析してみると、図1に示すように温度を高めると過酸化水素の発生を促進するという傾向になる。ポリビニルピロリドンおよびポリスルホン系高分子材料を、共通溶媒に溶解する場合に、時間、撹拌条件なども影響するが、温度条件だけでみるなら、溶解温度を、例えば30℃より50℃にする方が溶解速度が速くなることが考えられる。さらに溶解温度が80℃の場合には、溶解速度がさらに速まる傾向にあることが容易に想定できる。しかしながら、高温、撹拌というような過酷な条件で、ポリビニルピロリドンを溶解するということは、ポリビニルピロリドンの損傷や劣化を促進する原因になることは否定できない。しかも、高温における溶媒の揮発や高温度環境における作業条件にも著しく支障を与える。   When the behavior of how the spinning solution preparation temperature affects the manufactured hollow fiber membrane product is analyzed, as shown in FIG. 1, when the temperature is increased, the generation of hydrogen peroxide is promoted. Become a trend. When polyvinyl pyrrolidone and polysulfone-based polymer materials are dissolved in a common solvent, the time and stirring conditions are also affected, but if only the temperature conditions are considered, the dissolution temperature is, for example, 30 ° C rather than 30 ° C. It is possible that the speed will increase. Furthermore, when the dissolution temperature is 80 ° C., it can be easily assumed that the dissolution rate tends to increase further. However, it cannot be denied that dissolving polyvinyl pyrrolidone under severe conditions such as high temperature and stirring causes the damage and deterioration of polyvinyl pyrrolidone to be accelerated. In addition, the solvent volatility at high temperatures and the working conditions in a high temperature environment are significantly hindered.

一方で、溶解温度を例えば30℃のように低く抑えるということは、例えば80℃に比べると、ポリビニルピロリドンの溶解にかかる時間を多く要することになる。高温の環境下にポリビニルピロリドンを長時間曝すということは、ポリビニルピロリドンの劣化や損傷を高めることになるため、適正な溶解条件が自ずと設定されることになる。このような傾向を調べたのが図1である。図1は、比較的低い温度で紡糸溶液を調製すれば、一定時間後(例えば2時間後)における過酸化水素の発生が少ないという傾向がわかる。例えば、紡糸溶液の調製時間を2時間と設定してその挙動をみれば、80℃より低い30℃において調製した紡糸溶液が過酸化水素発生という面から見れば有利である。しかし、30℃においては溶解速度が遅いために、結局溶解時間を長時間要することになり、結局過酸化水素の発生環境に置くことになり、両者には矛盾した相互関係が成り立つ。本発明者等は、これらの技術観点から紡糸溶液の調製に関する技術条件を追求した結果、最適要件を知見した。すなわち、ポリビニルピロリドンを含む紡糸溶液の調製における溶解温度は、過酸化水素発生に関して70℃以下なら許容できるという事実を究明したものである。一方で、安定な紡糸溶液の調製は、不活性ガス雰囲気下で実施するとブレがなく、安定な中空糸膜製品を品質管理上安定に信頼がおける状態で調製できるという事実も知見したものである。不活性ガス雰囲気下で実施するということは、単純には、大気中に存在する酸素の直接の影響を遮断して過酸化水素の発生を抑制するというメカニズムもあり得るだろうが、ポリビニルピロリドンの劣化による発生を抑制するという付随効果も考えられるので、その詳細なメカニズムは現段階ではその全体を把握することが技術的に難しい。   On the other hand, keeping the dissolution temperature as low as 30 ° C., for example, requires much time for dissolving polyvinylpyrrolidone as compared with 80 ° C., for example. Exposing polyvinyl pyrrolidone for a long time in a high temperature environment increases deterioration and damage of polyvinyl pyrrolidone, so that appropriate dissolution conditions are naturally set. FIG. 1 shows such a tendency. FIG. 1 shows that if the spinning solution is prepared at a relatively low temperature, the generation of hydrogen peroxide after a certain time (for example, 2 hours) is less likely to occur. For example, if the preparation time of the spinning solution is set to 2 hours and the behavior is observed, the spinning solution prepared at 30 ° C. lower than 80 ° C. is advantageous from the viewpoint of hydrogen peroxide generation. However, since the dissolution rate is slow at 30 ° C., it takes a long time to dissolve and eventually puts it in an environment where hydrogen peroxide is generated, resulting in a contradictory relationship. As a result of pursuing technical conditions relating to the preparation of the spinning solution from these technical viewpoints, the present inventors have found the optimum requirements. That is, the fact that the dissolution temperature in the preparation of the spinning solution containing polyvinylpyrrolidone is acceptable is 70 ° C. or less with respect to the generation of hydrogen peroxide is investigated. On the other hand, the preparation of a stable spinning solution has also been found out that there is no blur when carried out in an inert gas atmosphere, and that a stable hollow fiber membrane product can be prepared in a reliable and reliable state for quality control. . In an inert gas atmosphere, simply having a mechanism of blocking the direct influence of oxygen present in the atmosphere and suppressing the generation of hydrogen peroxide may be possible. Since the accompanying effect of suppressing the occurrence due to deterioration is also conceivable, it is technically difficult to grasp the details of the detailed mechanism at this stage.

そうすると、紡糸溶液を70℃以下程度に設定すると、許容できる溶解時間には自ずと制約がある。同様に上記劣化は溶解時間やその後の貯留時間の影響を受ける。従って、本発明の70℃以下という紡糸溶液の調製温度においては、溶解時間は10時間以内に終了することが好ましい。8時間以内がより好ましく、6時間以内がさらに好ましい。また、溶解後の濾過工程等を含めた紡糸に使用するまでの紡糸溶液の貯留時間は最大3日間(72時間)とするのが好ましい。2日以内がより好ましく、1日以内がさらに好ましい。該時間が長くなると劣化が増大する傾向があるので好ましくない。この貯留時間は、貯留温度にも多少の影響を受けることになるが、該貯留時間は溶解終了後に溶解槽において貯留される場合の時間をも含む。貯留時間が短い程、ポリビニルピロリドンの酸化劣化が抑制される。このような温度全般の観点からその挙動を解析したのが、本発明者らの知見に基づくものであり、ポリビニルピロリドンを取り扱う当該技術分野における、温度に着眼した特有の調製仕様でもあり、この観点からの技術的な配慮は中空糸膜の品質向上に著しく貢献することができたものである。   Then, when the spinning solution is set to about 70 ° C. or lower, the allowable dissolution time is naturally limited. Similarly, the deterioration is affected by the dissolution time and subsequent storage time. Therefore, at the spinning solution preparation temperature of 70 ° C. or less of the present invention, the dissolution time is preferably completed within 10 hours. Within 8 hours is more preferred, and within 6 hours is even more preferred. In addition, the storage time of the spinning solution until it is used for spinning including the filtration step after dissolution is preferably 3 days (72 hours) at maximum. Within 2 days is more preferred, and within 1 day is even more preferred. Longer time is not preferable because deterioration tends to increase. The storage time is somewhat affected by the storage temperature, but the storage time includes the time when the storage time is stored in the dissolution tank after the completion of dissolution. The shorter the storage time, the more oxidative degradation of polyvinylpyrrolidone is suppressed. The analysis of the behavior from the viewpoint of the overall temperature is based on the knowledge of the present inventors, and is also a specific preparation specification focusing on the temperature in the technical field dealing with polyvinylpyrrolidone. The technical considerations from No. 1 contributed significantly to improving the quality of hollow fiber membranes.

溶解時およびその後の貯留等の工程の維持温度が70℃を超えた場合は、図1に見るとおり、ポリビニルピロリドンの劣化、特に酸化劣化が増大しポリビニルピロリドンの分子量低下や過酸化水素の生成が増大する。発明者らの検討によれば、ポリビニルピロリドンの分子量は溶解温度の上昇に従い、分子量のピークトップが分解方向に移動(低分子側にシフト)したり、または低分子側に分解物と思われるショルダーが現れる現象が認められた。ポリビニルピロリドンの分子量低下は、選択透過中空糸膜中にポリビニルピロリドンの分解物をブレンドしてしまうことから、該紡糸溶液を用いて製造した中空糸膜からの溶出量増加に繋がり、ポリビニルピロリドンの溶出量の増大や透析型人工腎臓装置製造承認基準により定められた試験を実施した時の中空糸膜の抽出液におけるUV(220〜350nm)吸光度が悪化するので好ましくない。紡糸溶液調製温度(℃)とPVP溶出量(ppm)との関係を、実施例、比較例を参考に示したのが図2である。同様に紡糸溶液調製温度(℃)とUV吸光度との関係を、実施例、比較例を参考に示したのが図3である。これらの図1〜3の傾向を分析すれば、紡糸溶液調製温度が70℃以下ということが、中空糸膜の高品質を保つという点で非常に重要であり、臨界的な技術的意味を有することを鮮明に表している。さらに、過酸化水素の生成が増大する弊害を詳述すれば、前述のごとく該紡糸溶液を用いて製造した中空糸膜の長期安定性が悪化するので好ましくない。従って、例えば、得られた中空糸膜を血液浄化に使用する場合、血液中に分解物が溶出するなど、製品の品質安全上、優れたものとはならなかった。   When the maintenance temperature of the process such as storage after the dissolution exceeds 70 ° C., as shown in FIG. 1, the degradation of polyvinyl pyrrolidone, particularly the oxidative degradation, increases the molecular weight of polyvinyl pyrrolidone and the generation of hydrogen peroxide. Increase. According to the study by the inventors, the molecular weight of polyvinylpyrrolidone moves in the direction of decomposition (shifts to the low molecular side) as the dissolution temperature increases, or the shoulder that seems to be a decomposed product on the low molecular side. The phenomenon that appears was observed. Decreasing the molecular weight of polyvinylpyrrolidone blends the degradation product of polyvinylpyrrolidone into the permselective hollow fiber membrane, leading to an increase in the amount of elution from the hollow fiber membrane produced using the spinning solution, and elution of polyvinylpyrrolidone. The UV (220-350 nm) absorbance in the extract of the hollow fiber membrane is deteriorated when the amount is increased or the test defined by the dialysis-type artificial kidney device manufacturing approval standard is carried out. FIG. 2 shows the relationship between the spinning solution preparation temperature (° C.) and the PVP elution amount (ppm) with reference to Examples and Comparative Examples. Similarly, FIG. 3 shows the relationship between the spinning solution preparation temperature (° C.) and the UV absorbance with reference to Examples and Comparative Examples. If the tendency of these FIGS. 1-3 is analyzed, it is very important that the spinning solution preparation temperature is 70 degrees C or less in terms of maintaining the high quality of the hollow fiber membrane, and has a critical technical meaning. This is clearly expressed. Furthermore, if the adverse effect of increasing the production of hydrogen peroxide is described in detail, the long-term stability of the hollow fiber membrane produced using the spinning solution is deteriorated as described above, which is not preferable. Therefore, for example, when the obtained hollow fiber membrane is used for blood purification, a degradation product is eluted in the blood, and it has not been excellent in terms of product quality safety.

溶解時およびその後の貯留等の工程の維持温度が70℃を超えた場合は、ポリビニルピロリドンの劣化、特に酸化劣化が増大しポリビニルピロリドンの分子量低下や過酸化水素の生成が増大する。発明者らの検討によれば、ポリビニルピロリドンの分子量は溶解温度の上昇に従い、分子量のピークトップが分解方向に移動(低分子側にシフト)したり、または低分子側に分解物と思われるショルダーが現れる現象が認められた。ポリビニルピロリドンの分子量低下は、選択透過中空糸膜中にポリビニルピロリドンの分解物をブレンドしてしまうことから、該紡糸溶液を用いて製造した中空糸膜からの溶出量増加に繋がり、ポリビニルピロリドンの溶出量の増大や透析型人工腎臓装置製造承認基準により定められた試験を実施した時の中空糸膜の抽出液におけるUV(220〜350nm)吸光度が悪化するので好ましくない。一方、過酸化水素の生成が増大すると、前述のごとく該紡糸溶液を用いて製造した中空糸膜の長期安定性が悪化するので好ましくない。従って、例えば、得られた中空糸膜を血液浄化に使用する場合、血液中に分解物が溶出するなど、製品の品質安全上、優れたものとはならなかった。   When the maintenance temperature of the process such as storage and the subsequent storage exceeds 70 ° C., the degradation of polyvinyl pyrrolidone, particularly the oxidative degradation increases, and the molecular weight of polyvinyl pyrrolidone decreases and the generation of hydrogen peroxide increases. According to the study by the inventors, the molecular weight of polyvinylpyrrolidone moves in the direction of decomposition (shifts to the low molecular side) as the dissolution temperature increases, or the shoulder that seems to be a decomposed product on the low molecular side. The phenomenon that appears was observed. Decreasing the molecular weight of polyvinylpyrrolidone blends the degradation product of polyvinylpyrrolidone into the permselective hollow fiber membrane, leading to an increase in the amount of elution from the hollow fiber membrane produced using the spinning solution, and elution of polyvinylpyrrolidone. The UV (220-350 nm) absorbance in the extract of the hollow fiber membrane is deteriorated when the amount is increased or the test defined by the dialysis-type artificial kidney device manufacturing approval standard is carried out. On the other hand, when the production of hydrogen peroxide is increased, the long-term stability of the hollow fiber membrane produced using the spinning solution as described above is not preferable. Therefore, for example, when the obtained hollow fiber membrane is used for blood purification, a degradation product is eluted in the blood, and it has not been excellent in terms of product quality safety.

溶解方法は上記要件を満たせば制限を受けないが、例えば、攪拌式の溶解装置による溶解方法が適用できる。本願発明に用いるような低粘性製膜溶液の溶解に用いられる撹拌翼形状としては、ディスクタービン型、パドル型、湾曲羽根ファンタービン型、矢羽根タービン型などの放射流型翼、プロペラ型、傾斜パドル型、ファウドラー型などの軸流型翼が挙げられるが、これらに限定されるものではない。低温・短時間(3時間以内)で溶解するためには、フルード数(Fr=nd/g)が0.7以上1.3以下、攪拌レイノルズ数(Re=ndρ/μ)が50以上250以下であることが好ましい。ここでnは翼の回転数(rps)、ρは密度(Kg/m)、μは粘度(Pa・s)、gは重力加速度(=9.8m/s)、dは撹拌翼径(m)である。フルード数が大きすぎると、慣性力が強くなるためタンク内で飛散した原料が壁や天井に付着し、所期の製膜溶液組成が得られないことがある。したがって、フルード数は1.25以下がより好ましく、1.2以下がさらに好ましく、1.15以下がよりさらに好ましい。また、フルード数が小さすぎると、慣性力が弱まるために原料の分散性が低下し、特にポリビニルピロリドンがダマ状になり、それ以上溶解することが困難となったり、均一溶解に長時間を要することがある。したがって、フルード数は0.75以上がより好ましく、0.8以上がさらに好ましい。 The dissolution method is not limited as long as the above requirements are satisfied. For example, a dissolution method using a stirring type dissolution apparatus can be applied. As the shape of the stirring blade used for dissolving the low-viscosity film forming solution used in the present invention, a radial flow type blade such as a disk turbine type, paddle type, curved blade fan turbine type, arrow blade turbine type, propeller type, inclined type, etc. Examples include, but are not limited to, an axial flow type blade such as a paddle type and a fiddler type. In order to dissolve at a low temperature for a short time (within 3 hours), the Froude number (Fr = n 2 d / g) is 0.7 or more and 1.3 or less, and the stirring Reynolds number (Re = nd 2 ρ / μ) is It is preferable that they are 50 or more and 250 or less. Here, n is the blade rotation speed (rps), ρ is the density (Kg / m 3 ), μ is the viscosity (Pa · s), g is the gravitational acceleration (= 9.8 m / s 2 ), and d is the stirring blade diameter. (M). If the Froude number is too large, the inertial force becomes strong, so that the raw material scattered in the tank adheres to the walls and ceiling, and the desired film-forming solution composition may not be obtained. Therefore, the fluid number is more preferably 1.25 or less, further preferably 1.2 or less, and further preferably 1.15 or less. On the other hand, if the fluid number is too small, the inertial force is weakened, so that the dispersibility of the raw material is lowered. Sometimes. Therefore, the fluid number is more preferably 0.75 or more, and further preferably 0.8 or more.

本願発明における製膜溶液は所謂低粘性流体であるため、撹拌レイノルズ数が大きすぎると、撹拌時、製膜溶液中への気泡のかみこみによる脱泡時間の長時間化や脱泡不足が起こるなどの問題が生ずることがある。そのため、撹拌レイノルズ数はより好ましくは240以下、さらに好ましくは230以下、よりさらに好ましくは220以下である。また、撹拌レイノルズ数が小さすぎると、撹拌力が小さくなるため溶解の不均一化が起こりやすくなることがある。したがって、撹拌レイノルズ数は、55以上がより好ましく、60以上がさらに好ましく、65以上がよりさらに好ましく、70以上が特に好ましい。さらに、このような紡糸溶液で中空糸膜を製膜すると気泡による曳糸性の低下による操業性の低下や品質面でも中空糸膜への気泡の噛み込みによりその部位が欠陥となり、膜の機密性やバースト圧の低下などを引き起こして問題となることがわかった。紡糸溶液の脱泡は効果的な対処策だが、紡糸溶液の粘度コントロールや溶剤の蒸発による紡糸溶液の組成変化を伴うこともありうるので、行う場合には慎重な対応が必要となる。   Since the film-forming solution in the present invention is a so-called low-viscosity fluid, if the stirring Reynolds number is too large, a long defoaming time or insufficient defoaming occurs due to entrapment of bubbles in the film-forming solution during stirring. Problems may occur. Therefore, the stirring Reynolds number is more preferably 240 or less, further preferably 230 or less, and still more preferably 220 or less. On the other hand, when the stirring Reynolds number is too small, the stirring force becomes small, so that dissolution may be easily made nonuniform. Therefore, the stirring Reynolds number is more preferably 55 or more, further preferably 60 or more, still more preferably 65 or more, and particularly preferably 70 or more. Further, when a hollow fiber membrane is formed with such a spinning solution, the operation is deteriorated due to a decrease in spinnability due to bubbles, and in terms of quality, the portion becomes defective due to the entrapment of bubbles in the hollow fiber membrane, and the membrane is not confidential. It has been found that this causes problems such as decreased sex and burst pressure. Defoaming of the spinning solution is an effective countermeasure, but it may involve a change in the composition of the spinning solution due to viscosity control of the spinning solution or evaporation of the solvent.

上記溶解は、不活性ガス雰囲気下で実施するのが好ましい。不活性気体としては、窒素、アルゴンなどが上げられるが、窒素を用いるのが好ましい。例えば、溶解タンク内の残存酸素濃度は1%以下であることが好ましい。窒素封入圧力を高めてやれば溶解時間短縮が望めるが、高圧にするには設備費用が嵩む点と、作業安全性の面から大気圧以上2kgf/cm以下が好ましい。該不活性ガス雰囲気下で実施することにより、溶解時におけるポリビニルピロリドンが酸素ガスと接触することが抑制されるので、上記した溶解温度の低下や溶解時間の短縮による効果と相乗し、ポリビニルピロリドンの酸化劣化が抑制され、前記した効果がより大きくなる。 The dissolution is preferably carried out in an inert gas atmosphere. Nitrogen, argon, etc. are raised as the inert gas, but nitrogen is preferably used. For example, the residual oxygen concentration in the dissolution tank is preferably 1% or less. If the nitrogen filling pressure is increased, the melting time can be shortened. However, in order to increase the pressure, the equipment cost is increased, and from the viewpoint of work safety, atmospheric pressure and 2 kgf / cm 2 or less are preferable. By carrying out under the inert gas atmosphere, the polyvinyl pyrrolidone at the time of dissolution is suppressed from coming into contact with oxygen gas, and thus synergistically with the effects of lowering the dissolution temperature and shortening the dissolution time, Oxidation deterioration is suppressed, and the above-described effect is further increased.

上記溶解時のポリスルホン系高分子やポリビニルピロリドンの溶解槽への供給方法も限定されないが、それぞれ2回以上に分割し、かつ両者を交互に供給して溶解するのが好ましい。ポリビニルピロリドンは低温溶解をしようとするとポリビニルピロリドンがダマ状になり、それ以上溶解することが困難となったり、均一溶解に長時間を要するという課題を有するが、上記実施態様によりこの課題が回避でき、低温、短時間の溶解が可能となる。   The method for supplying the polysulfone-based polymer or polyvinylpyrrolidone to the dissolution tank at the time of dissolution is also not limited, but it is preferable to divide each into two or more times and alternately supply both to dissolve. When polyvinyl pyrrolidone is dissolved at low temperature, polyvinyl pyrrolidone becomes lumpy and has a problem that it becomes difficult to dissolve further or it takes a long time for uniform dissolution. However, this embodiment can avoid this problem. , Low temperature and short time melting is possible.

また、溶解に先立ち紡糸溶液を構成する成分を混練した後に溶解させることも、低温、短時間溶解を達成するための好ましい方法であり推奨される。該混練はポリスルホン系高分子、ポリビニルピロリドンおよび溶媒等の構成成分を一括して混練しても良いし、ポリビニルピロリドンとポリスルホン系高分子とを別個に混練しても良い。前述のごとくポリビニルピロリドンは酸素との接触により劣化が促進され過酸化水素の発生に繋がるので、該混練時においても不活性ガスで置換した雰囲気で行う等、酸素との接触を抑制する配慮が必要であり別ラインで行うのが好ましい。混練はポリビニルピロリドンと溶媒のみとしてポリスルホン系高分子は予備混練をせずに直接溶解槽に供給する方法も本発明の範疇に含まれる。   In addition, kneading the components constituting the spinning solution prior to dissolution is also a preferred method for achieving low temperature and short time dissolution and is recommended. The kneading may be performed by kneading components such as polysulfone polymer, polyvinyl pyrrolidone and a solvent at once, or kneading polyvinyl pyrrolidone and polysulfone polymer separately. As mentioned above, polyvinylpyrrolidone is accelerated by contact with oxygen and leads to the generation of hydrogen peroxide. Therefore, consideration must be given to suppressing contact with oxygen, such as in an atmosphere substituted with an inert gas, even during kneading. It is preferable to carry out in a separate line. The method of kneading only polyvinylpyrrolidone and a solvent and supplying the polysulfone polymer directly to the dissolution tank without pre-kneading is also included in the scope of the present invention.

該混練は溶解槽と別に混練ラインを設けて実施し混練したものを溶解槽に供給してもよいし、混練機能を有する溶解槽で混練と溶解の両方を実施しても良い。前者の別個の装置で実施する場合の、混練装置の種類や形式は問わない。回分式、連続式のいずれであっても構わない。スタティックミキサー等のスタティックな方法であっても良いし、ニーダーや攪拌式混練機等のダイナミックな方法であっても良い。混練の効率より後者が好ましい。後者の場合の混練方法も限定なく、ピンタイプ、スクリュータイプ、攪拌器タイプ等いずれの形式でもよい。スクリュータイプが好ましい。スクリューの形状や回転数も混練効率と発熱とのバランスより適宜選択すれば良い。一方、混練機能を有する溶解槽を用いる場合の溶解槽の形式も限定されないが、例えば、2本の枠型ブレードが自転、公転するいわゆるプラネタリー運動により混練効果を発現する形式の混練溶解機が推奨される。例えば、井上製作所社製のプラネタリュームミキサーやトリミックス等が本方式に該当する。   The kneading may be carried out by providing a kneading line separately from the dissolving tank and supplied to the dissolving tank, or both kneading and dissolving may be performed in a dissolving tank having a kneading function. The type and form of the kneading apparatus in the former separate apparatus are not limited. Either a batch system or a continuous system may be used. A static method such as a static mixer may be used, or a dynamic method such as a kneader or a stirring kneader may be used. The latter is preferred from the efficiency of kneading. The kneading method in the latter case is not limited, and any type such as a pin type, a screw type, and a stirrer type may be used. Screw type is preferred. What is necessary is just to select suitably the shape and rotation speed of a screw from the balance of kneading | mixing efficiency and heat_generation | fever. On the other hand, the type of dissolution tank when using a dissolution tank having a kneading function is not limited. Recommended. For example, a planetary mixer or a trimix manufactured by Inoue Seisakusho Co., Ltd. corresponds to this method.

混練時のポリビニルピロリドンやポリスルホン系高分子等の樹脂成分と溶媒との比率も限定されない。樹脂/溶媒の質量比で0.1〜3が好ましい。0.5〜2がより好ましい。   The ratio of the resin component such as polyvinyl pyrrolidone or polysulfone polymer and the solvent during kneading is not limited. A resin / solvent mass ratio of 0.1 to 3 is preferred. 0.5-2 are more preferable.

前述のごとくポリビニルピロリドンの劣化を抑制し、かつ効率的な溶解を行うことが本発明の技術ポイントである。従って、少なくともポリビニルピロリドンが存在する系は窒素雰囲気下、70℃以下の低温で混練および溶解することが好ましい実施態様である。ポリビニルピロリドンとポリスルホン系高分子を別ラインで混練する場合にポリスルホン系高分子の混練ラインに本要件を適用してもよい。混練や溶解の効率と発熱とは二律背反現象である。該二律背反をできるだけ回避した装置や条件の選択が本発明の重要な要素となる。そういう意味で混練機構における冷却方法が重要であり配慮が必要である。   As described above, the technical point of the present invention is to suppress the degradation of polyvinyl pyrrolidone and perform efficient dissolution. Therefore, a system in which at least polyvinylpyrrolidone is present is a preferred embodiment in which the system is kneaded and dissolved at a low temperature of 70 ° C. or lower in a nitrogen atmosphere. When the polyvinyl pyrrolidone and the polysulfone polymer are kneaded in separate lines, this requirement may be applied to the polysulfone polymer kneading line. The efficiency of kneading and dissolution and heat generation are two contradictory phenomena. Selection of an apparatus and conditions that avoid the trade-off as much as possible is an important element of the present invention. In this sense, the cooling method in the kneading mechanism is important and needs attention.

上記紡糸溶液の溶解工程に関しては、例えば、ポリスルホン系高分子、ポリビニルピロリドン、溶媒からなる紡糸溶液を撹拌、溶解する際、ポリビニルピロリドン中に過酸化水素が含まれていると、溶解タンク内に存在する酸素の影響および溶解時の加熱の影響により、過酸化水素が爆発的に増加することがわかった。したがって、溶解タンクに原料を投入する際には、予め不活性ガスにて置換された溶解タンク内に原料を投入するのが好ましい。不活性ガスとしては、窒素、アルゴンなどが好適に用いられる。また、溶媒、場合によっては非溶媒を添加することもあるが、これら溶媒、非溶媒中に溶存している酸素を不活性ガスで置換して用いるのも好適な実施態様である。   Regarding the spinning solution dissolving step, for example, when stirring and dissolving a spinning solution comprising a polysulfone polymer, polyvinyl pyrrolidone, and a solvent, if polyvinyl pyrrolidone contains hydrogen peroxide, it is present in the dissolving tank. It was found that hydrogen peroxide increased explosively due to the influence of oxygen to be heated and the influence of heating during dissolution. Therefore, when charging the raw material into the dissolution tank, it is preferable to input the raw material into the dissolution tank that has been previously replaced with an inert gas. As the inert gas, nitrogen, argon or the like is preferably used. Moreover, although a solvent, and a non-solvent may be added depending on the case, it is also a preferable embodiment that oxygen dissolved in these solvent and non-solvent is replaced with an inert gas.

上記理由により、本発明においては、過酸化水素含有量が300ppm以下のポリビニルピロリドンを用いて中空糸膜を製造するのが好ましい。原料として用いるポリビニルピロリドン中の該過酸化水素含有量を300ppm以下にすることで、過酸化水素溶出量を前記した好ましい範囲にすることが可能となり、本発明で得られる中空糸膜の品質安定化が達成できるので好ましい。原料として用いるポリビニルピロリドン中の過酸化水素含有量は250ppm以下がより好ましく、200ppm以下がさらに好ましく、150ppm以下がよりさらに好ましい。また、原料として用いるポリビニルピロリドン中の過酸化水素含有量はゼロであることが好ましいが、完全にゼロにすることは技術的、コスト的に困難性を伴う。原料ポリビニルピロリドン中の過酸化水素含有量は50ppm以下であれば許容範囲と思われる。より好ましくは40ppm以下、さらに好ましくは30ppm以下、よりさらに好ましくは20ppm以下である。   For the above reasons, in the present invention, it is preferable to produce a hollow fiber membrane using polyvinylpyrrolidone having a hydrogen peroxide content of 300 ppm or less. By making the hydrogen peroxide content in the polyvinyl pyrrolidone used as a raw material 300 ppm or less, it becomes possible to bring the hydrogen peroxide elution amount into the above-mentioned preferable range, and to stabilize the quality of the hollow fiber membrane obtained in the present invention. Can be achieved. The hydrogen peroxide content in the polyvinylpyrrolidone used as a raw material is more preferably 250 ppm or less, further preferably 200 ppm or less, and further preferably 150 ppm or less. The content of hydrogen peroxide in polyvinyl pyrrolidone used as a raw material is preferably zero, but it is technically and costly difficult to make it completely zero. If the hydrogen peroxide content in the raw material polyvinylpyrrolidone is 50 ppm or less, it is considered acceptable. More preferably, it is 40 ppm or less, More preferably, it is 30 ppm or less, More preferably, it is 20 ppm or less.

上記した原料として用いるポリビニルピロリドン中に過酸化水素が存在すると、ポリビニルピロリドンの酸化劣化の引き金となり、酸化劣化が連鎖的に進行しポリビニルピロリドンの酸化劣化を促進するものと考えられる。また、原料段階でのポリビニルピロリドンの搬送や保存時の劣化を抑える手段を取る事も有効であり推奨される。例えば、アルミ箔ラミネート袋を用いて、遮光し、かつ窒素ガス等の不活性ガスで封入するとか、脱酸素剤を併せて封入し保存することが好ましい実施態様である。また、該包装体を開封し小分けする場合の計量や仕込みは、不活性ガス置換をして行い、かつその保存についても上記の対策を取るのが好ましい。また、中空糸膜の製造工程においても、原料供給系での供給タンク内を不活性ガスに置換する等の手段をとることも好ましい実施態様として推奨される。また、再結晶法や抽出法で過酸化水素量を低下させたポリビニルピロリドンを用いることも排除されない。   If hydrogen peroxide is present in the polyvinyl pyrrolidone used as the raw material, it is considered that the oxidative deterioration of the polyvinyl pyrrolidone is triggered, and the oxidative deterioration proceeds in a chain manner to promote the oxidative deterioration of the polyvinyl pyrrolidone. It is also effective and recommended to take measures to suppress deterioration during transportation and storage of polyvinylpyrrolidone at the raw material stage. For example, it is preferable to use an aluminum foil laminated bag to shield the light and enclose it with an inert gas such as nitrogen gas, or to enclose and store an oxygen scavenger together. In addition, it is preferable that the measurement and preparation when the package is opened and subdivided be performed after inert gas replacement, and the above-mentioned measures are taken for the storage. In addition, in the manufacturing process of the hollow fiber membrane, it is also recommended as a preferred embodiment to take means such as replacing the inside of the supply tank in the raw material supply system with an inert gas. Moreover, it is not excluded to use polyvinylpyrrolidone in which the amount of hydrogen peroxide is reduced by a recrystallization method or an extraction method.

本発明においては、上記した工程を含め、ポリビニルピロリドンが存在する系はすべての工程を不活性ガス雰囲気下で実施するのが好ましい。   In the present invention, it is preferable to carry out all the steps in an inert gas atmosphere in the system in which polyvinylpyrrolidone is present, including the steps described above.

ポリビニルピロリドンの劣化を抑制し、過酸化水素の溶出量を前記の規制された範囲に制御するためには、中空糸膜の乾燥工程においても酸素ガスとの接触を低減することが重要である。例えば、不活性ガスで置換した雰囲気で乾燥することが挙げられるが、経済性の点で不利である。経済性のある乾燥方法として、減圧下でマイクロ波を照射して乾燥する方法が有効であり推奨される。特に、マイクロ波照射と遠赤外線照射を組み合わせた乾燥方法が好適である。すなわち、中空糸膜中の含水率が高い領域では乾燥効率の高いマイクロ波照射乾燥を行い、含水率が少なくなるとマイクロ波照射乾燥では中空糸膜の劣化が起こり易くなるために、中空糸膜中の含水率が少なくなった時点で中空糸膜の劣化が抑制される遠赤外線照射に切り替えて乾燥を完遂する方法が好ましい。中空糸膜中の含水率が10〜20質量%に低下した時点でマイクロ波の照射を中止し、引き続き遠赤外線照射により乾燥することが好ましい。10〜15質量%がより好ましい。含水率が10質量%未満までマイクロ波照射による乾燥を行うと、ポリビニルピロリドンの劣化が増大し過酸化水素の抽出量が増大し、中空糸膜の保存安定性が低下するので好ましくない。また、中空糸膜の長手方向の含水率やUV(220〜350nm)吸光度の変動率が増大し中空糸膜の部分固着の発生が増大するので好ましくない。逆に、20質量%を超えた時点でマイクロ波照射を中止すると最終含水率に乾燥するまでのトータルの乾燥時間が長くなるので好ましくない。   In order to suppress the degradation of polyvinyl pyrrolidone and control the elution amount of hydrogen peroxide within the regulated range, it is important to reduce the contact with oxygen gas even in the drying process of the hollow fiber membrane. For example, drying in an atmosphere substituted with an inert gas can be mentioned, but it is disadvantageous in terms of economy. As an economical drying method, a method of drying by irradiating microwaves under reduced pressure is effective and recommended. In particular, a drying method combining microwave irradiation and far-infrared irradiation is preferable. That is, microwave irradiation drying with high drying efficiency is performed in a region where the moisture content in the hollow fiber membrane is high, and when the moisture content decreases, the hollow fiber membrane is likely to be deteriorated by microwave irradiation drying. A method of completing the drying by switching to the far-infrared irradiation that suppresses the deterioration of the hollow fiber membrane when the water content is reduced is preferable. It is preferable to stop the microwave irradiation when the water content in the hollow fiber membrane is reduced to 10 to 20% by mass, and subsequently dry by far infrared irradiation. 10-15 mass% is more preferable. Drying by microwave irradiation to a moisture content of less than 10% by mass is not preferable because deterioration of polyvinylpyrrolidone increases, the amount of hydrogen peroxide extracted increases, and the storage stability of the hollow fiber membrane decreases. In addition, the moisture content in the longitudinal direction of the hollow fiber membrane and the fluctuation rate of UV (220 to 350 nm) absorbance increase, and the occurrence of partial sticking of the hollow fiber membrane increases, which is not preferable. On the contrary, if microwave irradiation is stopped when it exceeds 20% by mass, the total drying time until drying to the final moisture content becomes longer, which is not preferable.

本発明における上記のマイクロ波照射終了後の遠赤外線照射での乾燥をもって全乾燥が終了される。該乾燥終了後の中空糸膜中の含水率は、1〜7質量%であることが好ましい。また、該乾燥中空糸膜を長手方向に10分割し測定した時の各々の含水率変動率が10%以内であることが好ましい。また、水分率が10質量%を超えた場合は、保存時菌が増殖しやすくなったり、中空糸膜の自重により糸潰れが発生したり、モジュール組み立て時に接着剤の接着障害が発生する可能性があり好ましくない。   Total drying is completed by drying with far-infrared irradiation after the above-described microwave irradiation in the present invention. The water content in the hollow fiber membrane after the drying is preferably 1 to 7% by mass. Moreover, it is preferable that each moisture content fluctuation | variation rate is 10% or less when this dry hollow fiber membrane is divided | segmented into 10 to a longitudinal direction and measured. In addition, when the moisture content exceeds 10% by mass, bacteria may be easily proliferated during storage, the yarn may be crushed due to the weight of the hollow fiber membrane, and adhesion failure of the adhesive may occur during module assembly. Is not preferable.

本発明でいう含水率とは、乾燥前の中空糸膜の質量(a)、120℃の乾熱オーブンで2時間乾燥後(絶乾後)の中空糸膜の質量(b)を測定し、下記式を用いて容易に算定することができる。
含水率(質量%)=(a−b)/b×100
ここで、(a)は1〜2gの範囲内とすることで、2時間後に絶乾状態(これ以上質量変化がない状態)とすることができる。
The moisture content referred to in the present invention is the mass (a) of the hollow fiber membrane before drying, the mass (b) of the hollow fiber membrane after drying for 2 hours in a dry heat oven at 120 ° C. (after absolute drying), It can be easily calculated using the following formula.
Moisture content (mass%) = (ab) / b × 100
Here, by setting (a) within the range of 1 to 2 g, a completely dry state (a state in which there is no further mass change) can be obtained after 2 hours.

中空糸膜中の含水率が低い状態でマイクロ波を照射することにより中空糸膜の長手方向のポリビニルピロリドンの劣化や含水率の変動が増大する原因は明確化できていないが、マイクロ波による乾燥がマイクロ波により水分子が直接励起されることで行われることと中空糸膜中の水分はポリビニルピロリドンとの親和性が強く、ポリビニルピロリドンの存在する部分に局在化されていることが寄与しているものと推察される。すなわち、この水の局在化は含水率の低下に従い増大し、水の局在化した部分の発熱が増大し、中空糸膜の温度や乾燥度合いの不均一化に繋がり、かつ水分子の周辺にポリビニルピロリドンが存在するために劣化が促進されるものと推察される。一方、遠赤外線乾燥等はマイクロ波に比べて励起のエネルギーが低いので、上記課題の発生が抑制されるものと考えられる。   Although the cause of the deterioration of polyvinyl pyrrolidone in the longitudinal direction of the hollow fiber membrane and the increase in fluctuation of the water content by irradiating with microwaves in a state where the moisture content in the hollow fiber membrane is low has not been clarified, drying by microwave This is because water molecules are directly excited by microwaves and the water in the hollow fiber membrane has a strong affinity for polyvinyl pyrrolidone and is localized in the portion where polyvinyl pyrrolidone exists. It is presumed that That is, this water localization increases as the water content decreases, heat generation at the localized portion of the water increases, leading to non-uniform temperature and dryness of the hollow fiber membrane, and around the water molecules It is presumed that deterioration is promoted due to the presence of polyvinylpyrrolidone. On the other hand, since far-infrared drying and the like have lower excitation energy than microwaves, it is considered that the occurrence of the above problems is suppressed.

上記の水分率管理方法は限定されない。赤外線吸収法等によりオンライン計測をしても良いし、サンプリングによるオフライン計測で行っても良い。   The moisture content management method is not limited. Online measurement may be performed by an infrared absorption method or the like, or offline measurement by sampling may be performed.

本発明においては、上述のごとく乾燥工程においてポリビニルピロリドンの酸化劣化を抑制することが重要である。従って、上記のマイクロ波照射や遠赤外線照射を窒素ガス等の不活性ガス雰囲気下で実施するのが好ましいが、経済的に不利である。一方、減圧下でマイクロ波乾燥や遠赤外線乾燥を行い、酸化劣化を抑制する方法は、乾燥効率の向上にも繋がり経済的であり推奨される。両乾燥の両方ともに減圧下で行うのが最も好ましい実施態様である。例えば、マイクロ波乾燥の乾燥条件としては、20kPa以下の減圧下で出力0.1〜100kWのマイクロ波を照射することが好ましい実施態様である。また、該マイクロ波の周波数は1,000〜5,000MHzであり、乾燥処理中の中空糸膜の最高到達温度が90℃以下であることが好ましい実施態様である。減圧という手段を併設すれば、それだけで水分の乾燥が促進されるので、マイクロ波の照射の出力を低く抑え、照射時間も短縮できる利点もあるが、温度の上昇も比較的低くすることができるので、全体的には中空糸膜の性能低下に与える影響が少ない。さらに、減圧という手段を伴う乾燥は、乾燥温度を比較的下げることができるという利点があり、特に親水性高分子の劣化分解を著しく抑えることができるという有意な点がある。適正な乾燥温度は20〜80℃で十分足りるということになる。より好ましくは20〜60℃、さらに好ましくは20〜50℃、よりさらに好ましくは30〜40℃である。   In the present invention, as described above, it is important to suppress oxidative degradation of polyvinylpyrrolidone in the drying step. Therefore, it is preferable to carry out the above-described microwave irradiation or far-infrared irradiation in an inert gas atmosphere such as nitrogen gas, but it is economically disadvantageous. On the other hand, a method of suppressing oxidation deterioration by performing microwave drying or far-infrared drying under reduced pressure leads to improvement in drying efficiency and is recommended because it is economical. In the most preferred embodiment, both drying operations are performed under reduced pressure. For example, as a drying condition for microwave drying, it is preferable to irradiate microwaves with an output of 0.1 to 100 kW under a reduced pressure of 20 kPa or less. Moreover, it is a preferable embodiment that the frequency of the microwave is 1,000 to 5,000 MHz, and the highest temperature reached by the hollow fiber membrane during the drying process is 90 ° C. or less. If a means of decompression is also provided, drying of moisture is promoted by itself, so there is an advantage that the output of microwave irradiation can be suppressed and the irradiation time can be shortened, but the temperature rise can also be made relatively low. Therefore, the influence on the performance degradation of the hollow fiber membrane is small as a whole. Furthermore, drying accompanied by means of reduced pressure has the advantage that the drying temperature can be relatively lowered, and has a significant point that deterioration and decomposition of the hydrophilic polymer can be remarkably suppressed. An appropriate drying temperature is sufficient from 20 to 80 ° C. More preferably, it is 20-60 degreeC, More preferably, it is 20-50 degreeC, More preferably, it is 30-40 degreeC.

減圧を伴うということは、中空糸膜の中心部および外周部に均等に低圧が作用することになり、水分の蒸発が均一に促進されることになり、中空糸膜の乾燥が均一になされるために、乾燥の不均一に起因する中空糸膜の障害を是正することになる。それに、マイクロ波による加熱も、中空糸膜の中心および外周全体にほぼ等しく作用することになるから、均一な加熱において、相乗的に機能することになり、中空糸膜の乾燥において、特有の意義があることになる。減圧度についてはマイクロ波の出力、中空糸膜の有する総水分含量および中空糸膜の本数により適宜設定すれば良いが、乾燥中の中空糸膜の温度上昇を防ぐため減圧度は20kPa以下、より好ましくは15kPa以下、さらに好ましくは10kPa以下で行う。20kPa以上では水分蒸発効率が低下するばかりでなく、中空糸膜を形成するポリマーの温度が上昇してしまい劣下してしまう可能性がある。また、減圧度は高い方が温度上昇抑制と乾燥効率を高める意味で好ましいが、装置の密閉度を維持するためにかかるコストが高くなるので0.1kPa以上が好ましい。より好ましくは0.25kPa以上、さらに好ましくは0.4kPa以上である。   The fact that the pressure is reduced means that the low pressure acts uniformly on the central part and the outer peripheral part of the hollow fiber membrane, the evaporation of moisture is promoted uniformly, and the hollow fiber membrane is uniformly dried. Therefore, the failure of the hollow fiber membrane due to nonuniform drying is corrected. In addition, heating by microwaves acts almost equally on the entire center and outer periphery of the hollow fiber membrane, so it functions synergistically in uniform heating, and has a unique significance in drying the hollow fiber membrane. There will be. The degree of vacuum may be set as appropriate depending on the output of the microwave, the total moisture content of the hollow fiber membranes, and the number of hollow fiber membranes, but the degree of vacuum is 20 kPa or less in order to prevent the temperature of the hollow fiber membranes during drying. Preferably it is 15 kPa or less, More preferably, it is 10 kPa or less. If it is 20 kPa or more, not only the water evaporation efficiency is lowered, but also the temperature of the polymer forming the hollow fiber membrane may be increased and deteriorated. Moreover, although the one where a pressure reduction degree is higher is preferable in the meaning which suppresses a temperature rise and raises drying efficiency, since the cost concerning maintaining the sealing degree of an apparatus becomes high, 0.1 kPa or more is preferable. More preferably, it is 0.25 kPa or more, and further preferably 0.4 kPa or more.

乾燥時間短縮を考慮するとマイクロ波の出力は高い方が好ましいが、例えばポリビニルピロリドンを含有する中空糸膜では過乾燥や過加熱によるポリビニルピロリドンの劣化、分解が起こったり、使用時の濡れ性低下が起こるなどの問題があるため、出力はあまり上げないのが好ましい。また0.1kW未満の出力でも中空糸膜を乾燥することは可能であるが、乾燥時間が伸びることによる処理量低下の問題が起こる可能性がある。減圧度とマイクロ波出力の組合せの最適値は、中空糸膜の保有水分量および中空糸膜の処理本数により異なるものであって、試行錯誤のうえ適宜設定値を求めるのが好ましい。
例えば、本発明の乾燥条件を実施する一応の目安として、中空糸膜1本当たり50gの水分を有する中空糸膜を20本乾燥した場合、総水分含量は50g×20本=1,000gとなり、この時のマイクロ波の出力は1.5kW、減圧度は5kPaが適当である。
In consideration of shortening the drying time, a higher microwave output is preferable.For example, in hollow fiber membranes containing polyvinylpyrrolidone, polyvinylpyrrolidone is deteriorated or decomposed due to overdrying or overheating, and wettability is reduced during use. It is preferable not to raise the output much because there are problems such as occurring. In addition, it is possible to dry the hollow fiber membrane even with an output of less than 0.1 kW, but there is a possibility that a problem of a decrease in throughput due to an increase in drying time may occur. The optimum value of the combination of the degree of decompression and the microwave output varies depending on the moisture content of the hollow fiber membrane and the number of processed hollow fiber membranes, and it is preferable to obtain a set value as appropriate through trial and error.
For example, as a temporary guide for carrying out the drying conditions of the present invention, when 20 hollow fiber membranes having a moisture content of 50 g per hollow fiber membrane are dried, the total moisture content is 50 g × 20 fibers = 1,000 g, At this time, it is appropriate that the microwave output is 1.5 kW and the degree of decompression is 5 kPa.

より好ましいマイクロ波出力は0.1〜80kW、さらに好ましいマイクロ波出力は0.1〜60kWである。マイクロ波の出力は、例えば、中空糸膜の総数と総含水量により決まるが、いきなり高出力のマイクロ波を照射すると、短時間で乾燥が終了するが、中空糸膜が部分的に変性することがあり、縮れのような変形を起こすことがある。マイクロ波を使用して乾燥するという場合に、例えば、中空糸膜に保水剤のようなものを用いた場合に、高出力やマイクロ波を用いて過激に乾燥することは保水剤の飛散による消失の原因にもなる。それに特に減圧下の条件をともなうと中空糸膜への影響を考えれば、従来においては減圧下でマイクロ波を照射することは意図していなかった。本発明の減圧下でマイクロ波を照射するということは、水性液体の蒸発が比較的温度が低い状態においても活発になるため、高出力マイクロ波および高温によるポリビニルピロリドンの劣化や中空糸膜の変形等の中空糸膜の損傷を防ぐという二重の効果を奏することになる。   A more preferable microwave output is 0.1 to 80 kW, and a more preferable microwave output is 0.1 to 60 kW. The output of the microwave is determined by, for example, the total number of hollow fiber membranes and the total water content, but when suddenly high-power microwaves are irradiated, drying is completed in a short time, but the hollow fiber membrane is partially denatured. And may cause deformation such as curling. When drying using microwaves, for example, when using something like a water retention agent in the hollow fiber membrane, high power and extreme drying using microwaves will disappear due to scattering of the water retention agent It becomes the cause of. In consideration of the influence on the hollow fiber membrane, especially under conditions under reduced pressure, conventionally, irradiation with microwaves under reduced pressure was not intended. Irradiation of microwaves under reduced pressure according to the present invention means that the evaporation of aqueous liquid is active even in a relatively low temperature state, so that degradation of polyvinylpyrrolidone and deformation of hollow fiber membranes due to high output microwaves and high temperatures Thus, a double effect of preventing damage to the hollow fiber membrane is obtained.

本発明は、減圧下におけるマイクロ波により乾燥をするという、マイクロ波の出力を一定にした一段乾燥を可能としているが、別の実施態様として、乾燥の進行に応じて、マイクロ波の出力を順次段階的に下げる、いわゆる多段乾燥を好ましい態様として包含している。そこで、多段乾燥の意義を説明すると次のようになる。減圧下で、しかも30〜90℃程度の比較的低い温度で、マイクロ波で乾燥する場合に、中空糸膜の乾燥の進み具合に合わせて、マイクロ波の出力を順次下げていくという多段乾燥方法が優れている。乾燥をする中空糸膜の総量、工業的に許容できる適正な乾燥時間などを考慮して、減圧の程度、温度、マイクロ波の出力および照射時間を決めればよい。多段乾燥は、例えば、2〜6段という任意に何段も可能であるが、生産性を考慮して工業的に適正と許容できるのは、2〜3段乾燥にするのが適当である。中空糸膜に含まれる水分の総量にもよるが、比較的多い場合に、多段乾燥は、例えば、90℃以下の温度における、5〜20kPa程度の減圧下で、一段目は30〜100kWの範囲で、二段目は10〜30kWの範囲で、三段目は0.1〜10kWというように、マイクロ波照射時間を加味して決めることができる。マイクロ波の出力を、例えば、高い部分で90kW、低い部分で0.1kWのように、出力の較差が大きい場合には、その出力を下げる段数を例えば4〜8段と多くすればよい。本発明の場合に、減圧というマイクロ波照射に技術的な配慮をしているから、比較的マイクロ波の出力を下げた状態でもできるという有利な点がある。例えば、一段目は10〜20kWのマイクロ波により10〜100分程度、二段目は3〜10kW程度で5〜80分程度、三段目は0.1〜3kW程度で1〜60分程度という段階で乾燥する。各段のマイクロ波の出力および照射時間は、中空糸膜に含まれる水分の総量の減り具合に連動して下げていくことが好ましい。   Although the present invention enables one-stage drying in which the microwave output is constant, i.e., drying by microwaves under reduced pressure, as another embodiment, the microwave output is sequentially changed according to the progress of drying. So-called multi-stage drying, which lowers in stages, is included as a preferred embodiment. Therefore, the significance of multi-stage drying will be described as follows. A multi-stage drying method in which the output of the microwave is sequentially reduced in accordance with the progress of drying of the hollow fiber membrane when drying with microwaves at a relatively low temperature of about 30 to 90 ° C. under reduced pressure. Is excellent. The degree of pressure reduction, temperature, microwave output, and irradiation time may be determined in consideration of the total amount of hollow fiber membranes to be dried, industrially acceptable drying time, and the like. Multistage drying can be performed in any number of stages, for example, 2 to 6 stages, but it is appropriate to use 2 to 3 stages of drying that is industrially appropriate in consideration of productivity. Depending on the total amount of water contained in the hollow fiber membrane, when relatively large, multi-stage drying is, for example, at a temperature of 90 ° C. or less under a reduced pressure of about 5 to 20 kPa, and the first stage is in the range of 30 to 100 kW. Thus, the second stage is in the range of 10 to 30 kW, and the third stage is in the range of 0.1 to 10 kW. When the output of the microwave is large, such as 90 kW in the high part and 0.1 kW in the low part, the number of stages for reducing the output may be increased to 4 to 8 stages, for example. In the case of the present invention, since technical consideration is given to the microwave irradiation called decompression, there is an advantage that the microwave output can be relatively lowered. For example, the first stage is about 10 to 100 minutes by 10 to 20 kW microwave, the second stage is about 3 to 10 kW and about 5 to 80 minutes, and the third stage is about 0.1 to 3 kW and about 1 to 60 minutes. Dry in stages. It is preferable that the microwave output and irradiation time of each stage are lowered in conjunction with the reduction in the total amount of moisture contained in the hollow fiber membrane.

別の態様を説明すると、中空糸膜の水分総量が比較的少ないという、いわゆる含水率が400質量%以下の場合には、12kW以下の低出力マイクロ波による照射が優れている場合がある。例えば、中空糸膜総量の水分量が1〜7kgと比較的少量の場合には、80℃以下、好ましくは60℃以下の温度における、3〜10kPaの減圧下において、12kW以下の出力の、例えば1〜5kWのマイクロ波で10〜240分、0.5〜1kW未満のマイクロ波で1〜240分、より好ましくは3〜240分、0.1〜0.5kW未満のマイクロ波で1〜240分照射するという、乾燥の程度に応じてマイク口波の照射出力および照射時間を調整すれば乾燥が均一に行われる。減圧度は各段において、一応0.1〜20kPaという条件を設定しているが、中空糸膜の水分含量の比較的多い一段目を例えば0.1〜5kPaと減圧を高め、マイクロ波の出力を10〜30kWと高める、ニ段目、三段目を5〜20kPaの減圧下で0.1〜5kWによる一段よりやや高い圧力下でマイクロ波を照射するという、いわゆる各段の減圧度を状況に応じて適正に調整して変えることなどは、中空糸膜の水分総量および含水率の低下の推移を考慮して任意に設定することが可能である。各段において、減圧度を変える操作は、本発明の減圧下でマイクロ波を照射するという意義をさらに大きくする。勿論、マイクロ波照射装置内におけるマイクロ波の均一な照射および排気には常時配慮する必要がある。   To explain another aspect, when the so-called moisture content is less than 400% by mass, in which the total amount of water in the hollow fiber membrane is relatively small, irradiation with a low-power microwave of 12 kW or less may be excellent. For example, when the water content of the total amount of the hollow fiber membrane is a relatively small amount of 1 to 7 kg, an output of 12 kW or less under a reduced pressure of 3 to 10 kPa at a temperature of 80 ° C. or less, preferably 60 ° C. or less, for example, 10 to 240 minutes with microwaves of 1 to 5 kW, 1 to 240 minutes with microwaves of less than 0.5 to 1 kW, more preferably 3 to 240 minutes, 1 to 240 with microwaves of less than 0.1 to 0.5 kW If the irradiation output of the microphone mouth wave and the irradiation time are adjusted in accordance with the degree of drying, that is, partial irradiation, drying is performed uniformly. The degree of vacuum is set to 0.1 to 20 kPa for each stage, but the first stage having a relatively high moisture content of the hollow fiber membrane is increased to 0.1 to 5 kPa, for example, and the microwave output is increased. The degree of pressure reduction at each stage, in which the microwave is irradiated at a pressure slightly higher than the first stage of 0.1 to 5 kW under a reduced pressure of 5 to 20 kPa in the second stage and the third stage. It is possible to arbitrarily set the appropriate adjustment in accordance with the change in consideration of the transition of the total moisture content and the moisture content of the hollow fiber membrane. In each stage, the operation of changing the degree of reduced pressure further increases the significance of irradiating microwaves under reduced pressure according to the present invention. Of course, it is necessary to always consider the uniform irradiation and exhaust of the microwave in the microwave irradiation apparatus.

乾燥中の中空糸膜の最高到達温度は、不可逆性のサーモラベルを中空糸膜を保護するフィルム側面に貼り付けて乾燥を行い、乾燥後に取り出し表示を確認することで測定することができる。この時、乾燥中の中空糸膜の最高到達温度は90℃以下が好ましく、より好ましくは80℃以下に抑える。さらに好ましくは70℃以下である。最高到達温度が90℃以上になると、膜構造が変化しやすくなり性能低下や酸化劣化を起こしてしまう場合がある。特にポリビニルピロリドンを含有する中空糸膜では、熱によるポリビニルピロリドンの分解等が起こりやすいので温度上昇をできるだけ防ぐ必要がある。減圧度とマイクロ波出力の最適化と断続的に照射することで温度上昇を防ぐことができる。また、乾燥温度は低い方が好ましいが、減圧度の維持コスト、乾燥時間短縮の面より30℃以上が好ましい。   The maximum temperature reached by the hollow fiber membrane during drying can be measured by attaching an irreversible thermolabel to the side of the film that protects the hollow fiber membrane, drying, and taking out and confirming the display after drying. At this time, the maximum temperature reached by the hollow fiber membrane during drying is preferably 90 ° C. or lower, more preferably 80 ° C. or lower. More preferably, it is 70 degrees C or less. If the maximum temperature reaches 90 ° C. or higher, the film structure is likely to change, which may cause performance degradation or oxidative degradation. In particular, in hollow fiber membranes containing polyvinyl pyrrolidone, it is necessary to prevent the temperature rise as much as possible because polyvinyl pyrrolidone is easily decomposed by heat. Temperature rise can be prevented by optimizing the degree of decompression and microwave output and irradiating intermittently. Moreover, although the one where a drying temperature is lower is preferable, 30 degreeC or more is preferable from the surface of the maintenance cost of pressure reduction degree, and the shortening of drying time.

マイクロ波の照射周波数は、中空糸膜への照射斑の抑制や、細孔内の水を細孔より押出す効果などを考慮すると1,000〜5,000MHzが好ましい。より好ましくは1,500〜4,000MHz、さらに好ましくは2,000〜3,000MHzである。   The microwave irradiation frequency is preferably 1,000 to 5,000 MHz in consideration of the suppression of irradiation spots on the hollow fiber membrane and the effect of extruding water in the pores from the pores. More preferably, it is 1,500-4,000 MHz, More preferably, it is 2,000-3,000 MHz.

該マイクロ波照射による乾燥は中空糸膜を均一に加熱し乾燥することが重要である。上記したマイクロ波乾燥においては、マイクロ波の発生時に付随発生する反射波による不均一加熱が発生するので、該反射波による不均一加熱を低減する手段を取る事が重要である。該方策は限定されず任意であるが、例えば、特開2000−340356号公報において開示されているオーブン中に反射板を設けて反射波を反射させ加熱の均一化を行う方法が好ましい実施態様の一つである。   In drying by microwave irradiation, it is important to uniformly heat and dry the hollow fiber membrane. In the above-described microwave drying, nonuniform heating due to the reflected wave that occurs accompanying the generation of the microwave occurs, so it is important to take measures to reduce the nonuniform heating due to the reflected wave. The method is not limited and is arbitrary. For example, a method of providing a reflector in an oven disclosed in Japanese Patent Application Laid-Open No. 2000-340356 to reflect reflected waves and uniformize heating is a preferred embodiment. One.

本発明において、中空糸膜の含水率が10〜20質量%まで低下した後は、遠赤外線照射により中空糸膜を乾燥するのが好ましい。マイクロ波や近赤外線を照射したり、加熱乾燥を行う方が被乾燥物を速く乾燥するという意味では好ましいが、親水性高分子としてポリビニルピロリドンを含む分離膜の場合、ポリビニルピロリドンが乾燥の進行、すなわち中空糸膜中の水分含量の低下に伴い、熱による劣化分解を受けやすくなる問題がある。したがって、乾燥の最終段階(低水分含量)においては、より低いエネルギーでマイルドに乾燥するのが好ましい実施態様である。また、遠赤外線は、電磁波の一種であり、マイクロ波と同様に被乾燥物の内部まで浸透するため、低エネルギーでも被乾燥物を均一に斑なく乾燥できるという特徴を有するため好ましい。   In the present invention, after the moisture content of the hollow fiber membrane is reduced to 10 to 20% by mass, the hollow fiber membrane is preferably dried by irradiation with far infrared rays. Irradiation with microwaves or near infrared rays, or heat drying is preferable in the sense that the material to be dried is dried faster, but in the case of a separation membrane containing polyvinyl pyrrolidone as a hydrophilic polymer, That is, there is a problem that it is susceptible to degradation and degradation due to heat as the moisture content in the hollow fiber membrane decreases. Therefore, in the final stage of drying (low moisture content), it is a preferred embodiment to dry mildly with lower energy. Further, far-infrared rays are a kind of electromagnetic wave and are preferable because they penetrate into the material to be dried as in the case of microwaves, and thus have a characteristic that the material to be dried can be uniformly dried even at low energy.

本発明において、遠赤外線の照射波長は1〜30μmであることが好ましい。遠赤外線の波長が短すぎると、被乾燥物の温度が上がらなくなるため、乾燥時間が延びるなど乾燥にかかるコストが増大することがある。したがって、照射する遠赤外線の波長は1.5μm以上がより好ましく、2μm以上がさらに好ましく、2.5μm以上がよりさらに好ましい。また、照射する遠赤外線の波長が長すぎると、被乾燥物の温度が上がりすぎ、中空糸膜素材の劣化分解が起こりやすくなる。したがって、遠赤外線の照射波長は28μm以下がより好ましく、26μm以下がさらに好ましく、24μm以下がよりさらに好ましい。   In this invention, it is preferable that the irradiation wavelength of a far infrared ray is 1-30 micrometers. If the far-infrared wavelength is too short, the temperature of the object to be dried cannot be increased, and the drying cost may increase, for example, the drying time may be extended. Therefore, the wavelength of the far infrared ray to be irradiated is more preferably 1.5 μm or more, further preferably 2 μm or more, and further preferably 2.5 μm or more. Moreover, when the wavelength of the far infrared rays to irradiate is too long, the temperature of the material to be dried increases too much, so that the degradation and decomposition of the hollow fiber membrane material easily occurs. Therefore, the irradiation wavelength of far infrared rays is more preferably 28 μm or less, further preferably 26 μm or less, and further preferably 24 μm or less.

本発明において、遠赤外線を照射するための媒体としてセラミックを使用するのが好ましい実施態様である。本発明の遠赤外線を得るためには、例えば、タングステン、ニクロム、ステンレス、炭化ケイ素、セラミック、カーボンを素材とした遠赤外線照射媒体が挙げられるが、中でも炭化ケイ素、ステンレス、アルミナ系やジルコニウム系のファインセラミックを媒体として用いるのが好ましい。   In the present invention, ceramic is preferably used as a medium for irradiating far infrared rays. In order to obtain the far-infrared ray of the present invention, for example, a far-infrared irradiation medium made of tungsten, nichrome, stainless steel, silicon carbide, ceramic, or carbon can be cited. Among them, silicon carbide, stainless steel, alumina-based and zirconium-based materials can be used. It is preferable to use a fine ceramic as a medium.

一方、マイクロ波乾燥終了後に行う遠赤外線照射による乾燥の場合は、マイクロ波乾燥の場合と異なり、減圧下で照射しても放電現象は発生しないので、マイクロ波乾燥の場合より減圧度を高めて行うことができる。乾燥効率の点より5kPa以下が好ましく、4kPa以下がより好ましく、3kPa以下がさらに好ましく、2kPa以下がよりさらに好ましい。遠赤外線照射の照射エネルギーは、オーブンの中心部に設けた熱電対で検出される温度で80℃以下になるように制御するのが好ましい。70℃以下で制御するのがより好ましい。   On the other hand, in the case of drying by far-infrared irradiation performed after the completion of microwave drying, unlike the case of microwave drying, the discharge phenomenon does not occur even if irradiation is performed under reduced pressure. It can be carried out. From the point of drying efficiency, 5 kPa or less is preferable, 4 kPa or less is more preferable, 3 kPa or less is more preferable, and 2 kPa or less is more preferable. The irradiation energy of the far-infrared irradiation is preferably controlled so as to be 80 ° C. or lower at a temperature detected by a thermocouple provided at the center of the oven. It is more preferable to control at 70 ° C. or lower.

前記の遠赤外線照射はマイクロ波照射終了後に照射を開始してもよいし、マイクロ波照射時にも照射し、マイクロ波乾燥と遠赤外線乾燥とを同時進行で実施してもよい。マイクロ波と遠赤外線照射を同時に行うことにより、マイクロ波照射により励起され中空糸膜表面に移動してきた水の蒸発が遠赤外線照射により加速され乾燥効率向上に繋がる。また、この表面水分の効率的な蒸発により、表面水分により誘導されるポリビニルピロリドンの中空糸膜表面の濃度変動が抑制され、部分固着発生抑制に繋げられるので好ましい。上述のごとくマイクロ波乾燥についても減圧下で実施するのが好ましいので、減圧下でマイクロ波乾燥と遠赤外線乾燥とを同時進行で実施して、前記の水分率になった時点でマイクロ波照射を中止し、減圧状態を維持したまま遠赤外線照射を続行し、さらなる乾燥を続けることにより乾燥を終了させる方法が好ましい。このおりに、マイクロ波の照射終了後に系の減圧度を下げて、コンディショニングを行った後に再度減圧度を上げて遠赤外線照射を開始してもよい。従って、本発明においては、加熱オーブン内に遠赤外線ヒーターが取り付けられており、かつ加熱オーブンが減圧にできる排気系が取り付けられたマイクロ波乾燥機を用いて乾燥することが好ましい実施態様である。   The far-infrared irradiation may be started after the end of microwave irradiation, or may be performed at the time of microwave irradiation, and microwave drying and far-infrared drying may be performed simultaneously. By performing the microwave and far infrared irradiation simultaneously, the evaporation of water that has been excited by the microwave irradiation and moved to the surface of the hollow fiber membrane is accelerated by the far infrared irradiation, leading to an improvement in drying efficiency. Further, this efficient evaporation of surface moisture suppresses the concentration fluctuation of the surface of the hollow fiber membrane of polyvinylpyrrolidone induced by the surface moisture, which is preferable because it leads to suppression of partial sticking. As described above, microwave drying is preferably performed under reduced pressure. Therefore, microwave drying and far-infrared drying are simultaneously performed under reduced pressure, and microwave irradiation is performed when the moisture content is reached. A method of stopping drying by continuing far-infrared irradiation while maintaining a reduced pressure state and continuing further drying is preferable. In this case, after the microwave irradiation is completed, the degree of decompression of the system may be lowered, and after conditioning, the degree of decompression may be raised again to start far-infrared irradiation. Therefore, in the present invention, it is a preferred embodiment that drying is performed using a microwave dryer in which a far-infrared heater is attached in the heating oven and an exhaust system capable of reducing the pressure of the heating oven is attached.

本発明においては、乾燥終了後に乾燥系内を常圧に戻す折に窒素ガス等の不活性ガスを用いることが好ましい実施態様である。該対応により中空糸膜中のポリビニルピロリドンの酸化劣化が抑制される。   In the present invention, it is a preferred embodiment that an inert gas such as nitrogen gas is used when the inside of the drying system is returned to normal pressure after drying. By this measure, oxidative deterioration of polyvinylpyrrolidone in the hollow fiber membrane is suppressed.

さらに、中空糸膜は絶乾しないのが好ましい。絶乾してしまうと、ポリビニルピロリドンの劣化が増大し、過酸化水素の生成が大幅に増大することがある。また、使用時の再湿潤化において濡れ性が低下したり、ポリビニルピロリドンが吸水しにくくなるため中空糸膜から溶出しやすくなる可能性がある。乾燥後の中空糸膜の含水率は1質量%以上飽和含水率未満が好ましい。1.5質量%以上がより好ましい。中空糸膜の含水率が高すぎると、保存時菌が増殖しやすくなったり、中空糸膜の自重により糸潰れが発生したり、モジュール組み立て時に接着剤の接着障害が発生する可能性があるため、中空糸膜の含水率は10質量%以下が好ましく、より好ましくは7質量%以下である。   Furthermore, it is preferable that the hollow fiber membrane does not dry out. When it is completely dried, the deterioration of polyvinyl pyrrolidone increases and the production of hydrogen peroxide may be greatly increased. In addition, wettability may be reduced during re-wetting during use, and polyvinyl pyrrolidone may be less likely to absorb water and may be easily eluted from the hollow fiber membrane. The moisture content of the hollow fiber membrane after drying is preferably 1% by mass or more and less than the saturated moisture content. 1.5 mass% or more is more preferable. If the water content of the hollow fiber membrane is too high, bacteria may easily proliferate during storage, and the hollow fiber membrane may crush due to its own weight, or an adhesive failure may occur during assembly of the module. The water content of the hollow fiber membrane is preferably 10% by mass or less, more preferably 7% by mass or less.

また、上記のごとく原料ポリビニルピロリドンより混入したり、中空糸膜の製造工程において生成した過酸化水素を、洗浄により除去する方法も前記した特性値を規制された範囲に制御する方法として有効である。   In addition, a method of removing hydrogen peroxide mixed from the raw material polyvinyl pyrrolidone as described above or generated in the manufacturing process of the hollow fiber membrane by washing is also effective as a method of controlling the above-described characteristic value within a restricted range. .

本発明においては、上述のごとく、過酸化水素の溶出量を低減したり、中空糸膜の外表面におけるポリビニルピロリドンの含有率を特定範囲にするための手段として中空糸膜の製造過程において、前記の乾燥工程の前に洗浄工程を導入することが重要である。例えば、水洗浴を通過した中空糸膜は、湿潤状態のまま綛に巻き取り、3,000〜20,000本の束にする。ついで、得られた中空糸膜を洗浄し、過剰の溶媒、ポリビニルピロリドンを除去する。中空糸膜の洗浄方法として、本発明では、70〜130℃の熱水、または室温〜50℃、10〜40vol%のエタノールまたはイソプロパノール水溶液に中空糸膜を浸漬して処理するのが好ましい。
(1)熱水洗浄の場合は、中空糸膜を過剰のRO水に浸漬し70〜90℃で15〜60分処理した後、中空糸膜を取り出し遠心脱水を行う。この操作をRO水を更新しながら数回繰り返して洗浄処理を行う。
(2)加圧容器内の過剰のRO水に浸漬した中空糸膜を121℃で2時間程度処理する方法をとることもできる。
(3)エタノールまたはイソプロパノール水溶液を使用する場合も、(1)と同様の操作を繰り返すのが好ましい。
(4)遠心洗浄器に中空糸膜を放射状に配列し、回転中心から40℃〜90℃の洗浄水をシャワー状に吹きつけながら30分〜5時間遠心洗浄することも好ましい洗浄方法である。
前記洗浄方法を2つ以上組み合わせて行ってもよい。いずれの方法においても、処理温度が低すぎる場合には、洗浄回数を増やす等必要になりコストアップに繋がることがある。また、処理温度が高すぎるとポリビニルピロリドンの分解が加速し、逆に洗浄効率が低下することがある。上記洗浄を行うことにより、外表面ポリビニルピロリドンの存在率の適正化を行い、固着抑制や溶出物の量を減ずることが可能となるとともに、過酸化水素溶出量の低減にも繋がる。
In the present invention, as described above, in the process of producing a hollow fiber membrane as a means for reducing the elution amount of hydrogen peroxide or making the content of polyvinylpyrrolidone on the outer surface of the hollow fiber membrane a specific range, It is important to introduce a washing step before the drying step. For example, a hollow fiber membrane that has passed through a water-washing bath is wound into a basket in a wet state to form a bundle of 3,000 to 20,000. Next, the obtained hollow fiber membrane is washed to remove excess solvent, polyvinylpyrrolidone. As a method for washing the hollow fiber membrane, in the present invention, it is preferable to treat the hollow fiber membrane by immersing it in hot water at 70 to 130 ° C., or from room temperature to 50 ° C. and 10 to 40 vol% ethanol or isopropanol aqueous solution.
(1) In the case of hot water washing, the hollow fiber membrane is immersed in excess RO water and treated at 70 to 90 ° C. for 15 to 60 minutes, and then the hollow fiber membrane is taken out and subjected to centrifugal dehydration. This operation is repeated several times while updating the RO water to perform the cleaning process.
(2) A method of treating a hollow fiber membrane immersed in excess RO water in a pressurized container at 121 ° C. for about 2 hours can also be employed.
(3) When using an ethanol or isopropanol aqueous solution, it is preferable to repeat the same operation as in (1).
(4) It is also a preferable washing method that the hollow fiber membranes are arranged radially in a centrifugal washer, and centrifugal washing is performed for 30 minutes to 5 hours while spraying washing water at 40 ° C. to 90 ° C. from the rotation center in a shower shape.
Two or more cleaning methods may be combined. In any method, when the processing temperature is too low, it is necessary to increase the number of times of cleaning, which may lead to an increase in cost. On the other hand, if the treatment temperature is too high, the decomposition of polyvinylpyrrolidone is accelerated, and conversely, the cleaning efficiency may be reduced. By performing the above-described washing, it is possible to optimize the abundance ratio of the outer surface polyvinyl pyrrolidone, thereby suppressing sticking and reducing the amount of eluate, and also leading to a reduction in the hydrogen peroxide elution amount.

本発明の血液浄化器は、前述のポリスルホン系中空糸膜を用いてモジュール化することにより本発明の具備しなければならない特性が付与できる。従って、本発明の血液浄化器に充填されるポリスルホン系中空糸膜は、過酸化水素の溶出量は4ppm以下がより好ましく、3ppm以下がさらに好ましい等の前述した本発明のポリスルホン系中空糸膜が具備すべき好ましい特性を有するのが好ましい実施態様である。また、本発明に用いられるポリスルホン系中空糸膜は前述の製造方法により安定して、かつ経済的に製造することができる。   The blood purifier of the present invention can be provided with the characteristics that the present invention must have by being modularized using the polysulfone-based hollow fiber membrane. Therefore, the polysulfone-based hollow fiber membrane filled in the blood purifier of the present invention has the above-described polysulfone-based hollow fiber membrane of the present invention such that the elution amount of hydrogen peroxide is more preferably 4 ppm or less, and further preferably 3 ppm or less. It is a preferred embodiment that has the desired characteristics to be possessed. In addition, the polysulfone-based hollow fiber membrane used in the present invention can be stably and economically manufactured by the above-described manufacturing method.

中空糸膜への異物の混入を抑える方法としては、異物の少ない原料を用いる、製膜用の紡糸溶液をろ過し異物を低減する方法等が有効である。本発明では、中空糸膜の膜厚よりも小さな孔径のフィルターを用いて紡糸溶液をろ過してからノズルより吐出するのが好ましく、具体的には均一溶解した紡糸溶液を溶解タンクからノズルまで導く間に設けられた孔径5〜50μmの焼結フィルターを通過させる。ろ過処理は少なくとも1回行えば良いが、ろ過処理を何段階かにわけて行う場合は後段になるに従いフィルターの孔径を小さくしていくのがろ過効率およびフィルター寿命を延ばす意味で好ましい。フィルターの孔径は5〜45μmがより好ましく、5〜40μmがさらに好ましい。フィルター孔径が小さすぎると背圧が上昇し、定量性が落ちることがある。また、気泡混入を抑える方法としては、製膜用のポリマー溶液の脱泡を行うのが有効である。紡糸溶液の粘度にもよるが、静置脱泡や減圧脱泡を用いることができる。溶解タンク内を−100〜−750mmHgに減圧した後タンク内を密閉し5分〜30分間静置する。この操作を数回繰り返し脱泡処理を行う。減圧度が低すぎる場合には、脱泡の回数を増やす必要があるため処理に長時間を要することがある。また減圧度が高すぎると、系の密閉度を上げるためのコストが高くなることがある。トータルの処理時間は5分〜5時間とするのが好ましい。処理時間が長すぎると、減圧の影響によりポリビニルピロリドンが分解、劣化することがある。処理時間が短すぎると脱泡の効果が不十分になることがある。減圧脱泡した系を常圧に戻す折には不活性ガス、特に、窒素ガスを用いて行うのが好ましい。   As a method for suppressing the entry of foreign matter into the hollow fiber membrane, a method using a raw material with little foreign matter, filtering the spinning solution for film formation, and reducing foreign matter is effective. In the present invention, it is preferable to filter the spinning solution using a filter having a pore size smaller than the film thickness of the hollow fiber membrane and then discharge from the nozzle. Specifically, the uniformly dissolved spinning solution is guided from the dissolution tank to the nozzle. A sintered filter having a pore diameter of 5 to 50 μm provided therebetween is passed. The filtration treatment may be performed at least once. However, when the filtration treatment is performed in several stages, it is preferable to reduce the pore size of the filter as it is in the latter stage in order to extend the filtration efficiency and the filter life. The pore size of the filter is more preferably 5 to 45 μm, further preferably 5 to 40 μm. If the filter pore size is too small, the back pressure may increase and the quantitativeness may decrease. Further, as a method for suppressing the mixing of bubbles, it is effective to defoam a polymer solution for film formation. Depending on the viscosity of the spinning solution, static defoaming or vacuum defoaming can be used. The pressure in the dissolution tank is reduced to −100 to −750 mmHg, and then the tank is sealed and left for 5 to 30 minutes. This operation is repeated several times to perform defoaming treatment. If the degree of vacuum is too low, the treatment may take a long time because it is necessary to increase the number of defoaming times. Moreover, when the pressure reduction degree is too high, the cost for raising the sealing degree of a system may become high. The total treatment time is preferably 5 minutes to 5 hours. If the treatment time is too long, polyvinylpyrrolidone may be decomposed and deteriorated due to the effect of reduced pressure. If the treatment time is too short, the defoaming effect may be insufficient. When returning the degassed system to normal pressure, it is preferable to use an inert gas, particularly nitrogen gas.

以下、本発明の有効性を実施例を挙げて説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例における物性の評価方法は以下の通りである。   Hereinafter, the effectiveness of the present invention will be described with reference to examples, but the present invention is not limited thereto. In addition, the evaluation method of the physical property in the following examples is as follows.

1、透水率の測定
透析器の血液出口部回路(圧力測定点よりも出口側)を鉗子で挟んで流れを止め、全ろ過とする。37℃に保温した純水を加圧タンクに入れ、レギュレーターにより圧力を制御しながら、37℃恒温槽で保温した透析器へ純水を送り、透析液側から流出した濾液量をメスシリンダーで測定する。膜間圧力差(TMP)は
TMP=(Pi+Po)/2
とする。ここでPiは透析器入り口側圧力、Poは透析器出口側圧力である。TMPを4点変化させ濾過流量を測定し、それらの関係の傾きから透水率(mL/hr/mmHg)を算出する。このときTMPと濾過流量の相関係数は0.999以上でなくてはならない。また回路による圧力損失誤差を少なくするために、TMPは100mmHg以下の範囲で測定する。中空糸膜の透水率は膜面積と透析器の透水率から算出する。
UFR(H)=UFR(D)/A
ここでUFR(H)は中空糸膜の透水率(mL/m/hr/mmHg)、UFR(D)は透析器の透水率(mL/hr/mmHg)、Aは透析器の膜面積(m)である。
1. Measurement of water permeability The flow is stopped by sandwiching the blood outlet circuit of the dialyzer (the outlet side from the pressure measurement point) with forceps, and total filtration is performed. Purified water kept at 37 ° C is put into a pressurized tank, and the pressure is controlled by a regulator. The pure water is sent to a dialyzer kept warm in a 37 ° C constant temperature bath, and the amount of filtrate flowing out from the dialysate side is measured with a graduated cylinder. To do. The transmembrane pressure difference (TMP) is TMP = (Pi + Po) / 2
And Here, Pi is the dialyzer inlet side pressure, and Po is the dialyzer outlet side pressure. The TMP is changed at four points, the filtration flow rate is measured, and the water permeability (mL / hr / mmHg) is calculated from the slope of the relationship. At this time, the correlation coefficient between TMP and the filtration flow rate must be 0.999 or more. In order to reduce the pressure loss error due to the circuit, TMP is measured in the range of 100 mmHg or less. The water permeability of the hollow fiber membrane is calculated from the membrane area and the water permeability of the dialyzer.
UFR (H) = UFR (D) / A
Here, UFR (H) is the water permeability of the hollow fiber membrane (mL / m 2 / hr / mmHg), UFR (D) is the water permeability of the dialyzer (mL / hr / mmHg), and A is the membrane area of the dialyzer (mL m 2 ).

2、膜面積の計算
透析器の膜面積は中空糸の内径基準として求める。
A=n×π×d×L
ここで、nは透析器内の中空糸本数、πは円周率、dは中空糸の内径(m)、Lは透析器内の中空糸の有効長(m)である。
2. Calculation of membrane area The membrane area of the dialyzer is determined as a reference for the inner diameter of the hollow fiber.
A = n × π × d × L
Here, n is the number of hollow fibers in the dialyzer, π is the circumference, d is the inner diameter (m) of the hollow fiber, and L is the effective length (m) of the hollow fiber in the dialyzer.

3、ポリビニルピロリドンの溶出量
透析型人工腎臓装置製造基準に定められた方法で抽出し、該抽出液中のポリビニルピロリドンを比色法で定量した。
乾燥中空糸膜1gに純水100mlを加え、70℃で1時間抽出する。得られた抽出液2.5ml、0.2モルクエン酸水溶液1.25ml、0.006規定のヨウ素水溶液0.5mlをよく混合し、室温で10分間放置した、後に470nmでの吸光度を測定した。定量は標品のポリビニルピロリドンを用いて上記方法に従い測定する事により求めた検量線にて行った。
3. Elution amount of polyvinyl pyrrolidone Extracted by the method defined in the dialysis artificial kidney device production standard, and the polyvinyl pyrrolidone in the extract was quantified by a colorimetric method.
100 g of pure water is added to 1 g of the dry hollow fiber membrane and extracted at 70 ° C. for 1 hour. The obtained extract (2.5 ml), 0.2 molar aqueous citric acid solution (1.25 ml) and 0.006 normal iodine aqueous solution (0.5 ml) were mixed well and allowed to stand at room temperature for 10 minutes, and the absorbance at 470 nm was measured. Quantification was performed with a calibration curve obtained by measuring according to the above method using a standard polyvinylpyrrolidone.

4、UV(220−350nm)吸光度
ポリビニルピロリドンの溶出量測定法において記載した方法で抽出した抽出液を分光光度計(日立製作所製、U−3000)を用いて波長範囲200〜350nmの吸光度を測定し、この波長範囲での最大の吸光度を求めた。
該測定は、中空糸膜を長手方向に2.7cmずつ10個に等分し、各々の部位から乾燥状態の中空糸膜1gをはかりとり全サンプルについて測定した。
湿潤中空糸膜モジュールの場合は、モジュールの透析液側流路に生理食塩水を500mL/minで5分間通液し、ついで血液側流路に200mL/minで通液した。その後血液側から透析液側に200mL/minでろ過をかけながら3分間通液した後にフリーズドライして乾燥膜を得て、該乾燥膜を用いて上記定量を行った。
4. UV (220-350 nm) absorbance The absorbance of the extract extracted by the method described in the method for measuring the amount of polyvinylpyrrolidone eluted is measured using a spectrophotometer (manufactured by Hitachi Ltd., U-3000) in the wavelength range of 200 to 350 nm. The maximum absorbance in this wavelength range was determined.
In this measurement, the hollow fiber membrane was equally divided into 10 pieces of 2.7 cm in the longitudinal direction, and 1 g of a hollow fiber membrane in a dry state was weighed from each part and measured for all samples.
In the case of the wet hollow fiber membrane module, physiological saline was passed through the dialysate side channel of the module at 500 mL / min for 5 minutes, and then passed through the blood side channel at 200 mL / min. Thereafter, the solution was passed through for 3 minutes while filtering from the blood side to the dialysate side at 200 mL / min, and then freeze-dried to obtain a dry membrane, and the above quantification was performed using the dry membrane.

5、過酸化水素の定量
前記した方法で抽出した抽出液2.6mlに塩化アンモニウム緩衝液(PH8.6)0.2mlとモル比で当量混合したTiClの塩化水素溶液と4−(2−ピリジルアゾ)レゾルシノールのNa塩水溶液との混合液を加え、さらに0.4mMに調製した発色試薬0.2mlを加え、50℃で5分間加温後、室温に冷却し508nmの吸光度を測定した。標品を用いて同様に測定して求めた検量線を利用して定量値を求めた。
該測定は、中空糸膜を長手方向に2.7cmずつ10個に等分し、各々の部位から乾燥状態の中空糸膜1gをはかりとり全サンプルについて測定した。
5. Quantitative determination of hydrogen peroxide 2.6 ml of the extract extracted by the above method and 0.2 ml of ammonium chloride buffer (PH 8.6) equimolarly mixed with a molar ratio of TiCl 4 and 4- (2- A mixed solution of pyridylazo) resorcinol with an aqueous Na salt solution was added, 0.2 ml of a coloring reagent prepared to 0.4 mM was further added, the mixture was heated at 50 ° C. for 5 minutes, cooled to room temperature, and the absorbance at 508 nm was measured. A quantitative value was obtained using a calibration curve obtained by measuring in the same manner using a sample.
In this measurement, the hollow fiber membrane was equally divided into 10 pieces of 2.7 cm in the longitudinal direction, and 1 g of a hollow fiber membrane in a dry state was weighed from each part and measured for all samples.

6、中空糸膜の保存安定性
各実施例および比較例で得られた乾燥状態の中空糸膜約10,000本をポリエチレン製パイプに挿入し、所定の長さに切断しバンドルとした。得られたバンドルを充填率60vol%でケースに充填し、端部をウレタン樹脂で接着し、樹脂を切り出し中空糸膜面積が1.5mの血液浄化器とした。該血液浄化器を脱酸素状態で25kGyのγ線を照射し滅菌処理を行った。得られた滅菌処理された血液浄化器を室温で1年間保存した。1年間保存後の血液浄化器より中空糸膜を切り出し、溶出物試験に供し、前記した方法でUV(220−350nm)吸光度を測定した。該保存によるUV(220−350nm)吸光度の増加度で安定性を判定した。該増加度は中空糸膜を長手方向に10個に等分し、それぞれのサンプルについて測定し、その最大値で判定した。最大値が0.10を超えないものを合格とした。
6. Storage Stability of Hollow Fiber Membrane About 10,000 hollow fiber membranes obtained in each example and comparative example were inserted into a polyethylene pipe and cut into a predetermined length to obtain a bundle. The obtained bundle was filled in the case at a filling rate of 60 vol%, the end was adhered with urethane resin, the resin was cut out, and a blood purifier having a hollow fiber membrane area of 1.5 m 2 was obtained. The blood purifier was sterilized by irradiating it with 25 kGy of γ rays in a deoxygenated state. The resulting sterilized blood purifier was stored at room temperature for 1 year. A hollow fiber membrane was cut out from the blood purifier after storage for 1 year, subjected to an eluate test, and UV (220-350 nm) absorbance was measured by the method described above. Stability was determined by the degree of increase in UV (220-350 nm) absorbance due to the storage. The degree of increase was obtained by equally dividing the hollow fiber membrane into 10 pieces in the longitudinal direction, measuring each sample, and determining the maximum value. Those whose maximum value did not exceed 0.10 were considered acceptable.

7、中空糸膜の含水率
中空糸膜の含水率は、乾燥前の中空糸膜の質量(a)、120℃の乾熱オーブンで2時間乾燥後(絶乾後)の中空糸膜の質量(b)を測定し、下記式を用いて算定した。
含水率(質量%)=(a−b)/b×100
ここで、(a)は1〜2gの範囲内とすることで、2時間後に絶乾状態(これ以上質量変化がない状態)とすることができる。
7. Moisture content of hollow fiber membrane The moisture content of the hollow fiber membrane is the mass of the hollow fiber membrane before drying (a), the mass of the hollow fiber membrane after being dried in a 120 ° C dry heat oven for 2 hours (after absolutely dry). (B) was measured and calculated using the following formula.
Moisture content (mass%) = (ab) / b × 100
Here, by setting (a) within the range of 1 to 2 g, a completely dry state (a state in which there is no further mass change) can be obtained after 2 hours.

(実施例1)
ディスクタービン型攪拌翼を有した溶解槽にジメチルアセトアミド(DMAc)およびRO水をそれぞれ4.02および0.16質量部仕込み、攪拌をしながらポリエーテルスルホン(住化ケムテックス社製、スミカエクセル(登録商標)4800P)1質量部およびポリビニルピロリドン(BASF社製コリドン(登録商標)K90)0.144質量部をそれぞれ3等分し、ポリエーテルスルホン、ポリビニルピロリドンの順に交互に投入し、2時間攪拌し、溶解することにより紡糸溶液を得た。このとき、ポリエーテルスルホンおよびポリビニルピロリドンの供給および溶解は窒素雰囲気下で行なった。また、溶解時の温度は65℃を超えないように冷却した。最終溶解時の攪拌のフルード数およびレイノルズ数はそれぞれ1.0および100であった。ついで真空ポンプを用いて系内を−500mmHgまで減圧した後、溶媒等が蒸発して製膜溶液の組成が変化しないように、直ぐに系内を密閉し15分間放置した。この操作を3回繰り返して製膜溶液の脱泡を行った。脱泡が完了した後、系内は再度窒素置換を行い弱加圧状態で維持した。なお、上記ポリビニルピロリドンは、過酸化水素含有量80ppmのものを用いた。得られた製膜溶液を30μm、15μmの2段の焼結フィルターに順に通した後、70℃に加温したチューブインオリフィスノズルから中空形成剤として予め−700mmHgで30分間脱気処理した50℃の46質量%DMAc水溶液とともに吐出、紡糸管により外気と遮断された400mmの乾式部を通過後、60℃の20質量%DMAc水溶液中で凝固させ、湿潤状態のまま綛に捲き上げた。紡糸溶液の溶解後から紡糸までの紡糸溶液の貯留時間は3日であった。また、該期間中も液温は35℃、窒素ガス置換状態を維持した。紡糸工程中、中空糸膜が接触するローラーは全て表面が鏡面加工されたもの、ガイドは全て表面が梨地加工されたものを使用した。
Example 1
4.02 and 0.16 parts by mass of dimethylacetamide (DMAc) and RO water were charged in a dissolution tank having a disc turbine type stirring blade, respectively, and polyethersulfone (Sumitomo Chemtex, Sumika Excel (registered) was added while stirring. (Trademark) 4800P) 1 part by weight and polyvinyl pyrrolidone (BASF Koridone (registered trademark) K90) 0.144 parts by weight, each divided into three equal parts, polyether sulfone and polyvinyl pyrrolidone are alternately added in this order, and stirred for 2 hours. Then, a spinning solution was obtained by dissolving. At this time, the supply and dissolution of polyethersulfone and polyvinylpyrrolidone were performed in a nitrogen atmosphere. Moreover, it cooled so that the temperature at the time of melt | dissolution might not exceed 65 degreeC. The Froude number and Reynolds number of stirring at the final dissolution were 1.0 and 100, respectively. The system was then depressurized to -500 mmHg using a vacuum pump, and the system was immediately sealed and allowed to stand for 15 minutes so that the solvent and the like were evaporated and the composition of the film forming solution did not change. This operation was repeated three times to degas the film forming solution. After the defoaming was completed, the inside of the system was again purged with nitrogen and maintained in a weakly pressurized state. In addition, the said polyvinyl pyrrolidone used the hydrogen peroxide content 80ppm. The obtained film-forming solution was passed through a two-stage sintered filter of 30 μm and 15 μm in order, and then degassed at −700 mmHg for 30 minutes in advance as a hollow forming agent from a tube-in orifice nozzle heated to 70 ° C. The solution was discharged together with a 46% by weight DMAc aqueous solution, passed through a 400 mm dry section cut off from the outside air by a spinning tube, solidified in a 20% by weight DMAc aqueous solution at 60 ° C., and then rolled up in a wet state. The storage time of the spinning solution from the dissolution of the spinning solution to spinning was 3 days. During this period, the liquid temperature was 35 ° C. and the nitrogen gas substitution state was maintained. During the spinning process, all the rollers with which the hollow fiber membranes contacted were mirror-finished on the surface, and all the guides were textured on the surface.

得られた湿潤中空糸膜約10,000本の束に中空糸膜束に接触する表面が梨地加工されたポリエチレン製のフィルムを巻きつけた後、27cmの長さに切断し、80℃の熱水中で30分間×4回洗浄し、オーブン中に反射板を設置し均一加熱ができるような構造を有し、かつ遠赤外線ヒーターが取り付けられたマイクロ波照射方式の乾燥器に導入し、マイクロ波照射と遠赤外線照射を同時に行い、以下の条件で乾燥した。7kPaの減圧下、1.5kWの出力で25分間中空糸膜束を加熱した後、マイクロ波照射を停止すると同時に減圧度を1.5kPaに上げ3分間維持した。つづいて減圧度を7kPaに戻し、かつマイクロ波を照射し0.5kWの出力で8分間中空糸膜束を加熱した後、マイクロ波を切断し減圧度を上げ0.7kPaを3分間維持した。さらに減圧度を7kPaに戻し、0.2kWの出力で5分間マイクロ波の照射を行い中空糸膜束を加熱した。マイクロ波照射終了後の中空糸膜束中の含水率は11質量%であった。マイクロ波照射停止後、減圧度を0.5kPaに上げ、遠赤外線の照射のみを続行し、10分間維持することにより中空糸膜束の乾燥を終了し、乾燥庫内に窒素ガスを送入して常圧に戻し乾燥中空糸膜束を得た。なお、乾燥中は全期間に渡り乾燥オーブンの中心部に設けた熱電対で検出される温度で50℃になるように遠赤外線ヒーターの出力調整をした。この間の中空糸膜束表面の最高到達温度は65℃であった。乾燥前の中空糸膜束の含水率は330質量%であり、最終の乾燥上がりの含水率は2.5質量%であった。得られた中空糸膜束の内径は198μm、膜厚は28μmであった。得られた中空糸膜のポリビニルピロリドン溶出量は5ppmであった。   A bundle of about 10,000 obtained wet hollow fiber membranes was wrapped with a polyethylene film whose surface contacting with the hollow fiber membrane bundles had a textured finish, and then cut into a length of 27 cm and heated at 80 ° C. Washed in water for 30 minutes x 4 times, installed in a microwave-irradiated dryer equipped with a far-infrared heater that has a structure that allows uniform heating by installing a reflector in the oven. Wave irradiation and far-infrared irradiation were performed simultaneously and dried under the following conditions. After heating the hollow fiber membrane bundle under a reduced pressure of 7 kPa at an output of 1.5 kW for 25 minutes, the microwave irradiation was stopped and at the same time the degree of reduced pressure was increased to 1.5 kPa and maintained for 3 minutes. Subsequently, the degree of vacuum was returned to 7 kPa, the microwave was irradiated and the hollow fiber membrane bundle was heated at an output of 0.5 kW for 8 minutes, and then the microwave was cut to increase the degree of vacuum and maintain 0.7 kPa for 3 minutes. Furthermore, the degree of vacuum was returned to 7 kPa, and microwave irradiation was performed at an output of 0.2 kW for 5 minutes to heat the hollow fiber membrane bundle. The water content in the hollow fiber membrane bundle after the microwave irradiation was 11% by mass. After the microwave irradiation is stopped, the degree of decompression is increased to 0.5 kPa, and only the irradiation with far infrared rays is continued. By maintaining for 10 minutes, the drying of the hollow fiber membrane bundle is completed, and nitrogen gas is fed into the drying chamber. Returning to normal pressure, a dried hollow fiber membrane bundle was obtained. During drying, the output of the far-infrared heater was adjusted so that the temperature detected by a thermocouple provided at the center of the drying oven was 50 ° C. over the entire period. The highest temperature reached on the surface of the hollow fiber membrane bundle during this period was 65 ° C. The moisture content of the hollow fiber membrane bundle before drying was 330% by mass, and the moisture content after the final drying was 2.5% by mass. The obtained hollow fiber membrane bundle had an inner diameter of 198 μm and a film thickness of 28 μm. The obtained hollow fiber membrane had an elution amount of polyvinyl pyrrolidone of 5 ppm.

得られた中空糸膜を長手方向に2.7cmずつ10個に等分し、各々の部位から乾燥状態の中空糸膜1gをはかりとり、過酸化水素を定量した。過酸化水素は全部位において低レベルで安定していた。該定量値を表1に示した。   The obtained hollow fiber membrane was equally divided into 10 pieces of 2.7 cm in the longitudinal direction, and 1 g of the dry hollow fiber membrane was weighed from each portion, and hydrogen peroxide was quantified. Hydrogen peroxide was stable at low levels at all sites. The quantitative values are shown in Table 1.

このようにして得られた中空糸膜を用いて血液浄化器を組み立てた。該血液浄化器を脱酸素状態で25kGyのγ線を照射し滅菌処理を行った。得られた滅菌処理された血液浄化器を室温で1年間保存した。1年間保存後の血液浄化器より中空糸膜を切り出し、溶出物試験に供したところ、中空糸膜の透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の最大値は0.04であり、基準値の0.10以下が維持されていた。結果を表2に示す。   A blood purifier was assembled using the hollow fiber membrane thus obtained. The blood purifier was sterilized by irradiating it with 25 kGy of γ rays in a deoxygenated state. The resulting sterilized blood purifier was stored at room temperature for 1 year. When the hollow fiber membrane was cut out from the blood purifier after storage for 1 year and subjected to the eluate test, the maximum value of UV (220-350 nm) absorbance, which is the dialysis-type artificial kidney device manufacturing approval standard for the hollow fiber membrane, was 0. 04, and the reference value of 0.10 or less was maintained. The results are shown in Table 2.

(比較例1)
実施例1において、紡糸溶液調製用の溶解槽の攪拌翼をプロペラ型とし、ポリエーテルスルホンとポリビニルピロリドンの投入を分割することなく一括して投入し、さらに、溶解や貯留条件を表2に示すごとくに変更する以外は、実施例1と同様にして中空糸膜および血液浄化器を得た。原料の投入方法や攪拌状態の変更により、ポリビニルピロリドンの継粉が発生し溶解時間が実施例1より長くなった。結果を表1および2に示す。本比較例で得られた中空糸膜の過酸化水素溶出量はレベルが高く低品質であった。また、本比較例の中空糸膜を用いて血液浄化器を組み立てた。該血液浄化器に予め脱気したRO水を充填し、25kGyのγ線を照射してPVPの架橋処理を行った。一年保存した血液浄化器に充填されていた中空糸膜は、透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度0.10以下を維持することができなかった。
(Comparative Example 1)
In Example 1, the stirring blade of the dissolution tank for preparing the spinning solution is a propeller type, and the introduction of polyethersulfone and polyvinylpyrrolidone is conducted all at once without being divided, and the dissolution and storage conditions are shown in Table 2. A hollow fiber membrane and a blood purifier were obtained in the same manner as in Example 1 except for changes. By changing the raw material charging method and the stirring state, polyvinylpyrrolidone spatter was generated and the dissolution time was longer than in Example 1. The results are shown in Tables 1 and 2. The amount of hydrogen peroxide eluted from the hollow fiber membrane obtained in this comparative example was high and low quality. In addition, a blood purifier was assembled using the hollow fiber membrane of this comparative example. The blood purifier was filled with RO water degassed in advance and irradiated with 25 kGy of γ-ray to crosslink PVP. The hollow fiber membrane filled in the blood purifier stored for one year could not maintain the UV (220-350 nm) absorbance of 0.10 or less, which is the dialysis artificial kidney device manufacturing approval standard.

(比較例2)
比較例1において、紡糸溶液の溶解温度および貯留温度を90℃に上げ、溶解および貯留を窒素ガス雰囲気下で行った以外は、比較例1と同様にして中空糸膜および血液浄化器を得た。結果を表1および2に示す。本比較例で得られた中空糸膜の過酸化水素溶出量、保存安定性は比較例1同様満足できるものではなかった。
(Comparative Example 2)
In Comparative Example 1, a hollow fiber membrane and a blood purifier were obtained in the same manner as in Comparative Example 1, except that the spinning temperature and the storage temperature of the spinning solution were increased to 90 ° C. and the dissolution and storage were performed in a nitrogen gas atmosphere. . The results are shown in Tables 1 and 2. The hydrogen peroxide elution amount and storage stability of the hollow fiber membrane obtained in this Comparative Example were not satisfactory as in Comparative Example 1.

(比較例3)
比較例1の方法において、過酸化水素含有量が500ppmのポリビニルピロリドンを原料とし、攪拌翼の回転数等を増大し、溶解時のフルード数およびレイノルズ数はそれぞれ1.5および260とするように変更した以外は、比較例2と同様にして中空糸膜を得た。得られた中空糸膜を用いて血液浄化器を組み立てた。本比較例では、ポリビニルピロリドンの溶解時のフルード数およびレイノルズ数が高すぎるため、溶解原料がタンク内で飛散し壁に付着したり、溶解時に溶液への気泡のかみこみが起こる等の好ましくない現象が発生した。結果を表1および2に示す。本比較例で得られた中空糸膜の過酸化水素溶出量がさらに増加した。また、PVPの架橋処理を行わなかったため、保存安定性がさらに悪化した。
(Comparative Example 3)
In the method of Comparative Example 1, polyvinyl pyrrolidone having a hydrogen peroxide content of 500 ppm is used as a raw material, the rotational speed of the stirring blade is increased, and the fluid number and Reynolds number at the time of dissolution are 1.5 and 260, respectively. Except for the change, a hollow fiber membrane was obtained in the same manner as in Comparative Example 2. A blood purifier was assembled using the obtained hollow fiber membrane. In this comparative example, since the fluid number and Reynolds number at the time of dissolution of polyvinyl pyrrolidone are too high, undesired phenomena such as dissolution raw material scattering in the tank and adhering to the wall, or entrapment of bubbles in the solution during dissolution There has occurred. The results are shown in Tables 1 and 2. The amount of hydrogen peroxide eluted from the hollow fiber membrane obtained in this comparative example was further increased. Moreover, since the PVP crosslinking treatment was not performed, the storage stability was further deteriorated.

(比較例4)
比較例3の方法において、溶解温度および貯留温度を90℃にし、中空糸膜の乾燥を常圧下でマイクロ波を照射して乾燥するように変更し、比較例1と同様の方法でPVPの架橋処理を行った以外は、比較例3と同様にして中空糸膜および血液浄化器を得た。マイクロ波の照射は中空糸膜中の含水率が65質量%になるまでは2KW、それ以降は0.8KWとし含水率が0.5質量%になるまで乾燥した。また、乾燥開始時から乾燥終了時までの間、各中空糸膜の下部から8m/秒の風速にて除湿空気(湿度10%RH以下)を糸束の下部から上部へと通風した。該乾燥時の中空糸膜の最高到達温度は65℃であった。得られた結果を表1および2に示す。本比較例で得られた中空糸膜の過酸化水素溶出量がさらに増加した。そのため、保存安定性がさらに悪化し、約2ヶ月の保存で既に透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度は平均値でも0.10以下を維持することができなくなった。
(Comparative Example 4)
In the method of Comparative Example 3, the melting temperature and the storage temperature were set to 90 ° C., and the hollow fiber membrane was changed to dry by irradiating microwaves under normal pressure. A hollow fiber membrane and a blood purifier were obtained in the same manner as in Comparative Example 3 except that the treatment was performed. Microwave irradiation was 2 kW until the moisture content in the hollow fiber membrane reached 65% by mass, and thereafter 0.8KW and dried until the moisture content became 0.5% by mass. Further, from the start of drying to the end of drying, dehumidified air (humidity of 10% RH or less) was passed from the lower part of each yarn bundle to the upper part at a wind speed of 8 m / sec. The maximum temperature reached by the hollow fiber membrane during the drying was 65 ° C. The obtained results are shown in Tables 1 and 2. The amount of hydrogen peroxide eluted from the hollow fiber membrane obtained in this comparative example was further increased. Therefore, the storage stability further deteriorated, and the UV (220-350 nm) absorbance, which is already the dialysis-type artificial kidney device manufacturing approval standard after about 2 months of storage, can no longer maintain an average value of 0.10 or less. .

(実施例2)
2本の枠型ブレードが自転、公転するいわゆるプラネタリー運動により混練効果を発現する形式の混練溶解機にポリエーテルスルホン(住化ケムテックス社製、スミカエクセル(登録商標)4800P)1質量部、ポリビニルピロリドン(BASF社製コリドン(登録商標)K90)0.144質量部およびジメチルアセトアミド(DMAc)1質量部を仕込み、2時間攪拌し混練をおこなった。引き続き3.02質量部のDMAcとRO水0.16質量部の混合液を9時間を要して添加した。攪拌機の回転数を上げてさらに1時間攪拌を続行し均一に溶解した。このとき、混練および溶解は窒素雰囲気下で行なった。混練および溶解時の温度は40℃を超えないように冷却した。最終溶解時の攪拌のフルード数およびレイノルズ数はそれぞれ1.1および100であった。ついで真空ポンプを用いて系内を−500mmHgまで減圧した後、溶媒等が蒸発して製膜溶液の組成が変化しないように、直ぐに系内を密閉し15分間放置した。この操作を3回繰り返して製膜溶液の脱泡を行った。脱泡が完了した後、系内は再度窒素置換を行い弱加圧状態で維持した。なお、上記ポリビニルピロリドンは、過酸化水素含有量280ppmのものを用いた。得られた製膜溶液を30μm、15μmの2段の焼結フィルターに順に通した後、70℃に加温したチューブインオリフィスノズルから中空形成剤として予め−700mmHgで30分間脱気処理した50℃の46質量%DMAc水溶液とともに吐出、紡糸管により外気と遮断された400mmの乾式部を通過後、60℃の20質量%DMAc水溶液中で凝固させ、湿潤状態のまま綛に捲き上げた。使用したチューブインオリフィスノズルのノズルスリット幅は、平均60μmであり、最大61μm、最小59μm、スリット幅の最大値、最小値の比は1.03、ドラフト比は1.06であった。紡糸溶液調製後から紡糸までの紡糸溶液の貯留時間は2日であった。該中空糸膜約10,000本の束の周りに中空糸束側表面が梨地加工されたポリエチレン製のフィルムを巻きつけた後、27cmの長さに切断し、80℃の熱水中で30分間×4回洗浄した。これを実施例1と同様の方法で乾燥し、中空糸膜および血液浄化器を得た。結果を表1および2に示す。本実施例で得られた中空糸膜および血液浄化器は実施例で得られたものと同様に高品質であった。
(Example 2)
Polyethersulfone (Sumitomo Chemtex Co., Ltd., Sumika Excel (registered trademark) 4800P) 1 part by mass is used in a kneading and dissolving machine that exhibits a kneading effect by so-called planetary motion in which two frame-type blades rotate and revolve. 0.144 parts by mass of pyrrolidone (BASF Co., Ltd. Kollidon (registered trademark) K90) and 1 part by mass of dimethylacetamide (DMAc) were charged and kneaded by stirring for 2 hours. Subsequently, a mixed solution of 3.02 parts by mass of DMAc and 0.16 parts by mass of RO water was added over 9 hours. Stirring was continued for an additional hour by increasing the number of revolutions of the stirrer and dissolved uniformly. At this time, kneading and dissolution were performed in a nitrogen atmosphere. The temperature during kneading and dissolution was cooled so as not to exceed 40 ° C. The Froude number and Reynolds number of stirring at the time of final dissolution were 1.1 and 100, respectively. The system was then depressurized to -500 mmHg using a vacuum pump, and the system was immediately sealed and allowed to stand for 15 minutes so that the solvent and the like were evaporated and the composition of the film forming solution did not change. This operation was repeated three times to degas the film forming solution. After the defoaming was completed, the inside of the system was again purged with nitrogen and maintained in a weakly pressurized state. The polyvinyl pyrrolidone having a hydrogen peroxide content of 280 ppm was used. The obtained film-forming solution was sequentially passed through a two-stage sintered filter of 30 μm and 15 μm, and then degassed at −700 mmHg for 30 minutes in advance as a hollow forming agent from a tube-in orifice nozzle heated to 70 ° C. The solution was discharged together with a 46% by mass DMAc aqueous solution and passed through a 400 mm dry part cut off from the outside air by a spinning tube, and then solidified in a 20% by mass DMAc aqueous solution at 60 ° C. The nozzle slit width of the tube-in-orifice nozzle used was an average of 60 μm, the maximum 61 μm, the minimum 59 μm, the ratio of the maximum and minimum slit widths was 1.03, and the draft ratio was 1.06. The storage time of the spinning solution from the preparation of the spinning solution to spinning was 2 days. A polyethylene film whose surface on the hollow fiber bundle side is textured is wrapped around a bundle of about 10,000 hollow fiber membranes, then cut into 27 cm lengths, and heated in hot water at 80 ° C. for 30 minutes. Washed 4 times for min. This was dried in the same manner as in Example 1 to obtain a hollow fiber membrane and a blood purifier. The results are shown in Tables 1 and 2. The hollow fiber membrane and blood purifier obtained in this example were of high quality, similar to those obtained in the example.

(実施例3)
ポリエーテルスルホン(住化ケムテックス社製、スミカエクセル(登録商標)4800P)1質量部、ポリビニルピロリドン(BASF社製コリドン(登録商標)K−90)0.21質量部、DMAc1.5質量部を2軸のスクリュータイプの混練機で混練した。得られた混練物をDMAc2.57質量部および水0.28質量部を仕込んだ攪拌式の溶解機に添加し、4時間攪拌し溶解した。混練および溶解は内温が65℃を超えないように冷却した。ついで真空ポンプを用いて系内を−700mmHgまで減圧した後、溶媒等が揮発して製膜溶液組成が変化しないように直ぐに系内を密閉し10分間放置した。この操作を3回繰り返して製膜溶液の脱泡を行った。なお、上記ポリビニルピロリドンとしては、過酸化水素含有量130ppmのものを用い、原料供給系での供給タンクや前記の溶解槽を窒素ガス置換した。また、溶解時の撹拌フルード数およびレイノルズ数はそれぞれ1.1および100であった。得られた製膜溶液を15μm、15μmの2段のフィルターに通した後、70℃に加温したチューブインオリフィスノズルから中空形成剤として予め−700mmHgで2時間脱気処理した50℃の50質量%DMAc水溶液と同時に吐出し、紡糸管により外気と遮断された350mmのエアギャップ部を通過後、60℃の水中で凝固させた。凝固浴から引き揚げられた中空糸膜は85℃の水洗槽を45秒間通過させ溶媒と過剰のポリビニルピロリドンを除去した後巻き上げた。該中空糸膜約10,000本の束の周りに実施例1と同様のポリエチレン製のフィルムを巻きつけた後、30℃の40vol%イソプロパノール水溶液で30分×2回浸漬洗浄した。これを実施例1と同様の方法で乾燥し、中空糸膜および血液浄化器を得た。結果を表1および2に示す。本実施例で得られた中空糸膜および血液浄化器は実施例で得られたものと同様に高品質であった。
(Example 3)
2 parts by mass of polyethersulfone (Sumika Chemtex Co., Ltd., SUMIKAEXCEL (registered trademark) 4800P), 1 part by mass of polyvinyl pyrrolidone (BASF Koridone (registered trademark) K-90), 2 parts by mass of DMAc It knead | mixed with the screw type kneader of the axis | shaft. The obtained kneaded material was added to a stirring type dissolver charged with 2.57 parts by mass of DMAc and 0.28 parts by mass of water, and dissolved by stirring for 4 hours. The kneading and dissolution were cooled so that the internal temperature did not exceed 65 ° C. Next, after reducing the pressure in the system to −700 mmHg using a vacuum pump, the system was immediately sealed and left for 10 minutes so that the solvent and the like were volatilized and the composition of the film forming solution was not changed. This operation was repeated three times to degas the film forming solution. As the polyvinyl pyrrolidone, one having a hydrogen peroxide content of 130 ppm was used, and the supply tank in the raw material supply system and the dissolution tank were replaced with nitrogen gas. Further, the stirring fluid number and the Reynolds number at the time of dissolution were 1.1 and 100, respectively. The obtained film-forming solution was passed through a two-stage filter of 15 μm and 15 μm, and then degassed in advance at −700 mmHg for 2 hours as a hollow forming agent from a tube-in orifice nozzle heated to 70 ° C. 50 mass at 50 ° C. The solution was discharged at the same time as the% DMAc aqueous solution, passed through a 350 mm air gap portion cut off from the outside air by a spinning tube, and then coagulated in water at 60 ° C. The hollow fiber membrane pulled up from the coagulation bath was passed through a water washing tank at 85 ° C. for 45 seconds to remove the solvent and excess polyvinylpyrrolidone, and then wound up. A polyethylene film similar to that of Example 1 was wrapped around a bundle of about 10,000 hollow fiber membranes, and then washed by immersing twice in a 40 vol% isopropanol aqueous solution at 30 ° C. for 30 minutes. This was dried in the same manner as in Example 1 to obtain a hollow fiber membrane and a blood purifier. The results are shown in Tables 1 and 2. The hollow fiber membrane and blood purifier obtained in this example were of high quality, similar to those obtained in the example.

(実施例4)
ポリエーテルスルホン(住化ケムテックス社製、スミカエクセル(登録商標)4800P)1質量部、ポリビニルピロリドン(BASF社製コリドン(登録商標)K−90)0.21質量部、DMAc1.5質量部を2軸のスクリュータイプの混練機で混練した。得られた混練物をDMAc2.57質量部および水0.28質量部を仕込んだ攪拌式の溶解機に添加し、4時間攪拌し溶解した。混練および溶解は内温が40℃を超えないように冷却した。ついで真空ポンプを用いて系内を−700mmHgまで減圧した後、溶媒等が揮発して製膜溶液組成が変化しないように直ぐに系内を密閉し10分間放置した。この操作を3回繰り返して製膜溶液の脱泡を行った。なお、上記ポリビニルピロリドンとしては、過酸化水素含有量400ppmのものを用い、原料供給系での供給タンクや前記の溶解槽を窒素ガス置換した。また、溶解時の撹拌フルード数およびレイノルズ数はそれぞれ1.1および100であった。得られた製膜溶液を15μm、15μmの2段のフィルターに通した後、70℃に加温したチューブインオリフィスノズルから中空形成剤として予め−700mmHgで2時間脱気処理した50℃の50質量%DMAc水溶液と同時に吐出し、紡糸管により外気と遮断された350mmのエアギャップ部を通過後、60℃の水中で凝固させた。凝固浴から引き揚げられた中空糸膜は85℃の水洗槽を45秒間通過させ溶媒と過剰のポリビニルピロリドンを除去した後巻き上げた。該中空糸膜約10,000本の束の周りに実施例1と同様のポリエチレン製のフィルムを巻きつけた後、30℃の40vol%イソプロパノール水溶液で30分×2回浸漬洗浄した。これを実施例1と同様の方法で乾燥し、中空糸膜および血液浄化器を得た。結果を表1および2に示す。本実施例で得られた中空糸膜および血液浄化器は実施例で得られたものと同様に高品質であった。
Example 4
1 part by weight of polyethersulfone (manufactured by Sumika Chemtex, Sumika Excel (registered trademark) 4800P), 0.21 part by weight of polyvinylpyrrolidone (Collidon (registered trademark) K-90, manufactured by BASF), 1.5 parts by weight of DMAc It knead | mixed with the screw type kneader of the axis | shaft. The obtained kneaded material was added to a stirring type dissolver charged with 2.57 parts by mass of DMAc and 0.28 parts by mass of water, and dissolved by stirring for 4 hours. The kneading and dissolution were cooled so that the internal temperature did not exceed 40 ° C. Next, after reducing the pressure in the system to −700 mmHg using a vacuum pump, the system was immediately sealed and left for 10 minutes so that the solvent and the like were volatilized and the composition of the film forming solution was not changed. This operation was repeated three times to degas the film forming solution. As the polyvinyl pyrrolidone, one having a hydrogen peroxide content of 400 ppm was used, and the supply tank in the raw material supply system and the dissolution tank were replaced with nitrogen gas. Further, the stirring fluid number and the Reynolds number at the time of dissolution were 1.1 and 100, respectively. The obtained film-forming solution was passed through a two-stage filter of 15 μm and 15 μm, and then degassed in advance at −700 mmHg for 2 hours as a hollow forming agent from a tube-in orifice nozzle heated to 70 ° C. 50 mass at 50 ° C. The solution was discharged at the same time as the% DMAc aqueous solution, passed through a 350 mm air gap portion cut off from the outside air by a spinning tube, and then coagulated in water at 60 ° C. The hollow fiber membrane pulled up from the coagulation bath was passed through a water washing tank at 85 ° C. for 45 seconds to remove the solvent and excess polyvinylpyrrolidone, and then wound up. A polyethylene film similar to that of Example 1 was wrapped around a bundle of about 10,000 hollow fiber membranes, and then washed by immersing twice in a 40 vol% isopropanol aqueous solution at 30 ° C. for 30 minutes. This was dried in the same manner as in Example 1 to obtain a hollow fiber membrane and a blood purifier. The results are shown in Tables 1 and 2. The hollow fiber membrane and blood purifier obtained in this example were of high quality, similar to those obtained in the example.

本発明のポリスルホン系中空糸膜の製造方法は、その製造工程中の紡糸溶液の調製およびその貯留工程における構成成分の劣化、特に、ポリビニルピロリドンの酸化劣化による過酸化水素の発生が抑制されるので、過酸化水素溶出量の少ない中空糸膜が得られる。従って、中空糸膜を長期に渡り保存した場合に該過酸化水素により引起されるポリビニルピロリドン等の劣化が抑制されるので、中空糸膜を長期保存をしても透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の最大値を0.10以下に維持するができるので、慢性腎不全の治療に用いる血液浄化器用等として好適に用いることができるという利点がある。また、本発明の製造方法により上記した中空糸膜を、経済的に、かつ安定して製造できるという利点がある。従って、産業界に寄与することが大である。   The production method of the polysulfone-based hollow fiber membrane of the present invention suppresses the generation of hydrogen peroxide due to the deterioration of the components in the preparation of the spinning solution during the production process and the storage process, in particular, the oxidative degradation of polyvinylpyrrolidone. A hollow fiber membrane with a small amount of hydrogen peroxide elution can be obtained. Therefore, when hollow fiber membranes are stored for a long period of time, degradation of polyvinyl pyrrolidone and the like caused by the hydrogen peroxide is suppressed. The maximum value of UV (220-350 nm) absorbance can be maintained at 0.10 or less, so that there is an advantage that it can be suitably used for blood purifiers used for the treatment of chronic renal failure. Moreover, there exists an advantage that the above-mentioned hollow fiber membrane can be manufactured economically and stably by the manufacturing method of this invention. Therefore, it is important to contribute to the industry.

紡糸溶液調製温度(℃)と過酸化水素溶出量(ppm)との関係を示す模式図である。It is a schematic diagram which shows the relationship between spinning solution preparation temperature (degreeC) and hydrogen peroxide elution amount (ppm). 紡糸溶液調製温度(℃)とPVP溶出量(ppm)との関係を示す模式図である。It is a schematic diagram which shows the relationship between spinning solution preparation temperature (degreeC) and PVP elution amount (ppm). 紡糸溶液調製温度(℃)とUV吸光度との関係を示す模式図である。It is a schematic diagram which shows the relationship between spinning solution preparation temperature (degreeC) and UV light absorbency.

Claims (10)

ポリビニルピロリドン、ポリスルホン系高分子およびそれらの共通溶媒からなる少なくとも3成分を不活性ガス雰囲気下、70℃以下で溶解して紡糸溶液を調製し、得られた紡糸溶液を紡糸工程に供給するまでの間70℃以下に維持することを特徴とするポリスルホン系中空糸膜の製造方法。   Preparation of a spinning solution by dissolving at least three components comprising polyvinylpyrrolidone, a polysulfone polymer and a common solvent thereof under an inert gas atmosphere at 70 ° C. or lower, and supplying the obtained spinning solution to the spinning process A method for producing a polysulfone-based hollow fiber membrane, wherein the temperature is maintained at 70 ° C. or less. 溶解後の紡糸溶液の紡糸工程で使用するまでの貯留時間を最大3日間とすることを特徴とする請求項1記載のポリスルホン系中空糸膜の製造方法。   The method for producing a polysulfone-based hollow fiber membrane according to claim 1, wherein the storage time until the spinning solution is used in the spinning step after dissolution is a maximum of 3 days. フルード数が0.7〜1.3、撹拌レイノルズ数が50〜250の条件で溶解することを特徴とする請求項1または2に記載のポリスルホン系中空糸膜の製造方法。   The method for producing a polysulfone-based hollow fiber membrane according to claim 1 or 2, wherein the dissolution is performed under the conditions of a fluid number of 0.7 to 1.3 and a stirring Reynolds number of 50 to 250. ポリスルホン系高分子およびポリビニルピロリドンの溶解槽への供給を少なくとも2回以上に分割し、かつポリスルホン系高分子とポリビニルピロリドンを交互に供給し溶解することを特徴とする請求項1〜3のいずれかに記載のポリスルホン系中空糸膜の製造方法。   The supply to the dissolution tank of the polysulfone polymer and polyvinyl pyrrolidone is divided into at least two times, and the polysulfone polymer and polyvinyl pyrrolidone are alternately supplied and dissolved. A process for producing a polysulfone-based hollow fiber membrane as described in 1. 中空糸膜の構成成分を予備混練した後、溶解槽に供給して溶解することを特徴とする請求項1〜4のいずれかに記載のポリスルホン系中空糸膜の製造方法。   The method for producing a polysulfone-based hollow fiber membrane according to any one of claims 1 to 4, wherein the components of the hollow fiber membrane are pre-kneaded and then supplied to the dissolution tank for dissolution. 紡糸溶液の調製を混練機能を有する溶解槽で行うことを特徴とする請求項1〜5のいずれかに記載のポリスルホン系中空糸膜の製造方法。   The method for producing a polysulfone-based hollow fiber membrane according to any one of claims 1 to 5, wherein the spinning solution is prepared in a dissolution tank having a kneading function. 紡糸溶液調製時の溶解を10時間以内で行うことを特徴とする請求項1〜6のいずれかに記載のポリスルホン系中空糸膜の製造方法。   The method for producing a polysulfone-based hollow fiber membrane according to any one of claims 1 to 6, wherein dissolution during preparation of the spinning solution is performed within 10 hours. 少なくともポリビニルピロリドンの供給、混練および紡糸溶液の貯留は不活性ガス雰囲気下で行うことを特徴とする請求項1〜7のいずれかに記載のポリスルホン系中空糸膜の製造方法。   The method for producing a polysulfone-based hollow fiber membrane according to any one of claims 1 to 7, wherein at least supply of polyvinylpyrrolidone, kneading, and storage of the spinning solution are performed in an inert gas atmosphere. 過酸化水素含有量が300ppm以下のポリビニルピロリドンを用いることを特徴とする請求項1〜8のいずれかに記載のポリスルホン系中空糸膜の製造方法。   The method for producing a polysulfone-based hollow fiber membrane according to any one of claims 1 to 8, wherein polyvinylpyrrolidone having a hydrogen peroxide content of 300 ppm or less is used. ポリビニルピロリドンを実質的に架橋しないことを特徴とする請求項1〜9のいずれかに記載のポリスルホン系中空糸膜の製造方法。
The method for producing a polysulfone-based hollow fiber membrane according to any one of claims 1 to 9, wherein polyvinylpyrrolidone is not substantially cross-linked.
JP2005111462A 2004-12-27 2005-04-07 Method for producing polysulfone-based hollow fiber membrane Active JP4748350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005111462A JP4748350B2 (en) 2004-12-27 2005-04-07 Method for producing polysulfone-based hollow fiber membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004378277 2004-12-27
JP2004378277 2004-12-27
JP2005111462A JP4748350B2 (en) 2004-12-27 2005-04-07 Method for producing polysulfone-based hollow fiber membrane

Publications (2)

Publication Number Publication Date
JP2006204876A true JP2006204876A (en) 2006-08-10
JP4748350B2 JP4748350B2 (en) 2011-08-17

Family

ID=36962303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005111462A Active JP4748350B2 (en) 2004-12-27 2005-04-07 Method for producing polysulfone-based hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP4748350B2 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117812A (en) * 1985-11-15 1987-05-29 Nikkiso Co Ltd Hollow fiber and its production
JPH0356129A (en) * 1989-01-26 1991-03-11 Imperial Chem Ind Plc <Ici> Making of asymmetric membrance, complex membrance and membrance; and membrance using process for filtering
JPH069825A (en) * 1992-03-23 1994-01-18 Mitsui Toatsu Chem Inc Rubber-modified styrenic resin composition and its production
JPH11153865A (en) * 1997-09-16 1999-06-08 Asahi Chem Ind Co Ltd Photosensitive structural body for flexographic printing plate
JPH11350239A (en) * 1998-06-02 1999-12-21 Daicel Chem Ind Ltd Polysulfone-based porous hollow fiber film
JP2000135421A (en) * 1998-11-02 2000-05-16 Asahi Medical Co Ltd Polysulfone-base blood purifying membrane
JP2000140589A (en) * 1998-11-16 2000-05-23 Asahi Medical Co Ltd Porous polysulfone film
JP2001170171A (en) * 1999-12-21 2001-06-26 Toray Ind Inc Semipermeable membrane for blood processing and dialyzer for blood processing using the same
JP2001219041A (en) * 2000-02-08 2001-08-14 Orion Mach Co Ltd Hygroscopic hollow fiber and gas drier using its fiber
JP2001349585A (en) * 2000-06-07 2001-12-21 Orion Mach Co Ltd High polymer film humidifier using hygroscopic hollow fiber
WO2002009857A1 (en) * 2000-07-27 2002-02-07 Asahi Medical Co., Ltd. Modified hollow-fiber membrane
JP2003138158A (en) * 2001-11-07 2003-05-14 Konica Corp Method and apparatus for refining water-soluble organic compound
JP3580314B1 (en) * 2003-12-09 2004-10-20 東洋紡績株式会社 Polysulfone-based selectively permeable hollow fiber membrane bundle and method for producing the same
JP2004305840A (en) * 2003-04-03 2004-11-04 Toyobo Co Ltd Method for preserving hollow fiber membrane

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117812A (en) * 1985-11-15 1987-05-29 Nikkiso Co Ltd Hollow fiber and its production
JPH0356129A (en) * 1989-01-26 1991-03-11 Imperial Chem Ind Plc <Ici> Making of asymmetric membrance, complex membrance and membrance; and membrance using process for filtering
JPH069825A (en) * 1992-03-23 1994-01-18 Mitsui Toatsu Chem Inc Rubber-modified styrenic resin composition and its production
JPH11153865A (en) * 1997-09-16 1999-06-08 Asahi Chem Ind Co Ltd Photosensitive structural body for flexographic printing plate
JPH11350239A (en) * 1998-06-02 1999-12-21 Daicel Chem Ind Ltd Polysulfone-based porous hollow fiber film
JP2000135421A (en) * 1998-11-02 2000-05-16 Asahi Medical Co Ltd Polysulfone-base blood purifying membrane
JP2000140589A (en) * 1998-11-16 2000-05-23 Asahi Medical Co Ltd Porous polysulfone film
JP2001170171A (en) * 1999-12-21 2001-06-26 Toray Ind Inc Semipermeable membrane for blood processing and dialyzer for blood processing using the same
JP2001219041A (en) * 2000-02-08 2001-08-14 Orion Mach Co Ltd Hygroscopic hollow fiber and gas drier using its fiber
JP2001349585A (en) * 2000-06-07 2001-12-21 Orion Mach Co Ltd High polymer film humidifier using hygroscopic hollow fiber
WO2002009857A1 (en) * 2000-07-27 2002-02-07 Asahi Medical Co., Ltd. Modified hollow-fiber membrane
JP2003138158A (en) * 2001-11-07 2003-05-14 Konica Corp Method and apparatus for refining water-soluble organic compound
JP2004305840A (en) * 2003-04-03 2004-11-04 Toyobo Co Ltd Method for preserving hollow fiber membrane
JP3580314B1 (en) * 2003-12-09 2004-10-20 東洋紡績株式会社 Polysulfone-based selectively permeable hollow fiber membrane bundle and method for producing the same

Also Published As

Publication number Publication date
JP4748350B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
EP1733784B1 (en) Polysulfone-base permselective hollow fiber membrane bundle and process for producing the same
WO2006107014A1 (en) Blood purifier
JP2006345876A (en) Separation membrane with selective permeability and process for producing the same
JP2006288414A (en) Polysulfone-based hollow fiber membrane type blood purifier
JP4483651B2 (en) Sterilization method of blood purification module
JP4596171B2 (en) Blood purifier
JP4876704B2 (en) Blood purifier
JP4748350B2 (en) Method for producing polysulfone-based hollow fiber membrane
JP2013009962A (en) Hollow fiber membrane type hemocatharsis apparatus
JP3659256B1 (en) Polysulfone-based permselective hollow fiber membrane bundle and drying method thereof
JP2006068689A (en) Drying method for bundle of hollow fiber membrane
JP2006230459A (en) Polysulfone hollow fiber membrane bundle having permselectivity and blood purifier
JP2006288415A (en) Bundle of polysulfone-based permselective hollow fiber membrane and hemocatharsis apparatus
JP4379803B2 (en) Method for drying hollow fiber membrane bundle
JP4748348B2 (en) Polysulfone-based permselective hollow fiber membrane bundle
JP4501155B2 (en) Method for producing polysulfone-based permselective hollow fiber membrane bundle
JP3815505B1 (en) Blood purification module package and sterilization method thereof
JP4843993B2 (en) Blood purifier
JP5580616B2 (en) Method for drying polysulfone-based permselective hollow fiber membrane bundle
JP4843992B2 (en) Blood purifier
JP4839630B2 (en) Polysulfone-based permselective hollow fiber membrane bundle and blood purifier
JP4711169B2 (en) Hollow fiber membrane bundle and separation module
JP2006068716A (en) Drying method for bundle of hollow fiber membrane
JP2006288413A (en) Hollow fiber membrane type hemocatharsis apparatus
JP2011156532A (en) Polysulfone-based permselective hollow fiber membrane bundle and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110504

R151 Written notification of patent or utility model registration

Ref document number: 4748350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350