JP2006288415A - Bundle of polysulfone-based permselective hollow fiber membrane and hemocatharsis apparatus - Google Patents

Bundle of polysulfone-based permselective hollow fiber membrane and hemocatharsis apparatus Download PDF

Info

Publication number
JP2006288415A
JP2006288415A JP2005108854A JP2005108854A JP2006288415A JP 2006288415 A JP2006288415 A JP 2006288415A JP 2005108854 A JP2005108854 A JP 2005108854A JP 2005108854 A JP2005108854 A JP 2005108854A JP 2006288415 A JP2006288415 A JP 2006288415A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
membrane bundle
less
blood purifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005108854A
Other languages
Japanese (ja)
Inventor
Hirofumi Ogawa
浩文 小川
Koyo Mabuchi
公洋 馬淵
Noriaki Kato
典昭 加藤
Katsuro Kuze
勝朗 久世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2005108854A priority Critical patent/JP2006288415A/en
Publication of JP2006288415A publication Critical patent/JP2006288415A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/084Undulated fibres

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bundle of polysulfone-based permselective hollow fiber membrane which exhibits a high degree of safety and stability of performance and is particularly suitable for a hemocatharsis apparatus or the like. <P>SOLUTION: The bundle of polysulfone-based permselective hollow fiber membrane containing polyvinylpyrrolidone satisfies the following characteristics at the same time: (1) Elution of polyvinylpyrrolidone from the bundle of hollow fiber membrane is 10 ppm or less; (2) When the bundle of the hollow fiber membrane is divided into ten in the direction of its length and tests established by the manufacturing license standard of dialysis type artificial kidney apparatus are conducted for each of the sections, the amount of elution of hydrogen peroxide in an obtained extract is 5 ppm or less for all the sections; (3) The thickness of the hollow fiber membrane is 10-60 μm and the yield elongation percentage of single yarn is 5.0% or less; and (4) The hollow fiber membrane is provided with crimps of wavelength of 10 mm or more and of amplitude of 0.2 mm or more. The hemocatharsis apparatus is filled with the above permselective hollow fiber membrane. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、安全性や性能の安定性が高く、特に血液浄化器用等に適したポリスルホン系選択透過性中空糸膜束および体外循環による血中老廃物の除去を目的とした血液浄化器に関する。   The present invention relates to a polysulfone-based permselective hollow fiber membrane bundle that is highly safe and stable in performance and particularly suitable for blood purifiers and the like, and a blood purifier for the purpose of removing blood waste products by extracorporeal circulation.

腎不全治療などにおける血液浄化療法では、血液中の尿毒素、老廃物を除去する目的で、天然素材であるセルロース、またその誘導体であるセルロースジアセテート、セルローストリアセテート、合成高分子としてはポリスルホン、ポリメチルメタクリレート、ポリアクリロニトリルなどの高分子を用いた透析膜や限外濾過膜を分離材として用いた血液透析器、血液濾過器あるいは血液透析濾過器などの血液浄化器が広く使用されている。特に中空糸型の膜を分離材として用いた血液浄化器は体外循環血液量の低減、血中の物質除去効率の高さ、さらに血液浄化器生産時の生産性などの利点から透析器分野での重要度が高い。   In blood purification therapy for the treatment of renal failure, for the purpose of removing urine toxins and waste products in the blood, cellulose is a natural material, and its derivatives are cellulose diacetate and cellulose triacetate. Blood purifiers such as hemodialyzers, hemofilters or hemodialyzers using a dialysis membrane using a polymer such as methyl methacrylate or polyacrylonitrile or an ultrafiltration membrane as a separating material are widely used. In particular, blood purifiers that use hollow fiber membranes as separation materials are used in the dialyzer field because of their advantages such as reducing the volume of extracorporeal blood circulation, increasing the efficiency of removing substances in the blood, and productivity during blood purifier production. Is highly important.

上記した膜素材の中で透析技術の進歩に最も合致したものとして透水性能が高いポリスルホン系樹脂が注目されている。しかし、ポリスルホン単体で半透膜を作った場合は、ポリスルホン系樹脂が疎水性であるために血液との親和性に乏しく、エアロック現象を起こしてしまうため、そのまま血液処理用などに用いることはできない。   Among the above-mentioned membrane materials, polysulfone-based resins having high water permeability are attracting attention as the best match with the progress of dialysis technology. However, when a semi-permeable membrane is made of polysulfone alone, the polysulfone resin is hydrophobic, so it has poor affinity with blood and causes an airlock phenomenon. Can not.

上記した課題の解決方法として、ポリスルホン系樹脂に親水性高分子を配合し製膜し、膜に親水性を付与する方法が提案されている。例えば、ポリエチレングリコール等の多価アルコールを配合する方法が開示されている(例えば、特許文献1、2参照)。
特開昭61−232860号公報 特開昭58−114702号公報
As a method for solving the above-described problems, a method has been proposed in which a hydrophilic polymer is blended with a polysulfone-based resin to form a film, thereby imparting hydrophilicity to the film. For example, a method of blending a polyhydric alcohol such as polyethylene glycol is disclosed (for example, see Patent Documents 1 and 2).
JP-A-61-232860 JP 58-114702 A

また、ポリビニルピロリドンを配合する方法が開示されている(例えば、特許文献3、4参照)。
特公平5−54373号公報 特公平6−75667号公報
Moreover, the method of mix | blending polyvinylpyrrolidone is disclosed (for example, refer patent document 3, 4).
Japanese Patent Publication No. 5-54373 Japanese Examined Patent Publication No. 6-75667

しかし、このような材料は合成物であるため、生体にとっては異物と認識され、さまざまな生体反応が起こる。たとえば、血液と接触した際には、血小板の付着や白血球の活性化などが起こり、血液適合性が悪いことがある。   However, since such a material is a synthetic material, it is recognized as a foreign substance by a living body, and various biological reactions occur. For example, when it comes into contact with blood, adhesion of platelets or activation of white blood cells may occur, resulting in poor blood compatibility.

上記課題解決の方策として、親水性高分子としてポリビニルピロリドンを用いた方法が安全性や経済性の点より注目されている。しかしながら、ポリビニルピロリドンを配合することによる親水性化技術に於いては、透析時にポリビニルピロリドンが溶出し浄化された血液に混入するという課題が発生する。該親水性高分子の溶出が多くなると人体に取り異物である親水性高分子の長期透析時の体内蓄積が増え副作用や合併症等を引き起こす可能性がある。そこで、該ポリビニルピロリドン等の溶出量は、透析型人工腎臓装置製造承認基準により定められている。該透析型人工腎臓装置製造承認基準においては、UV吸光度で定量されている。該透析型人工腎臓装置製造承認基準で溶出量制御の効果を判定した技術が開示されている(例えば、特許文献5〜7参照)。また、特許文献8には、親水性高分子の半透膜中からの溶出量が10ppm以下である血液処理用半透膜が開示されている。該文献は、血液処理用半透膜からの親水性高分子の溶出を抑える技術について開示しているが、中空糸膜の保存にまで及ぶ経時的な親水性高分子の劣化・分解に関わる過酸化水素の影響については全く言及されていない。
特許第3314861号公報 特開平6−165926号公報 特開2000−350926号公報 特開2001−170171号公報
As a measure for solving the above problems, a method using polyvinylpyrrolidone as a hydrophilic polymer has attracted attention from the viewpoint of safety and economy. However, in the hydrophilization technique by blending polyvinyl pyrrolidone, there arises a problem that polyvinyl pyrrolidone is eluted and mixed in purified blood during dialysis. When elution of the hydrophilic polymer increases, the hydrophilic polymer, which is a foreign substance taken up by the human body, increases in the body during long-term dialysis and may cause side effects and complications. Therefore, the elution amount of the polyvinyl pyrrolidone and the like is determined by the dialysis-type artificial kidney device manufacturing approval standard. In the dialysis type artificial kidney device manufacturing approval standard, it is quantified by UV absorbance. Techniques have been disclosed for determining the effect of elution control based on the dialysis-type artificial kidney device manufacturing approval criteria (see, for example, Patent Documents 5 to 7). Patent Document 8 discloses a semipermeable membrane for blood treatment in which the elution amount of hydrophilic polymer from the semipermeable membrane is 10 ppm or less. This document discloses a technique for suppressing elution of a hydrophilic polymer from a semipermeable membrane for blood treatment, but it is a process related to deterioration / degradation of the hydrophilic polymer over time, which extends to storage of a hollow fiber membrane. No mention is made of the effects of hydrogen oxide.
Japanese Patent No. 3314861 JP-A-6-165926 JP 2000-350926 A JP 2001-170171 A

本発明者等は該ポリビニルピロリドンの溶出挙動について、詳細に検討した結果、上記の透析型人工腎臓装置製造承認基準により定められた試験法で抽出された抽出液中には、従来公知のUV吸光度では測定できない過酸化水素が含まれていることを見出した。過酸
化水素が血液浄化器内および選択透過性分離膜内に存在すると、例えばポリビニルピロリドンの酸化劣化を促進し、中空糸膜束を保存した時に該ポリビニルピロリドンの溶出量が増加するという保存安定性が悪化する事を見出した。しかしながら、上記特許文献においては、血液処理用半透膜からの親水性高分子の溶出を抑える技術について開示されているが、中空糸膜の保存にまで及ぶ経時的な親水性高分子の劣化・分解に関わる過酸化水素の影響については全く言及されていない。
As a result of detailed studies on the elution behavior of the polyvinyl pyrrolidone, the present inventors have found that the extract extracted by the test method defined by the above dialysis-type artificial kidney device manufacturing approval criteria contains a conventionally known UV absorbance. Then, it was found that hydrogen peroxide that cannot be measured was included. When hydrogen peroxide is present in the blood purifier and in the selectively permeable separation membrane, for example, it promotes oxidative degradation of polyvinylpyrrolidone, and the storage stability that the elution amount of the polyvinylpyrrolidone increases when the hollow fiber membrane bundle is stored. I found out that it gets worse. However, in the above-mentioned patent document, a technique for suppressing elution of hydrophilic polymer from a semipermeable membrane for blood treatment is disclosed. However, degradation of hydrophilic polymer over time extending to storage of a hollow fiber membrane. No mention is made of the effect of hydrogen peroxide on decomposition.

さらに、上記した特許文献5〜8に開示されている従来技術においては、いずれもが中空糸膜束の特定部位について評価されたものである。現実には、血液浄化器組み立て等において中空糸膜束を乾燥する等の処理を行うと乾燥条件の変動等の影響により、中空糸膜束内で上記した溶出量が大きく変動することが判明し、上記特定部位のみの評価では高度な安全性の要求には答えられない。特に、本発明者らが明らかにした過酸化水素が、中空糸膜束の特定部位に存在した場合、その個所より中空糸膜束素材の劣化反応が開始され中空糸膜束の全体に伝播していくため、血液浄化器と用いられる中空糸膜束の長さ方向の存在量が全領域に渡り、一定量以下を確保する必要がある。   Furthermore, in the prior arts disclosed in Patent Documents 5 to 8 described above, all have been evaluated for specific portions of the hollow fiber membrane bundle. Actually, when the treatment such as drying the hollow fiber membrane bundle is performed in the blood purifier assembly or the like, it has been found that the above-mentioned elution amount largely fluctuates in the hollow fiber membrane bundle due to the influence of the fluctuation of the drying conditions. However, the evaluation of only the specific part cannot answer the high safety requirement. In particular, when hydrogen peroxide as clarified by the present inventors is present in a specific part of the hollow fiber membrane bundle, the deterioration reaction of the hollow fiber membrane bundle material is started from that point and propagates to the entire hollow fiber membrane bundle. Therefore, it is necessary to ensure that the amount of the hollow fiber membrane bundle used in the blood purification device in the longitudinal direction is below a certain amount over the entire region.

一方、血液浄化器においては、該血液浄化器に充填されている選択透過性中空糸膜中のポリビニルピロリドンの架橋や滅菌処理を目的として放射線照射処理がなされることがある。しかしながら、放射線照射を行った場合、架橋反応や滅菌作用以外に親水性高分子の一部に変性が引き起こされることがある。すなわち、処理雰囲気中の水や酸素と反応して、酸化状態にある不安定な官能基や部分構造が生成したり、加水分解によって新たな官能基が生成したりする。膜全体における親水性高分子の含有率はたとえ少なくても、その殆どは、相分離によってポリスルホン表面に濃縮されて存在するため、血液に対するこれらの影響は無視できるものではない。その結果、これらの変性部分の物理化学的変化により、膜の抗血栓性が低下することがあった。また、照射後の長期保管中にも変性が続いて、実使用時までに抗血栓性が低下するおそれもあった。   On the other hand, in a blood purifier, radiation irradiation treatment may be performed for the purpose of crosslinking or sterilizing polyvinyl pyrrolidone in a selectively permeable hollow fiber membrane filled in the blood purifier. However, when irradiated, modification may be caused to a part of the hydrophilic polymer in addition to the crosslinking reaction and sterilization effect. That is, it reacts with water or oxygen in the processing atmosphere to generate an unstable functional group or partial structure in an oxidized state, or a new functional group is generated by hydrolysis. These effects on blood are not negligible because most of the hydrophilic polymer content in the whole membrane is concentrated on the polysulfone surface by phase separation even if it is small. As a result, the anti-thrombogenicity of the membrane may be reduced due to physicochemical changes in these modified parts. In addition, denaturation continued during long-term storage after irradiation, and the antithrombogenicity could be reduced before actual use.

例えば、上記課題を解決する方法として、放射線照射された膜において、膜中のカルボキシル基含有量と過酸化物含有量とを一定の範囲に制御すると、抗血栓性に優れ、しかも、長期保管しても抗血栓状態を保持できる技術が開示されている(特許文献9参照)。
特開2000−135421号公報
For example, as a method for solving the above problems, in a film irradiated with radiation, if the carboxyl group content and the peroxide content in the film are controlled within a certain range, the film is excellent in antithrombogenicity and stored for a long time. However, a technique capable of maintaining an antithrombotic state is disclosed (see Patent Document 9).
JP 2000-135421 A

しかしながら、上記特許文献において開示されている技術は、水充填の状態で放射線照射された、いわゆるウエットタイプの血液浄化器に適用される方法である。該ウエットタイプの血液浄化器は、水充填のため重量は当然大きくなり、輸送や取り扱いが不便であるとか、寒冷地では厳寒期に血液浄化器に充填された水が凍結し中空糸膜の破裂や損傷を与える等の問題を有する。さらに、多量の滅菌水の準備など高コスト化の要因を有している。しかも、中空糸膜をわざわざバクテリアが繁殖しやすい湿潤状態にするため、包装後、滅菌するまでの僅かな時間の間にもバクテリアが繁殖することが考えられる。その結果、このようにして製造された血液浄化器は、完全な滅菌状態を得るまでに長時間を有し、更に高コスト化あるいは安全性の問題に繋がるので好ましくない。該技術は、ラジカル捕捉剤の存在下で放射線照射されおり、血液浄化用として使用する場合は、事前に該ラジカル捕捉剤を洗浄除去する操作が必要であるという課題を有する。そこで、乾燥状態の選択透過性中空糸膜が装填された、いわゆるドライタイプの血液浄化器で、かつラジカル捕捉剤の非存在下で放射線照射しても前記課題が回避できる方法の確立が強く嘱望されている。   However, the technique disclosed in the above-mentioned patent document is a method applied to a so-called wet type blood purifier irradiated with water in a state of water filling. The wet type blood purifier is naturally heavy due to water filling, and is inconvenient to transport and handle. In cold regions, the water filled in the blood purifier freezes in the severe cold season and the hollow fiber membrane ruptures. And problems such as damage. In addition, there are high cost factors such as preparation of a large amount of sterilized water. Moreover, in order to make the hollow fiber membrane both moist and easy for bacteria to propagate, it is conceivable that the bacteria will proliferate during a short period after packaging until sterilization. As a result, the blood purifier produced in this manner is not preferable because it takes a long time to obtain a completely sterilized state, which leads to higher cost or safety. This technique is irradiated with radiation in the presence of a radical scavenger and has a problem that an operation for washing and removing the radical scavenger in advance is necessary when used for blood purification. Therefore, the establishment of a so-called dry-type blood purifier loaded with a dry permeable hollow fiber membrane and capable of avoiding the above-described problems even when irradiated with radiation in the absence of a radical scavenger is strongly desired. Has been.

また、血液浄化器は、使用前に完全な滅菌処理を施す必要がある。該滅菌処理には、ホルマリン、エチレンオキサイドガス、高圧蒸気滅菌あるいはγ線等の放射線あるいは電子線照射滅菌法等が用いられており、それぞれ特有の効果を発揮している。このうち、放射線や電子線照射による滅菌法は被処理物を包装状態のまま処理できるとともに、滅菌効果が優れていることもあり、好ましい滅菌方法として採用されている。   In addition, the blood purifier needs to be completely sterilized before use. For the sterilization treatment, formalin, ethylene oxide gas, high-pressure steam sterilization, γ-ray radiation or electron beam irradiation sterilization methods, and the like are used, each exhibiting a unique effect. Among these, the sterilization method by radiation or electron beam irradiation is adopted as a preferable sterilization method because it can process the object to be processed in a packaged state and has an excellent sterilization effect.

しかしながら、血液浄化器に使用されている中空糸膜や該中空糸膜の固定に使用されている接着剤等は、放射線照射により劣化することが知られており、劣化を防止しつつ滅菌する方法が提案されている。例えば、中空糸膜を飽和含水率以上の湿潤状態とすることにより、γ線照射により中空糸膜の劣化を抑える方法が開示されている。(例えば、特許文献10参照)。しかしながら、該方法は上記特許文献9と同様の課題を有する。
特公昭55−23620号公報
However, it is known that hollow fiber membranes used in blood purifiers and adhesives used for fixing the hollow fiber membranes are deteriorated by radiation irradiation, and a method of sterilizing while preventing deterioration. Has been proposed. For example, a method for suppressing deterioration of the hollow fiber membrane by γ-ray irradiation by making the hollow fiber membrane in a wet state with a saturated moisture content or higher is disclosed. (For example, refer to Patent Document 10). However, this method has the same problem as that of Patent Document 9.
Japanese Patent Publication No.55-23620

上記の湿潤状態を回避し、かつ放射線照射による劣化を抑制する方法として、中空糸膜にグリセリン、ポリエチレングリコール等の滅菌保護剤を含有させ、乾燥状態でγ線照射する方法が開示されている(例えば、特許文献11参照)。しかしながら、該方法は中空糸膜に保護剤を含有しているために、中空糸膜の含水率を低く抑えることが難しく、また保護剤のγ線照射による劣化の問題や保護剤を使用直前に洗浄、除去するために手間が掛かる等の問題があった。
特開平8−168524号公報
As a method for avoiding the above-mentioned wet state and suppressing deterioration due to radiation irradiation, a method is disclosed in which a sterilizing protective agent such as glycerin or polyethylene glycol is contained in the hollow fiber membrane and γ-ray irradiation is performed in a dry state ( For example, see Patent Document 11). However, since this method contains a protective agent in the hollow fiber membrane, it is difficult to keep the water content of the hollow fiber membrane low, and the problem of deterioration of the protective agent due to γ-ray irradiation and the protective agent immediately before use are difficult. There was a problem that it took time and effort to clean and remove.
JP-A-8-168524

上記の課題を解決する方法として、半透膜を収容した透析器において、半透膜の自重に対して100%以上の水を抱液させ、該透析器内を不活性ガス雰囲気とした後、γ線照射を行う透析器の製造方法が開示されている(特許文献12参照)。しかしながら、該放射線を照射する前の中空糸膜の具備すべき特性や放射線照射による中空糸膜のプライミング性に対する影響に関しては言及されていない。
特開2001−170167号公報
As a method for solving the above problems, in a dialyzer containing a semipermeable membrane, 100% or more of water is held with respect to the weight of the semipermeable membrane, and the inside of the dialyzer is made an inert gas atmosphere. A method of manufacturing a dialyzer that performs γ-ray irradiation is disclosed (see Patent Document 12). However, there is no mention of the characteristics that the hollow fiber membrane should have before irradiation with radiation and the influence on the priming property of the hollow fiber membrane due to the irradiation of radiation.
JP 2001-170167 A

また、上記の課題を解決する方法として、中空糸膜の含水率が5%以下、かつ中空糸膜周辺付近の相対湿度が40%以下の状態で放射線を照射して滅菌する方法が開示されている。(例えば、特許文献13参照)。該方法は上記した課題は解決されており、かつ透析型人工腎臓装置製造承認基準の透析膜の溶出物試験に従って測定された波長220〜350nmにおける紫外線吸光度は基準値の0.1未満を満足している。しかしながら、該特許文献13においては滅菌処理時の中空糸膜の周りの酸素濃度の影響や滅菌処理後の溶出物の溶出量変化等については何ら言及をされていない。
特開2000−288085号公報
Further, as a method for solving the above problems, a method of sterilizing by irradiating with radiation in a state where the moisture content of the hollow fiber membrane is 5% or less and the relative humidity near the hollow fiber membrane is 40% or less is disclosed. Yes. (For example, refer to Patent Document 13). In the method, the above-mentioned problems have been solved, and the ultraviolet absorbance at a wavelength of 220 to 350 nm measured in accordance with the dialysis membrane elution test of the dialysis artificial kidney device manufacturing approval standard satisfies the standard value of less than 0.1. ing. However, in Patent Document 13, there is no mention of the influence of the oxygen concentration around the hollow fiber membrane during sterilization, the change in the amount of eluate after sterilization, and the like.
JP 2000-288085 A

また、γ線照射により滅菌を行う方法において、中空糸膜の含水率が10wt%以下の状態でγ線照射を行うことで膜素材の不溶化成分が10wt%以下であることを達成する方法が開示されている。(例えば、特許文献14参照)。該特許文献には、40%エタノール水溶液で抽出される膜の被処理液接触側面積1m2あたりの親水性高分子の量が2.0mg/m2以下が達成できることが開示されている。しかし、該特許文献においても、γ線照射を実施する場合の中空糸膜の周りの酸素濃度の影響や滅菌処理後の溶出物の溶出量変化あるいは滅菌処理によるプライミング性に及ぼす影響等については何ら言及をされていない。
特開2001−205057号公報
Moreover, in the method of performing sterilization by γ-ray irradiation, a method for achieving that the insolubilized component of the membrane material is 10 wt% or less by performing γ-ray irradiation in a state where the moisture content of the hollow fiber membrane is 10 wt% or less is disclosed. Has been. (For example, refer to Patent Document 14). The patent document discloses that the amount of the hydrophilic polymer per 1 m 2 of the liquid contact side area of the membrane extracted with a 40% ethanol aqueous solution can be 2.0 mg / m 2 or less. However, even in this patent document, there is no influence on the influence of the oxygen concentration around the hollow fiber membrane when γ-irradiation is performed, on the change in the amount of eluate after sterilization, or on the priming property of sterilization. Not mentioned.
JP 2001-205057 A

また、酸素による医療用具の基材の劣化を回避する方法として酸素不透過性の材料よりなる包装材料で医療用具を脱酸素剤と共に密封し放射線照射をする方法が知られており、血液浄化器についても開示されている。(例えば、特許文献15〜17参照)。
特開昭62−74364号公報 特開昭62−204754号公報 WO98/58842号公報
Further, as a method for avoiding deterioration of the base material of the medical device due to oxygen, a method of sealing the medical device together with an oxygen scavenger with a packaging material made of an oxygen-impermeable material and performing radiation irradiation is known. Is also disclosed. (For example, refer to Patent Documents 15 to 17).
Japanese Patent Application Laid-Open No. 62-74364 JP-A-62-204754 WO98 / 58842 publication

上記した脱酸素剤を用いた放射線照射における劣化としては、特許文献15では臭気の発生が、特許文献16では基材の強度や透析性能の低下が、特許文献17では基材の強度低下やアルデヒド類の発生が記述されているが、前記した抽出物量の増大に関しては言及されていない。また、放射線照射時の包装袋内の酸素濃度に関しては記述されているが、中空糸膜中の水分の重要性に関しては何ら言及されていない。   As the deterioration in radiation irradiation using the oxygen scavenger described above, in Patent Document 15, odor is generated, in Patent Document 16, the strength of the base material and the dialysis performance are decreased, and in Patent Document 17, the strength of the base material is decreased. Although the occurrence of sucrose has been described, there is no mention of the increase in the amount of extract described above. Moreover, although oxygen concentration in the packaging bag at the time of radiation irradiation is described, nothing is mentioned about the importance of moisture in the hollow fiber membrane.

さらに、上記の脱酸素剤を用いた系で放射線滅菌する方法に用いられる包装袋の素材としては、ガス、特に酸素の不透過性の重要性は記述されているが、水蒸気の透過性に関しては言及されていない。   Furthermore, as the material of the packaging bag used for the method of radiation sterilization in the above-mentioned system using an oxygen scavenger, the importance of gas, especially oxygen impermeability is described, but regarding water vapor permeability, Not mentioned.

また、内部に膜保護剤がウエット状または半ウエット状で充填されてなる液体処理器を不活性ガス雰囲気下で放射線滅菌する方法が開示されている(例えば、特許文献18参照)。本特許文献において、不活性ガス雰囲気を作り出す達成手段として脱酸素剤を用いる方法が開示されている。また、膜保護剤として水が列挙されている。一方、半ウエット状態における含水率の下限量に関しては言及されていないが、発明が解決しようとする課題において、「グリセリン、生理食塩水あるいは水が滲み出てきて液体処理器の外壁および包装袋内部に付着し、液体処理器の操作時に手に付着する問題があった」と記述されており、飽和含水率以上であることが示唆されている。従って、特許文献10と同様の課題を有した技術であると見なせる。
特開平8−280795号公報
Also disclosed is a method of radiation sterilizing a liquid processing device filled with a film protective agent in a wet or semi-wet shape in an inert gas atmosphere (see, for example, Patent Document 18). In this patent document, a method of using an oxygen scavenger as an achievement means for creating an inert gas atmosphere is disclosed. In addition, water is listed as a film protective agent. On the other hand, although the lower limit of the moisture content in the semi-wet state is not mentioned, the problem to be solved by the invention is that “glycerin, physiological saline or water oozes out and the inside wall of the liquid processor and the inside of the packaging bag There was a problem of adhering to the hand and adhering to the hand during the operation of the liquid processing apparatus, ”suggesting that the water content is higher than the saturated water content. Therefore, it can be regarded as a technique having the same problem as in Patent Document 10.
JP-A-8-280795

滅菌効果の長期維持を図る目的で、ドライタイプの中空糸膜型血液浄化器を真空包装してγ線を照射して滅菌する方法が開示されている(特許文献19参照)。しかしながら、γ線照射や保存における中空糸膜の劣化については全く配慮がなされていない。また、中空糸膜の含水率に関しても何ら言及がされていない。
特開2001−149471号公報
In order to maintain the sterilization effect for a long time, a method of sterilizing a dry type hollow fiber membrane blood purifier by vacuum packaging and irradiating with γ rays has been disclosed (see Patent Document 19). However, no consideration is given to the deterioration of the hollow fiber membrane during γ-ray irradiation or storage. In addition, no mention is made regarding the moisture content of the hollow fiber membrane.
JP 2001-149471 A

また、乾燥された中空糸膜にγ線を照射することにより、湿潤状態での照射に比べて中空糸膜中の過酸化物量が増大することが開示されているが、乾燥状態でのγ線照射における過酸化物の生成を抑制する方法に関しては、全く言及されていない(特許文献20参照)。
特開2000−135421号公報
Further, it is disclosed that the amount of peroxide in the hollow fiber membrane is increased by irradiating the dried hollow fiber membrane with γ rays compared to the irradiation in the wet state. No mention is made of a method for suppressing the formation of peroxides during irradiation (see Patent Document 20).
JP 2000-135421 A

さらに、上述のごとく血液浄化治療に用いられる選択透過性中空糸膜の製造においてポリビニルピロリドンの溶出を抑制したり、滅菌のためにγ線等の放射線を照射する方法において、該照射時の中空糸膜の含水率や照射雰囲気条件に関しては開示されているものもあるが、該放射線を照射する前の中空糸膜の具備すべき特性や放射線照射による中空糸膜のプライミング性に対する影響に関しては言及されていない。   Furthermore, in the method of suppressing the elution of polyvinylpyrrolidone in the production of the selectively permeable hollow fiber membrane used for blood purification treatment as described above, or the method of irradiating radiation such as γ rays for sterilization, the hollow fiber at the time of irradiation Although some have been disclosed regarding the moisture content of the membrane and the irradiation atmosphere conditions, mention is made of the properties that the hollow fiber membrane should have before irradiation and the influence of the irradiation on the priming property of the hollow fiber membrane. Not.

また、各種工業用の水処理等に用いられる液体分離膜血液浄化器を空気透過性が抑制された特定組成のフィルムで包装された液体分離膜血液浄化器の包装体および保存方法が開示されている(特許文献21参照)。該方法は包装体内に特定溶存酸素濃度の脱酸素水が充填された湿式状態での包装体および保存方法に関するものである。
特開2004−195380号公報
Further, a liquid separation membrane blood purifier packaged with a film having a specific composition with suppressed air permeability and a storage method for the liquid separation membrane blood purifier used in various industrial water treatments are disclosed. (See Patent Document 21). The method relates to a package in a wet state in which a package is filled with deoxygenated water having a specific dissolved oxygen concentration, and a storage method.
JP 2004-195380 A

また、中空糸膜束の乾燥において、マイクロ波を照射して乾燥する方法が開示されているが、該特許文献では、乾燥時の過酸化水素の生成や乾燥された中空糸膜束の保存安定性に関しては配慮がなされていない(例えば、特許文献22〜25参照)。
特開2003−175320号公報 特開2003−175321号公報 特開2003−175322号公報 特開2004−305997号公報
Moreover, in the drying of the hollow fiber membrane bundle, a method of drying by irradiating with microwaves is disclosed. However, in this patent document, the generation of hydrogen peroxide during drying and the storage stability of the dried hollow fiber membrane bundle are disclosed. No consideration is given to sex (for example, see Patent Documents 22 to 25).
JP 2003-175320 A JP 2003-175321 A JP 2003-175322 A JP 2004-305997 A

一方、近年、血液浄化器に対する要求も多様化および高度化してきており、例えば、取り扱い性や輸送コストに対する要求より、小型で、かつ高性能の血液浄化器が求められている。これらの要求に答えるために、中空糸膜有効長、中空糸膜内径、中空糸膜充填率、牛血透過係数および純水濾過係数を特定化した血液処理器に関する技術が開示されている(特許文献26参照)。
特開2002−143298号公報
On the other hand, in recent years, the demand for blood purifiers has also been diversified and advanced, and for example, there has been a demand for small and high-performance blood purifiers due to demands for handling and transportation costs. In order to respond to these requirements, a technique relating to a blood treatment device that specifies the effective length of the hollow fiber membrane, the inner diameter of the hollow fiber membrane, the filling rate of the hollow fiber membrane, the bovine blood permeability coefficient and the pure water filtration coefficient has been disclosed (patent) Reference 26).
JP 2002-143298 A

小型化を進めるためには、中空糸膜の径を小さくし、かつ膜厚みを薄くする必要がある。中空糸膜の径を小さくすることは透析時に中空糸膜に掛かる圧力が増大する。これに対して、膜厚みを薄くすることは、中空糸膜の耐圧性の低下につながる。従って、小型化の要求に答えるには、中空糸膜の耐圧性の向上が必要になる。特に、血液浄化器は長時間にわたり治療が行われるので、初期の耐圧性のみでなく、耐圧性の耐久性を含めた耐圧性の信頼性が求められる。   In order to promote downsizing, it is necessary to reduce the diameter of the hollow fiber membrane and reduce the membrane thickness. Reducing the diameter of the hollow fiber membrane increases the pressure applied to the hollow fiber membrane during dialysis. On the other hand, reducing the membrane thickness leads to a decrease in pressure resistance of the hollow fiber membrane. Therefore, in order to meet the demand for miniaturization, it is necessary to improve the pressure resistance of the hollow fiber membrane. In particular, since the blood purifier is treated for a long time, not only the initial pressure resistance but also the pressure resistance reliability including the durability of the pressure resistance is required.

また、小型化を図るためには血液浄化器容器内への中空糸膜の集束本数を増大させる。しかるに、血液浄化器容器内への中空糸膜の集束本数を増大させると、中空糸膜同士の密着による有効膜面積の低下や偏流の発生により、膜性能の低下、特に尿素等の小分子量物質の透過性能の低下を引き起こすことが知られている。   In addition, in order to reduce the size, the number of hollow fiber membranes focused in the blood purifier container is increased. However, when the number of the hollow fiber membranes focused in the blood purifier container is increased, the membrane performance is lowered due to the decrease in effective membrane area and the occurrence of drift due to the close contact between the hollow fiber membranes, and in particular, small molecular weight substances such as urea. It is known to cause a decrease in permeation performance.

上記特許文献において開示されている技術は、血液浄化器の小型化を進めることに関しては有効な方法であるが、小型化において求められる上記必要特性である耐圧性に対する信頼性や小型化により引き起こされる中空糸膜同士の密着による有効膜面積の低下や偏流の発生による膜性能低下等に関しては配慮がなされていない。   The technique disclosed in the above patent document is an effective method for promoting the downsizing of the blood purifier, but is caused by the reliability with respect to the pressure resistance, which is the necessary characteristic required for downsizing, and downsizing. No consideration has been given to the reduction of the effective membrane area due to the close contact between the hollow fiber membranes or the membrane performance due to the occurrence of drift.

中空糸膜同士の密着及び偏流の防止を目的として、種々の嵩高加工が行われている。その中で、中空糸に直接嵩高加工を行う方法が膜の有効面積の低下が最も少ないという点で好ましい。   Various bulky processes are performed for the purpose of preventing adhesion and drift of the hollow fiber membranes. Among them, a method of directly bulking the hollow fiber is preferable in that the decrease in the effective area of the membrane is the least.

中空糸膜に直接嵩高加工を行う方法として、紡糸・凝固・水洗・グリセリン処理・乾燥後の3本以上かつ10本以下の中空糸膜を合糸した上、綾角5度以上でボビンに巻き取り、これを60℃〜200℃の温度で熱処理することによってクリンプを付与する方法が開示されている。(例えば、特許文献27参照)。また、中空糸膜に非乾燥状態でクリンプ付与を行った後、クリンプを付与した中空糸膜を非乾燥状態で熱処理することによりクリンプを固定化する方法(例えば、特許文献28参照)等が提案されているが、そのいずれもがクリンプを付与するためにボビンその他に巻き取った後に、50℃以上の温度で熱処理を施してクリンプを固定化するものである。このような方法では、中空糸条を走行させながらクリンプを固定化することは出来ないと同時に、クリンプの波長及び振幅は中空糸の熱特性に強く相関し、ほとんど制御することはできず、振幅は0.15mm以下、波長は10mm以下と極めて微小である。さらに、熱処理によりクリンプを固定するため、ポリビニルピロリドン等の親水性高分子が分解してPVP溶出量が増大する問題がある。
特公平4−42022号公報 特開平8−10322号公報
As a method of performing bulk processing directly on the hollow fiber membrane, 3 or more and 10 or less hollow fiber membranes after spinning, coagulation, washing, glycerin treatment and drying are combined and wound around a bobbin at a crossing angle of 5 degrees or more. A method of applying a crimp by taking a heat treatment at a temperature of 60 ° C. to 200 ° C. is disclosed. (For example, see Patent Document 27). Also proposed is a method of immobilizing a crimp by applying a crimp to a hollow fiber membrane in a non-dry state and then heat-treating the hollow fiber membrane to which the crimp has been applied in a non-dry state (for example, see Patent Document 28). However, in any case, after winding around a bobbin or the like to impart a crimp, heat treatment is performed at a temperature of 50 ° C. or more to fix the crimp. In such a method, the crimp cannot be fixed while the hollow fiber is running, and at the same time, the wavelength and amplitude of the crimp strongly correlate with the thermal characteristics of the hollow fiber and can hardly be controlled. Is as small as 0.15 mm or less and the wavelength is 10 mm or less. Furthermore, since the crimp is fixed by heat treatment, there is a problem that a hydrophilic polymer such as polyvinylpyrrolidone is decomposed and the amount of elution of PVP is increased.
Japanese Patent Publication No. 4-42022 JP-A-8-10322

また、常温にてクリンプを付与する手段としてギアを用いた方法(例えば、特許文献29参照)が提案されているが、膜厚が厚く、糸強力の高い膜に対するクリンプ付与方法としては有効であるが、膜厚が薄く、糸強力の低い膜に対して適用すると、糸がつぶれてしまい、品質面で問題があるばかりでなく、中空糸膜としての性能を発現できない。
特開平9−21024号公報
Further, although a method using a gear (for example, see Patent Document 29) has been proposed as a means for applying crimp at room temperature, it is effective as a method for applying crimp to a film having a large film thickness and high yarn strength. However, when it is applied to a membrane having a thin film thickness and low yarn strength, the yarn is crushed, not only in terms of quality, but also cannot exhibit the performance as a hollow fiber membrane.
JP-A-9-21024

上記課題を解決する方法として、連続的に供給される複数本の中空糸膜列を、一定間隔をおいて走行する糸ガイドの間を蛇行させてクリンプを付与する方法が開示されている(特許文献30参照)。該方法においては、上記クリンプ工程で分繊板により中空糸膜を分繊してクリンプの付与がなされている。そのために、この分繊板との擦れにより中空糸膜束が傷付き、中空糸膜の耐圧性の信頼性低下に繋がる可能性がある。また、該方法は乾燥された中空糸膜にクリンプ付与が実施されている。乾燥中空糸膜は走行中、部材との接触により静電気が発生しやすく、静電気による中空糸膜の絡み合いが増大し、分繊板との擦れ傷や中空糸膜相互の擦れ傷発生の増長が起こり、中空糸膜の耐圧性の信頼性低下に繋がるという課題を有する。
特開2003−275549号公報
As a method for solving the above-described problem, a method is disclosed in which crimping is performed by meandering a plurality of continuously supplied hollow fiber membrane rows between yarn guides that travel at regular intervals (patent) Reference 30). In this method, the hollow fiber membrane is separated by a separating plate in the crimping step, and crimping is applied. Therefore, there is a possibility that the hollow fiber membrane bundle is damaged by rubbing with the separating plate, and the reliability of the pressure resistance of the hollow fiber membrane is lowered. In this method, crimping is performed on the dried hollow fiber membrane. Dry hollow fiber membranes are prone to static electricity due to contact with members during running, increasing the entanglement of the hollow fiber membranes due to static electricity, and increasing the occurrence of scratches with the separating plate and between the hollow fiber membranes. And, it has the subject that it leads to the reliability fall of the pressure resistance of a hollow fiber membrane.
JP 2003-275549 A

また、特定特性を有する中空糸膜に特定波長のクリンプを付与し、かつクリンプ付与工程で発生する扁平糸、異形糸および閉塞糸等の変形欠陥糸の割合を特定した中空糸膜が開示されている(特許文献31および32参照)。しかしながら、これらの技術においては、中空糸膜の製造工程や該中空糸膜を血液浄化器として用いる場合の滅菌工程における中空糸膜の構成成分の劣化反応の抑制には配慮がなされていない。
特開2002−66274号公報 特開2004−243263号公報
Also disclosed is a hollow fiber membrane that imparts a crimp of a specific wavelength to a hollow fiber membrane having specific characteristics and specifies the proportion of deformation defect yarns such as flat yarns, deformed yarns, and closing yarns generated in the crimping step. (See Patent Documents 31 and 32). However, in these techniques, no consideration is given to the suppression of the deterioration reaction of the components of the hollow fiber membrane in the manufacturing process of the hollow fiber membrane or in the sterilization process when the hollow fiber membrane is used as a blood purifier.
JP 2002-66274 A JP 2004-243263 A

本発明は、上記従来の技術における問題点のない、すなわち、本発明は、安全性や性能の安定性が高く、特に血液浄化器用等に適したポリスルホン系選択透過性中空糸膜束を提供することにある。また、本発明は、ドライタイプで、かつ小型化対応がされた血液浄化器において、ラジカル捕捉剤の非存在下で放射線照射による滅菌処理を行っても、該放射線照射による選択透過性中空糸膜の劣化が抑制され、長期保存安定性に優れた血液浄化器を提供することにある。   The present invention is free from the above-mentioned problems in the prior art, that is, the present invention provides a polysulfone-based permselective hollow fiber membrane bundle that is highly safe and stable in performance and particularly suitable for use in blood purifiers and the like. There is. The present invention also provides a selectively permeable hollow fiber membrane by radiation irradiation in a blood purifier that is dry type and adapted for miniaturization, even if sterilization treatment by radiation irradiation is performed in the absence of a radical scavenger. Is to provide a blood purifier having excellent long-term storage stability.

本発明は、ポリビニルピロリドンを含有するポリスルホン系選択透過性中空糸膜束において、下記特性を同時に満足することを特徴とするポリスルホン系選択透過性中空糸膜束である。
(1)中空糸膜束からのポリビニルピロリドンの溶出が10ppm以下であること。
(2)中空糸膜束を長手方向に10個に分割して、各部位について透析型人工腎臓装置製造承認基準により定められた試験を実施したとき、得られた抽出液の過酸化水素溶出量が全ての部位で5ppm以下であること。
(3)中空糸膜の膜厚が10〜60μm、単糸の降伏伸度が5.0%以下であること。
(4)中空糸膜に波長10mm以上、振幅0.2mm以上のクリンプが付与されていること。
この場合において、ポリスルホン系選択透過性中空糸膜が紡糸、凝固および水洗工程までは単糸で走行させた後に2〜50本の単糸を合糸して、クリンプ工程に連続的に供給することによりクリンプが付与されてなることが好ましい。
また、この場合において、上記クリンプが、ポリスルホン系選択透過性中空糸膜が連続的に供給される複数本の中空糸膜列を、一定間隔をおいて走行する糸ガイドの間を蛇行させることにより付与されてなることが好ましい。
また、この場合において、ポリスルホン系選択透過性中空糸膜束を室温で3ヶ月以上保存した後に、透析型人工腎臓装置製造承認基準により定められた試験を実施した時の中空糸膜の抽出液におけるUV(220〜350nm)吸光度が0.10以下であることが好ましい。
また、本発明は上記のポリスルホン系選択透過性中空糸膜束が充填されてなる血液浄化器である。
The present invention is a polysulfone-based permselective hollow fiber membrane bundle containing polyvinylpyrrolidone, wherein the polysulfone-based permselective hollow fiber membrane bundle satisfies the following characteristics at the same time.
(1) The elution of polyvinylpyrrolidone from the hollow fiber membrane bundle is 10 ppm or less.
(2) When the hollow fiber membrane bundle is divided into 10 pieces in the longitudinal direction and the test defined by the dialysis-type artificial kidney device manufacturing approval standard is performed for each part, the hydrogen peroxide elution amount of the obtained extract Is 5 ppm or less at all sites.
(3) The film thickness of the hollow fiber membrane is 10 to 60 μm, and the yield elongation of the single yarn is 5.0% or less.
(4) A crimp having a wavelength of 10 mm or more and an amplitude of 0.2 mm or more is applied to the hollow fiber membrane.
In this case, after the polysulfone-based permselective hollow fiber membrane is run as a single yarn until the spinning, coagulation and water washing steps, 2-50 single yarns are combined and continuously supplied to the crimping step. It is preferable that crimp is provided by.
In this case, the crimp causes the plurality of hollow fiber membrane rows to which the polysulfone-based permselective hollow fiber membranes are continuously supplied to meander between the yarn guides that run at a constant interval. It is preferable that it is provided.
Moreover, in this case, after the polysulfone-based permselective hollow fiber membrane bundle is stored at room temperature for 3 months or more, in the extract of the hollow fiber membrane when the test defined by the dialysis artificial kidney device manufacturing approval standard is performed It is preferable that UV (220-350 nm) absorbance is 0.10 or less.
The present invention is also a blood purifier filled with the polysulfone-based permselective hollow fiber membrane bundle.

本発明のポリスルホン系選択透過性中空糸膜束は、過酸化水素溶出量が抑制されており、該過酸化水素により引き起される中空糸膜束を長期に渡り保存した場合のポリビニルピロリドン等の劣化が抑制されるので、長期保存をしても透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度を0.10以下に維持するができる。また、本発明のポリスルホン系選択透過性中空糸膜束は、クリンプが付与されているので、中空糸膜束を血液浄化器容器に低密度になるように充填しても透析液の偏流の発生が抑制されるという利点がある。従って、慢性腎不全の治療に用いる高透水性能を有する血液透析法中空糸型血液浄化器用等として好適であるという利点がある。
また、本発明の血液浄化器は、ドライタイプであるので、軽い、凍結しない、雑菌が繁殖しにくい等の利点がある。さらに、本発明においては、ドライ状態で、かつラジカル捕捉剤の非存在下で、放射線照射しても放射線照射による選択透過性中空糸膜の劣化が抑制されるという従来技術では達成しえない効果が発現されるので、該劣化反応により生ずる過酸化水素生成が少なく、本発明の血液浄化器は、抗血栓性に優れ、かつ長期保存安定性に優れているという利点を有する。例えば、該血液浄化器に装填されているポリスルホン系選択透過性中空糸膜は、放射線照射を受けても、過酸化水素の生成が抑制されており、該過酸化水素により引起されるポリビニルピロリドン等の劣化が抑制されるので、血液浄化器を長期保存しても透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の最大値を0.10以下に維持することができ、血液浄化器を長期保存した場合の安全性が確保できるという利点がある。
The polysulfone-based permselective hollow fiber membrane bundle of the present invention has a reduced hydrogen peroxide elution amount, such as polyvinyl pyrrolidone when the hollow fiber membrane bundle caused by the hydrogen peroxide is stored for a long period of time. Since deterioration is suppressed, UV (220-350 nm) absorbance, which is a dialysis artificial kidney device manufacturing approval standard, can be maintained at 0.10 or less even after long-term storage. In addition, since the polysulfone-based permselective hollow fiber membrane bundle of the present invention is provided with a crimp, even if the hollow fiber membrane bundle is filled in a blood purifier container at a low density, the dialysate drifts. There is an advantage that is suppressed. Therefore, there is an advantage that it is suitable for a hemodialysis method hollow fiber blood purifier having high water permeability used for the treatment of chronic renal failure.
In addition, since the blood purifier of the present invention is a dry type, there are advantages such as being light, not freezing, and being difficult for bacteria to propagate. Furthermore, in the present invention, even in the dry state and in the absence of a radical scavenger, even if irradiated with radiation, the effect of the conventional technique that the deterioration of the selectively permeable hollow fiber membrane due to irradiation is suppressed is not achieved. Therefore, the production of hydrogen peroxide due to the deterioration reaction is small, and the blood purifier of the present invention has the advantages of excellent antithrombogenicity and excellent long-term storage stability. For example, the polysulfone-based permselective hollow fiber membrane loaded in the blood purifier suppresses the generation of hydrogen peroxide even when irradiated with radiation, such as polyvinyl pyrrolidone caused by the hydrogen peroxide, etc. Therefore, even if the blood purifier is stored for a long period of time, the maximum value of UV (220-350 nm) absorbance, which is the dialysis-type artificial kidney device manufacturing approval standard, can be maintained at 0.10 or less. There is an advantage that safety can be secured when the purifier is stored for a long period of time.

以下、本発明を詳細に説明する。
本発明に用いる中空糸膜束は、ポリビニルピロリドンを含有するポリスルホン系樹脂で構成されているところに特徴を有する。本発明におけるポリスルホン系樹脂とは、スルホン結合を有する樹脂の総称であり特に限定されないが、例を挙げると

Figure 2006288415
Figure 2006288415
で示される繰り返し単位をもつポリスルホン樹脂やポリエーテルスルホン樹脂がポリスルホン系樹脂として広く市販されており、入手も容易なため好ましい。 Hereinafter, the present invention will be described in detail.
The hollow fiber membrane bundle used in the present invention is characterized in that it is composed of a polysulfone resin containing polyvinylpyrrolidone. The polysulfone resin in the present invention is a general term for resins having a sulfone bond and is not particularly limited.
Figure 2006288415
Figure 2006288415
A polysulfone resin or a polyethersulfone resin having a repeating unit represented by is widely available as a polysulfone resin and is preferable because it is easily available.

本発明に用いられるポリビニルピロリドンは、N−ビニルピロリドンをビニル重合させた水溶性の高分子化合物であり、BASF社より「コリドン」、ISP社より「プラスドン」、第一工業製薬社より「ピッツコール」の商品名で市販されており、それぞれ各種の分子量の製品がある。一般には、親水性の付与効率では低分子量のものが、一方、溶出量を低くする点では高分子量のものを用いるのが好適であるが、最終製品の中空糸膜束の要求特性に合わせて適宜選択される。単一の分子量のものを用いても良いし、分子量の異なる製品を2種以上混合して用いても良い。また、市販の製品を精製し、例えば分子量分布をシャープにしたものを用いても良い。   Polyvinyl pyrrolidone used in the present invention is a water-soluble polymer compound obtained by vinyl polymerization of N-vinyl pyrrolidone, “Kollidon” from BASF, “Prasdon” from ISP, and “Pittscall” from Daiichi Kogyo Seiyaku. Are commercially available under the trade name “,” and there are products of various molecular weights. In general, it is preferable to use a low molecular weight in terms of imparting hydrophilicity, while a high molecular weight is preferable in terms of reducing the amount of elution, but in accordance with the required characteristics of the hollow fiber membrane bundle of the final product. It is selected appropriately. Those having a single molecular weight may be used, or two or more products having different molecular weights may be mixed and used. Moreover, you may use what refine | purified a commercial product and sharpened molecular weight distribution, for example.

本発明においては、過酸化水素含有量が300ppm以下のポリビニルピロリドンを用いて選択透過性中空糸膜束を製造するのが好ましい。原料として用いるポリビニルピロリドン中の該過酸化水素含有量を300ppm以下にすることで、製膜後の中空糸膜束中の過酸化水素溶出量を容易に5ppm以下に抑えることができ、本発明の中空糸膜束の品質安定化が達成できるので好ましい。原料として用いるポリビニルピロリドン中の過酸化水素含有量は250ppm以下がより好ましく、200ppm以下がさらに好ましく、150ppm以下がよりさらに好ましい。   In the present invention, it is preferable to produce a selectively permeable hollow fiber membrane bundle using polyvinylpyrrolidone having a hydrogen peroxide content of 300 ppm or less. By setting the hydrogen peroxide content in the polyvinylpyrrolidone used as a raw material to 300 ppm or less, the hydrogen peroxide elution amount in the hollow fiber membrane bundle after film formation can be easily suppressed to 5 ppm or less. This is preferable because the quality of the hollow fiber membrane bundle can be stabilized. The hydrogen peroxide content in the polyvinylpyrrolidone used as a raw material is more preferably 250 ppm or less, further preferably 200 ppm or less, and further preferably 150 ppm or less.

上記した原料として用いるポリビニルピロリドン中に過酸化水素が存在すると、ポリビニルピロリドンの酸化劣化の引き金となっているものと考えられ、酸化劣化の進行に伴い爆発的に増加し、さらにポリビニルピロリドンの酸化劣化を促進するものと考えられる。従って、過酸化水素含有量を300ppm以下にするということは、選択透過性中空糸膜の製造工程でポリビニルピロリドンの酸化劣化を抑える第一の手段である。また、原料段階でのポリビニルピロリドンの搬送や保存時の劣化を抑える手段を取る事も有効であり推奨される。例えば、アルミ箔ラミネート袋を用いて遮光し、かつ窒素ガス等の不活性ガスで封入するとか、脱酸素剤を併せて封入し保存することが好ましい実施態様である。また、該包装体を開封し小分けする場合の計量や仕込みは、不活性ガス置換をして行い、かつその保存についても上記の対策を取るのが好ましい。また、中空糸膜束の製造工程においても、原料供給系での供給タンク内を不活性ガスに置換する等の手段をとることも好ましい実施態様として推奨される。また、再結晶法や抽出法で過酸化水素量を低下させたポリビニルピロリドンを用いることも排除されない。   The presence of hydrogen peroxide in the polyvinyl pyrrolidone used as a raw material is considered to trigger the oxidative degradation of polyvinyl pyrrolidone, which increases explosively with the progress of oxidative degradation, and further oxidative degradation of polyvinyl pyrrolidone. It is thought that it promotes. Therefore, setting the hydrogen peroxide content to 300 ppm or less is the first means for suppressing the oxidative deterioration of polyvinylpyrrolidone in the process of producing a selectively permeable hollow fiber membrane. It is also effective and recommended to take measures to suppress deterioration during transportation and storage of polyvinylpyrrolidone at the raw material stage. For example, it is preferable to use an aluminum foil laminated bag to shield the light and enclose with an inert gas such as nitrogen gas, or enclose and store an oxygen scavenger together. In addition, it is preferable that the measurement and preparation when the package is opened and subdivided be performed after inert gas replacement, and the above-mentioned measures are taken for the storage. Also, in the manufacturing process of the hollow fiber membrane bundle, it is also recommended as a preferred embodiment to take means such as replacing the inside of the supply tank in the raw material supply system with an inert gas. Moreover, it is not excluded to use polyvinylpyrrolidone in which the amount of hydrogen peroxide is reduced by a recrystallization method or an extraction method.

本発明の選択透過性中空糸膜の製造方法は何ら限定されるものではないが、例えば特開2000−300663号公報で知られるような方法で製造できる中空糸膜タイプのものが好ましい。例えば、該特許文献に開示されているポリエーテルスルホン(4800P、住友化学社製)16質量部とポリビニルピロリドン(K−90、BASF社製)5質量部、ジメチルアセトアミド74質量部、水5質量部を混合溶解し、脱泡したものを製膜溶液として、50%ジメチルアセトアミド水溶液を芯液として使用し、これを2重管オリフィスの外側、内側より同時に吐出し、50cmの空走部を経て、75℃、水からなる凝固浴中に導き中空糸膜を形成し、水洗後まきとり、60℃で乾燥する方法が例示できる。   The method for producing the selectively permeable hollow fiber membrane of the present invention is not limited in any way, but for example, a hollow fiber membrane type that can be produced by a method known in Japanese Patent Application Laid-Open No. 2000-300663 is preferable. For example, 16 parts by mass of polyethersulfone (4800P, manufactured by Sumitomo Chemical Co., Ltd.) and 5 parts by mass of polyvinyl pyrrolidone (K-90, manufactured by BASF) disclosed in the patent document, 74 parts by mass of dimethylacetamide, 5 parts by mass of water Was dissolved and defoamed as a film-forming solution, and a 50% dimethylacetamide aqueous solution was used as a core solution, and this was simultaneously discharged from the outside and inside of the double-tube orifice, An example is a method in which a hollow fiber membrane is formed in a coagulation bath made of water at 75 ° C., and is washed after washing with water and dried at 60 ° C.

本発明においては、上記方法により得られたポリスルホン系選択透過性中空糸膜束は、下記特性を同時に満足することが好ましい。
(1)中空糸膜束からのポリビニルピロリドンの溶出が10ppm以下であること。
(2)中空糸膜束を長手方向に10個に分割して、各部位について透析型人工腎臓装置製造承認基準により定められた試験を実施したとき、得られた抽出液の過酸化水素溶出量が全ての部位で5ppm以下であること。
(3)中空糸膜の膜厚が10〜50μm、単糸の降伏伸度が5.0%以下であること。
(4)中空糸膜に波長10mm以上、振幅0.2mm以上のクリンプが付与されていること。
In the present invention, the polysulfone-based permselective hollow fiber membrane bundle obtained by the above method preferably satisfies the following characteristics at the same time.
(1) The elution of polyvinylpyrrolidone from the hollow fiber membrane bundle is 10 ppm or less.
(2) When the hollow fiber membrane bundle is divided into 10 pieces in the longitudinal direction and the test defined by the dialysis-type artificial kidney device manufacturing approval standard is performed for each part, the hydrogen peroxide elution amount of the obtained extract Is 5 ppm or less at all sites.
(3) The film thickness of the hollow fiber membrane is 10 to 50 μm, and the yield elongation of the single yarn is 5.0% or less.
(4) A crimp having a wavelength of 10 mm or more and an amplitude of 0.2 mm or more is applied to the hollow fiber membrane.

本発明におけるポリスルホン系樹脂に対するポリビニルピロリドンの膜中の含有量は、中空糸膜に十分な親水性や、高い含水率を付与できる範囲であれば良く、ポリスルホン系樹脂が99〜80質量%、ポリビニルピロリドンが1〜20質量%である事が好ましい。ポリスルホン系樹脂に対してポリビニルピロリドンの割合が少なすぎる場合、膜の親水性付与効果が不足する可能性があるため、該割合は、1.5質量%以上がより好ましく、2.0質量%以上がさらに好ましく、2.5質量%以上がよりさらに好ましい。一方、該割合が多すぎると、親水性付与効果が飽和し、かつポリビニルピロリドンおよび/または酸化劣化物の膜からの溶出量が増大し、後述するポリビニルピロリドンの膜からの溶出量が10ppmを超える場合がある。したがって、より好ましくは18質量%以下、さらに好ましくは15質量%以下、よりさらに好ましくは13質量%以下、特に好ましくは10質量%以下である。   The content of polyvinyl pyrrolidone in the membrane with respect to the polysulfone resin in the present invention is not limited as long as it is within a range that can impart sufficient hydrophilicity and high water content to the hollow fiber membrane. It is preferable that pyrrolidone is 1-20 mass%. When the proportion of polyvinyl pyrrolidone relative to the polysulfone resin is too small, the hydrophilicity imparting effect of the membrane may be insufficient. Therefore, the proportion is more preferably 1.5% by mass or more, and 2.0% by mass or more. Is more preferable, and 2.5% by mass or more is even more preferable. On the other hand, when the ratio is too large, the hydrophilicity-imparting effect is saturated, and the amount of polyvinylpyrrolidone and / or oxidatively deteriorated material eluted from the membrane increases, and the amount of polyvinylpyrrolidone eluted from the membrane described later exceeds 10 ppm. There is a case. Therefore, it is more preferably 18% by mass or less, further preferably 15% by mass or less, still more preferably 13% by mass or less, and particularly preferably 10% by mass or less.

該ポリビニルピロリドンの溶出量を減ずる方策として、ポリビニルピロリドンを架橋することにより不溶化することも好ましい実施態様である。架橋方法としては、例えば、γ線、電子線、熱、化学的架橋などが挙げられるが、中でも、開始剤などの残留物が残らず、材料浸透性が高い点で、γ線や電子線による架橋が好ましい。γ線や電子線による架橋の場合、水の共存により架橋が促進されるので、該架橋処理は湿潤状態の中空糸膜束について行うのが好ましい実施態様である。また、該架橋処理時に酸素が存在すると、ポリビニルピロリドンの劣化が促進されポリビニルピロリドンの溶出量が増大すると共に過酸化水素の生成が促進されるので、できるだけ低酸素濃度の環境下で実施するのが好ましい。上記の湿潤状態の中空糸膜束について行うことはこの点でも好ましく推奨される方法である。ドライの中空糸膜束で実施する場合は、窒素ガス等の不活性ガス雰囲気で行うとか、脱酸素剤で脱酸素した雰囲気で行う等の方法が挙げられる。該ドライ状態で架橋処理を行う場合は、雰囲気の湿度を高めたり、あるいは中空糸膜束の含水率を高めたりするのも有効な方法である。架橋処理は、中空糸膜束を血液浄化器に組み込む前または血液浄化器に組み込んだ後のどちらでも良い。   As a measure to reduce the elution amount of the polyvinyl pyrrolidone, insolubilization by crosslinking polyvinyl pyrrolidone is also a preferred embodiment. Examples of the crosslinking method include γ-rays, electron beams, heat, chemical crosslinking, etc. Among them, residues such as initiators do not remain, and in terms of high material permeability, γ-rays or electron beams are used. Crosslinking is preferred. In the case of cross-linking by γ rays or electron beams, cross-linking is promoted by the coexistence of water. Therefore, the cross-linking treatment is preferably performed on a wet hollow fiber membrane bundle. In addition, when oxygen is present during the crosslinking treatment, the degradation of polyvinyl pyrrolidone is promoted, the elution amount of polyvinyl pyrrolidone is increased, and the generation of hydrogen peroxide is promoted. preferable. Performing the above-described wet fiber bundle in a wet state is also a method that is preferably recommended in this respect. In the case of carrying out with a dry hollow fiber membrane bundle, there are methods such as carrying out in an inert gas atmosphere such as nitrogen gas or in an atmosphere deoxygenated with an oxygen scavenger. When the crosslinking treatment is performed in the dry state, it is also effective to increase the humidity of the atmosphere or increase the moisture content of the hollow fiber membrane bundle. The crosslinking treatment may be performed either before or after the hollow fiber membrane bundle is incorporated into the blood purifier.

本発明におけるポリビニルピロリドンの架橋による不溶化は、架橋後の膜におけるジメチルホルムアミドに対する溶解性で判定される。すなわち、架橋後の膜10gを取り、100mlのジメチルホルムアミドに溶解した溶液を遠心分離機で1500rpm、10分間かけた後上澄みを除去する。残った不溶物に再度、100mlのジメチルホルムアミドを添加して、撹拌をおこなった後、同条件で遠心分離操作をおこない、上澄みを除去する。再び、100mlのジメチルホルムアミドを添加して撹拌し、同様の遠心分離操作をおこなった後、上澄みを除去する。残った固形物を蒸発乾固して、その量から不溶物の含有率を求めた。該不溶物の含有率は0.5〜40質量%が好ましい。1〜35質量%がより好ましい。血液浄化器に液体が充填された血液浄化器の場合は、まず充填液を抜き、つぎに透析液側流路に純水を500mL/minで5分間流した後、血液側流路に同じように純水を200mL/minで5分間流す。最後に血液側から透析液側に膜を透過するように200mL/minの純水を通液し洗浄処理を終了する。得られた血液浄化器より中空糸膜束を取り出し、フリーズドライしたものを不溶成分測定用サンプルとする。乾燥中空糸膜束血液浄化器の場合も、同様の洗浄処理を行い測定用サンプルとする。本発明においては、血液浄化器に液体が充填された血液浄化器中の中空糸膜束を対象とした場合は、ポリビニルピロリドン溶出量、過酸化水素溶出量および透析型人工腎臓装置製造承認基準により設定されているUV(220−350nm)吸光度の測定のいずれについても同様に処理したサンプルで測定する。   Insolubilization due to crosslinking of polyvinylpyrrolidone in the present invention is determined by solubility in dimethylformamide in the crosslinked film. That is, 10 g of the crosslinked membrane is taken, a solution dissolved in 100 ml of dimethylformamide is applied at 1500 rpm for 10 minutes with a centrifuge, and then the supernatant is removed. 100 ml of dimethylformamide is again added to the remaining insoluble matter, and the mixture is stirred and then centrifuged under the same conditions to remove the supernatant. Again, 100 ml of dimethylformamide is added and stirred, the same centrifugation operation is performed, and then the supernatant is removed. The remaining solid was evaporated to dryness, and the content of insoluble matter was determined from the amount. The content of the insoluble material is preferably 0.5 to 40% by mass. 1-35 mass% is more preferable. In the case of a blood purifier in which a liquid is filled in the blood purifier, the filling liquid is first withdrawn, then pure water is allowed to flow through the dialysate side flow path at 500 mL / min for 5 minutes, and then the blood side flow path is the same. Pure water is allowed to flow at 200 mL / min for 5 minutes. Finally, 200 mL / min of pure water is passed through the membrane from the blood side to the dialysate side to finish the washing process. A hollow fiber membrane bundle is taken out from the obtained blood purifier and freeze-dried to obtain a sample for measuring insoluble components. In the case of a dry hollow fiber membrane bundle blood purifier, the same washing treatment is performed to obtain a measurement sample. In the present invention, when targeting a hollow fiber membrane bundle in a blood purifier in which the blood purifier is filled with a liquid, the polyvinyl pyrrolidone elution amount, the hydrogen peroxide elution amount, and the dialysis artificial kidney device manufacturing approval standard Any of the set UV (220-350 nm) absorbance measurements are taken on the same processed sample.

過酸化水素の溶出量は5ppm以下であることが好ましい。4ppm以下がより好ましく、3ppm以下がさらに好ましい。該過酸化水素の溶出量が5ppmを超えた場合は、前記したように該過酸化水素によるポリビニルピロリドンの酸化劣化のために保存安定性が悪化し、例えば、長期保存した場合にポリビニルピロリドンの溶出量が増大することがある。保存安定性としては、該ポリビニルピロリドンの溶出量の増加が最も顕著な現象であるが、その他、ポリスルホン系樹脂の劣化が引き起こされて中空糸膜が脆くなるとか、血液浄化器組み立てに用いるポリウレタン系接着剤の劣化を促進しウレタンオリゴマー等の劣化物の溶出量が増加し、安全性の低下に繋がる可能性がある。長期保存における過酸化水素の酸化作用により引き起こされる劣化起因の溶出物量の増加は透析型人工腎臓装置製造承認基準により設定されているUV(220−350nm)吸光度の測定により評価できる。   The elution amount of hydrogen peroxide is preferably 5 ppm or less. 4 ppm or less is more preferable, and 3 ppm or less is more preferable. When the elution amount of the hydrogen peroxide exceeds 5 ppm, as described above, the storage stability deteriorates due to the oxidative degradation of the polyvinyl pyrrolidone by the hydrogen peroxide. For example, the elution of the polyvinyl pyrrolidone when stored for a long period of time. The amount may increase. In terms of storage stability, the increase in the elution amount of the polyvinyl pyrrolidone is the most prominent phenomenon. In addition, the deterioration of the polysulfone resin causes the hollow fiber membrane to become brittle, or the polyurethane system used for assembling the blood purifier There is a possibility that the deterioration of the adhesive is promoted and the amount of elution of deteriorated substances such as urethane oligomers is increased, leading to a decrease in safety. The increase in the amount of eluate caused by deterioration caused by the oxidizing action of hydrogen peroxide during long-term storage can be evaluated by measuring UV (220-350 nm) absorbance set by the dialysis-type artificial kidney device manufacturing approval standard.

過酸化水素の溶出量も透析型人工腎臓装置製造承認基準の溶出試験法に準じた方法で抽出された抽出液を用いて定量したものである。   The elution amount of hydrogen peroxide was also quantified using an extract extracted by a method according to the dissolution test method of the dialysis artificial kidney device manufacturing approval standard.

本発明においては、前記したポリスルホン系選択透過性中空糸膜束の長手方向に10個に分割し、各々について測定した時の過酸化水素の溶出量が全ての部位で5ppm以下であることが好ましい。過酸化水素は中空糸膜束の特定部位に存在しても、その個所より中空糸膜束素材の劣化反応が開始され中空糸膜束の全体に伝播していくため、血液浄化器と用いられる中空糸膜束の長さ方向の存在量が全領域に渡り、一定量以下を確保する必要がある。すなわち、特定部位の過酸化水素により開始されたポリビニルピロリドンの酸化劣化が連鎖的に中空糸膜束の全体に広がって行き、劣化により過酸化水素量がさらに増大すると共に、劣化したポリビニルピロリドンは分子量が低下するために、中空糸膜束より溶出し易くなる。この劣化反応は連鎖的に進行する。従って、該中空糸膜束は長期保存すると、過酸化水素やポリビニルピロリドンの溶出量が増大し血液浄化器用として使用する場合の安全性の低下に繋がることがある。   In the present invention, the polysulfone-based permselective hollow fiber membrane bundle is divided into 10 pieces in the longitudinal direction, and the amount of hydrogen peroxide eluted when measured for each is preferably 5 ppm or less at all sites. . Even if hydrogen peroxide is present in a specific part of the hollow fiber membrane bundle, the deterioration reaction of the hollow fiber membrane bundle material starts from that point and propagates to the entire hollow fiber membrane bundle, so it is used as a blood purifier The abundance of the hollow fiber membrane bundle in the length direction needs to be secured below a certain amount over the entire region. That is, the oxidative degradation of polyvinyl pyrrolidone initiated by hydrogen peroxide at a specific site spreads throughout the entire hollow fiber membrane bundle, and the amount of hydrogen peroxide further increases due to the degradation, and the degraded polyvinyl pyrrolidone has a molecular weight , It becomes easier to elute from the hollow fiber membrane bundle. This deterioration reaction proceeds in a chain. Therefore, when the hollow fiber membrane bundle is stored for a long period of time, the elution amount of hydrogen peroxide and polyvinylpyrrolidone increases, which may lead to a decrease in safety when used as a blood purifier.

架橋処理においては、架橋処理時にポリビニルピロリドンの劣化により過酸化水素が発生すると共に架橋時に存在する過酸化水素によりその生成が促進されるので前記のような抑制処置が必要であると共に、長手方向に10個に分割し、各々について測定した時の過酸化水素の溶出が全ての部位で3ppm以下である選択透過性中空糸膜束を架橋処理することが好ましい実施態様である。このことにより、本発明の第一の要件である選択透過性中空糸膜束を長手方向に10個に分割し、各々について測定した時の過酸化水素の溶出が全ての部位で5ppm以下とすることが達成可能となる。2ppm以下がより好ましい。   In the crosslinking treatment, hydrogen peroxide is generated due to the degradation of polyvinyl pyrrolidone during the crosslinking treatment, and the generation thereof is promoted by hydrogen peroxide present during the crosslinking. It is a preferred embodiment that the permselective hollow fiber membrane bundle is divided into 10 pieces and the hydrogen peroxide elution when measured for each is 3 ppm or less at all sites is crosslinked. By this, the selectively permeable hollow fiber membrane bundle which is the first requirement of the present invention is divided into 10 pieces in the longitudinal direction, and the elution of hydrogen peroxide when measured for each is 5 ppm or less at all the sites. Can be achieved. 2 ppm or less is more preferable.

過酸化水素の溶出量を上記の規制された範囲に制御する方法としては、例えば、前記したごとく原料として用いるポリビニルピロリドン中の過酸化水素量を300ppm以下にすることが有効な方法であるが、該過酸化水素は上記した中空糸膜束の製造過程でも生成するので、該中空糸膜束の製造条件を厳密に制御する必要がある。特に、該中空糸膜束を製造する際の製膜溶液の溶解工程および乾燥工程での生成の寄与が大きいので、乾燥条件の最適化が重要である。特に、この乾燥条件の最適化は、中空糸膜束の長手方向の溶出量変動を小さくすることに関して有効な手段となる。   As a method of controlling the elution amount of hydrogen peroxide to the above regulated range, for example, as described above, it is effective to make the amount of hydrogen peroxide in polyvinylpyrrolidone used as a raw material 300 ppm or less, Since the hydrogen peroxide is also generated during the manufacturing process of the hollow fiber membrane bundle, it is necessary to strictly control the manufacturing conditions of the hollow fiber membrane bundle. In particular, optimization of drying conditions is important because the production of the membrane-forming solution during the production of the hollow fiber membrane bundle greatly contributes to the production in the drying step. In particular, this optimization of the drying conditions is an effective means for reducing the fluctuation in the elution amount in the longitudinal direction of the hollow fiber membrane bundle.

製膜溶液の溶解工程に関しては、例えば、ポリスルホン系樹脂、ポリビニルピロリドン、溶媒からなる製膜溶液を撹拌、溶解する際、ポリビニルピロリドン中に過酸化水素が含まれていると、溶解タンク内に存在する酸素の影響および溶解時の加熱の影響により、過酸化水素が爆発的に増加することがわかった。したがって、溶解タンクに原料を投入する際には、予め不活性ガスにて置換された溶解タンク内に原料を投入するのが好ましい。不活性ガスとしては、窒素、アルゴンなどが好適に用いられる。また、溶媒、場合によっては非溶媒を添加することもあるが、これら溶媒、非溶媒中に溶存している酸素を不活性ガスで置換して用いるのも好適な実施態様である。   Regarding the dissolution process of the film-forming solution, for example, when the film-forming solution made of polysulfone resin, polyvinylpyrrolidone and solvent is stirred and dissolved, if hydrogen peroxide is contained in the polyvinylpyrrolidone, it exists in the dissolution tank. It was found that hydrogen peroxide increased explosively due to the influence of oxygen to be heated and the influence of heating during dissolution. Therefore, when charging the raw material into the dissolution tank, it is preferable to input the raw material into the dissolution tank that has been previously replaced with an inert gas. As the inert gas, nitrogen, argon or the like is preferably used. Moreover, although a solvent, and a non-solvent may be added depending on the case, it is also a preferable embodiment that oxygen dissolved in these solvent and non-solvent is replaced with an inert gas.

また、過酸化水素の発生を抑制する他の方法として、製膜溶液を溶解する際、短時間に溶解することも重要な要件である。そのためには、通常、溶解温度を高くすることおよび/または撹拌速度を上げればよい。しかしながら、そうすると温度および撹拌線速度、剪断力の影響によりポリビニルピロリドンの劣化・分解が進行してしまう。事実、発明者らの検討によれば、製膜溶液中のポリビニルピロリドンの分子量は溶解温度の上昇に従い、分子量のピークトップが分解方向に移動(低分子側にシフト)したり、または低分子側に分解物と思われるショルダーが現れる現象が認められた。以上より、原料の溶解速度を向上させる目的で温度を上昇させることは、ポリビニルピロリドンの劣化分解を促進し、ひいては選択透過性中空糸膜中にポリビニルピロリドンの分解物をブレンドしてしまうことから、例えば、得られた中空糸膜を血液浄化に使用する場合、血液中に分解物が溶出するなど、製品の品質安全上、優れたものとはならなかった。そこで、ポリビニルピロリドンの分解を抑制する目的で低温で原料を混合することを試みた。低温溶解とはいっても氷点下となるような極端な条件にするとランニングコストもかかるため、通常5℃以上70℃以下が好ましい。60℃以下がより好ましい。しかし、単純に溶解温度を下げると溶解時間の長時間化によるポリビニルピロリドン劣化分解、操業性の低下や設備の大型化を招くことになり工業的に実施する上では問題がある。特に、ポリビニルピロリドンは低温溶解をしようとするとポリビニルピロリドンが継粉になり、それ以上溶解することが困難となったり、均一溶解に長時間を要するという課題を有する。   In addition, as another method for suppressing the generation of hydrogen peroxide, it is an important requirement to dissolve the film forming solution in a short time. For this purpose, it is usually sufficient to increase the dissolution temperature and / or increase the stirring speed. However, when it does so, degradation and decomposition of polyvinyl pyrrolidone will proceed due to the influence of temperature, stirring linear velocity and shearing force. In fact, according to the study by the inventors, the molecular weight of polyvinylpyrrolidone in the film-forming solution moves in the direction of decomposition (shifts to the low molecular side) as the dissolution temperature increases, or the low molecular side. The appearance of a shoulder that appears to be a decomposition product was observed. From the above, increasing the temperature for the purpose of improving the dissolution rate of the raw material promotes the degradation and degradation of polyvinylpyrrolidone, and consequently blends the degradation product of polyvinylpyrrolidone into the selectively permeable hollow fiber membrane. For example, when the obtained hollow fiber membrane is used for blood purification, a degradation product is eluted in the blood, and it has not been excellent in terms of product quality safety. Then, it tried to mix a raw material at low temperature in order to suppress decomposition | disassembly of polyvinylpyrrolidone. Even if it is low-temperature dissolution, it is usually preferable to have a temperature of 5 ° C. or higher and 70 ° C. or lower because it requires a running cost under extreme conditions that are below freezing. 60 degrees C or less is more preferable. However, simply lowering the melting temperature causes degradation of polyvinylpyrrolidone due to the longer melting time, lowering the operability and increasing the size of the equipment, which causes problems in industrial implementation. In particular, when polyvinyl pyrrolidone is dissolved at a low temperature, the polyvinyl pyrrolidone becomes a powdered powder, which makes it difficult to dissolve further, or has a problem that it takes a long time for uniform dissolution.

低温で時間をかけずに溶解するための溶解条件について検討を行った結果、溶解に先立ち製膜溶液を構成する成分を混練した後に溶解させることが好ましいことを見出し本発明に到達した。該混練はポリスルホン系樹脂、ポリビニルピロリドンおよび溶媒等の構成成分を一括して混練しても良いし、ポリビニルピロリドンとポリスルホン系樹脂とを別個に混練しても良い。前述のごとくポリビニルピロリドンは酸素との接触により劣化が促進され過酸化水素の発生につながるので、該混練時においても不活性ガスで置換した雰囲気で行う等、酸素との接触を抑制する配慮が必要であり別ラインで行うのが好ましい。混練はポリビニルピロリドンと溶媒のみとしてポリスルホン系樹脂は予備混練をせずに直接溶解タンクに供給する方法も本発明の範疇に含まれる。   As a result of investigating the dissolution conditions for dissolving at low temperature without taking time, the inventors have found that it is preferable to dissolve the components constituting the film-forming solution prior to dissolution, and have reached the present invention. The kneading may be performed by kneading the polysulfone resin, polyvinyl pyrrolidone and a solvent, etc. at once, or kneading polyvinyl pyrrolidone and the polysulfone resin separately. As mentioned above, polyvinylpyrrolidone is accelerated by contact with oxygen and leads to the generation of hydrogen peroxide. Therefore, consideration must be given to suppressing contact with oxygen, such as in an atmosphere substituted with an inert gas, even during kneading. It is preferable to carry out in a separate line. The method of kneading only polyvinylpyrrolidone and a solvent and supplying the polysulfone resin directly to the dissolution tank without pre-kneading is also included in the scope of the present invention.

該混練は溶解タンクと別に混練ラインを設けて実施し混練したものを溶解タンクに供給してもよいし、混練機能を有する溶解タンクで混練と溶解の両方を実施しても良い。前者の別個の装置で実施する場合の、混練装置の種類や形式は問わない。回分式、連続式のいずれであっても構わない。スタティックミキサー等のスタティックな方法であっても良いし、ニーダーや攪拌式混練機等のダイナミックな方法であっても良い。混練の効率より後者が好ましい。後者の場合の混練方法も限定なく、ピンタイプ、スクリュータイプ、攪拌器タイプ等いずれの形式でもよい。スクリュータイプが好ましい。スクリューの形状や回転数も混練効率と発熱とのバランスより適宜選択すれば良い。一方、混練機能を有する溶解タンクを用いる場合の溶解タンクの形式も限定されないが、例えば、2本の枠型ブレードが自転、公転するいわゆるプラネタリー運動により混練効果を発現する形式の混練溶解機が推奨される。例えば、井上製作所社製のプラネタリュームミキサーやトリミックス等が本方式に該当する。   The kneading may be performed by providing a kneading line separately from the dissolving tank, and the kneaded product may be supplied to the dissolving tank, or both the kneading and dissolving may be performed in a dissolving tank having a kneading function. The type and form of the kneading apparatus in the former separate apparatus are not limited. Either a batch system or a continuous system may be used. A static method such as a static mixer may be used, or a dynamic method such as a kneader or a stirring kneader may be used. The latter is preferred from the efficiency of kneading. The kneading method in the latter case is not limited, and any type such as a pin type, a screw type, and a stirrer type may be used. Screw type is preferred. What is necessary is just to select suitably the shape and rotation speed of a screw from the balance of kneading | mixing efficiency and heat_generation | fever. On the other hand, the type of dissolution tank when using a dissolution tank having a kneading function is not limited. For example, there is a kneading and dissolving machine of a type that expresses a kneading effect by so-called planetary motion in which two frame-type blades rotate and revolve. Recommended. For example, a planetary mixer or a trimix manufactured by Inoue Seisakusho Co., Ltd. corresponds to this method.

混練時のポリビニルピロリドンやポリスルホン系樹脂等の樹脂成分と溶媒との比率も限定されない。樹脂/溶媒の質量比で0.1〜3が好ましい。0.5〜2がより好ましい。   The ratio of the resin component such as polyvinyl pyrrolidone and polysulfone resin and the solvent during kneading is not limited. A resin / solvent mass ratio of 0.1 to 3 is preferred. 0.5-2 are more preferable.

前述のごとくポリビニルピロリドンの劣化を抑制し、かつ効率的な溶解を行うことが本発明の技術ポイントである。従って、少なくともポリビニルピロリドンが存在する系は窒素雰囲気下、70℃以下の低温で混練および溶解することが好ましい実施態様である。ポリビニルピロリドンとポリスルホン系樹脂を別ラインで混練する場合にポリスルホン系樹脂の混練ラインに本要件を適用してもよい。混練や溶解の効率と発熱とは二律背反現象である。該二律背反をできるだけ回避した装置や条件の選択が本発明の重要な要素となる。そういう意味で混練機構における冷却方法が重要であり配慮が必要である。   As described above, the technical point of the present invention is to suppress the degradation of polyvinyl pyrrolidone and perform efficient dissolution. Therefore, a system in which at least polyvinylpyrrolidone is present is a preferred embodiment in which the system is kneaded and dissolved at a low temperature of 70 ° C. or lower in a nitrogen atmosphere. When the polyvinyl pyrrolidone and the polysulfone resin are kneaded in separate lines, this requirement may be applied to the polysulfone resin kneading line. The efficiency of kneading and dissolution and heat generation are two contradictory phenomena. Selection of an apparatus and conditions that avoid the trade-off as much as possible is an important element of the present invention. In this sense, the cooling method in the kneading mechanism is important and needs attention.

引き続き前記方法で混練されたものの溶解を行う。該溶解方法も限定されないが、例えば、攪拌式の溶解装置による溶解方法が適用できる。低温・短時間(3時間以内)で溶解するためには、フルード数(Fr=n2d/g)が0.7以上1.3以下、攪拌レイノルズ数(Re=nd2ρ/μ)が50以上250以下であることが好ましい。ここでnは翼の回転数(rps)、ρは密度(Kg/m3)、μは粘度(Pa・s)、gは重力加速度(=9.8m/s2)、dは撹拌翼径(m)である。フルード数が大きすぎると、慣性力が強くなるためタンク内で飛散した原料が壁や天井に付着し、所期の製膜溶液組成が得られないことがある。したがって、フルード数は1.25以下がより好ましく、1.2以下がさらに好ましく、1.15以下がよりさらに好ましい。また、フルード数が小さすぎると、慣性力が弱まるために原料の分散性が低下し、特にポリビニルピロリドンが継粉になり、それ以上溶解することが困難となったり、均一溶解に長時間を要することがある。したがって、フルード数は0.75以上がより好ましく、0.8以上がさらに好ましい。 Subsequently, the material kneaded by the above method is dissolved. Although the dissolution method is not limited, for example, a dissolution method using a stirring type dissolution apparatus can be applied. In order to dissolve at a low temperature for a short time (within 3 hours), the Froude number (Fr = n 2 d / g) is 0.7 to 1.3 and the stirring Reynolds number (Re = nd 2 ρ / μ) is It is preferable that it is 50-250. Where n is the blade rotation speed (rps), ρ is the density (Kg / m 3 ), μ is the viscosity (Pa · s), g is the gravitational acceleration (= 9.8 m / s 2 ), and d is the stirring blade diameter. (M). If the Froude number is too large, the inertial force becomes strong, so that the raw material scattered in the tank adheres to the walls and ceiling, and the desired film-forming solution composition may not be obtained. Therefore, the fluid number is more preferably 1.25 or less, further preferably 1.2 or less, and further preferably 1.15 or less. On the other hand, if the fluid number is too small, the inertial force is weakened, so that the dispersibility of the raw material is lowered, and in particular, polyvinylpyrrolidone becomes a spatter, which makes it difficult to dissolve further or requires a long time for uniform dissolution. Sometimes. Therefore, the fluid number is more preferably 0.75 or more, and further preferably 0.8 or more.

本願発明における製膜溶液は所謂低粘性流体であるため、撹拌レイノルズ数が大きすぎると、撹拌時、製膜溶液中への気泡のかみこみによる脱泡時間の長時間化や脱泡不足が起こるなどの問題が生ずることがある。そのため、撹拌レイノルズ数はより好ましくは240以下、さらに好ましくは230以下、よりさらに好ましくは220以下である。また、撹拌レイノルズ数が小さすぎると、撹拌力が小さくなるため溶解の不均一化が起こりやすくなることがある。したがって、撹拌レイノルズ数は、35以上がより好ましく、45以上がさらに好ましく、55以上がよりさらに好ましく、60以上が特に好ましい。さらに、このような製膜溶液で中空糸膜を製膜すると気泡による曳糸性の低下による操業性の低下や品質面でも中空糸膜への気泡の噛み込みによりその部位が欠陥となり、膜の気密性やバースト圧の低下などを引き起こして問題となることがわかった。製膜溶液の脱泡は効果的な対処策だが、製膜溶液の粘度コントロールや溶剤の蒸発による製膜溶液の組成変化を伴うこともありうるので、行う場合には慎重な対応が必要となる。   Since the film-forming solution in the present invention is a so-called low-viscosity fluid, if the stirring Reynolds number is too large, a long defoaming time or insufficient defoaming occurs due to entrapment of bubbles in the film-forming solution during stirring. Problems may occur. Therefore, the stirring Reynolds number is more preferably 240 or less, further preferably 230 or less, and still more preferably 220 or less. On the other hand, when the stirring Reynolds number is too small, the stirring force becomes small, so that dissolution may be easily made nonuniform. Therefore, the stirring Reynolds number is more preferably 35 or more, further preferably 45 or more, still more preferably 55 or more, and particularly preferably 60 or more. Furthermore, when a hollow fiber membrane is formed with such a membrane-forming solution, the operability is deteriorated due to a drop in spinnability due to bubbles, and the quality of the material also becomes a defect due to the inclusion of bubbles in the hollow fiber membrane. It turned out to be a problem by causing a decrease in airtightness and burst pressure. Defoaming the film-forming solution is an effective countermeasure, but it may be accompanied by a change in the composition of the film-forming solution due to viscosity control of the film-forming solution or evaporation of the solvent. .

さらに、ポリビニルピロリドンは空気中の酸素の影響により酸化分解を起こす傾向にあることから、膜溶液の溶解は不活性気体封入下で行うのが好ましい。不活性気体としては、窒素、アルゴンなどが上げられるが、窒素を用いるのが好ましい。このとき、溶解タンク内の残存酸素濃度は3%以下であることが好ましい。窒素封入圧力を高めてやれば溶解時間短縮が望めるが、高圧にするには設備費用が嵩む点と、作業安全性の面から大気圧以上2kgf/cm2以下が好ましい。 Furthermore, since polyvinyl pyrrolidone tends to undergo oxidative decomposition due to the influence of oxygen in the air, it is preferable to dissolve the membrane solution in an inert gas enclosure. Nitrogen, argon, etc. are raised as the inert gas, but nitrogen is preferably used. At this time, the residual oxygen concentration in the dissolution tank is preferably 3% or less. If the nitrogen filling pressure is increased, the melting time can be shortened. However, in order to increase the pressure, the equipment cost is increased, and from the viewpoint of work safety, atmospheric pressure and 2 kgf / cm 2 or less are preferable.

その他、本願発明に用いるような低粘性製膜溶液の溶解に用いられる撹拌翼形状としては、ディスクタービン型、パドル型、湾曲羽根ファンタービン型、矢羽根タービン型などの放射流型翼、プロペラ型、傾斜パドル型、ファウドラー型などの軸流型翼が挙げられるが、これらに限定されるものではない。   In addition, as the shape of the stirring blade used for dissolving the low-viscosity film forming solution used in the present invention, a radial turbine blade such as a disk turbine type, a paddle type, a curved blade fan turbine type, an arrow blade turbine type, or a propeller type An axial-flow type wing such as an inclined paddle type or a fiddler type is included, but is not limited thereto.

以上のような低温溶解方法を用いることにより、ポリビニルピロリドンの劣化分解が抑制された安全性の高い中空糸膜を得ることが可能となる。さらに付言すれば、製膜には原料溶解後の滞留時間が24時間以内の製膜溶液を使用することが好ましい。なぜなら、製膜溶液が保温されている間に熱エネルギーを蓄積し、原料劣化を起こす傾向が認められたためである。   By using the low-temperature dissolution method as described above, it is possible to obtain a highly safe hollow fiber membrane in which the degradation degradation of polyvinylpyrrolidone is suppressed. In addition, it is preferable to use a film-forming solution having a residence time of 24 hours or less after dissolution of raw materials for film formation. This is because thermal energy was accumulated while the film forming solution was kept warm, and a tendency to cause deterioration of the raw material was recognized.

過酸化水素の溶出量を上記の規制された範囲に制御する方法としては、乾燥工程においても酸素との接触を低減することが重要である。例えば、不活性ガスで置換した雰囲気で乾燥することが挙げられるが、経済性の点で不利である。経済性のある乾燥方法として、減圧下でマイクロ波を照射して乾燥する方法が有効であり推奨される。被乾燥物から液体を除去して所謂乾燥を行うことにおいて、減圧およびマイクロ波を照射することはそれぞれ単独では公知である。しかし、減圧することとマイクロ波を照射することを同時に行うことは、マイクロ波の特性を勘案すると通常併用しがたい組合せである。本願発明者らは、ポリビニルピロリドンの酸化劣化の防止と中空糸膜からの溶出物量の低減による安全性の向上、生産性の向上を達成するべく、この困難性を伴う組み合わせを採用し、乾燥条件の最適化により経済的にも有利である方法により課題解決可能であることを見出した。   As a method for controlling the elution amount of hydrogen peroxide within the above regulated range, it is important to reduce contact with oxygen even in the drying step. For example, drying in an atmosphere substituted with an inert gas can be mentioned, but it is disadvantageous in terms of economy. As an economical drying method, a method of drying by irradiating microwaves under reduced pressure is effective and recommended. In performing so-called drying by removing a liquid from an object to be dried, it is well known that each of them is irradiated with reduced pressure and microwave. However, performing decompression and irradiating microwaves at the same time is a combination that is generally difficult to use in combination with microwave characteristics. The inventors of the present application adopt a combination with this difficulty in order to achieve improvement in safety and productivity by preventing oxidative degradation of polyvinylpyrrolidone and reducing the amount of eluate from the hollow fiber membrane, and drying conditions. It was found that the problem can be solved by a method that is economically advantageous by optimizing the above.

該乾燥方法の乾燥条件としては、20kPa以下の減圧下で出力0.1〜100kWのマイクロ波を照射することが好ましい実施態様である。また、該マイクロ波の周波数は1,000〜5,000MHzであり、乾燥処理中の中空糸膜束の最高到達温度が90℃以下であることが好ましい実施態様である。減圧という手段を併設すれば、それだけで水分の乾燥が促進されるので、マイクロ波の照射出力を低く抑え、照射時間も短縮できる利点もあるが、温度の上昇も比較的低くすることができるので、全体的には中空糸膜束の性能低下に与える影響が少ない。さらに、減圧という手段を伴う乾燥は、乾燥温度を比較的下げることができるという利点があり、特にポリビニルピロリドンの劣化分解を著しく抑えることができるという有意な点がある。適正な乾燥温度は20〜80℃で十分足りるということになる。より好ましくは20〜60℃、さらに好ましくは20〜50℃、よりさらに好ましくは30〜45℃である。   As a drying condition of the drying method, it is preferable to irradiate microwaves with an output of 0.1 to 100 kW under a reduced pressure of 20 kPa or less. Moreover, the frequency of this microwave is 1,000-5,000 MHz, and it is a preferable embodiment that the highest ultimate temperature of the hollow fiber membrane bundle during a drying process is 90 degrees C or less. If a means of decompression is also provided, drying of moisture will be promoted by itself, so there is an advantage that the microwave irradiation output can be reduced and the irradiation time can be shortened, but the temperature rise can also be made relatively low. Overall, there is little influence on the performance degradation of the hollow fiber membrane bundle. Furthermore, drying accompanied by means of reduced pressure has the advantage that the drying temperature can be relatively lowered, and in particular, there is a significant point that degradation degradation of polyvinylpyrrolidone can be remarkably suppressed. An appropriate drying temperature is sufficient from 20 to 80 ° C. More preferably, it is 20-60 degreeC, More preferably, it is 20-50 degreeC, More preferably, it is 30-45 degreeC.

減圧を伴うということは、中空糸膜束の中心部および外周部に均等に低圧が作用することになり、水分の蒸発が均一に促進されることになり、中空糸膜の乾燥が均一になされるために、乾燥の不均一に起因する中空糸膜束の障害を是正することになる。それに、マイクロ波による加熱も、中空糸膜束の中心および外周全体にほぼ等しく作用することになるから、均一な加熱において、相乗的に機能することになり、中空糸膜束の乾燥において、特有の意義があることになる。減圧度についてはマイクロ波の出力、中空糸膜束の有する総水分含量および中空糸膜束の本数により適宜設定すれば良いが、乾燥中の中空糸膜束の温度上昇を防ぐため、減圧度は20kPa以下、より好ましくは15kPa以下、さらに好ましくは10kPa以下で行う。20kPa以上では水分蒸発効率が低下するばかりでなく、中空糸膜束を構成するポリマーの温度が上昇してしまい劣化してしまう可能性がある。また、減圧度は高い方が温度上昇抑制と乾燥効率を高める意味で好ましいが、装置の密閉度を維持するためにかかるコストが高くなるので0.1kPa以上が好ましい。より好ましくは0.25kPa以上、さらに好ましくは0.4kPa以上である。   The fact that the pressure is reduced means that the low pressure acts uniformly on the center portion and the outer peripheral portion of the hollow fiber membrane bundle, the moisture evaporation is promoted uniformly, and the hollow fiber membrane is uniformly dried. Therefore, the failure of the hollow fiber membrane bundle due to non-uniform drying is corrected. In addition, heating by microwaves also acts almost equally on the entire center and outer periphery of the hollow fiber membrane bundle, so it functions synergistically in uniform heating, and is unique in drying the hollow fiber membrane bundle. It will be of significance. The degree of vacuum may be set as appropriate depending on the output of the microwave, the total moisture content of the hollow fiber membrane bundle and the number of hollow fiber membrane bundles, but in order to prevent temperature rise of the hollow fiber membrane bundle during drying, the degree of vacuum is It is performed at 20 kPa or less, more preferably 15 kPa or less, and further preferably 10 kPa or less. If it is 20 kPa or more, not only the water evaporation efficiency is lowered, but also the temperature of the polymer constituting the hollow fiber membrane bundle may be increased and deteriorated. Moreover, although the one where a pressure reduction degree is higher is preferable in the meaning which suppresses a temperature rise and raises drying efficiency, since the cost concerning maintaining the sealing degree of an apparatus becomes high, 0.1 kPa or more is preferable. More preferably, it is 0.25 kPa or more, and further preferably 0.4 kPa or more.

乾燥時間短縮を考慮すると、マイクロ波の出力は高い方が好ましいが、例えばポリビニルピロリドンを含有する中空糸膜束では過乾燥や過加熱によるポリビニルピロリドンの劣化・分解が起こったり、使用時の濡れ性低下が起こるなどの問題があるため、出力はあまり上げないのが好ましい。また0.1kW未満の出力でも中空糸膜束を乾燥することは可能であるが、乾燥時間が伸びることによる処理量低下の問題が起こる可能性がある。減圧度とマイクロ波出力の組合せの最適値は、中空糸膜束の保有水分量および中空糸膜束の処理本数により異なるものであって、試行錯誤のうえ適宜設定値を求めるのが好ましい。
例えば、本発明の乾燥条件を実施する一応の目安として、中空糸膜束1本当たり50gの水分を有する中空糸膜束を20本乾燥した場合、総水分含量は50g×20本=1,000gとなり、この時のマイクロ波の出力は1.5kW、減圧度は5kPaが適当である。
In consideration of shortening the drying time, a higher microwave output is preferable.For example, in hollow fiber membrane bundles containing polyvinylpyrrolidone, degradation or decomposition of polyvinylpyrrolidone occurs due to overdrying or overheating, or wettability during use. It is preferable not to increase the output much because there is a problem such as a decrease. Further, the hollow fiber membrane bundle can be dried even with an output of less than 0.1 kW, but there is a possibility that a problem of reduction in throughput due to an increase in drying time may occur. The optimum value of the combination of the degree of decompression and the microwave output varies depending on the water content of the hollow fiber membrane bundle and the number of processed hollow fiber membrane bundles, and it is preferable to obtain a set value as appropriate through trial and error.
For example, as a temporary guide for carrying out the drying conditions of the present invention, when 20 hollow fiber membrane bundles having a moisture content of 50 g per hollow fiber membrane bundle are dried, the total moisture content is 50 g × 20 fibers = 1,000 g. At this time, it is appropriate that the microwave output is 1.5 kW and the decompression degree is 5 kPa.

より好ましいマイクロ波出力は0.1〜80kW、さらに好ましいマイクロ波出力は0.1〜60kWである。マイクロ波の出力は、例えば、中空糸膜束の総数と総含水量により決まるが、いきなり高出力のマイクロ波を照射すると、短時間で乾燥が終了するが、中空糸膜が部分的に変性することがあり、縮れのような変形を起こすことがある。マイクロ波を使用して乾燥するという場合に、例えば、中空糸膜に保水剤のようなものを用いた場合に、高出力やマイクロ波を用いて過激に乾燥することは保水剤の飛散による消失の原因にもなる。それに特に減圧の条件を伴うと、中空糸膜への影響を考えれば、従来においては減圧下でマイクロ波を照射することは意図していなかった。本発明の減圧下でマイクロ波を照射するということは、水性液体の蒸発が比較的温度が低い状態において活発になるため、高出力マイクロ波および高温によるポリビニルピロリドンの劣化や中空糸膜の変形等の中空糸膜の損傷を防ぐという二重の効果を奏することになる。   A more preferable microwave output is 0.1 to 80 kW, and a more preferable microwave output is 0.1 to 60 kW. The output of the microwave is determined by, for example, the total number of hollow fiber membrane bundles and the total water content. However, when the microwave is suddenly irradiated, drying is completed in a short time, but the hollow fiber membrane is partially denatured. May cause deformation such as curling. When drying using microwaves, for example, when using something like a water retention agent in the hollow fiber membrane, high power and extreme drying using microwaves will disappear due to scattering of the water retention agent It becomes the cause of. In particular, when accompanied by conditions of reduced pressure, considering the influence on the hollow fiber membrane, conventionally, it was not intended to irradiate microwaves under reduced pressure. Irradiation of microwaves under reduced pressure of the present invention means that the evaporation of aqueous liquid becomes active in a relatively low temperature state, so that degradation of polyvinylpyrrolidone due to high output microwave and high temperature, deformation of hollow fiber membrane, etc. This has a double effect of preventing damage to the hollow fiber membrane.

本発明は、減圧下におけるマイクロ波により乾燥をするという、マイクロ波の出力を一定にした一段乾燥を可能としているが、別の実施態様として、乾燥の進行に応じて、マイクロ波の出力を順次段階的に下げる、いわゆる多段乾燥を好ましい態様として包含している。そこで、多段乾燥の意義を説明すると次のようになる。減圧下で、しかも30〜90℃程度の比較的低い温度で、マイクロ波で乾燥する場合に、中空糸膜束の乾燥の進み具合に合わせて、マイクロ波の出力を順次下げていくという多段乾燥方法が優れている。乾燥する中空糸膜の総量、工業的に許容できる適正な乾燥時間などを考慮して、減圧の程度、温度、マイクロ波の出力および照射時間を決めればよい。多段乾燥は、例えば、2〜6段という任意に何段も可能であるが、生産性を考慮して工業的に適正と許容できるのは、2〜3段乾燥にするのが適当である。中空糸膜束に含まれる水分の総量にもよるが、比較的多い場合に、多段乾燥は、例えば、90℃以下の温度における、5〜20kPa程度の減圧下で、一段目は30〜100kWの範囲で、二段目は10〜30kWの範囲で、三段目は0.1〜10kWというように、マイクロ波照射時間を加味して決めることができる。マイクロ波の出力を、例えば、高い部分で90kW、低い部分で0.1kWのように、出力の較差が大きい場合には、その出力を下げる段数を例えば4〜8段と多くすればよい。本発明の場合に、減圧というマイクロ波照射に技術的な配慮をしているから、比較的マイクロ波の出力を下げた状態でもできるという有利な点がある。例えば、一段目は10〜20kWのマイクロ波により10〜100分程度、二段目は3〜10kW程度で5〜80分程度、三段目は0.1〜3kW程度で1〜60分程度という段階で乾燥する。各段のマイクロ波の出力および照射時間は、中空糸膜に含まれる水分の総量の減り具合に連動して下げていくことが好ましい。この乾燥方法は、中空糸膜束に非常に温和な乾燥方法であり、先行技術においては期待できないことから、本発明の作用効果を有意にしている。   Although the present invention enables one-stage drying in which the microwave output is constant, i.e., drying by microwaves under reduced pressure, as another embodiment, the microwave output is sequentially changed according to the progress of drying. So-called multi-stage drying, which lowers in stages, is included as a preferred embodiment. Therefore, the significance of multi-stage drying will be described as follows. When drying with microwaves at a relatively low temperature of about 30 to 90 ° C. under reduced pressure, multi-stage drying in which the output of the microwaves is sequentially reduced in accordance with the progress of drying of the hollow fiber membrane bundle. The method is excellent. The degree of pressure reduction, temperature, microwave output, and irradiation time may be determined in consideration of the total amount of the hollow fiber membrane to be dried and the industrially acceptable drying time. Multistage drying can be performed in any number of stages, for example, 2 to 6 stages, but it is appropriate to use 2 to 3 stages of drying that is industrially appropriate in consideration of productivity. Depending on the total amount of water contained in the hollow fiber membrane bundle, when relatively large, multistage drying is performed at a temperature of 90 ° C. or lower, for example, at a reduced pressure of about 5 to 20 kPa, and the first stage is 30 to 100 kW. The range can be determined in consideration of the microwave irradiation time such that the second stage is in the range of 10 to 30 kW and the third stage is in the range of 0.1 to 10 kW. When the output of the microwave is large, such as 90 kW in the high part and 0.1 kW in the low part, the number of stages for reducing the output may be increased to 4 to 8 stages, for example. In the case of the present invention, since technical consideration is given to the microwave irradiation called decompression, there is an advantage that the microwave output can be relatively lowered. For example, the first stage is about 10 to 100 minutes by 10 to 20 kW microwave, the second stage is about 3 to 10 kW and about 5 to 80 minutes, and the third stage is about 0.1 to 3 kW and about 1 to 60 minutes. Dry in stages. It is preferable that the microwave output and irradiation time of each stage are lowered in conjunction with the reduction in the total amount of moisture contained in the hollow fiber membrane. Since this drying method is a very gentle drying method for hollow fiber membrane bundles and cannot be expected in the prior art, the effect of the present invention is made significant.

別の態様を説明すると、中空糸膜束の含水率が400質量%以下の場合には、12kW以下の低出力マイクロ波による照射が優れている場合がある。例えば、中空糸膜束総量の水分量が1〜7kg程度と比較的少量の場合には、80℃以下、好ましくは60℃以下の温度における、3〜10kPa程度の減圧下において、12kW以下の出力の、例えば1〜5kW程度のマイクロ波で10〜240分、0.5〜1kW未満のマイクロ波で1〜240分程度、より好ましくは3〜240分程度、0.1〜0.5kW未満のマイクロ波で1〜240分程度照射するという、乾燥の程度に応じてマイク口波の照射出力および照射時間を調整すれば乾燥が均一に行われる。減圧度は各段において、一応0.1〜20kPaという条件を設定しているが、中空糸膜の水分含量の比較的多い一段目を例えば0.1〜5kPaと減圧を高め、マイクロ波の出力を10〜30kWと高める、ニ段目、三段目を5〜20kPaの減圧下で0.1〜5kWによる一段よりやや高い圧力下でマイクロ波を照射するという、いわゆる各段の減圧度を状況に応じて適正に調整して変えることなどは、中空糸膜束の水分総量および含水率の低下の推移を考慮して任意に設定することが可能である。各段において、減圧度を変える操作は、本発明の減圧下でマイクロ波を照射するという意義をさらに大きくする。勿論、マイクロ波照射装置内におけるマイクロ波の均一な照射および排気には常時配慮する必要がある。   In another aspect, when the water content of the hollow fiber membrane bundle is 400% by mass or less, irradiation with a low-power microwave of 12 kW or less may be excellent. For example, when the amount of water in the total amount of the hollow fiber membrane bundle is about 1 to 7 kg, the output is 12 kW or less under a reduced pressure of about 3 to 10 kPa at a temperature of 80 ° C. or less, preferably 60 ° C. or less. For example, about 1 to 5 kW of microwave for 10 to 240 minutes, less than 0.5 to 1 kW of microwave for about 1 to 240 minutes, more preferably about 3 to 240 minutes, less than 0.1 to 0.5 kW Drying is performed uniformly by adjusting the irradiation power and irradiation time of the microphone mouth wave according to the degree of drying. The degree of vacuum is set to 0.1 to 20 kPa for each stage, but the first stage having a relatively high moisture content of the hollow fiber membrane is increased to 0.1 to 5 kPa, for example, and the microwave output is increased. The degree of pressure reduction at each stage, in which the microwave is irradiated at a pressure slightly higher than the first stage of 0.1 to 5 kW under a reduced pressure of 5 to 20 kPa in the second stage and the third stage. It is possible to arbitrarily set the appropriate adjustment in accordance with the change in consideration of the transition of the total moisture content and the moisture content of the hollow fiber membrane bundle. In each stage, the operation of changing the degree of reduced pressure further increases the significance of irradiating microwaves under reduced pressure according to the present invention. Of course, it is necessary to always consider the uniform irradiation and exhaust of the microwave in the microwave irradiation apparatus.

中空糸膜束の乾燥を、減圧下でマイクロ波を照射して乾燥することと、通風向きを交互に逆転する乾燥方法を併用することも乾燥において工程が煩雑にはなるが、有効な乾燥方法である。マイクロ波照射方法および通風交互逆転方法も、一長一短があり、高度の品質が求められる場合に、これらを併用することができる。最初の段階で、通風交互逆転方法を採用して、含水率が20〜60質量%程度に進行したら、次の段階で減圧下でマイクロ波を照射して乾燥することができる。この場合に、マイクロ波を照射して乾燥してから、次に通風向きを交互に逆転する通風乾燥方法を併用することもできる。これらは、乾燥により製造される中空糸膜の品質、特に中空糸膜における長さ方向において部分固着がないポリスルホン系選択透過性中空糸膜束の品質を考慮して決めることができる。これらの乾燥方法を同時に行うこともできるが、装置の煩雑さ、複雑さ、価格の高騰などの不利な点があるため実用的ではない。しかし、遠赤外線等の有効な加熱方法を併用することは本発明の乾燥方法の範囲からは排除しない。   The drying of hollow fiber membrane bundles can be achieved by irradiating with microwaves under reduced pressure and using a drying method that alternately reverses the direction of ventilation. It is. The microwave irradiation method and the alternating ventilation reverse method also have merits and demerits, and these can be used in combination when high quality is required. In the first stage, when the air flow alternating reversal method is adopted and the moisture content proceeds to about 20 to 60% by mass, it can be dried by irradiating microwaves under reduced pressure in the next stage. In this case, after drying by irradiating microwaves, a ventilation drying method that alternately reverses the ventilation direction can be used in combination. These can be determined in consideration of the quality of the hollow fiber membrane produced by drying, particularly the quality of the polysulfone-based permselective hollow fiber membrane bundle having no partial fixation in the length direction of the hollow fiber membrane. These drying methods can be performed simultaneously, but are not practical because of disadvantages such as complexity and complexity of the apparatus and high price. However, using an effective heating method such as far infrared rays is not excluded from the scope of the drying method of the present invention.

乾燥中の中空糸膜束の最高到達温度は、不可逆性のサーモラベルを中空糸膜束を保護するフィルム側面に貼り付けて乾燥を行い、乾燥後に取り出し表示を確認することで測定することができる。この時、乾燥中の中空糸膜束の最高到達温度は90℃以下が好ましく、より好ましくは80℃以下に抑える。さらに好ましくは70℃以下である。最高到達温度が90℃を超えると、膜構造が変化しやすくなり性能低下や酸化劣下を起こしてしまう場合がある。特にポリビニルピロリドンを含有する中空糸膜束では、熱によるポリビニルピロリドンの分解等が起こりやすいので温度上昇をできるだけ防ぐ必要がある。減圧度とマイクロ波出力の最適化と断続的に照射することで温度上昇を防ぐことができる。また、乾燥温度は低い方が好ましいが、減圧度の維持コスト、乾燥時間短縮の面より30℃以上が好ましい。   The maximum temperature reached by the hollow fiber membrane bundle during drying can be measured by applying an irreversible thermolabel to the side of the film that protects the hollow fiber membrane bundle, drying, and checking the display after taking out the drying. . At this time, the maximum reached temperature of the hollow fiber membrane bundle during drying is preferably 90 ° C. or lower, more preferably 80 ° C. or lower. More preferably, it is 70 degrees C or less. If the maximum temperature exceeds 90 ° C., the film structure tends to change, which may cause performance degradation or deterioration of oxidation. In particular, in a hollow fiber membrane bundle containing polyvinylpyrrolidone, it is necessary to prevent the temperature rise as much as possible because polyvinylpyrrolidone is easily decomposed by heat. Temperature rise can be prevented by optimizing the degree of decompression and microwave output and irradiating intermittently. Moreover, although the one where a drying temperature is lower is preferable, 30 degreeC or more is preferable from the surface of the maintenance cost of pressure reduction degree, and the shortening of drying time.

マイクロ波の照射周波数は、中空糸膜束への照射斑の抑制や、細孔内の水を細孔より押出す効果などを考慮すると1,000〜5,000MHzが好ましい。より好ましくは1,500〜4,000MHz、さらに好ましくは2,000〜3,000MHzである。
該マイクロ波照射による乾燥は中空糸膜束を均一に加熱し乾燥することが重要である。上記したマイクロ波乾燥においては、マイクロ波の発生時に付随発生する反射波による不均一加熱が発生するので、該反射波による不均一加熱を低減する手段を取る事が重要である。該方策は限定されず任意であるが、例えば、特開2000−340356号公報において開示されているオーブン中に反射板を設けて反射波を反射させ加熱の均一化を行う方法が好ましい実施態様の一つである。
The microwave irradiation frequency is preferably 1,000 to 5,000 MHz in consideration of the suppression of irradiation spots on the hollow fiber membrane bundle and the effect of extruding water in the pores from the pores. More preferably, it is 1,500-4,000 MHz, More preferably, it is 2,000-3,000 MHz.
In drying by microwave irradiation, it is important to uniformly heat and dry the hollow fiber membrane bundle. In the above-described microwave drying, nonuniform heating due to the reflected wave that occurs accompanying the generation of the microwave occurs, so it is important to take measures to reduce the nonuniform heating due to the reflected wave. Although the method is not limited and is arbitrary, for example, a method in which a reflecting plate is provided in an oven disclosed in Japanese Patent Application Laid-Open No. 2000-340356 to reflect reflected waves and make heating uniform is a preferred embodiment. One.

中空糸膜束の含水率が10〜20質量%まで低下した後は、遠赤外線照射により中空糸膜束を乾燥するのが好ましい。マイクロ波を照射したり、加熱(通風)乾燥を行う方が被乾燥物を速く乾燥するという意味では好ましいが、ポリビニルピロリドンを含む分離膜の場合、ポリビニルピロリドンが乾燥の進行、すなわち中空糸膜中の含水率の低下に伴い、熱による劣化分解を受けやすくなる問題がある。したがって、乾燥の最終段階(低含水率)においては、より低いエネルギーでマイルドに乾燥するのが好ましい実施態様である。また、遠赤外線は、電磁波の一種であり、マイクロ波と同様に被乾燥物の内部まで浸透するため、低エネルギーでも被乾燥物を均一に斑なく乾燥できるという特徴を有するため好ましい。   After the water content of the hollow fiber membrane bundle is reduced to 10 to 20% by mass, the hollow fiber membrane bundle is preferably dried by irradiation with far infrared rays. Although it is preferable to irradiate microwaves or to perform drying by heating (ventilation) in the sense that the material to be dried is dried more quickly, in the case of a separation membrane containing polyvinylpyrrolidone, polyvinylpyrrolidone progresses in drying, that is, in the hollow fiber membrane. As the water content decreases, there is a problem that it is susceptible to degradation and decomposition by heat. Therefore, in the final stage of drying (low water content), it is a preferred embodiment to dry mildly with lower energy. Further, far-infrared rays are a kind of electromagnetic wave and are preferable because they penetrate into the material to be dried as in the case of microwaves, and thus have a characteristic that the material to be dried can be uniformly dried even at low energy.

遠赤外線の照射波長は1〜30μmであることが好ましい。水や有機物は波長3〜12μmの遠赤外線の吸収率が高いため、遠赤外線の波長が短すぎても長すぎても、被乾燥物の温度が上がり難くなるため、乾燥時間が延びるなど乾燥にかかるコストが増大することがある。したがって、照射する遠赤外線の波長は1.5〜26μmがより好ましく、2〜22μmがさらに好ましく、2.5〜18μmがよりさらに好ましい。   It is preferable that the irradiation wavelength of a far infrared ray is 1-30 micrometers. Since water and organic matter have a high absorption rate of far-infrared rays with a wavelength of 3 to 12 μm, it is difficult to increase the temperature of the object to be dried if the wavelength of far-infrared rays is too short or too long. Such costs may increase. Therefore, the wavelength of the far infrared ray to be irradiated is more preferably 1.5 to 26 μm, further preferably 2 to 22 μm, and further preferably 2.5 to 18 μm.

遠赤外線を照射するための放射媒体としては、表面に酸化金属の被膜を有するステンレス媒体を使用するのが好ましい実施態様である。例えば、オーステナイト系ステンレス鋼粉体にAl23、Fe23、TiO2、CaO、MgO、K2O、Na2O等の酸化金属をコーティングした遠赤外線放射体を用いるのが、安価で効率的に遠赤外線を取り出すことができるため、より好ましい実施態様である。 As a radiation medium for irradiating far infrared rays, a stainless steel medium having a metal oxide film on its surface is preferably used. For example, it is inexpensive to use a far-infrared radiator in which austenitic stainless steel powder is coated with an oxide metal such as Al 2 O 3 , Fe 2 O 3 , TiO 2 , CaO, MgO, K 2 O, and Na 2 O. This is a more preferable embodiment because far infrared rays can be extracted efficiently.

一方、マイクロ波乾燥終了後に行う遠赤外線照射による乾燥の場合は、マイクロ波乾燥の場合と異なり、減圧下で照射しても放電現象は発生しないので、マイクロ波乾燥の場合より減圧度を高めて行うことができる。乾燥効率の点より5kPa以下が好ましく、4kPa以下がより好ましく、3kPa以下がさらに好ましく、2kPa以下がよりさらに好ましい。遠赤外線照射の照射エネルギーは、オーブンの中心部に設けた熱電対で検出される温度で80℃以下になるように制御するのが好ましい。70℃以下で制御するのがより好ましい。この遠赤外線照射による輻射線は、水に吸収されエネルギーに変換される割合が高く、熱効率に優れたものであり、かつ乾燥の推移に従った温度制御も適性にできるという、安全性を備えた利点を有する。この遠赤外線照射による乾燥方法、中空糸膜束の色彩、表面粗さ、屈曲、亀裂、平滑および柔軟な感触などを含む表面効果を保つために乾燥仕上げという点で有意義である。   On the other hand, in the case of drying by far-infrared irradiation performed after the completion of microwave drying, unlike the case of microwave drying, the discharge phenomenon does not occur even if irradiation is performed under reduced pressure. It can be carried out. From the point of drying efficiency, 5 kPa or less is preferable, 4 kPa or less is more preferable, 3 kPa or less is more preferable, and 2 kPa or less is more preferable. The irradiation energy of the far-infrared irradiation is preferably controlled so as to be 80 ° C. or lower at a temperature detected by a thermocouple provided at the center of the oven. It is more preferable to control at 70 ° C. or lower. This far-infrared radiation is highly absorbed by water and converted to energy, has excellent thermal efficiency, and has the safety that temperature control according to the transition of drying can be made appropriate. Have advantages. This is significant in terms of dry finishing in order to maintain the surface effects including the drying method by far-infrared irradiation, the color of the hollow fiber membrane bundle, the surface roughness, bending, cracking, smoothness and soft feeling.

本発明における好ましい乾燥方法の具体的な態様は、中空糸膜束に(1)マイクロ波照射と遠赤外線照射を同時にする乾燥工程、(2)マイクロ波照射をする乾燥工程、および(3)遠赤外線照射をする乾燥工程という複数の乾燥工程の態様を包含する。本発明の適正な乾燥方法は、まず(A)中空糸膜束に(1)マイクロ波照射と遠赤外線照射を同時にする乾燥工程を採用し、中空糸膜束の含水率が一定値に下がった状態で、(3)遠赤外線照射をする乾燥工程を採用する乾燥方法が一般的である。別の乾燥方法の態様は、(B)中空糸膜束に、(2)マイクロ波照射をする乾燥工程を採用し、中空糸膜束の含水率が一定値に下がった状態で、(3)遠赤外線照射をする乾燥工程を採用する乾燥方法である。勿論この各乾燥工程には適正な温度制御、および減圧下で行う場合の圧力制御、および通風排気を必要な場合にそれを採用することは必須の要件である。
理論的には、(1)乾燥工程と(2)乾燥工程を併用すること、(3)乾燥工程と(1)乾燥工程を併用すること、(2)乾燥工程に(3)乾燥工程を併用することなど、本件発明の乾燥方法を実施する乾燥装置の現場の操作上のことであり、実施可能ではあるが、(A)、(B)の乾燥方法に比べて、その実用上の成果は十分に吟味していない。
A specific embodiment of a preferable drying method in the present invention includes: (1) a drying step of simultaneously irradiating the hollow fiber membrane bundle with microwave irradiation and far-infrared irradiation; (2) a drying step of performing microwave irradiation; It includes embodiments of a plurality of drying processes called drying processes that perform infrared irradiation. The proper drying method of the present invention employs a drying process in which (A) a hollow fiber membrane bundle is simultaneously subjected to (1) microwave irradiation and far-infrared irradiation, and the moisture content of the hollow fiber membrane bundle is lowered to a constant value. In general, a drying method that employs a drying step of (3) far-infrared irradiation is common. Another aspect of the drying method is that (B) a hollow fiber membrane bundle adopts (2) a drying step in which microwave irradiation is performed, and the moisture content of the hollow fiber membrane bundle is lowered to a constant value, (3) It is a drying method that employs a drying process that performs far-infrared irradiation. Of course, it is an essential requirement for each drying step to adopt appropriate temperature control, pressure control when performing under reduced pressure, and ventilation exhaust when necessary.
Theoretically, (1) Drying step and (2) Drying step are used together, (3) Drying step and (1) Drying step are used together, (2) Drying step and (3) Drying step are used together Although it is on-site operation of the drying apparatus for carrying out the drying method of the present invention, and the like, it is feasible, but compared to the drying methods of (A) and (B), the practical result is I have not examined it enough.

このように、遠赤外線照射はマイクロ波照射終了後に照射を開始してもよいし、マイクロ波照射時にも照射し、マイクロ波乾燥と遠赤外線乾燥とを同時進行で実施してもよい。マイクロ波と遠赤外線照射を同時に行うことにより、マイクロ波照射により励起され中空糸膜表面に移動してきた水の蒸発が遠赤外線照射により加速されるため乾燥効率向上に繋がる。また、この表面水分の効率的な蒸発により、表面水分により誘導されるポリビニルピロリドンの中空糸膜表面の濃度変動が抑制され、部分固着発生抑制に繋げられるので好ましい。上述のごとくマイクロ波乾燥についても減圧下で実施するのが好ましいので、減圧下でマイクロ波乾燥と遠赤外線乾燥とを同時進行で実施して、前記の含水率になった時点でマイクロ波照射を中止し、減圧状態を維持したまま遠赤外線照射を続行し、さらなる乾燥を続ける方法が好ましい。この折に、マイクロ波の照射終了後に系の減圧度を下げて、コンディショニングを行った後に、再度減圧度を上げて遠赤外線照射を開始してもよい。従って、本発明においては、加熱オーブン内に遠赤外線ヒーターが取り付けられており、かつ加熱オーブン内を減圧(真空)にできる排気系が取り付けられたマイクロ波乾燥機を用いて乾燥することが好ましい実施態様である。   As described above, the far-infrared irradiation may be started after the microwave irradiation is completed, or may be performed at the time of the microwave irradiation, and the microwave drying and the far-infrared drying may be performed simultaneously. By performing microwave and far-infrared irradiation simultaneously, evaporation of water that has been excited by microwave irradiation and moved to the surface of the hollow fiber membrane is accelerated by irradiation with far-infrared radiation, leading to improved drying efficiency. Further, this efficient evaporation of surface moisture suppresses the concentration fluctuation of the surface of the hollow fiber membrane of polyvinylpyrrolidone induced by the surface moisture, which is preferable because it leads to suppression of partial sticking. As described above, microwave drying is preferably performed under reduced pressure. Therefore, microwave drying and far-infrared drying are simultaneously performed under reduced pressure, and microwave irradiation is performed when the moisture content is reached. A method of stopping, continuing the far-infrared irradiation while maintaining the reduced pressure state, and continuing further drying is preferable. At this time, after the microwave irradiation is completed, the degree of decompression of the system may be lowered and conditioning may be performed, and then the degree of decompression may be increased again to start far-infrared irradiation. Therefore, in the present invention, it is preferable to perform drying using a microwave dryer in which a far-infrared heater is attached in the heating oven and an exhaust system capable of reducing the pressure (vacuum) in the heating oven is attached. It is an aspect.

マイクロ波乾燥と遠赤外線乾燥による、減圧下、および温度という条件を加えて乾燥する場合に、一般には、例えば減圧高温下で高出力のマイクロ波を短時間に加えると、含水率の低下が促進されるが、水分の偏在、ポリビニルピロリドンの偏在が、マイクロ波の加熱にも関係するので、突沸のような現象を誘発し、これが中空糸膜束の材質や多孔構造を傷めることになり、バースト圧に対処できる構造を保証することが出来なくなるおそれがある。本発明は、マイクロ波と遠赤外線の出力を適性に調整して、温度、圧力の環境も調整することにより、特にマイクロ波による中空糸膜束の内、外の全体的な乾燥を促進する一方で、遠赤外線による、特に中空糸膜束の表面を含む全体の乾燥を促進することになり、このマイクロ波乾燥と遠赤外線乾燥は相乗的な乾燥効果を上げることになる。   When drying under conditions of reduced pressure and temperature by microwave drying and far-infrared drying, generally, for example, when high-power microwaves are applied in a short period of time under reduced pressure and high temperature, the moisture content decreases. However, the uneven distribution of moisture and polyvinyl pyrrolidone are also related to microwave heating. There is a risk that a structure that can cope with pressure cannot be guaranteed. The present invention appropriately adjusts the output of microwaves and far-infrared rays, and also adjusts the environment of temperature and pressure, thereby promoting the overall drying of the inside and outside of the hollow fiber membrane bundle by microwaves in particular. Thus, the drying of the whole including the surface of the hollow fiber membrane bundle by the far infrared ray is promoted, and the microwave drying and the far infrared drying increase the synergistic drying effect.

本発明においては、乾燥終了後に乾燥系内を常圧に戻す折に窒素ガス等の不活性ガスを用いることが好ましい実施態様である。乾燥終了直後は、中空糸膜束の温度が高いため、乾燥庫内を常圧に戻す際、空気等の酸素を含む気体を送入すると、ポリビニルピロリドンを含有する中空糸膜の場合、ポリビニルピロリドンが酸素と熱の影響により酸化劣化を受けることがある。したがって、乾燥終了後に乾燥庫内を常圧に戻す際に、不活性ガスを送入することにより中空糸膜束中のポリビニルピロリドンの酸化劣化が抑制される。   In the present invention, it is a preferred embodiment that an inert gas such as nitrogen gas is used when the inside of the drying system is returned to normal pressure after drying. Immediately after the drying, the temperature of the hollow fiber membrane bundle is high, so when returning the inside of the drying chamber to atmospheric pressure, when a gas containing oxygen such as air is fed, in the case of a hollow fiber membrane containing polyvinylpyrrolidone, polyvinylpyrrolidone May undergo oxidative degradation due to the effects of oxygen and heat. Therefore, when the inside of the drying chamber is returned to normal pressure after the drying is completed, the oxidative deterioration of the polyvinyl pyrrolidone in the hollow fiber membrane bundle is suppressed by feeding the inert gas.

中空糸膜束の乾燥は、マイクロ波、遠赤外線を使用して、時間的に無制限に乾燥に供することが品質に良い影響を与えることにはならない。中空糸膜束を構成するポリスルホン系樹脂の、又はポリビニルピロリドン材料の熱劣化や、酸素、水、蒸気などの環境劣化の影響も考えられるからである。したがって、工業的な生産ということからすれば、乾燥時間にも自ずと許容される適正な時間を考慮する必要がある。本発明者等は、マイクロ波、遠赤外線という比較的過酷な乾燥条件に供する中空糸膜の品質を保護するという観点から、さらに工業的生産性という観点から考えれば、乾燥開始から終了するまでの乾燥時間は3時間以内が好ましい。より好ましくは2.5時間以内、さらに好ましくは2時間以内である。   For the drying of the hollow fiber membrane bundle, the use of microwaves and far-infrared rays for an unlimited time does not affect the quality. This is because the influence of thermal deterioration of the polysulfone resin constituting the hollow fiber membrane bundle or of the polyvinylpyrrolidone material and environmental deterioration such as oxygen, water, and steam can be considered. Therefore, from the viewpoint of industrial production, it is necessary to consider an appropriate time that is naturally allowed for the drying time. From the viewpoint of protecting the quality of the hollow fiber membrane subjected to relatively harsh drying conditions such as microwaves and far infrared rays, from the viewpoint of industrial productivity, the inventors of the present invention are from the start to the end of drying. The drying time is preferably within 3 hours. More preferably within 2.5 hours, still more preferably within 2 hours.

さらに、中空糸膜は絶乾しないのが好ましい。絶乾してしまうと、ポリビニルピロリドンの劣化が増大し、過酸化水素の生成が大幅に増大することがある。また、使用時の再湿潤化において濡れ性が低下したり、ポリビニルピロリドンが吸水しにくくなるため中空糸膜から溶出しやすくなる可能性がある。乾燥後の中空糸膜の含水率は1質量%以上飽和含水率未満が好ましい。1.5質量%以上がより好ましい。中空糸膜の含水率が高すぎると、保存時菌が増殖しやすくなったり、中空糸膜の自重により糸潰れが発生したり、血液浄化器組み立て時に接着剤の接着障害が発生する可能性があるため、中空糸膜の含水率は10質量%以下が好ましく、より好ましくは7質量%以下である。なお、本発明でいう含水率とは、中空糸膜束の質量(g)を測定し、その後減圧下(−750mmHg以下)で真空乾燥を12時間実施し、乾燥後の質量(g)を測定する。乾燥前後の差を減量(g)として乾燥後質量(g)を基準にして%で求める。以下の式で含水率は決定する。
(減量/乾燥後質量)×100=含水率(質量%)
Furthermore, it is preferable that the hollow fiber membrane does not dry out. When it is completely dried, the deterioration of polyvinyl pyrrolidone increases and the production of hydrogen peroxide may be greatly increased. In addition, wettability may be reduced during re-wetting during use, and polyvinyl pyrrolidone may be difficult to absorb water, and thus may be easily eluted from the hollow fiber membrane. The moisture content of the hollow fiber membrane after drying is preferably 1% by mass or more and less than the saturated moisture content. 1.5 mass% or more is more preferable. If the water content of the hollow fiber membrane is too high, bacteria may easily proliferate during storage, thread collapse may occur due to the weight of the hollow fiber membrane, and adhesion failure of the adhesive may occur during assembly of the blood purifier. Therefore, the moisture content of the hollow fiber membrane is preferably 10% by mass or less, more preferably 7% by mass or less. In addition, the moisture content as used in the field of this invention measures the mass (g) of a hollow fiber membrane bundle, and after that, vacuum-drying is performed for 12 hours under reduced pressure (-750 mmHg or less), and the mass (g) after drying is measured. To do. The difference between before and after drying is determined as% (g) based on the weight (g) after drying. The water content is determined by the following formula.
(Weight loss / mass after drying) × 100 = moisture content (mass%)

また、上記のごとく原料ポリビニルピロリドンより混入したり、中空糸膜束の製造工程において生成した過酸化水素を、洗浄により除去する方法も前記した特性値を規制された範囲に制御する方法として有効である。   In addition, as described above, a method of removing hydrogen peroxide mixed from the raw material polyvinylpyrrolidone or generated in the manufacturing process of the hollow fiber membrane bundle by washing is also effective as a method for controlling the above-described characteristic values within a regulated range. is there.

本発明においては、ポリビニルピロリドンの溶出と内毒素であるエンドトキシンの血液側への浸入を阻止したり、中空糸膜束を乾燥する際の中空糸膜束同士の固着を阻止する等の特性をバランスするために中空糸膜束の外表面最表層におけるポリビニルピロリドンの含有量を特定範囲にすることが好ましい。該要求に答える方法として、例えば、ポリスルホン系樹脂に対するポリビニルピロリドンの含有量を前記した範囲にしたり、中空糸膜束の製膜条件を最適化する等により達成できる。また、製膜された中空糸膜束を洗浄することも有効な方法である。製膜条件としては、ノズル出口のエアギャップ部の湿度調整、延伸条件、凝固浴の温度、凝固液中の溶媒と非溶媒との組成比等の最適化が、また、洗浄工程の導入が有効である。   In the present invention, the properties such as elution of polyvinylpyrrolidone and endotoxin, which is an endotoxin, are prevented from penetrating into the blood, and the hollow fiber membrane bundles are prevented from sticking together when the hollow fiber membrane bundles are dried. Therefore, it is preferable that the content of polyvinyl pyrrolidone in the outermost surface layer of the hollow fiber membrane bundle is in a specific range. As a method for satisfying this requirement, it can be achieved, for example, by setting the content of polyvinylpyrrolidone with respect to the polysulfone resin to the above-mentioned range, or optimizing the film forming conditions of the hollow fiber membrane bundle. It is also an effective method to wash the formed hollow fiber membrane bundle. Film formation conditions include optimization of the humidity at the air gap at the nozzle outlet, stretching conditions, coagulation bath temperature, composition ratio of solvent to non-solvent in the coagulation liquid, and introduction of a cleaning process is also effective. It is.

内部凝固液としては、0〜80質量%のジメチルアセトアミド(DMAc)水溶液が好ましい。より好ましくは、15〜70質量%、さらに好ましくは25〜60質量%、よりさらに好ましくは30〜50質量%である。内部凝固液濃度が低すぎると、血液接触面の緻密層が厚くなるため、溶質透過性が低下する可能性がある。また内部凝固液濃度が高すぎると、緻密層の形成が不完全になりやすく、分画特性が低下する可能性がある。外部凝固液は0〜50質量%のDMAc水溶液を使用するのが好ましい。外部凝固液濃度が高すぎる場合は、外表面開孔率および外表面平均孔面積が大きくなりすぎ、透析使用時エンドトキシンの血液側への逆流入の増大や、バースト圧の低下を起こす可能性がある。したがって、外部凝固液濃度は、より好ましくは40質量%以下、さらに好ましくは30質量%以下、よりさらに好ましくは25質量%以下である。また、外部凝固液濃度が低すぎる場合には、製膜溶液から持ち込まれる溶媒を希釈するために大量の水を使用する必要があり、また廃液処理のためのコストが増大する。そのため、外部凝固液濃度の下限はより好ましくは5質量%以上、さらに好ましくは10質量%以上、よりさらに好ましくは15質量%以上である。   As the internal coagulation liquid, a 0 to 80% by mass dimethylacetamide (DMAc) aqueous solution is preferable. More preferably, it is 15-70 mass%, More preferably, it is 25-60 mass%, More preferably, it is 30-50 mass%. If the concentration of the internal coagulation solution is too low, the dense layer on the blood contact surface becomes thick, which may reduce the solute permeability. On the other hand, if the concentration of the internal coagulating liquid is too high, the formation of the dense layer tends to be incomplete and the fractionation characteristics may be deteriorated. The external coagulation liquid is preferably a 0 to 50% by weight DMAc aqueous solution. If the concentration of the external coagulation solution is too high, the outer surface open area ratio and outer surface average pore area will become too large, which may increase the backflow of endotoxin to the blood side during dialysis and decrease the burst pressure. is there. Therefore, the external coagulation liquid concentration is more preferably 40% by mass or less, further preferably 30% by mass or less, and still more preferably 25% by mass or less. Further, when the external coagulation liquid concentration is too low, it is necessary to use a large amount of water in order to dilute the solvent brought in from the film forming solution, and the cost for waste liquid treatment increases. Therefore, the lower limit of the external coagulation liquid concentration is more preferably 5% by mass or more, further preferably 10% by mass or more, and still more preferably 15% by mass or more.

本発明の中空糸膜束の製造において、完全に中空糸膜構造が固定される以前に実質的に延伸をかけないことが好ましい。実質的に延伸を掛けないとは、ノズルから吐出された製膜溶液に弛みや過度の緊張が生じないように、紡糸工程中のローラー速度をコントロールすることを意味する。吐出線速度/凝固浴第一ローラー速度比(ドラフト比)は0.7〜1.8が好ましい範囲である。前記比が0.7未満では、走行する中空糸膜束に弛みが生じ生産性の低下に繋がることがあるので、ドラフト比は0.8以上がより好ましく、0.9以上がさらに好ましく、0.95以上がよりさらに好ましい。1.8を超える場合には中空糸膜束の緻密層が裂けるなど膜構造が破壊されることがある。そのため、ドラフト比は、より好ましくは1.7以下、さらに好ましくは1.6以下、よりさらに好ましくは1.5以下、特に好ましくは1.4以下である。ドラフト比をこの範囲に調整することにより細孔の変形や破壊を防ぐことができ、膜孔への血中タンパクの目詰まりを防ぎ経時的な性能安定性やシャープな分画特性を発現することが可能となる。   In the production of the hollow fiber membrane bundle of the present invention, it is preferable that stretching is not substantially applied before the hollow fiber membrane structure is completely fixed. The fact that the film is not substantially stretched means that the roller speed during the spinning process is controlled so that the film-forming solution discharged from the nozzle is not loosened or excessively tensioned. The discharge linear speed / coagulation bath first roller speed ratio (draft ratio) is preferably in the range of 0.7 to 1.8. If the ratio is less than 0.7, the traveling hollow fiber membrane bundle may be slack and lead to a decrease in productivity. Therefore, the draft ratio is more preferably 0.8 or more, further preferably 0.9 or more, 0 .95 or more is even more preferable. When it exceeds 1.8, the membrane structure may be destroyed, for example, the dense layer of the hollow fiber membrane bundle is torn. Therefore, the draft ratio is more preferably 1.7 or less, still more preferably 1.6 or less, still more preferably 1.5 or less, and particularly preferably 1.4 or less. By adjusting the draft ratio to this range, deformation and destruction of the pores can be prevented, clogging of blood protein into the membrane pores can be prevented, and performance stability over time and sharp fractionation characteristics can be expressed. Is possible.

本発明においては、上述のごとく、過酸化水素の溶出量を低減したり、中空糸膜束の外表面におけるポリビニルピロリドンの含有量を特定範囲にするための手段として中空糸膜束の製造過程において、前記の乾燥工程の前に洗浄工程を導入することが重要である。例えば、水洗浴を通過した中空糸膜束は、湿潤状態のまま綛に巻き取り、3,000〜20,000本の束にする。ついで、得られた中空糸膜束を洗浄し、過剰の溶媒、ポリビニルピロリドンを除去する。中空糸膜束の洗浄方法として、本発明では、70〜130℃の熱水、または室温〜50℃、10〜40vol%のエタノールまたはイソプロパノール水溶液に中空糸膜束を浸漬して処理するのが好ましい。
(1)熱水洗浄の場合は、中空糸膜束を過剰のRO水に浸漬し70〜90℃で15〜60分処理した後、中空糸膜束を取り出し遠心脱水を行う。この操作をRO水を更新しながら数回繰り返して洗浄処理を行う。
(2)加圧容器内の過剰のRO水に浸漬した中空糸膜束を121℃で2時間程度処理する方法をとることもできる。
(3)エタノールまたはイソプロパノール水溶液を使用する場合も、(1)と同様の操作を繰り返すのが好ましい。
(4)遠心洗浄器に中空糸膜束を放射状に配列し、回転中心から40℃〜90℃の洗浄水をシャワー状に吹きつけながら30分〜5時間遠心洗浄することも好ましい洗浄方法である。
前記洗浄方法を2つ以上組み合わせて行ってもよい。いずれの方法においても、処理温度が低すぎる場合には、洗浄回数を増やす等必要になりコストアップに繋がることがある。また、処理温度が高すぎるとポリビニルピロリドンの分解が加速し、逆に洗浄効率が低下することがある。上記洗浄を行うことにより、外表面最表層のポリビニルピロリドンの含有量の適正化を行い、固着抑制や溶出物の量を減ずることが可能となるとともに、過酸化水素溶出量の低減にも繋がる。
In the present invention, as described above, in the process of producing a hollow fiber membrane bundle, as a means for reducing the elution amount of hydrogen peroxide or bringing the content of polyvinylpyrrolidone on the outer surface of the hollow fiber membrane bundle into a specific range. It is important to introduce a washing step before the drying step. For example, the hollow fiber membrane bundle that has passed through the water-washing bath is wound into a basket in a wet state to form a bundle of 3,000 to 20,000. Next, the obtained hollow fiber membrane bundle is washed to remove excess solvent, polyvinylpyrrolidone. As a method for washing the hollow fiber membrane bundle, in the present invention, it is preferable to treat the hollow fiber membrane bundle by immersing it in hot water at 70 to 130 ° C. or room temperature to 50 ° C. and 10 to 40 vol% ethanol or isopropanol aqueous solution. .
(1) In the case of hot water washing, the hollow fiber membrane bundle is immersed in excess RO water and treated at 70 to 90 ° C. for 15 to 60 minutes, and then the hollow fiber membrane bundle is taken out and subjected to centrifugal dehydration. This operation is repeated several times while updating the RO water to perform the cleaning process.
(2) A method of treating a hollow fiber membrane bundle immersed in excess RO water in a pressurized container at 121 ° C. for about 2 hours may be employed.
(3) When using an ethanol or isopropanol aqueous solution, it is preferable to repeat the same operation as in (1).
(4) It is also a preferable washing method that the hollow fiber membrane bundle is radially arranged in the centrifugal washer, and centrifugal washing is performed for 30 minutes to 5 hours while spraying washing water at 40 ° C. to 90 ° C. from the rotation center in a shower shape. .
Two or more cleaning methods may be combined. In any method, when the processing temperature is too low, it is necessary to increase the number of times of cleaning, which may lead to an increase in cost. On the other hand, if the treatment temperature is too high, the decomposition of polyvinylpyrrolidone is accelerated, and conversely, the cleaning efficiency may be reduced. By performing the above-described cleaning, it is possible to optimize the content of polyvinyl pyrrolidone on the outermost surface layer, to suppress sticking and to reduce the amount of eluate, and also to reduce the hydrogen peroxide elution amount.

上記方法で得られたポリスルホン系選択透過性中空糸膜束は乾燥状態で3ヶ月以上保存した後に、透析型人工腎臓装置製造承認基準により定められた試験を実施した時の中空糸膜の抽出液におけるUV(220〜350nm)吸光度の最大値が0.10未満であるのが好ましい。該評価は乾燥状態のサンプルを、湿度50%RHに調湿されたドライボックス中(雰囲気は空気)に室温で3ヶ月間保存した後、前記した方法でUV(220〜350nm)吸光度を測定する。中空糸膜束の製造工程、輸送および在庫の保管等で乾燥状態の中空糸膜束を保管することを考慮すると上記特性の付与が好ましい。
本発明のポリスルホン系選択透過性中空糸膜束は、上記特性を満たすと同時に、中空糸膜の膜厚が10〜60μm以下、単糸の降伏伸度が5.0%以下であることおよび中空糸膜に波長10mm以上、振幅0.2mm以上のクリンプが付与されていることを同時に満たすことが好ましい。
The polysulfone-based permselective hollow fiber membrane bundle obtained by the above method is stored in a dry state for 3 months or more and then subjected to a test defined by the dialysis-type artificial kidney device manufacturing approval criteria and the hollow fiber membrane extract. It is preferable that the maximum value of UV (220 to 350 nm) absorbance at is less than 0.10. In this evaluation, a dry sample is stored in a dry box (atmosphere is air) conditioned at a humidity of 50% RH for 3 months at room temperature, and then UV (220 to 350 nm) absorbance is measured by the method described above. . In consideration of storing the hollow fiber membrane bundle in a dry state in the manufacturing process of the hollow fiber membrane bundle, transportation, stock storage, and the like, it is preferable to impart the above characteristics.
The polysulfone-based permselective hollow fiber membrane bundle of the present invention satisfies the above characteristics, and at the same time, has a hollow fiber membrane thickness of 10 to 60 μm or less, a single yarn yield elongation of 5.0% or less, and a hollow It is preferable to satisfy simultaneously that the yarn film is provided with a crimp having a wavelength of 10 mm or more and an amplitude of 0.2 mm or more.

膜厚みは15〜55μmがより好ましく、15〜50μmがさらに好ましく、18〜47μmがよりさらに好ましい。膜厚みが10μm未満では中空糸膜の耐圧性が低下し耐圧性の信頼性であるバースト圧の低下に繋がるので好ましくない。逆に、膜厚みが60μmを超えた場合は、血液浄化器のサイズが大きくなり、輸送コストが増大したり、取り扱い性が低下するなどの問題が生じる可能性がある。60μmを超えると、透水性は高くても、移動速度の遅い中〜高分子量物質の透過性が低下するという課題にも繋がる。   The film thickness is more preferably 15 to 55 μm, further preferably 15 to 50 μm, and still more preferably 18 to 47 μm. A membrane thickness of less than 10 μm is not preferable because the pressure resistance of the hollow fiber membrane is reduced, leading to a reduction in burst pressure, which is a reliable pressure resistance. On the other hand, when the film thickness exceeds 60 μm, the size of the blood purifier increases, which may cause problems such as an increase in transportation cost and a decrease in handleability. If it exceeds 60 μm, even if the water permeability is high, it leads to the problem that the permeability of the medium to high molecular weight substance with a low moving speed is lowered.

本発明の中空糸膜は、内径が190〜250μmであることが好ましい。193〜240μmがより好ましく、196〜230μmがさらに好ましい。内径が190μm未満では、透析治療時に中空糸膜にかかる圧力が増大し中空糸膜の耐圧性の低下に繋がり、耐圧性の信頼性であるバースト圧が低下することがある。逆に、250μmを超えた場合は、中空部を流れる血液の圧力損失や剪断速度が低下し血中老廃物の透過性が低下するとか、膜面への血中成分の付着・堆積が増大し血液適合性が低下する。   The hollow fiber membrane of the present invention preferably has an inner diameter of 190 to 250 μm. 193-240 micrometers is more preferable, and 196-230 micrometers is still more preferable. If the inner diameter is less than 190 μm, the pressure applied to the hollow fiber membrane during dialysis treatment increases, leading to a decrease in the pressure resistance of the hollow fiber membrane, and the burst pressure, which is a reliable pressure resistance, may be reduced. On the other hand, if it exceeds 250 μm, the pressure loss and shear rate of the blood flowing through the hollow portion will decrease and the permeability of blood waste will decrease, or the adhesion and deposition of blood components on the membrane surface will increase. Blood compatibility is reduced.

本発明の血液浄化器は、中空糸膜の充填率が40〜70容量%であることが好ましい。中空糸膜の充填率が前記範囲とすることにより、血液浄化器の生産性を確保しつつ、血液浄化器としての性能(クリンプ付与による透析液の偏流抑制など)を発現することが可能となる。中空糸膜の充填率が低過ぎると、クリンプを付与しているとは言っても透析液の偏流を抑制しきれない場合がある。したがって、中空糸膜充填率は43容量%以上がより好ましく、45容量%以上がさらに好ましい。逆に、中空糸膜の充填率が高すぎると、中空糸膜にクリンプが付与され嵩高くなっている分、血液浄化器容器への中空糸膜の挿入性が低下するため、血液浄化器の生産性が低下することがある。したがって、中空糸膜充填率は67容量%以下がより好ましく、65容量%以下がさらに好ましい。
ここで、血液浄化器の中空糸膜の充填率は、下記式を用いて求めることが出来る。
充填率(容量%)=π(中空糸膜外径/2)2×中空糸膜本数/血液浄化器端部断面積(内径基準)
In the blood purifier of the present invention, the filling rate of the hollow fiber membrane is preferably 40 to 70% by volume. By setting the filling rate of the hollow fiber membrane within the above range, it is possible to exhibit performance as a blood purifier (such as suppression of dialysis fluid drift by applying a crimp) while ensuring the productivity of the blood purifier. . If the filling rate of the hollow fiber membrane is too low, the drift of the dialysate may not be suppressed even though crimping is applied. Accordingly, the hollow fiber membrane filling rate is more preferably 43% by volume or more, and further preferably 45% by volume or more. On the contrary, if the filling rate of the hollow fiber membrane is too high, the hollow fiber membrane is crimped and bulky, so the insertability of the hollow fiber membrane into the blood purifier container is reduced. Productivity may be reduced. Therefore, the hollow fiber membrane filling rate is more preferably 67% by volume or less, and further preferably 65% by volume or less.
Here, the filling rate of the hollow fiber membrane of the blood purifier can be obtained using the following formula.
Filling rate (volume%) = π (hollow fiber membrane outer diameter / 2) 2 × number of hollow fiber membranes / blood purifier end cross-sectional area (inner diameter standard)

本発明でいうクリンプとは直線に対する波形形状を言う。   The crimp in the present invention refers to a waveform shape with respect to a straight line.

本発明の中空糸膜は、波長10mm以上、振幅0.2mm以上のクリンプが付与されていることが好ましい。中空糸膜のクリンプが波長10mm以下、振幅0.2mm以下の場合、血液浄化器組立て工程において中空糸膜のずれにより血液浄化器組み立て性が悪化したり、中空糸膜同士の密着及び透析液の偏流により尿素等の小分子量物質の透過性能が低下することがある。したがって、クリンプの波長は15mm以上がより好ましく、20mm以上がさらに好ましい。また、振幅は0.22mm以上がより好ましく、0.23mm以上がさらに好ましい。一方、クリンプの振幅が高くなりすぎると中空糸膜束がかさ高くなるため、血液浄化器組み立て工程で中空糸膜束を血液浄化器容器に挿入する際の抵抗が大きくなり、中空糸膜表面に傷をつけてしまい、リーク発生の原因になることがある。したがって、クリンプは好ましくは波長50mm以下、振幅5mm以下、より好ましくは波長40mm以下、振幅4mm以下である。   The hollow fiber membrane of the present invention is preferably provided with a crimp having a wavelength of 10 mm or more and an amplitude of 0.2 mm or more. When the crimp of the hollow fiber membrane is 10 mm or less and the amplitude is 0.2 mm or less, the assembly of the blood purifier deteriorates due to the displacement of the hollow fiber membrane in the blood purifier assembly process, the adhesion between the hollow fiber membranes and the dialysate The permeation performance of small molecular weight substances such as urea may decrease due to drift. Therefore, the wavelength of the crimp is more preferably 15 mm or more, and further preferably 20 mm or more. The amplitude is more preferably 0.22 mm or more, and further preferably 0.23 mm or more. On the other hand, if the crimp amplitude becomes too high, the hollow fiber membrane bundle becomes bulky, so the resistance when inserting the hollow fiber membrane bundle into the blood purifier container in the blood purifier assembly process increases, and the hollow fiber membrane surface It may cause scratches and cause leaks. Accordingly, the crimp preferably has a wavelength of 50 mm or less and an amplitude of 5 mm or less, more preferably a wavelength of 40 mm or less and an amplitude of 4 mm or less.

本発明におけるクリンプを付与する方法としては、例えば、(1)一定のクリアランスを有する複数個の円柱体又はローラー付きプーリーの間を通過させる方法、(2)一定のクリアランスを有する複数個の円柱体又はローラー付きのタイミングベルト又はチェーンの間を通過させる方法、(3)一定のクリアランスを有する複数個の凸部付きタイミングベルトの間を通過させる方法、(4)一定のクリアランスを有する複数個の表面が凸凹状のベルトの間を通過させる方法、などがある。本発明による方法はいずれの場合も、中空糸膜の円周上方向の片側の一部に、かつ長さ方向に対し断続的に部分延伸による変形を与え得るものであることが好ましい。   Examples of the method of applying crimp in the present invention include (1) a method of passing between a plurality of cylindrical bodies having a certain clearance or pulleys with rollers, and (2) a plurality of cylindrical bodies having a certain clearance. Or a method of passing between a timing belt or chain with a roller, (3) a method of passing between a plurality of timing belts having a certain clearance, and (4) a plurality of surfaces having a certain clearance. There is a method of passing between the belts with irregularities. In any case, it is preferable that the method according to the present invention is capable of intermittently deforming a part of one side of the hollow fiber membrane in the circumferential direction intermittently with respect to the length direction.

以下、本発明のクリンプ付与について詳細に説明する。図1は、本発明のクリンプ付与装置(上記3の方法)の縦断面図である。図1において、連続糸条1は、相対して走行する歯付きタイミングルト2の間を蛇行しながら搬送される。歯付きタイミングルト2が図示しない駆動源より駆動されるタイミングプーリー7により矢印方向に走行される。ここで、連続糸条1は、フリーローラー6から供給され、前記の歯付きタイミングベルト間を蛇行しながら前方へ進められ、捲縮(クリンプ)を付与されて排出される。   Hereinafter, the crimping of the present invention will be described in detail. FIG. 1 is a longitudinal sectional view of a crimping apparatus (method 3 above) according to the present invention. In FIG. 1, the continuous yarn 1 is conveyed while meandering between the toothed timing belts 2 that travel relative to each other. The toothed timing belt 2 is driven in the direction of the arrow by a timing pulley 7 driven by a driving source (not shown). Here, the continuous yarn 1 is supplied from the free roller 6 and advanced forward while meandering between the toothed timing belts, and is crimped to be discharged.

また、捲縮(クリンプ)の付与と固定を同時に行なうことを目的とし、クリンプ付与装置を熱風入口を有するボックス内に配置することも好ましい。熱風入口4、熱風出口5は、熱風加熱ボックス3内が均一に加熱されていれば、特にその位置を指定するものではない。また、加熱方法においても熱風加熱以外に加熱するものであればヒーター等特に指定するものではない。   For the purpose of simultaneously applying and fixing crimps, it is also preferable to arrange the crimp applying device in a box having a hot air inlet. The positions of the hot air inlet 4 and the hot air outlet 5 are not particularly specified as long as the inside of the hot air heating box 3 is uniformly heated. In addition, the heating method is not particularly specified as long as it is heated other than hot air heating.

相対して走行する歯付きタイミングベルト2間のクリアランスは、ボールネジ、エアーシリンダー等の駆動装置を用いて、可変であることが望ましい。クリアランスの調整は、糸条の外径に合わせて適宜行う。クリアランスが小さすぎると、相対して走行するタイミングベルトどうしが当たり、糸条に必要以上のダメージを与えることがある。また、クリアランスが大きすぎると糸条に与える捲縮(クリンプ)が弱くなることがある。また、所望の捲縮形状を得るために、タイミングベルトの歯のピッチ、形状を選ぶことが必要である。また、タイミングベルトの材質も耐熱性のもの、糸条に対して耐蝕性を示すものであれば、特に指定するものではない。   The clearance between the toothed timing belts 2 that travel relative to each other is desirably variable using a driving device such as a ball screw or an air cylinder. The clearance is adjusted appropriately according to the outer diameter of the yarn. If the clearance is too small, the timing belts that run against each other will hit each other, and the yarn may be damaged more than necessary. Further, if the clearance is too large, the crimp applied to the yarn may be weakened. Further, in order to obtain a desired crimped shape, it is necessary to select the pitch and shape of the timing belt teeth. The timing belt material is not particularly specified as long as it is heat resistant and exhibits corrosion resistance to the yarn.

本発明により得られた中空糸膜のクリンプの大きさや単位長さあたりのクリンプ数は、用いるクリンプ付与のための円柱体、ローラーまたは凸部付きタイミングベルト等の円柱体又はローラーの径とその間隔又は凸部の形状、円柱体、ローラー又は凸部の噛み合せの深さを変える事により自由に変更可能である。(図2、図3参照)。   The size of the crimp of the hollow fiber membrane obtained according to the present invention and the number of crimps per unit length are the cylinder for use in applying the crimp, the diameter of the cylinder such as a roller or a timing belt with a convex part, or the distance between the rollers. Or it can change freely by changing the shape of a convex part, a cylindrical body, a roller, or the meshing depth of a convex part. (See FIGS. 2 and 3).

上記クリンプ付与は、実質的に中空糸膜構造が固定された後に行うのが好ましい実施態様である。実質的に中空糸膜構造が固定された状態とは、製膜溶液をノズルより吐出し、凝固浴槽で凝固し、水洗工程を経た後の物理的に中空糸膜構造が変化しない状態をいう。すなわち、水洗工程以降、中空糸膜を2〜50本ずつ合糸してクリンプ付与工程に供するのが好ましい。   The crimping is preferably performed after the hollow fiber membrane structure is substantially fixed. The state in which the hollow fiber membrane structure is substantially fixed refers to a state in which the hollow fiber membrane structure does not change physically after the membrane-forming solution is discharged from the nozzle, solidified in the coagulation bath, and subjected to the water washing step. That is, after the water washing step, it is preferable that 2 to 50 hollow fiber membranes are combined and used for the crimping step.

水洗浴を通過した中空糸膜は、前述のごとく耐圧性の信頼性を確保するためにバースト圧を特定範囲にする必要があるが、このためには、中空糸膜の傷の発生を可能な限り低減する必要がある。そのために、上記のクリンプを付与する工程においても、過剰に中空糸膜同士が擦れ合うことを防ぐことが好ましい。従って、連続的に供給される複数本の中空糸膜列を、一定間隔をおいて走行する糸ガイドの間を蛇行させてクリンプを付与する際、前記糸ガイド間の複数の中空糸膜列が幅方向に分割されて走行されることが好ましい。分割されていない中空糸膜列を一定間隔をおいて走行する糸ガイドの間を蛇行させてクリンプを与えた場合は、該クリンプ付与工程において中空糸膜間のずれにより傷付きが発生することがある。また、血液浄化器の組立て工程において、この中空糸膜のずれにより血液浄化器組み立て性が悪化するという問題に繋がることがある。そこで、中空糸膜を適度に分割して実施するのが好ましい。従来技術においては、該分割はクリンプ付与工程において分繊処理することにより行われていた。該方法は前述したような課題を有する。本発明においては、前述のごとくクリンプ付与工程に供給する前に紡糸された単糸を合糸をして、この合糸された単位でクリンプ工程に供給するので該課題の回避を行っている。   The hollow fiber membrane that has passed through the washing bath needs to have a burst pressure within a specific range in order to ensure the reliability of pressure resistance as described above. For this purpose, the hollow fiber membrane can be damaged. It is necessary to reduce as much as possible. Therefore, it is preferable to prevent the hollow fiber membranes from excessively rubbing in the step of applying the crimp. Therefore, when a plurality of hollow fiber membrane rows that are continuously supplied are meandered between yarn guides that run at a constant interval to provide crimps, the plurality of hollow fiber membrane rows between the yarn guides are It is preferable that the vehicle travels while being divided in the width direction. In the case where crimps are given by meandering between yarn guides that run through a hollow fiber membrane row that is not divided at regular intervals, scratches may occur due to displacement between the hollow fiber membranes in the crimping step. is there. Further, in the assembly process of the blood purifier, this misalignment of the hollow fiber membrane may lead to a problem that the blood purifier assemblability deteriorates. Therefore, it is preferable to carry out by dividing the hollow fiber membrane appropriately. In the prior art, the division is performed by performing a fiber separation process in the crimping step. This method has the problems as described above. In the present invention, as described above, the spun single yarn is combined before being supplied to the crimping step, and the combined unit is supplied to the crimping step, so this problem is avoided.

中空糸膜構造が固定された後に、クリンプを付与するための具体的な一例として、タイミングベルト上に固定された凸部を有する2組のベルトの間を、合糸された糸条をベルト走行とともに通過させることにより得られる。このとき、凸部の形状は、糸条の接触する部分が半円状または放物円状等が望ましく、方形では中空糸膜に異形化、閉塞等のダメージを与えてしまう。凸部を有するベルトの代わりに円形状のローラーまたはピンを保持したものでもよく、フリーに回転するローラーであれば入り口部分での糸条の不必要な延伸が防げるためより好ましい。   After the hollow fiber membrane structure is fixed, as a specific example for applying a crimp, a belt travels between the two sets of belts having convex portions fixed on the timing belt through the combined yarns. It is obtained by passing with. At this time, the shape of the convex part is preferably a semicircular or parabolic shape where the yarn contacts, and in the case of a square, the hollow fiber membrane is damaged, such as being deformed or blocked. Instead of a belt having a convex portion, a circular roller or a pin may be held, and a roller that rotates freely is more preferable because unnecessary stretching of the yarn at the entrance can be prevented.

本発明において、中空糸膜にクリンプが付与される機構は以下のとおりである。上下2組の凸部または円柱体の間に挟まれた糸条が、その円形または放物円状の凸部または円柱体の表面に沿って押し付けられることにより、凸部または円柱に接触する側の中空糸膜表面に対し円周上の外側部分の中空糸膜がより長い距離を必要とするため延伸されることによる。したがって、半円状の凸部または円柱体の半径は、中空糸膜が凸部または円柱に沿って押し付けられた時に、その接触する側とは反対側が降伏伸度を超える変形を与えるのに十分なほど小さいことが望ましい。また、必要以上に小さい場合は、中空糸膜が扁平化、異形化または閉塞等のダメージをうけるため、降伏伸度に対し2.0倍以上7.0倍以下の変形を与え得る径が望ましい。さらには降伏伸度の3.0倍以上6.0倍以下の変形を与え得る径であるのが扁平化、異形化または閉塞等をより少なくし、且つ十分なクリンプの固定化を得るのにより望ましい。   In the present invention, the mechanism for crimping the hollow fiber membrane is as follows. The side that comes into contact with the convex portion or the cylinder by the yarn sandwiched between the upper and lower two convex portions or the cylindrical body being pressed along the surface of the circular or parabolic convex portion or the cylindrical body. This is because the hollow fiber membrane in the outer portion on the circumference requires a longer distance from the surface of the hollow fiber membrane and is stretched. Therefore, the radius of the semicircular convex part or cylindrical body is sufficient to give a deformation exceeding the yield elongation on the side opposite to the contact side when the hollow fiber membrane is pressed along the convex part or cylinder. It is desirable that it is so small. In addition, when the diameter is smaller than necessary, the hollow fiber membrane is damaged such as flattening, deforming or clogging, and therefore a diameter that can give a deformation of 2.0 times to 7.0 times the yield elongation is desirable. . Furthermore, the diameter that can give a deformation of 3.0 times or more and 6.0 times or less of the yield elongation is less flattening, deforming or blocking, and sufficient crimp fixation is obtained. desirable.

本発明においてクリンプを付与するに際し、中空糸膜の扁平、異形化、閉塞を防ぐために、中空糸膜内部に中空形成剤が実質的に封入された状態で処理してもよい。この場合は、中空形成剤がクリンプ処理の温度において液状であるのがより望ましい。   In applying the crimp in the present invention, in order to prevent the hollow fiber membrane from being flattened, deformed, or blocked, the hollow fiber membrane may be treated with the hollow forming agent substantially enclosed. In this case, it is more desirable that the hollow forming agent is liquid at the temperature of the crimping process.

前述したごとく、例えば、特許文献29に記載のクリンプ付与方法は、乾燥状態の中空糸膜を用いて、かつ分繊板により中空糸膜を分繊して実施されており、この分繊板との擦れにより中空糸膜束が傷付き、中空糸膜の耐圧性の信頼性低下に繋がることがある。また、乾燥中空糸膜は走行中、部材との接触により静電気が発生しやすく、静電気により中空糸膜同士が会合するために、分繊板との擦れや中空糸膜相互の擦れが増大することにより傷の発生が増長されるという課題を有する。   As described above, for example, the crimp application method described in Patent Document 29 is performed by using a hollow fiber membrane in a dry state and separating the hollow fiber membrane with a separation plate. The rubbing of the hollow fiber membrane bundle may be damaged, leading to a decrease in the pressure resistance of the hollow fiber membrane. In addition, dry hollow fiber membranes are likely to generate static electricity due to contact with members during running, and the hollow fiber membranes associate with each other due to static electricity, which increases the friction with the separating plate and between the hollow fiber membranes. This has the problem that the occurrence of scratches is increased.

本発明方法においては、上記課題解決の方策を取り入れている。第一の方策は、湿潤状態の中空糸膜にクリンプを付与することにより、中空糸膜の走行による静電気の発生を抑制し、過剰に中空糸膜同士が擦れ合うことを防ぐことである。第二の方策は、クリンプ工程における分繊作業を排除し、分繊板との擦れ傷の発生を排除すると共に、該分繊板との摩擦を排除し擦れ傷の発生を抑制することである。すなわち、紡糸、凝固および水洗工程までは単糸で走行させ、クリンプ付与装置に入る直前で2〜50本の単糸を合糸し、クリンプ工程に連続的に供給しクリンプを付与することが好ましい。該方法により前記課題が解決され、かつ合糸により効率的なクリンプ付与が可能となる。水洗工程の前半以前で合糸すると中空糸膜間の固着発生に繋がることがある。   The method of the present invention adopts the measures for solving the above-mentioned problems. The first measure is to suppress crimping of the hollow fiber membranes in a wet state, thereby suppressing the generation of static electricity due to running of the hollow fiber membranes and preventing the hollow fiber membranes from excessively rubbing each other. The second measure is to eliminate the splitting work in the crimping process, to eliminate the generation of scratches with the splitting plate, and to eliminate the friction with the splitting plate and suppress the generation of the scratches. . That is, it is preferable to run with single yarn until spinning, coagulation and water washing steps, combine 2 to 50 single yarns just before entering the crimping device, and continuously supply to the crimping step to give the crimp. . This method solves the above-mentioned problems and enables efficient crimping by means of combined yarn. If the yarn is combined before the first half of the water washing step, it may lead to the occurrence of sticking between the hollow fiber membranes.

本発明においては、上記のごとく湿潤状態の中空糸膜にクリンプを付与することが好ましいが、該方法は乾燥状態の中空糸膜にクリンプを付与する方法に比してクリンプの発現が緩やかである。この課題を回避するために、本発明においては、クリンプを付与する際、中空糸膜の降伏伸度以上の変形を部分的に与える工程を通過させるだけで効率的にクリンプが付与でき、クリンプを固定化させるための熱セット処理も必要としない。
したがって、本発明は、中空糸膜の降伏伸度が5.0%以下の中空糸膜に対して効果的にクリンプを付与し得る。中空糸膜の降伏伸度が大きすぎると、クリンプを固定するために凸部の径を小さくする必要が生じ、そうすると中空糸膜に局所的な外力がかかるため、扁平や潰れ(閉塞)といった変形中空糸膜が発生しやすくなる。したがって、中空糸膜の降伏伸度は4.5%以下がより好ましく、4.0%以下がさらに好ましく、3.5%以下がよりさらに好ましい。逆に、中空糸膜の降伏伸度が小さすぎると、クリンプを固定するための凸部の径をある程度大きくすることができ、中空糸膜の変形を抑制することができるが、血液浄化器の生産性や輸送、使用時の取り扱い性の面で中空糸膜強度不足による問題が生じる可能性がある。したがって、中空糸膜の降伏伸度は1.5%以上が好ましく、1.8%以上がより好ましく、2.1%以上がさらに好ましい。
In the present invention, it is preferable to apply crimp to the wet hollow fiber membrane as described above, but this method has a milder expression of crimp than the method of applying crimp to the dry hollow fiber membrane. . In order to avoid this problem, in the present invention, when applying the crimp, the crimp can be efficiently applied only by passing through a step of partially imparting deformation exceeding the yield elongation of the hollow fiber membrane. There is no need for heat setting for immobilization.
Therefore, the present invention can effectively give a crimp to a hollow fiber membrane whose yield elongation is 5.0% or less. If the yield elongation of the hollow fiber membrane is too large, it will be necessary to reduce the diameter of the convex part in order to fix the crimp. A hollow fiber membrane is likely to occur. Therefore, the yield elongation of the hollow fiber membrane is more preferably 4.5% or less, further preferably 4.0% or less, and further preferably 3.5% or less. On the contrary, if the yield elongation of the hollow fiber membrane is too small, the diameter of the convex part for fixing the crimp can be increased to some extent and the deformation of the hollow fiber membrane can be suppressed. There may be a problem due to insufficient strength of the hollow fiber membrane in terms of productivity, transportation, and handling during use. Accordingly, the yield elongation of the hollow fiber membrane is preferably 1.5% or more, more preferably 1.8% or more, and further preferably 2.1% or more.

本発明においては、上記特性を有したポリスルホン系選択透過性中空糸膜束が充填されてなる血液浄化器であることが好ましい。該血液浄化器は、上記方法で得た選択透過性中空糸膜束を血液浄化器用ハウジングに装填し、その両端を樹脂で固定化した形状のものが好ましい。   In the present invention, the blood purifier is preferably filled with a polysulfone-based permselective hollow fiber membrane bundle having the above characteristics. The blood purifier preferably has a shape in which the selectively permeable hollow fiber membrane bundle obtained by the above method is loaded in a blood purifier housing and both ends thereof are fixed with a resin.

該血液浄化器の形状の一例を図7に示す。   An example of the shape of the blood purifier is shown in FIG.

血液浄化器1は、筒状のハウジング2内に選択透過性中空糸膜束3を装填し、該中空糸膜束3の両端部をハウジング2の両端部に接着剤等により固定4し、ハウジング2の両端部をキャップ5a,5bにより被覆してなる。そして、ハウジング2の側部で一方の端部近傍には、ハウジング2内に透析液を導入する透析液導入口6aを、他方の端部近傍には、透析液を排出する透析液排出口6bをそれぞれ突出形成してある。また、一方のキャップ5aにはハウジング2内に血液を導入する血液導入口7aを、他方のキャップ5bには血液を排出する血液排出口7bをそれぞれ突出形成してある。   The blood purifier 1 is loaded with a selectively permeable hollow fiber membrane bundle 3 in a cylindrical housing 2, and both ends of the hollow fiber membrane bundle 3 are fixed 4 to both ends of the housing 2 with an adhesive or the like. The both ends of 2 are covered with caps 5a and 5b. A dialysate inlet 6a for introducing dialysate into the housing 2 is provided near one end of the side of the housing 2, and a dialysate outlet 6b for discharging dialysate is provided near the other end. Each is formed to protrude. One cap 5a is formed with a blood introduction port 7a for introducing blood into the housing 2, and the other cap 5b is formed with a blood discharge port 7b for discharging blood.

そして、血液は、矢印Aに示すように、血液導入口7aからキャップ5aと選択透過性中空糸膜束3の一方の端面とにより形成される空間内に入り、選択透過性中空糸膜束3の中空糸の中を通り、選択透過性中空糸束3の他方の端面とキャップ5bとにより形成される空間内に入り、血液排出口7bから矢印Bに示すように排出される。一方、透析液は、矢印Cに示すように、透析液導入口6aからハウジング2内に入り、選択透過性中空糸膜束3の中空糸の外側を流れ、矢印Dに示すように、透析液排出口6bから排出される。このとき、透析される血液の流れと透析液の流れとは逆方向の所謂対向流とする。この間に、選択透過性中空糸膜内を流れる血液中の老廃物が中空糸膜を通して外側の透析液中に透析される。   The blood enters the space formed by the cap 5a and one end face of the selectively permeable hollow fiber membrane bundle 3 from the blood introduction port 7a as shown by the arrow A, and the selectively permeable hollow fiber membrane bundle 3 , Enters the space formed by the other end face of the selectively permeable hollow fiber bundle 3 and the cap 5b, and is discharged from the blood outlet 7b as shown by an arrow B. On the other hand, the dialysate enters the housing 2 from the dialysate inlet 6a as shown by the arrow C, flows outside the hollow fibers of the selectively permeable hollow fiber membrane bundle 3, and as shown by the arrow D, the dialysate It is discharged from the discharge port 6b. At this time, the flow of blood to be dialyzed and the flow of dialysate are opposite so-called opposite flows. During this time, waste in the blood flowing in the selectively permeable hollow fiber membrane is dialyzed into the outer dialysate through the hollow fiber membrane.

前記ハウジングやキャップの素材としては、ポリカーボネート、ポリエステル、ポリプロピレン等が挙げられる。また、両端部固定に用いられる接着剤の材料としてはポリウレタン樹脂、エポキシ樹脂およびシリコーン樹脂等が挙げられる。   Examples of the material for the housing and the cap include polycarbonate, polyester, and polypropylene. Examples of the adhesive material used for fixing both ends include polyurethane resin, epoxy resin, and silicone resin.

両端部固定に用いられる接着剤の固定部への注入方法は限定されないが、注入すべき血液浄化器を回転させることにより発生する遠心力を利用して注入する遠心接着法が推奨される。該遠心接着法の方法も限定されない。たとえば、乾燥された選択透過性中空糸膜束が装填されたハウジングの両端に目止め治具を取り付け、遠心接着機にセットする。遠心接着機を所定の回転数で回転させながら、室温付近の温度で透析液導入口6aおよび6bより所定量の未硬化の接着剤樹脂を注入した後、遠心接着機の温度を注入接着剤樹脂の硬化温度に上昇させ、硬化を終了させるか、あるいは少なくとも樹脂の流動性がなくなるまでプレ硬化させて遠心接着機を停止する。後者の場合は静置状態で加温をしてポスト硬化を行い硬化を終了させる。この遠心接着法は選択透過性中空糸膜膜束の接着部の内側を可撓性樹脂層で覆って接着界面の選択透過性中空糸膜を補強した2層遠心接着法であってもよい。   The method of injecting the adhesive used for fixing both ends into the fixing portion is not limited, but a centrifugal bonding method in which the injection is performed using the centrifugal force generated by rotating the blood purifier to be injected is recommended. The method of the centrifugal bonding method is not limited. For example, sealing jigs are attached to both ends of the housing loaded with the dried selectively permeable hollow fiber membrane bundle and set in a centrifugal bonding machine. A predetermined amount of uncured adhesive resin is injected from the dialysate inlets 6a and 6b at a temperature near room temperature while rotating the centrifugal adhesive machine at a predetermined rotational speed, and then the temperature of the centrifugal adhesive machine is injected. The curing temperature is raised and the curing is terminated, or at least the resin is precured until the fluidity of the resin is lost, and the centrifugal bonding machine is stopped. In the latter case, heating is performed in a stationary state, post-curing is performed, and curing is terminated. This centrifugal bonding method may be a two-layer centrifugal bonding method in which the selectively permeable hollow fiber membrane at the bonding interface is reinforced by covering the inside of the bonded portion of the selectively permeable hollow fiber membrane bundle with a flexible resin layer.

上記遠心接着法の場合、選択透過性中空糸膜束内の空間全体に接着剤が均一に注入されることが重要である。この注入が不均一になり接着剤の注入量が不充分な箇所が生ずると接着不良に繋がる。特に、選択透過性中空糸膜同士が固着した部分があると接着剤の浸透が阻害される。従って、この固着部分の解きほぐしをするために、例えば、選択透過性中空糸膜束端面にノズルより空気を吹き付ける、いわゆる整糸処理等が実施されている。確かに、本整糸処理は固着中空糸膜の解きほぐしには効果があるが、この処理により端面部の選択透過性中空糸膜束の変形が起こり傾き中空糸膜の発生に繋がるので好ましくない。
本発明の選択透過性中空糸膜束は乾燥時の部分固着が抑制されているので整糸処理をしなくても接着剤の注入の均一性が確保されるという特徴を有する。従って、整糸処理は不要である。ただし、接着剤の注入の均一性確保は重要であるので、下記対応等を実施することが好ましい。例えば、接着剤として低粘度の銘柄を選択することが好ましい。二液混合2分後の粘度が2000mPa・s以下が好ましい。1600mPa・s以下がより好ましい。また、血液浄化器組み立てに用いるハウジングに乾燥選択透過性中空糸膜束を挿入する時の中空状の包装体で拘束される選択透過性中空糸膜束の充填密度を低くすることが好ましい。
In the case of the centrifugal bonding method, it is important that the adhesive is uniformly injected into the entire space in the selectively permeable hollow fiber membrane bundle. If this injection becomes non-uniform and a part where the injection amount of the adhesive is insufficient is produced, it leads to poor adhesion. In particular, if there is a portion where the selectively permeable hollow fiber membranes are fixed, penetration of the adhesive is inhibited. Therefore, in order to unravel the adhering portion, for example, so-called yarn setting treatment is performed in which air is blown from the nozzle to the end face of the selectively permeable hollow fiber membrane bundle. Certainly, the present warping treatment is effective in unraveling the fixed hollow fiber membrane, but this treatment is not preferable because it causes deformation of the selectively permeable hollow fiber membrane bundle at the end face portion, leading to the generation of an inclined hollow fiber membrane.
The selectively permeable hollow fiber membrane bundle of the present invention is characterized in that uniformity of the injection of the adhesive is ensured without performing the yarn setting treatment because partial fixation during drying is suppressed. Therefore, the yarn setting process is not necessary. However, since it is important to ensure the uniformity of the injection of the adhesive, it is preferable to implement the following measures. For example, it is preferable to select a low viscosity brand as the adhesive. The viscosity after 2 minutes of mixing the two liquids is preferably 2000 mPa · s or less. 1600 mPa · s or less is more preferable. Moreover, it is preferable to lower the filling density of the selectively permeable hollow fiber membrane bundle restrained by the hollow package when the dry selectively permeable hollow fiber membrane bundle is inserted into the housing used for assembling the blood purifier.

充填する中空糸膜束の中空糸膜本数、長さは、市場要求や中空糸膜束特性により適宜設定される。ハウジングの長さや径は該充填する選択透過性中空糸膜束の大きさに見合うように設定される。   The number of hollow fiber membranes and the length of the hollow fiber membrane bundle to be filled are appropriately set according to market requirements and hollow fiber membrane bundle characteristics. The length and diameter of the housing are set so as to match the size of the selectively permeable hollow fiber membrane bundle to be filled.

本発明のポリスルホン系選択透過性中空糸膜束を用いて作製した血液浄化器は、血液流量200mL/min、透析液流量500mL/minで血液透析に用いた場合、尿素クリアランスは150mL/min(1.5m2)以上であることが好ましい。尿素クリアランスが低すぎると、血液中の低分子量物質を除去しきれず、十分な治療効果を得ることができない可能性がある。したがって、尿素クリアランスは160mL/min(1.5m2)以上がより好ましく、170mL/min(1.5m2)以上がさらに好ましく、180mL/min(1.5m2)以上がよりさらに好ましい。尿素クリアランスの上限は、血液流量により決まるものであり、血液流量が200mL/minの場合、クリアランスの上限は200mL/minである。なお、尿素は濃度差をドライビングフォースとして拡散移動するため、透析液の偏流の影響を非常に大きく受ける。したがって、尿素クリアランスが小さいということは、中空糸膜を介して血液側から透析液側に尿素が移動しにくい(すなわち、透析液の流れに偏流が生じている)ことの証左とみることができる。 The blood purifier produced using the polysulfone-based permselective hollow fiber membrane bundle of the present invention has a urea clearance of 150 mL / min (1) when used for hemodialysis with a blood flow rate of 200 mL / min and a dialysate flow rate of 500 mL / min. 0.5 m 2 ) or more. If the urea clearance is too low, the low molecular weight substance in the blood cannot be removed, and there is a possibility that a sufficient therapeutic effect cannot be obtained. Therefore, the urea clearance is preferably 160 mL / min (1.5 m 2 ) or more, more preferably 170 mL / min (1.5 m 2 ) or more, and even more preferably 180 mL / min (1.5 m 2 ) or more. The upper limit of urea clearance is determined by the blood flow rate. When the blood flow rate is 200 mL / min, the upper limit of clearance is 200 mL / min. Urea diffuses and moves with the concentration difference as a driving force, and is therefore greatly affected by the dialysis fluid drift. Therefore, the low urea clearance can be seen as proof that urea does not easily move from the blood side to the dialysate side through the hollow fiber membrane (ie, there is a drift in the dialysate flow). .

上記特性を付与する方法は限定されないが、前述した中空糸膜束にクリンプを付与することが好ましい実施態様である。該クリンプの付与により透析液の偏流が抑制され尿素クリアランスの低下が抑制される。   Although the method for imparting the above properties is not limited, it is a preferred embodiment to impart crimp to the hollow fiber membrane bundle described above. By applying the crimp, the drift of the dialysate is suppressed and the decrease in urea clearance is suppressed.

また、該血液浄化器用として用いる場合は、バースト圧が0.5MPa以上の中空糸膜束よりなることおよび該血液浄化器の透水率が150ml/m2/hr/mmHg以上であることが好ましい。バースト圧が0.5MPa未満では後述するような血液リークに繋がる潜在的な欠陥を検知することができなくなる可能性がある。また、透水率が150ml/m2/hr/mmHg未満では透析効率が低下する可能性がある。透析効率を上げるためには細孔径を大きくしたり、細孔数を増やしたりするが、そうすると膜強度が低下したり欠陥ができるといった問題が生じやすくなる。従って、外表面の孔径を最適化することにより支持層部分の空隙率を最適化し、溶質透過抵抗と膜強度をバランスさせたものであることが好ましい。より好ましい透水率の範囲は200ml/m2/hr/mmHg以上、さらに好ましくは250ml/m2/hr/mmHg以上、よりさらに好ましくは300ml/m2/hr/mmHg以上である。また、透水率が高すぎる場合、血液透析時の除水コントロールがしにくくなるため、2000ml/m2/hr/mmHg以下が好ましい。より好ましくは1800ml/m2/hr/mmHg以下、さらに好ましくは1500ml/m2/hr/mmHg以下、よりさらに好ましくは1300ml/m2/hr/mmHg以下である。 When used for the blood purifier, it is preferable that the burst pressure is made of a hollow fiber membrane bundle having a pressure of 0.5 MPa or more and that the water permeability of the blood purifier is 150 ml / m 2 / hr / mmHg or more. If the burst pressure is less than 0.5 MPa, there is a possibility that it is impossible to detect a potential defect that leads to a blood leak as described later. Moreover, if the water permeability is less than 150 ml / m 2 / hr / mmHg, the dialysis efficiency may decrease. In order to increase the dialysis efficiency, the pore diameter is increased or the number of pores is increased. However, this tends to cause a problem that the membrane strength is reduced or defects are formed. Therefore, it is preferable that the porosity of the support layer portion is optimized by optimizing the pore diameter of the outer surface, and the solute permeation resistance and membrane strength are balanced. A more preferable range of water permeability is 200 ml / m 2 / hr / mmHg or more, more preferably 250 ml / m 2 / hr / mmHg or more, and still more preferably 300 ml / m 2 / hr / mmHg or more. In addition, when the water permeability is too high, it becomes difficult to control water removal during hemodialysis, and therefore, 2000 ml / m 2 / hr / mmHg or less is preferable. More preferably 1800ml / m 2 / hr / mmHg or less, more preferably 1500ml / m 2 / hr / mmHg or less, still more preferably not more than 1300ml / m 2 / hr / mmHg .

通常、血液浄化に用いる血液浄化器は、製品となる最終段階で、中空糸膜や血液浄化器の欠陥を確認するため、中空糸膜内部あるいは外部をエアによって加圧するリークテストを行う。加圧エアによってリークが検出されたときには、血液浄化器は不良品として、廃棄あるいは、欠陥を修復する作業がなされる。このリークテストのエア圧力は血液透析器の保証耐圧(通常500mmHg(0.067MPa))の数倍であることが多い。しかしながら、特に高い透水性を持つ中空糸型血液浄化膜の場合、通常の加圧リークテストで検出できない中空糸膜の微小な傷、つぶれ、裂け目などが、リークテスト後の製造工程(主に滅菌や梱包)、輸送工程、あるいは臨床現場での取り扱い(開梱や、プライミングなど)時に、中空糸膜の切断やピンホールの発生につながり、ひいては治療時に血液がリークするトラブルの元になるので改善が必要である。該トラブルはバースト圧を前記特性にすることで回避ができる。
また中空糸膜束の偏肉度が、上記した潜在的な欠陥の発生抑制に対して有効である。
Usually, a blood purifier used for blood purification is subjected to a leak test in which the inside or outside of the hollow fiber membrane is pressurized with air in order to confirm defects in the hollow fiber membrane or the blood purifier at the final stage of production. When a leak is detected by the pressurized air, the blood purifier is discarded as a defective product, or an operation for repairing the defect is performed. The air pressure in this leak test is often several times the guaranteed pressure resistance of the hemodialyzer (usually 500 mmHg (0.067 MPa)). However, in the case of a hollow fiber type blood purification membrane having a particularly high water permeability, minute scratches, crushing, and tearing of the hollow fiber membrane that cannot be detected by a normal pressure leak test are caused by manufacturing processes (mainly sterilization) after the leak test. And packaging), transportation process, or handling in clinical settings (unpacking, priming, etc.), which leads to the cutting of hollow fiber membranes and pinholes, which in turn causes troubles of blood leaking during treatment. is required. The trouble can be avoided by setting the burst pressure to the above characteristic.
Further, the uneven thickness of the hollow fiber membrane bundle is effective for suppressing the occurrence of the above-described potential defects.

本発明におけるバースト圧とは、中空糸膜を血液浄化器にしてからの中空糸膜束の耐圧性能の指標で、中空糸膜束内側を気体で加圧し、加圧圧力を徐々に上げていき、中空糸膜が内部圧に耐えきれずに破裂(バースト)したときの圧力である。バースト圧は高いほど使用時の中空糸膜束の切断やピンホールの発生が少なくなるので0.5MPa以上が好ましく、0.55MPa以上がさらに好ましく、0.6MPa以上がよりさらに好ましい。バースト圧が0.5MPa未満では潜在的な欠陥を有している可能性がある。また、バースト圧は高いほど好ましいが、バースト圧を高めることに主眼に置き、膜厚を上げたり、空隙率を下げすぎると所望の膜性能を得ることができなくなることがある。したがって、血液透析膜として仕上げる場合には、バースト圧は2.0MPa未満が好ましい。より好ましくは、1.7MPa未満、さらに好ましくは1.5MPa未満、よりさらに好ましくは1.3MPa未満、特に好ましくは1.0MPa未満である。   The burst pressure in the present invention is an index of pressure resistance of the hollow fiber membrane bundle after the hollow fiber membrane is made into a blood purifier. The inside of the hollow fiber membrane bundle is pressurized with gas, and the pressure is gradually increased. The pressure when the hollow fiber membrane burst without being able to withstand the internal pressure. The higher the burst pressure, the less the cutting of the hollow fiber membrane bundle and the generation of pinholes during use, so 0.5 MPa or more is preferable, 0.55 MPa or more is more preferable, and 0.6 MPa or more is even more preferable. If the burst pressure is less than 0.5 MPa, there may be a potential defect. The higher the burst pressure, the better. However, if the focus is on increasing the burst pressure and the film thickness is increased or the porosity is decreased too much, the desired film performance may not be obtained. Therefore, when finished as a hemodialysis membrane, the burst pressure is preferably less than 2.0 MPa. More preferably, it is less than 1.7 MPa, more preferably less than 1.5 MPa, still more preferably less than 1.3 MPa, and particularly preferably less than 1.0 MPa.

該バースト圧を0.5MPa以上にするためには、前記したクリンプ付与工程における中空糸膜表面の傷発生を抑制することが重要であるが、下記要因の寄与も大きい。   In order to make the burst pressure 0.5 MPa or more, it is important to suppress the occurrence of scratches on the surface of the hollow fiber membrane in the crimping step described above, but the following factors also contribute greatly.

例えば、本発明における偏肉度とは、中空糸膜束血液浄化器中の100本の中空糸膜束断面を観察した際の膜厚の偏りのことであり、最大値と最小値の比で示す。100本の中空糸膜の最小の偏肉度は0.6以上であることが好ましい。100本の中空糸膜に1本でも偏肉度0.6未満の中空糸膜が含まれると、その中空糸膜が臨床使用時のリーク発生となることがあるので、該偏肉度は平均値でなく、100本の最小値を表す。偏肉度は高い方が、膜の均一性が増し、潜在欠陥の顕在化が抑えられバースト圧が向上するので、より好ましくは0.7以上、さらに好ましくは0.8以上、よりさらに好ましくは0.85以上である。偏肉度が低すぎると、潜在欠陥が顕在化しやすく、前記バースト圧が低くなり、血液リークが起こりやすくなる。   For example, the thickness deviation in the present invention is a deviation in film thickness when observing a cross section of 100 hollow fiber membrane bundles in a hollow fiber membrane bundle blood purifier, and is a ratio between the maximum value and the minimum value. Show. The minimum thickness deviation of 100 hollow fiber membranes is preferably 0.6 or more. If even one hollow fiber membrane with a thickness deviation of less than 0.6 is included in 100 hollow fiber membranes, the hollow fiber membrane may cause a leak during clinical use. It represents not the value but 100 minimum values. Higher unevenness increases the uniformity of the film, suppresses the appearance of latent defects and improves the burst pressure, more preferably 0.7 or more, more preferably 0.8 or more, still more preferably 0.85 or more. If the uneven thickness is too low, latent defects are likely to be manifested, the burst pressure is lowered, and blood leakage is liable to occur.

該偏肉度を0.6以上にするための達成手段は、例えば、製膜溶液の吐出口であるノズルのスリット幅を厳密に均一にすることが好ましい。中空糸膜束の紡糸ノズルは、一般的に、製膜溶液を吐出する環状部と、その内側に中空形成剤となる芯液吐出孔を有するチューブインオリフィス型ノズルが用いられるが、スリット幅とは、前記製膜溶液を吐出する外側環状部の幅をさす。このスリット幅のばらつきを小さくすることで、紡糸された中空糸膜束の偏肉を減らすことができる。具体的にはスリット幅の最大値と最小値の比が1.00以上1.11以下とし、最大値と最小値の差を10μm以下とすることが好ましく、7μm以下とすることがより好ましく、さらに好ましくは5μm以下、よりさらに好ましくは3μm以下である。また、ノズル温度を最適化するのが好ましい実施態様である。ノズル温度は20〜100℃が好ましい。20℃未満では室温の影響を受けやすくなりノズル温度が安定せず、製膜溶液の吐出斑が起こることがある。そのため、ノズル温度は30℃以上がより好ましく、35℃以上がさらに好ましく、40℃以上がよりさらに好ましい。また100℃を超えると製膜溶液の粘度が下がりすぎ吐出が安定しなくなることがあるし、ポリビニルピロリドンの熱劣化・分解が進行する可能性がある。よって、ノズル温度は、より好ましくは90℃以下、さらに好ましくは80℃以下、よりさらに好ましくは70℃以下である。   As an achievement means for making the unevenness degree 0.6 or more, for example, it is preferable to make the slit width of the nozzle that is the discharge port of the film forming solution strictly uniform. As a spinning nozzle for a hollow fiber membrane bundle, a tube-in-orifice type nozzle having an annular portion for discharging a film forming solution and a core liquid discharge hole serving as a hollow forming agent inside thereof is generally used. Denotes the width of the outer annular portion that discharges the film-forming solution. By reducing the variation in the slit width, the uneven thickness of the spun hollow fiber membrane bundle can be reduced. Specifically, the ratio between the maximum value and the minimum value of the slit width is 1.00 or more and 1.11 or less, and the difference between the maximum value and the minimum value is preferably 10 μm or less, more preferably 7 μm or less, More preferably, it is 5 micrometers or less, More preferably, it is 3 micrometers or less. It is also a preferred embodiment to optimize the nozzle temperature. The nozzle temperature is preferably 20 to 100 ° C. If it is less than 20 ° C., it is easily affected by the room temperature, the nozzle temperature is not stable, and ejection spots of the film forming solution may occur. Therefore, the nozzle temperature is more preferably 30 ° C. or higher, further preferably 35 ° C. or higher, and further preferably 40 ° C. or higher. On the other hand, when the temperature exceeds 100 ° C., the viscosity of the film-forming solution may be too low and ejection may become unstable, and thermal degradation / decomposition of polyvinylpyrrolidone may proceed. Therefore, the nozzle temperature is more preferably 90 ° C. or less, further preferably 80 ° C. or less, and still more preferably 70 ° C. or less.

さらに、バースト圧を高くする方策として、中空糸膜束表面の傷や異物および気泡の混入を少なくし潜在的な欠陥を低減するのも有効な方法である。傷発生を低減させる方法としては、中空糸膜束の製造工程のローラーやガイドの材質や表面粗度を最適化する、血液浄化器の組み立て時に中空糸膜束を血液浄化器用容器に挿入する時に容器と中空糸膜束との接触あるいは中空糸膜束同士のこすれが少なくなるような工夫をする等が有効である。本発明では、使用するローラーは中空糸膜束がスリップして中空糸膜束表面に傷が付くのを防止するため、表面が鏡面加工されたものを使用するのが好ましい。また、ガイドは中空糸膜束との接触抵抗をできるだけ避ける意味で、表面が梨地加工されたものやローレット加工されたものを使用するのが好ましい。中空糸膜束を血液浄化器用容器に挿入する際には、中空糸膜束を直接血液浄化器用容器に挿入するのではなく、中空糸膜束との接触面が例えば梨地加工されたフィルムを中空糸膜束に巻いたものを血液浄化器用容器に挿入し、挿入した後、フィルムのみ血液浄化器容器から抜き取る方法を用いるのが好ましい。   Furthermore, as a measure for increasing the burst pressure, it is also an effective method to reduce potential defects by reducing flaws on the surface of the hollow fiber membrane bundle, foreign matters and bubbles. As a method of reducing the occurrence of scratches, the material and surface roughness of the rollers and guides in the manufacturing process of the hollow fiber membrane bundle are optimized, and when the hollow fiber membrane bundle is inserted into the blood purifier container when the blood purifier is assembled It is effective to devise such that contact between the container and the hollow fiber membrane bundle or rubbing between the hollow fiber membrane bundles is reduced. In the present invention, it is preferable to use a roller having a mirror-finished surface in order to prevent the hollow fiber membrane bundle from slipping and scratching the surface of the hollow fiber membrane bundle. In addition, it is preferable to use a guide whose surface is textured or knurled in order to avoid contact resistance with the hollow fiber membrane bundle as much as possible. When the hollow fiber membrane bundle is inserted into the blood purifier container, the hollow fiber membrane bundle is not directly inserted into the blood purifier container, but the contact surface with the hollow fiber membrane bundle is hollowed, for example, with a satin finish. It is preferable to use a method in which a wound film bundle is inserted into a blood purifier container, and after insertion, only the film is removed from the blood purifier container.

中空糸膜束への異物の混入を抑える方法としては、異物の少ない原料を用いる、製膜溶液をろ過し異物を低減する方法等が有効である。本発明では、中空糸膜束の膜厚よりも小さな孔径のフィルターを用いて製膜溶液をろ過してからノズルより吐出するのが好ましく、具体的には均一溶解した製膜溶液を溶解タンクからノズルまで導く間に設けられた孔径10〜50μmの焼結フィルターを通過させる。ろ過処理は少なくとも1回行えば良いが、ろ過処理を何段階かにわけて行う場合は後段になるに従いフィルターの孔径を小さくしていくのがろ過効率およびフィルター寿命を延ばす意味で好ましい。フィルターの孔径は10〜45μmがより好ましく、10〜40μmがさらに好ましい。フィルター孔径が小さすぎると背圧が上昇し、定量性が落ちることがある。また、気泡混入を抑える方法としては、製膜用のポリマー溶液の脱泡を行うのが有効である。製膜溶液の粘度にもよるが、静置脱泡や減圧脱泡を用いることができる。この場合、溶解タンク内を−100〜−750mmHgに減圧した後、タンク内を密閉し5分〜30分間静置する。この操作を数回繰り返し脱泡処理を行う。減圧度が低すぎる場合には、脱泡の回数を増やす必要があるため処理に長時間を要することがある。また減圧度が高すぎると、系の密閉度を上げるためのコストが高くなることがある。トータルの処理時間は5分〜5時間とするのが好ましい。処理時間が長すぎると、減圧の影響によりポリビニルピロリドンが分解、劣化することがある。処理時間が短すぎると脱泡の効果が不十分になることがある。   As a method for suppressing the mixing of foreign matter into the hollow fiber membrane bundle, a method using a raw material with little foreign matter, filtering the membrane-forming solution, and reducing foreign matter is effective. In the present invention, it is preferable to filter the membrane-forming solution using a filter having a pore size smaller than the thickness of the hollow fiber membrane bundle and then discharge from the nozzle. Specifically, the uniformly-dissolved membrane-forming solution is removed from the dissolution tank. A sintered filter having a pore diameter of 10 to 50 μm provided while being led to the nozzle is passed. The filtration treatment may be performed at least once. However, when the filtration treatment is performed in several stages, it is preferable to reduce the pore size of the filter as it is in the latter stage in order to extend the filtration efficiency and the filter life. The pore size of the filter is more preferably 10 to 45 μm, further preferably 10 to 40 μm. If the filter pore size is too small, the back pressure may increase and the quantitativeness may decrease. Further, as a method for suppressing the mixing of bubbles, it is effective to defoam a polymer solution for film formation. Depending on the viscosity of the film-forming solution, static defoaming or vacuum defoaming can be used. In this case, after the inside of the dissolution tank is depressurized to −100 to −750 mmHg, the inside of the tank is sealed and allowed to stand for 5 to 30 minutes. This operation is repeated several times to perform defoaming treatment. If the degree of vacuum is too low, the treatment may take a long time because it is necessary to increase the number of defoaming times. Moreover, when the pressure reduction degree is too high, the cost for raising the sealing degree of a system may become high. The total treatment time is preferably 5 minutes to 5 hours. If the treatment time is too long, polyvinylpyrrolidone may be decomposed and deteriorated due to the effect of reduced pressure. If the treatment time is too short, the defoaming effect may be insufficient.

本発明においては、上記特性を有したポリスルホン系選択透過性中空糸膜束が充填されてなる血液浄化器であることが好ましい。該血液浄化器は、上記方法で得た選択透過性中空糸膜束を血液浄化器容器に装填し、その両端を樹脂で固定化した形状のものが好ましい。   In the present invention, the blood purifier is preferably filled with a polysulfone-based permselective hollow fiber membrane bundle having the above characteristics. The blood purifier preferably has a shape in which the permselective hollow fiber membrane bundle obtained by the above method is loaded in a blood purifier container and both ends thereof are fixed with resin.

血液浄化器用の選択透過性中空糸膜は、滅菌処理が不可欠である。滅菌処理方法としては、その信頼性や簡便性よりγ線や電子線を照射する放射線滅菌法が好ましい。また、ポリビニルピロリドンの架橋を行う手段として放射線照射処理が行われている。従って、本発明のポリスルホン系選択透過性中空糸膜束は放射線照射処理後においても前記特性を有することが好ましい。   The selectively permeable hollow fiber membrane for blood purifiers must be sterilized. As a sterilization method, a radiation sterilization method of irradiating γ rays or electron beams is preferable because of its reliability and simplicity. In addition, irradiation treatment is performed as a means for crosslinking polyvinylpyrrolidone. Therefore, the polysulfone-based permselective hollow fiber membrane bundle of the present invention preferably has the above characteristics even after the radiation irradiation treatment.

放射線照射後においても該特性を維持するためには、放射線照射前のポリスルホン系選択透過性中空糸膜として前記特性を有したものを用いることが重要であるが必要要件の一つに過ぎない。該要件を満たした上で、放射線照射による劣化反応の抑制措置が必要である。   In order to maintain the characteristics even after irradiation, it is important to use a polysulfone-based permselective hollow fiber membrane having the above characteristics before irradiation, but it is only one of the necessary requirements. After satisfying this requirement, it is necessary to take measures to suppress the deterioration reaction caused by irradiation.

これらの特性を満たすために、従来は、ウエット状態で、かつラジカル捕捉剤の存在下で放射線照射することにより達成されていたが、前記した課題を有しておりその改善が望まれていた。本発明は、該課題を解決し、ドライタイプの血液浄化器で、かつラジカル捕捉剤の非存在下で放射線照射しても放射線によるポリビニルピロリドンの劣化反応が抑制できる方法を提供することを目的としている。   Conventionally, in order to satisfy these characteristics, it has been achieved by irradiation with radiation in the wet state and in the presence of a radical scavenger, but it has the above-mentioned problems and has been desired to be improved. An object of the present invention is to solve the above problems and to provide a dry type blood purifier and a method capable of suppressing the degradation reaction of polyvinylpyrrolidone due to radiation even when irradiated with radiation in the absence of a radical scavenger. Yes.

従って、本発明においては、ポリスルホン系選択透過性中空糸膜束中の含水率が600質量%以下であることが好ましい。また、放射線照射時、血液浄化器内にラジカル捕捉剤を含まないことが好ましい。   Accordingly, in the present invention, the water content in the polysulfone-based permselective hollow fiber membrane bundle is preferably 600% by mass or less. Moreover, it is preferable that a radical scavenger is not included in the blood purifier during radiation irradiation.

含水率が600質量%を超える場合は、血液浄化器の重量が増大するため取り扱い性が低下し、かつ運搬コストが増大するとか、バクテリアが発生し易い、寒冷地で凍結する等の課題が発生することがある。また、ポリビニルピロリドンが架橋しすぎるために血液浄化に用いた際に血液の凝固反応が活性化される可能性がある。一方、含水率が0.8質量%未満では、放射線照射によるポリビニルピロリドンの劣化が促進され、過酸化水素、カルボキシル基および過酸化物等の生成の増大や透析型人工腎臓装置製造承認基準により定められた試験を実施した時の中空糸膜の抽出液におけるUV(220〜350nm)吸光度の増大、長期保存安定性や血液適合性およびその安定性等の低下等を引き起こすことがある。従って、1.0〜300質量%がより好ましく、1.5〜200質量%がさらに好ましい。   When the water content exceeds 600% by mass, the weight of the blood purifier increases, resulting in problems such as reduced handling and increased transportation costs, easy generation of bacteria, and freezing in cold regions. There are things to do. Moreover, since polyvinylpyrrolidone is too cross-linked, the blood coagulation reaction may be activated when used for blood purification. On the other hand, when the water content is less than 0.8% by mass, deterioration of polyvinyl pyrrolidone due to irradiation is accelerated, and it is determined by increased production of hydrogen peroxide, carboxyl groups, peroxides, etc. May cause an increase in UV (220 to 350 nm) absorbance in a hollow fiber membrane extract, a decrease in long-term storage stability, blood compatibility and stability, and the like. Therefore, 1.0-300 mass% is more preferable, and 1.5-200 mass% is further more preferable.

上記ドライ状態で、かつラジカル捕捉剤の非存在下で放射線照射し前記特性を付与するためには、前述のごとく放射線照射前のポリスルホン系選択透過性中空糸膜として前記特性を有したものを用いることが重要であるが必要要件の一つに過ぎない。該要件を満たした上で、放射線照射による劣化反応の抑制措置が必要である。   In order to impart the above characteristics by irradiation with radiation in the dry state and in the absence of a radical scavenger, the polysulfone-based permselective hollow fiber membrane before irradiation is used as described above, as described above. It is important but only one of the requirements. After satisfying this requirement, it is necessary to take measures to suppress the deterioration reaction caused by irradiation.

本発明の目的であるドライ状態で、かつラジカル捕捉剤の非存在下で放射線照射による劣化反応を抑制することは難しく、従来は、やむを得ずウェット法で、かつラジカル捕捉剤の存在下で実施されていた。本発明者等は、該課題解決について鋭意検討した結果、上記劣化反応は、ポリスルホン系選択透過性中空糸膜のポリビニルピロリドンの局在部分に吸着された酸素ガスにより促進され、かつ、ポリビニルピロリドンの局在部分に吸着された水により抑制されるという推定機構に基づきポリビニルピロリドンの劣化反応を抑制する方法を見出して本発明を完成した。上記劣化反応が酸素の影響を受けることは広く知られている現象であるが、該劣化反応がポリビニルピロリドンの局在部分に吸着された微量水分で抑制されることは本発明者等が初めて見つけた現象である。以下に好ましい実施態様について述べる。   It is difficult to suppress the degradation reaction due to irradiation in the dry state and in the absence of a radical scavenger, which is the object of the present invention, and conventionally, this is unavoidably performed by a wet method and in the presence of a radical scavenger. It was. As a result of intensive studies on solving the problem, the present inventors have promoted the deterioration reaction by oxygen gas adsorbed on the localized portion of the polyvinyl pyrrolidone of the polysulfone-based selectively permeable hollow fiber membrane, and The present invention was completed by finding a method for suppressing the degradation reaction of polyvinylpyrrolidone based on the presumed mechanism of being suppressed by water adsorbed on the localized portion. Although it is a well-known phenomenon that the above degradation reaction is affected by oxygen, the present inventors have found for the first time that the degradation reaction is suppressed by a trace amount of water adsorbed on the localized portion of polyvinylpyrrolidone. Phenomenon. Preferred embodiments are described below.

本発明者等は、前記した特性を有した選択透過性中空糸膜を用いてドライ状態で放射線照射する際、脱気した水を用いて中空糸膜の含水率を5質量%以上に調整した血液浄化器は、ラジカル捕捉剤の非存在下でもポリビニルピロリドンの劣化反応が抑制できることを見出した。   The present inventors adjusted the moisture content of the hollow fiber membrane to 5% by mass or more using degassed water when irradiating the selectively permeable hollow fiber membrane having the above-described characteristics in a dry state. It has been found that the blood purifier can suppress the degradation reaction of polyvinyl pyrrolidone even in the absence of a radical scavenger.

すなわち、脱気水を用いて含水率が5〜600質量%に調整されたポリビニルピロリドンを含有するポリスルホン系選択透過性中空糸膜束が充填された血液浄化器の血液および透析液の出入り口すべてを密栓した状態で外気および水蒸気を遮断する包装袋で密封して放射線を照射することが好ましい。   That is, all the blood and dialysate entrances and exits of a blood purifier filled with a polysulfone-based permselective hollow fiber membrane bundle containing polyvinylpyrrolidone adjusted to a moisture content of 5 to 600% by mass using deaerated water It is preferable to irradiate with radiation by sealing with a packaging bag that blocks outside air and water vapor in a sealed state.

本発明においては、ポリスルホン系選択透過性中空糸膜中およびその周りに存在する脱気水は脱酸素水であることが好ましい。また不活性ガス飽和水であることがより好ましい。   In the present invention, the deaerated water present in and around the polysulfone-based permselective hollow fiber membrane is preferably deoxygenated water. Further, it is more preferably inert gas saturated water.

上記脱酸素水とは、溶存酸素量が0.5ppm以下の水である。溶存酸素量が0.2ppm以下がより好ましく、0.1ppm以下がさらに好ましい。   The deoxygenated water is water having a dissolved oxygen content of 0.5 ppm or less. The dissolved oxygen content is more preferably 0.2 ppm or less, and further preferably 0.1 ppm or less.

通常、水の中には1m3あたり20l程度の空気が溶け込んでおり、通常の水道水には8mg/l水の酸素ガスが溶け込んでいる。該脱酸素水は、上記溶存酸素量を満たせばその調製方法は限定されない。一般に知られている脱気法で調製されたものが適用できる。例えば、加熱脱気法、真空脱気法、窒素ガスバブリング法、膜脱気法、還元剤添加法および還元法等が挙げられる。膜脱気法は溶存酸素量をppbレベルに低減することも可能であるので特に好ましい。該膜脱気法は非多孔質膜法および多孔質膜法のいずれで調製してもよい。 Usually, about 20 l of air per 1 m 3 is dissolved in water, and oxygen gas of 8 mg / l water is dissolved in normal tap water. The method for preparing the deoxygenated water is not limited as long as the amount of dissolved oxygen is satisfied. Those prepared by a generally known degassing method can be applied. Examples thereof include a heat degassing method, a vacuum degassing method, a nitrogen gas bubbling method, a membrane degassing method, a reducing agent addition method, and a reducing method. The membrane deaeration method is particularly preferable because the amount of dissolved oxygen can be reduced to the ppb level. The membrane degassing method may be prepared by either a non-porous membrane method or a porous membrane method.

上記脱酸素水は、逆浸透処理(RO処理)されたものを用いるのが好ましい。   It is preferable to use the deoxygenated water that has been subjected to reverse osmosis treatment (RO treatment).

上記の脱酸素水にしたのみでは、周囲の空気中に含まれる酸素が再度溶解してしまい、再溶解した酸素ガスがポリビニルピロリドンの局在部分に吸着されることにより上記のような好ましくない劣化反応を完全に抑制するのは困難となる。窒素等の不活性ガス飽和水を使用することによってこの問題の解決が可能となる。すなわち、不活性ガスを飽和状態で含有することにより、周囲に酸素が含まれる環境で放射線照射を行っても、酸素ガスの水への溶解が抑制され、水に含まれる酸素濃度が低い状態が保たれることになる。   If only the above deoxygenated water is used, oxygen contained in the surrounding air is dissolved again, and the re-dissolved oxygen gas is adsorbed on the localized portion of polyvinylpyrrolidone, so that the above undesirable deterioration occurs. It becomes difficult to completely suppress the reaction. This problem can be solved by using an inert gas saturated water such as nitrogen. That is, by containing an inert gas in a saturated state, even when irradiation is performed in an environment where oxygen is included in the surroundings, dissolution of oxygen gas in water is suppressed, and the state in which the concentration of oxygen contained in water is low is reduced. Will be kept.

該不活性ガス飽和水の調製方法は特に限定されず、窒素などの不活性ガスをバブリングする方法が好適に用いられ得る。水の溶存酸素を除去する方法として不活性ガスのバブリング法が知られているように、不活性ガスの導入によって溶存酸素は結果的に除去されるが、積極的に酸素を除去した上で不活性ガスを溶存させることも好ましい。具体的には、加熱脱気法、真空脱気法、膜脱気法、還元剤添加法などによってあらかじめ酸素を除去した水に不活性ガスをバブリングすることで酸素の除去、不活性ガスの溶解が効率的に行われる。ここで、不活性ガス飽和水の溶存酸素量は、0.5ppm以下であることが好ましく、0.2ppm以下がより好ましく、0.1ppm以下がさらに好ましい。なお、ここで使用される水はRO処理されたものを用いるのが好ましい。ここで、水中の溶存酸素は、例えば、HORIBA製作所社製溶存酸素計OM−51−L1を用いて測定することができる。   The method for preparing the inert gas saturated water is not particularly limited, and a method of bubbling an inert gas such as nitrogen can be suitably used. As known in the art, the inert gas bubbling method is known as a method for removing dissolved oxygen from water, but dissolved oxygen is eventually removed by the introduction of inert gas. It is also preferable to dissolve the active gas. Specifically, removal of oxygen and dissolution of inert gas by bubbling inert gas into water from which oxygen has been removed in advance, such as by heat degassing, vacuum degassing, membrane degassing, and reducing agent addition. Is done efficiently. Here, the dissolved oxygen amount of the inert gas saturated water is preferably 0.5 ppm or less, more preferably 0.2 ppm or less, and further preferably 0.1 ppm or less. The water used here is preferably RO-treated water. Here, the dissolved oxygen in water can be measured using, for example, a dissolved oxygen meter OM-51-L1 manufactured by HORIBA Ltd.

上記脱気水の使用により、非脱気水を使用した場合より放射線照射による中空糸膜の劣化、特にポリビニルピロリドンの劣化反応がより効率的に抑制され、前述のような過酸化水素、カルボキシル基および過酸化物等の生成の増大や透析型人工腎臓装置製造承認基準により定められた試験を実施した時の中空糸膜の抽出液におけるUV(220〜350nm)吸光度の増大、抗血栓性、長期保存安定性およびプライミング処理時の性能発現性の低下等を引き起こす好ましくない劣化反応の抑制効果が増長される。   By using the degassed water, the degradation of the hollow fiber membrane due to radiation irradiation, particularly the degradation reaction of polyvinylpyrrolidone, is more efficiently suppressed than when non-degassed water is used. Increase in UV (220-350 nm) absorbance in the extract of hollow fiber membranes when performing tests stipulated by the approval standards for the manufacture of dialysis-type artificial kidney devices, anti-thrombogenicity, long-term The effect of suppressing an undesirable deterioration reaction that causes a decrease in storage stability and performance development during priming is increased.

本発明においては、上記血液浄化器内の酸素濃度が3.6容量%以下であることが好ましい。1.0容量%以下がより好ましく、0.1容量%以下がさらに好ましい。酸素濃度が3.6容量%を超えた場合は、前記した要件を満たしても、放射線や電子線を照射した時の中空糸膜、特にポリビニルピロリドンの劣化が引き起こされる場合がある。上記酸素濃度にすることで本発明の効果の発現性がより安定化される。   In the present invention, the oxygen concentration in the blood purifier is preferably 3.6% by volume or less. 1.0% by volume or less is more preferable, and 0.1% by volume or less is more preferable. When the oxygen concentration exceeds 3.6% by volume, the hollow fiber membrane, particularly polyvinyl pyrrolidone, may be deteriorated when irradiated with radiation or an electron beam even if the above-described requirements are satisfied. The expression of the effect of the present invention is further stabilized by adjusting the oxygen concentration.

上記方法において、放射線照射時のポリビニルピロリドンの劣化反応が抑制される機構は以下のごとく推察している。中空糸膜中のポリビニルピロリドンは中空糸膜に均一に分散せずに局在化して存在しており、かつ中空糸膜内部および表面に存在する水は親水性の高いポリビニルピロリドンの周りに選択的に吸着されることにより局在するものと推察される。このポリビニルピロリドンの周りに水が存在することにより、放射線照射により活性化された酸素のポリビニルピロリドンに対する攻撃がブロックされ、劣化反応が抑制されているものと推察している。従って、脱気水化によりその効果がより効果的に発現されると推察される。その上に、本発明においては、酸素と同様に放射線により活性化されて劣化反応を引き起こす過酸化水素量が抑制された中空糸膜が用いられているので、該劣化反応も抑制されるという2重の効奏により本発明の効果が発現されるものと推察している。   In the above method, the mechanism by which the degradation reaction of polyvinylpyrrolidone during irradiation is suppressed is presumed as follows. The polyvinyl pyrrolidone in the hollow fiber membrane is localized in the hollow fiber membrane without being uniformly dispersed, and water present inside and on the surface of the hollow fiber membrane is selectively around the highly hydrophilic polyvinyl pyrrolidone. It is presumed that it is localized by being adsorbed on the surface. It is presumed that the presence of water around the polyvinyl pyrrolidone blocks the attack of oxygen activated by radiation irradiation on the polyvinyl pyrrolidone and suppresses the degradation reaction. Therefore, it is guessed that the effect is expressed more effectively by deaeration water conversion. In addition, in the present invention, a hollow fiber membrane is used in which the amount of hydrogen peroxide that is activated by radiation and causes a deterioration reaction is suppressed in the same manner as oxygen, so that the deterioration reaction is also suppressed. It is presumed that the effect of the present invention is manifested by heavy effects.

上記血液浄化器内の酸素濃度を低下させる方法は限定されないが、血液浄化器内に不活性ガスを充填して行うのが好ましい。前述のごとく前記した方法で乾燥された中空糸膜束を用いて血液浄化器を組立て、該血液浄化器に脱酸素水を注入、充填し、血液浄化器中に存在していた空気を追い出すと共に、中空糸膜中の水分および中空糸膜周りを脱酸素水で満たした後に、不活性ガスを血液浄化器内に注入、充填することにより脱酸素水化と酸素濃度低下を同時に行う方法が好ましい。不活性ガスとしては経済性の点より窒素ガスの使用が好ましい。   The method for reducing the oxygen concentration in the blood purifier is not limited, but it is preferable to fill the blood purifier with an inert gas. As described above, the blood purifier is assembled using the hollow fiber membrane bundle dried by the above-described method, deoxygenated water is injected and filled into the blood purifier, and the air present in the blood purifier is expelled. A method of simultaneously performing deoxygenation and oxygen concentration reduction by injecting and filling an inert gas into the blood purifier after filling the water in the hollow fiber membrane and the periphery of the hollow fiber membrane with deoxygenated water is preferable. . The inert gas is preferably nitrogen gas from the viewpoint of economy.

上記方法において、血液浄化器内の含水率および酸素濃度を調整した後に血液浄化器の血液および透析液の出入り口すべてに密栓するのが好ましい。該方法により血液浄化器に充填されている中空糸膜からの水分の揮散が抑制されると共に、血液浄化器内への外気中に含まれる酸素ガスの浸入が抑制されることにより本発明の効果が効果的に発現される。また、血液浄化器内への雑菌の浸入が阻止できる。また、長期に中空糸膜からの水分の揮散が抑制されるために、中空糸膜の経時による中空糸膜の乾燥による収縮や膜特性の低下が抑制される。そのために、血液浄化器を長期保存した場合の欠陥の発生や膜特性の低下等が抑制されるという効果が発現する。例えば、中空糸膜の収縮が起こると中空糸膜の接着剤による血液浄化器への固定部分の中空糸膜と接着剤界面の剥離が起こり、該部分での液漏れ発生に繋がる。また、中空糸膜にクリンプを付与して透析液の偏流を抑制する方式の場合は、該中空糸膜の乾燥によりクリンプの緩和が起こり透析液の偏流の増大が起こることがある。   In the above method, it is preferable to seal all the blood and dialysate inlet / outlet of the blood purifier after adjusting the water content and oxygen concentration in the blood purifier. By this method, the volatilization of water from the hollow fiber membrane filled in the blood purifier is suppressed, and the invasion of oxygen gas contained in the outside air into the blood purifier is suppressed, so that the effect of the present invention is achieved. Is effectively expressed. Moreover, invasion of various germs into the blood purifier can be prevented. Moreover, since the volatilization of moisture from the hollow fiber membrane is suppressed for a long period of time, shrinkage due to the hollow fiber membrane being dried over time and deterioration of the membrane characteristics are suppressed. Therefore, the effect that the generation | occurrence | production of a defect, the fall of a membrane characteristic, etc. at the time of storing a blood purifier for a long term is suppressed appears. For example, when the shrinkage of the hollow fiber membrane occurs, peeling of the interface between the hollow fiber membrane and the adhesive at the fixing portion to the blood purifier due to the adhesive of the hollow fiber membrane occurs, leading to the occurrence of liquid leakage at the portion. Further, in the case of a method in which crimping is applied to the hollow fiber membrane to suppress the dialysis fluid drift, the crimping of the dialysis fluid may increase due to the relaxation of the crimp due to drying of the hollow fiber membrane.

本発明においては、上記方法で密栓された血液浄化器を、前記した包装袋で密封して放射線を照射するのが好ましい。該包装袋により密封することにより、血液浄化器外面の汚染や雑菌の付着等が阻止される。該方法において、包装袋内の雰囲気ガスは特に限定されない。空気であっても構わないが窒素ガス等の不活性ガス雰囲気にするのが滅菌後に混入する雑菌の成長を抑制したり、前記の密栓の効果が補完されることより好ましい。さらに、本発明においては、後述のごとく密栓してから経時させて放射線や電子線を照射するのが好ましいことより、この間における外気からの血液浄化器内への酸素ガスの浸入を抑制できる利点もある。不活性ガス雰囲気にする方法としては、上記血液浄化器と共に脱酸素剤を密封して行うのが好ましい。   In the present invention, it is preferable that the blood purifier hermetically sealed by the above method is sealed with the aforementioned packaging bag and irradiated with radiation. By sealing with the packaging bag, contamination of the outer surface of the blood purifier, adhesion of germs and the like are prevented. In the method, the atmospheric gas in the packaging bag is not particularly limited. Air may be used, but an inert gas atmosphere such as nitrogen gas is more preferable because it suppresses the growth of germs mixed after sterilization and complements the effect of the sealing plug. Furthermore, in the present invention, it is preferable to irradiate with radiation and electron beams after sealing tightly as will be described later. Therefore, there is an advantage that oxygen gas can be prevented from entering the blood purifier from outside air during this period. is there. As an inert gas atmosphere, it is preferable to seal the oxygen scavenger together with the blood purifier.

脱酸素剤は、脱酸素機能を有するものであれば限定されない。例えば、亜硫酸塩、亜硫酸水素塩、亜二チオン酸塩、ヒドロキノン、カテコール、レゾルシン、ピロガロール、没食子酸、ロンガリット、アスコルビン酸および/またはその塩、ソルボース、グルコース、リグニン、ジブチルヒドロキシトルエン、ジブチルヒドロキシアニソール、第一鉄塩、鉄粉等の金属粉等を酸素吸収主剤とする脱酸素剤があげられ、適宜選択できる。また、金属紛主剤の脱酸素剤には、酸化触媒として、必要に応じ、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化カルシウム、塩化アルミニウム、塩化第一鉄、塩化第二鉄、臭化ナトリウム、臭化カリウム、臭化マグネシウム、臭化カルシウム、臭化鉄、臭化ニッケル、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化マグネシウム、ヨウ化カルシウム、ヨウ化鉄等の金属ハロゲン化合物等の1種または2種以上を加えても良い。また、脱臭、消臭剤、その他の機能性フィラーを加えることも何ら制限を受けない。また、脱酸素剤の形状は特に限定されず、例えば、粉状、粒状、塊状、シート状等の何れでも良く、また、各種の酸素吸収剤組成物を熱可塑性樹脂に分散させたシート状またはフイルム状脱酸素剤であっても良い。   The oxygen scavenger is not limited as long as it has a oxygen scavenging function. For example, sulfite, bisulfite, dithionite, hydroquinone, catechol, resorcin, pyrogallol, gallic acid, longalit, ascorbic acid and / or its salts, sorbose, glucose, lignin, dibutylhydroxytoluene, dibutylhydroxyanisole, Examples of the oxygen scavenger include a ferrous salt, metal powder such as iron powder, and the like as an oxygen-absorbing main agent, which can be appropriately selected. In addition, oxygen scavengers for metal powders are used as an oxidation catalyst, if necessary, such as sodium chloride, potassium chloride, magnesium chloride, calcium chloride, aluminum chloride, ferrous chloride, ferric chloride, sodium bromide, odor. One or two kinds of metal halides such as potassium iodide, magnesium bromide, calcium bromide, iron bromide, nickel bromide, sodium iodide, potassium iodide, magnesium iodide, calcium iodide, iron iodide, etc. The above may be added. Moreover, adding a deodorant, a deodorant, and another functional filler is not restrict | limited at all. Further, the shape of the oxygen scavenger is not particularly limited, and may be any of powder, granule, lump, sheet, etc., or a sheet in which various oxygen absorbent compositions are dispersed in a thermoplastic resin or A film-like oxygen scavenger may be used.

中空糸膜中に水分が存在すると放射線照射によりポリビニルピロリドンの架橋反応が進行する。上記方法は、含水率が5質量%以上で放射線照射することにより滅菌処理する方法であるので、上記の滅菌処理において、滅菌と同時に架橋反応が進行し、例えばポリビニルピロリドンの溶出量を抑制することができるという効果の発現にも繋げることが出来る。   When moisture is present in the hollow fiber membrane, the crosslinking reaction of polyvinylpyrrolidone proceeds by irradiation. Since the above method is a method of sterilizing by irradiating with a moisture content of 5% by mass or more, in the above sterilization processing, a crosslinking reaction proceeds simultaneously with sterilization, and for example, suppressing the elution amount of polyvinylpyrrolidone. It can also lead to the manifestation of the effect of being able to.

上記した方法は選択透過性中空糸膜中の含水率を5質量%以上の場合に、より簡便かつ低コストに滅菌および架橋を同時に行う方法として採用することができる。   The above-described method can be employed as a method for simultaneously performing sterilization and crosslinking at a simpler and lower cost when the moisture content in the selectively permeable hollow fiber membrane is 5% by mass or more.

含水率が5質量%未満の場合においても、特定要件を満たすことにより、放射線照射による劣化反応を抑制することができる。すなわち、前記した特性を有した選択透過性中空糸膜を用いて、かつ放射線照射処理時に選択透過性中空糸膜を取り巻く雰囲気の酸素濃度や湿度を最適化する方法が挙げられる。もちろん、中空糸膜の含水率が5質量%以上の場合にも前記方法を付加して用いても何ら問題はない。該方法における第1の要件は、滅菌処理時に選択透過性中空糸膜を取り巻く雰囲気の酸素濃度に関する要件である。該酸素濃度が3.6容量%以下の状態で放射線照射することが好ましい。1容量%以下がより好ましく、0.1容量%以下がさらに好ましい。3.6容量%を越えた場合は、ポリビニルピロリドンの劣化による過酸化水素生成が増大して前記特性が満たされなくなることがある。   Even when the water content is less than 5% by mass, the deterioration reaction due to radiation irradiation can be suppressed by satisfying the specific requirements. That is, there is a method of using the permselective hollow fiber membrane having the above-described characteristics and optimizing the oxygen concentration and humidity of the atmosphere surrounding the permselective hollow fiber membrane during the radiation irradiation treatment. Of course, even when the moisture content of the hollow fiber membrane is 5% by mass or more, there is no problem even if the method is additionally used. The first requirement in the method is a requirement relating to the oxygen concentration of the atmosphere surrounding the selectively permeable hollow fiber membrane during sterilization. Radiation irradiation is preferably performed in a state where the oxygen concentration is 3.6% by volume or less. It is more preferably 1% by volume or less, and further preferably 0.1% by volume or less. If it exceeds 3.6% by volume, hydrogen peroxide production due to deterioration of polyvinylpyrrolidone may increase and the above characteristics may not be satisfied.

上記方法における第2の要件は、はポリスルホン系選択透過性中空糸膜のポリビニルピロリドンの局在部分に吸着される水分量に関する要件である。上記方法で実施する場合は、中空糸膜中の含水率や、包装袋内の湿度を最適化するのが好ましい。含水率は0.8質量%以上が好ましい。また、包装袋内の湿度は、25℃における相対湿度を40%RH超にするのが好ましい。包装袋内空間の相対湿度は、50〜90%RH(25℃)がより好ましく、60〜80%RH(25℃)がさらに好ましい。
包装袋内空間の相対湿度が40%RH(25℃)以下になるとγ線照射等の放射線照射をした場合に、脱酸素された状態においても、極微量に存在する酸素ガスにより中空糸膜成分、特に、ポリビニルピロリドンの酸化劣化が起こり、過酸化水素が発生し前述のような好ましくない劣化反応の発生に繋がる。逆に、相対湿度が90%RH(25℃)を超えた場合は、包装袋内で結露が生じ、血液浄化器の品位が低下することがある。
The second requirement in the above method is a requirement relating to the amount of water adsorbed on the localized portion of polyvinylpyrrolidone of the polysulfone-based permselective hollow fiber membrane. When implemented by the above method, it is preferable to optimize the moisture content in the hollow fiber membrane and the humidity in the packaging bag. The water content is preferably 0.8% by mass or more. Further, the humidity in the packaging bag is preferably such that the relative humidity at 25 ° C. exceeds 40% RH. The relative humidity of the space in the packaging bag is more preferably 50 to 90% RH (25 ° C.), and further preferably 60 to 80% RH (25 ° C.).
When the relative humidity of the space inside the packaging bag is 40% RH (25 ° C.) or lower, the hollow fiber membrane component is formed by a very small amount of oxygen gas even in the deoxygenated state when irradiated with radiation such as γ-ray irradiation. In particular, oxidative degradation of polyvinyl pyrrolidone occurs, and hydrogen peroxide is generated, leading to the above-described undesirable degradation reaction. Conversely, if the relative humidity exceeds 90% RH (25 ° C.), condensation may occur in the packaging bag, and the quality of the blood purifier may be reduced.

本発明でいう相対湿度とは、25℃における水蒸気分圧(p)と25℃における飽和水蒸気圧(P)を用いて相対湿度(%RH)=p/P×100の式で表される。測定は温湿度測定器(おんどとりRH型、T&D社製)のセンサーを包装袋内に挿入シールして行った。   The relative humidity referred to in the present invention is represented by the formula of relative humidity (% RH) = p / P × 100 using a water vapor partial pressure (p) at 25 ° C. and a saturated water vapor pressure (P) at 25 ° C. The measurement was performed by inserting and sealing a sensor of a temperature / humidity measuring device (Ondotori RH type, manufactured by T & D) into the packaging bag.

包装袋内空間の相対湿度を40%RH(25℃)超にすることにより、ポリビニルピロリドンの劣化が抑制される機構は、以下のごとく推察している。ポリビニルピロリドンの劣化は酸素の存在により促進される。本発明においては、包装袋内は酸化を抑制する状態、すなわち、実質的な無酸素状態に保たれているが、完全な無酸素状態は困難であり、極微量の酸素ガスが存在している。従って、中空糸膜表面に存在するポリビニルピロリドンが包装袋内空間に存在するこの微量酸素ガスとの接触により劣化反応が促進される。そのために、ポリビニルピロリドンの劣化反応は中空糸膜表面に存在するポリビニルピロリドンで反応が開始される。理由は不明であるが、中空糸膜中の含水率を高めることにより、上記劣化反応が抑制されることを経験的に認知している。中空糸膜中に存在するポリビニルピロリドンは、局在化して存在している。そのために、包装袋内の相対湿度が高くなると、この包装袋内に存在する水蒸気が中空糸膜表面のポリビニルピロリドンの局在部分に選択的に吸着され、この吸着された水によりポリビニルピロリドンの劣化反応が抑制されるものと考えられる。従って、湿度アップにより、大きな抑制効果が発現するものと推察される。一方、ポリビニルピロリドンを含有する中空糸膜は調湿機能、すなわち、吸、放湿特性を有することが知られている(例えば、特開2004−97918号公報)。従って、包装袋内の相対湿度が低い場合は、中空糸膜表面に存在するポリビニルピロリドンに吸着されている水分は包装袋内空間に放出され、特に、上記劣化を受ける極表面に存在するポリビニルピロリドンの吸着水分量が低い状態になり劣化が促進されるものと推察される。これらの現象の相乗効果により、包装袋内の相対湿度がポリビニルピロリドンの劣化反応の抑制に大きく影響するものと推察している。   The mechanism by which the degradation of polyvinylpyrrolidone is suppressed by making the relative humidity of the space inside the packaging bag over 40% RH (25 ° C.) is presumed as follows. Degradation of polyvinyl pyrrolidone is accelerated by the presence of oxygen. In the present invention, the inside of the packaging bag is in a state in which oxidation is suppressed, that is, maintained in a substantially oxygen-free state, but a complete oxygen-free state is difficult, and a trace amount of oxygen gas is present. . Accordingly, the degradation reaction is promoted by the contact of polyvinyl pyrrolidone present on the surface of the hollow fiber membrane with this trace amount of oxygen gas present in the space inside the packaging bag. Therefore, the degradation reaction of polyvinyl pyrrolidone starts with polyvinyl pyrrolidone present on the surface of the hollow fiber membrane. Although the reason is unknown, it has been empirically recognized that the above degradation reaction is suppressed by increasing the water content in the hollow fiber membrane. The polyvinyl pyrrolidone present in the hollow fiber membrane is localized. Therefore, when the relative humidity in the packaging bag becomes high, water vapor existing in the packaging bag is selectively adsorbed on the localized portion of the polyvinyl pyrrolidone on the surface of the hollow fiber membrane, and the absorbed water deteriorates the polyvinyl pyrrolidone. It is considered that the reaction is suppressed. Therefore, it is presumed that a great suppression effect is expressed by increasing the humidity. On the other hand, it is known that a hollow fiber membrane containing polyvinylpyrrolidone has a humidity control function, that is, an absorption and desorption property (for example, JP-A-2004-97918). Therefore, when the relative humidity in the packaging bag is low, the moisture adsorbed on the polyvinylpyrrolidone present on the surface of the hollow fiber membrane is released to the space inside the packaging bag, and in particular, the polyvinylpyrrolidone present on the extreme surface subject to the above-mentioned deterioration. It is presumed that the amount of adsorbed moisture becomes low and deterioration is accelerated. It is presumed that the relative humidity in the packaging bag greatly affects the suppression of the degradation reaction of polyvinylpyrrolidone due to the synergistic effect of these phenomena.

上記2要件を満たす方法としては、例えば、含水率が0.8〜600質量%であるポリビニルピロリドンを含有するポリスルホン系選択透過性中空糸膜束を充填した血液浄化器を脱酸素剤と共に酸素透過度が10cm3/m2/24h/MPa(20℃,90%RH)以下で、水蒸気透過度が50g/m2/24h/MPa(40℃,90%RH)以下である包装袋で密封し、包装袋内雰囲気の25℃における相対湿度が40%RH超の状態で放射線照射する方法が挙げられる。 As a method of satisfying the above two requirements, for example, a blood purifier filled with a polysulfone-based permselective hollow fiber membrane bundle containing polyvinylpyrrolidone having a water content of 0.8 to 600% by mass is combined with an oxygen scavenger along with oxygen permeation. degree is 10cm 3 / m 2 / 24h / MPa (20 ℃, 90% RH) or less, the water vapor permeability of 50g / m 2 / 24h / MPa (40 ℃, 90% RH) and sealed with packaging bag or less And a method of irradiating with radiation in a state where the relative humidity at 25 ° C. of the atmosphere in the packaging bag exceeds 40% RH.

上記方法で実施する場合の脱酸素剤は、包装袋内の酸素を吸収し実質的な脱酸素状態を形成するために用いるものである。従って、脱酸素機能を有するものであれば限定されない。例えば、前述したようなものが好適である。   The oxygen scavenger used in the above method is used to absorb oxygen in the packaging bag and form a substantial oxygen scavenging state. Therefore, it is not limited as long as it has a deoxygenating function. For example, those described above are suitable.

本発明において用いられる包装袋は、上記脱酸素剤で脱酸素される空間を形成すると共に、該脱酸素された状態を長期に渡り維持する機能が必要である。従って、酸素ガスの透過度の低い材料で構成されることが必要である。酸素透過度が10cm3/m2/24h/MPa(20℃,90%RH)以下が好ましい。8cm3/m2/24h/MPa(20℃,90%RH)以下がより好ましく、6cm3/m2/24h/MPa(20℃,90%RH)以下がさらに好ましく、4cm3/m2/24h/MPa(20℃,90%RH)以下がよりさらに好ましい。
酸素透過度が10cm3/m2/24h/MPa(20℃,90%RH)を超えた場合は、包装袋で密封していても、外部より包装袋を通じて酸素ガスが通過し、包装袋内の酸素濃度が増大し実質的な脱酸素状態を維持することができなくなるので好ましくない。
The packaging bag used in the present invention needs to have a function of forming a space that is deoxygenated by the oxygen scavenger and maintaining the deoxygenated state for a long period of time. Therefore, it is necessary to be made of a material having a low oxygen gas permeability. Oxygen permeability 10cm 3 / m 2 / 24h / MPa (20 ℃, 90% RH) preferably less. 8cm 3 / m 2 / 24h / MPa (20 ℃, 90% RH) more preferably less, 6cm 3 / m 2 / 24h / MPa (20 ℃, 90% RH) more preferably less, 4cm 3 / m 2 / 24 h / MPa (20 ° C., 90% RH) or less is more preferable.
Oxygen permeability 10cm 3 / m 2 / 24h / MPa (20 ℃, 90% RH) If you exceed, even if sealed in the packaging bag, the oxygen gas is passed through from the packaging bag outside the packaging bag This is not preferable because the oxygen concentration increases and the substantial deoxygenation state cannot be maintained.

また、前述のごとく、本発明においては、血液浄化器に充填されている中空糸膜は特定の含水率を保持する必要がある。従って、本発明における包装袋は水蒸気透過度の低い材料で構成することが好ましい。50g/m2/24h/MPa(40℃,90%RH)以下が好ましい。40g/m2/24h/MPa(40℃,90%RH)以下がより好ましく、30g/m2/24h/MPa(40℃,90%RH)以下がさらに好ましく、20g/m2/24h/MPa(40℃,90%RH)以下がよりさらに好ましい。50g/m2/24h/MPa(40℃,90%RH)を超えた場合は、包装袋で密封していても、包装袋を通じて水蒸気が通過するために、中空糸膜の乾燥が進行し上記前記の好ましい含水率が維持できなくなるので好ましくない。 As described above, in the present invention, the hollow fiber membrane filled in the blood purifier needs to maintain a specific moisture content. Therefore, the packaging bag in the present invention is preferably made of a material having a low water vapor permeability. 50g / m 2 / 24h / MPa (40 ℃, 90% RH) preferably less. 40g / m 2 / 24h / MPa (40 ℃, 90% RH) more preferably less, 30g / m 2 / 24h / MPa (40 ℃, 90% RH) more preferably less, 20g / m 2 / 24h / MPa (40 ° C., 90% RH) or less is more preferable. 50g / m 2 / 24h / MPa (40 ℃, RH 90%) If you exceed, even if sealed in the packaging bag, in order to pass steam through the packing bag, drying of the hollow fiber membrane progresses the This is not preferable because the preferable water content cannot be maintained.

本発明において用いられる上記した包装袋の素材や構成は、上記した特性を有すれば限定なく任意である。アルミ箔、アルミ蒸着フイルム、シリカおよび/またはアルミナ等の無機酸化物蒸着フイルム、塩化ビニリデン系ポリマー複合フイルム等の酸素ガスと水蒸気の両方の不透過性素材を構成材とするのが好ましい実施態様である。また、該包装袋における密封方法も何ら制限はなく任意であり、ヒートシール法、インパルスシール法、溶断シール法、フレームシール法、超音波シール法、高周波シール法等が挙げられ、該シール性を有するフイルム素材と前記した不透過性素材とを複合した構成の複合素材が好適である。特に、酸素ガスおよび水蒸気をほぼ実質的に遮断できるアルミ箔を構成層とした外層がポリエステルフイルム、中間層がアルミ箔、内層がポリエチレンフイルムよりなる不透過性とヒートシール性との両方の機能を有したラミネートシートを適用するのが好適である。   The material and configuration of the packaging bag used in the present invention are arbitrary without limitation as long as they have the characteristics described above. In a preferred embodiment, the material is made of an impermeable material for both oxygen gas and water vapor such as aluminum foil, aluminum vapor deposited film, inorganic oxide vapor deposited film such as silica and / or alumina, and vinylidene chloride polymer composite film. is there. Further, the sealing method in the packaging bag is not limited and is arbitrary, and examples thereof include a heat sealing method, an impulse sealing method, a fusing sealing method, a frame sealing method, an ultrasonic sealing method, and a high frequency sealing method. A composite material composed of a composite of the film material and the above-described impermeable material is preferable. In particular, both the impervious and heat-sealable functions, in which the outer layer is made of polyester film, the intermediate layer is made of aluminum foil, and the inner layer is made of polyethylene film, are made of aluminum foil that can substantially block oxygen gas and water vapor. It is preferable to apply a laminated sheet having the same.

包装袋内の湿度を上記範囲にする方法は限定されない。例えば、(1)血液浄化器を包装袋で密封する折に湿度を制御した気体を包装袋内に注入あるいは、調湿した環境で密封する、(2)選択透過性中空糸膜の含水率により調整する、(3)水分を放出する脱酸素剤を使用する、(4)脱酸素剤と共に調湿剤を同時に密封する等の方法が挙げられる。   The method for setting the humidity in the packaging bag within the above range is not limited. For example, (1) When a blood purifier is sealed with a packaging bag, a humidity-controlled gas is injected into the packaging bag or sealed in a conditioned environment. (2) Depending on the moisture content of the selectively permeable hollow fiber membrane Examples thereof include a method of adjusting, (3) using a deoxidizing agent that releases moisture, and (4) simultaneously sealing a humidity control agent together with the deoxidizing agent.

上記調湿剤は、吸、放湿機能により包装袋内空間の相対湿度を上記範囲にする特性を有しておれば制限されない。調湿剤としては、B型シリカゲルが広く使用されているが限定はされない。例えば、B型シリカゲルと類似の調湿剤としては、シリカゲルの細孔分布をシャープにしたり、あるいはさらにアルカリ金属化合物やアルカリ土類金属化合物よりなる調湿剤補助剤を複合することにより吸、放湿特性を改善した改良型のB型シリカゲル、メソポーラスシリカアルミナゲル、メソポーラス中空繊維状アルミニウムシリケート、ゼオライト等の多孔質無機粒子が挙げられる。また、アクリル酸ナトリウム架橋ポリマーやポリエチレングリコール鎖、ポリビニルピロリドン鎖等を共重合、ブレンドあるいはアロイ化した等の吸水性高分子よりなる粒子、該吸水性高分子を無機マイクロカプセルと複合した複合粒子等であってもよい。該調湿剤の形状は特に限定されず、例えば、粉状、粒状、塊状、シート状等の何れでも良い。粉状、粒状のものは、透湿性の包装材で包装して用いるのが好ましい。また、フィルム、シート、紙、不織布、織布等と複合した複合体として用いてもよい。この場合、複合基材は親水性材料よりなることが好ましい。また、調湿剤粒子を親水性のバインダーと複合し、ポリエステルやポリオレフィン等の汎用素材よりなる基材と複合してもよい。吸水性高分子よりなる調湿剤の場合は、該高分子を直接フィルムやシートとして用いてもよい。また、繊維として、紙、不織布、織布等の形状にして用いてもよい。また、発泡剤を用いて発泡シートやホームの形状として用いてもよい。例えば、塩化アンモニウム等の無機塩調湿剤を吸水性シート(紙、不織布、織布)に含浸した調湿シート、水および界面活性剤等をポリアクリル酸ナトリウムをメタ珪酸アルミン酸マグネシュウム等の無機架橋剤で架橋した網目構造吸水性高分子で固定化したシート状含水ゲル等が好適に使用できる。   The said humidity control agent will not be restrict | limited, if it has the characteristic which makes the relative humidity of the space in a packaging bag the said range by an absorption and moisture release function. As the humidity control agent, B-type silica gel is widely used, but is not limited. For example, as a humidity control agent similar to B-type silica gel, absorption and release can be achieved by sharpening the pore distribution of silica gel or by combining a humidity control agent composed of an alkali metal compound or an alkaline earth metal compound. Examples thereof include porous inorganic particles such as improved B-type silica gel, mesoporous silica alumina gel, mesoporous hollow aluminum silicate, zeolite and the like having improved wet characteristics. Also, particles made of water-absorbing polymer such as sodium acrylate cross-linked polymer, polyethylene glycol chain, polyvinylpyrrolidone chain, etc., blended or alloyed, composite particles in which the water-absorbing polymer is combined with inorganic microcapsules, etc. It may be. The shape of the humidity control agent is not particularly limited, and may be any of powder, granule, lump, sheet, and the like. It is preferable to use powdery and granular materials by packaging them with a moisture-permeable packaging material. Moreover, you may use as a composite_body | complex combined with a film, a sheet | seat, paper, a nonwoven fabric, a woven fabric, etc. In this case, the composite substrate is preferably made of a hydrophilic material. Further, the humidity control agent particles may be combined with a hydrophilic binder and combined with a base material made of a general-purpose material such as polyester or polyolefin. In the case of a humidity control agent comprising a water-absorbing polymer, the polymer may be used directly as a film or sheet. Moreover, you may use in shapes, such as paper, a nonwoven fabric, and a woven fabric, as a fiber. Moreover, you may use it as a shape of a foam sheet or a home using a foaming agent. For example, humidity control sheets impregnated with water-absorbing sheets (paper, non-woven fabrics, woven fabrics) with inorganic salt humidity control agents such as ammonium chloride, water, surfactants, etc., sodium polyacrylate, inorganics such as magnesium metasilicate aluminate A sheet-like hydrogel fixed with a network-structured water-absorbing polymer crosslinked with a crosslinking agent can be suitably used.

上記調湿剤は、事前に25℃における相対湿度80〜90%RHの環境でシーズニングしてから使用するのが好ましい。   It is preferable to use the humectant after seasoning in an environment having a relative humidity of 80 to 90% RH at 25 ° C. in advance.

上記方法で実施する場合は、血液浄化器に充填されている中空糸膜周辺の雰囲気が実質的な脱酸素状態に保たれる必要がある。従って、血液浄化器の開口部は開口状態である必要がある。   When implemented by the above method, the atmosphere around the hollow fiber membrane filled in the blood purifier needs to be maintained in a substantially deoxygenated state. Therefore, the opening of the blood purifier needs to be in an open state.

上述の脱気水を用いる方法を脱気水法と、脱酸素剤を用いる方法を脱酸素剤法と称する。   The above-described method using deaerated water is referred to as a deaerated water method, and the method using an oxygen scavenger is referred to as an oxygen scavenger method.

本発明においては、脱酸素剤法においては、包装袋を密封してから、また、脱気水法で実施する場合は密栓をしてから少なくとも48時間経過させてから放射線を照射するのが好ましい。72時間以上がより好ましい。ただし、密封あるいは密栓後放射線照射までの時間が長すぎると、雑菌が増殖することがあるので、密封あるいは密栓後10日以内に該照射を行うのが好ましい。より好ましくは7日以内、さらに好ましくは5日以内である。密栓をしてから放射線を照射するまでの経過時の温度は限定はなく、例えば、室温で行えばよい。48時間未満の状態で該照射処理を行うとプライミング時の透水性能の発現性が低下することがある。   In the present invention, in the oxygen scavenger method, it is preferable to irradiate the radiation after sealing the packaging bag, or in the case of the degassing water method, after at least 48 hours have passed after sealing. . More preferably 72 hours or more. However, if the time until irradiation with radiation after sealing or sealing is too long, miscellaneous bacteria may grow. Therefore, it is preferable to perform the irradiation within 10 days after sealing or sealing. More preferably, it is within 7 days, and more preferably within 5 days. There is no limitation on the temperature at the time from sealing to irradiation with radiation, for example, room temperature. If the irradiation treatment is performed in a state of less than 48 hours, the expression of water permeability performance during priming may be reduced.

照射処理をするまでの経過時間によりプライミング時の透水性能の発現性が変化する理由は不明であるが、脱酸素剤法においては、中空糸膜表面に吸着されている極微量の酸素が脱酸素剤による脱酸素効果により脱離されることにより、また、脱気水法の場合は、中空糸膜表面に吸着されている極微量の酸素の周りに局在している脱気水に移行することで、放射線照射により引き起こされる膜表面と水との親和性を阻害する劣化反応が抑制されるために引き起こされているものと推察している。   The reason why the expression of water permeability performance during priming changes depending on the elapsed time until irradiation treatment is unknown, but in the oxygen scavenger method, the trace amount of oxygen adsorbed on the hollow fiber membrane surface is deoxygenated. Desorption due to the deoxygenation effect of the agent, and in the case of the degassing water method, transfer to degassing water localized around the trace amount of oxygen adsorbed on the surface of the hollow fiber membrane. Therefore, it is presumed that the deterioration is caused by suppressing the deterioration reaction that inhibits the affinity between the film surface and water caused by radiation irradiation.

本発明で用いる放射線としては、α線、β線、γ線、中性子線、X線、電子線、紫外線、イオンビームが用いられるが、滅菌効率および取り扱い易さ等から、γ線又は電子線が好適に用いられる。放射線の照射線量は殺菌および架橋が可能な線量であれば特に限定はないが、一般には10〜30kGyが好適である。   As the radiation used in the present invention, α rays, β rays, γ rays, neutron rays, X rays, electron rays, ultraviolet rays, and ion beams are used. From the viewpoint of sterilization efficiency and ease of handling, γ rays or electron rays are used. Preferably used. The irradiation dose of radiation is not particularly limited as long as it is a dose capable of sterilization and crosslinking, but generally 10 to 30 kGy is preferable.

上述の脱酸素剤法と脱気水法は、それぞれ以下の特徴を有する。   The oxygen scavenger method and the degassed water method described above have the following characteristics, respectively.

脱酸素剤法は選択透過性中空糸膜中の含水率が5質量%未満の低水分率の中空糸膜が充填された血液浄化器にも適用でき、軽量化対応には好適である。しかし、脱酸素剤が必要であり、かつ包装袋にも酸素や水蒸気バリアー性の高い素材の使用が必要であり、経済性では不利である。これに対して、脱気水法は脱酸素剤の使用が必須でなく、包装袋の材質も汎用素材が使用できるため経済性では有利である。しかし、選択透過性中空糸膜中の含水率が5質量%以上が必要であり軽量化の点では不利である。それぞれ相反した特徴を有しており、市場要求等により適宜選択して用いることができる。例えば、極寒冷地向け商品の場合は、脱酸素剤法が好適である。   The oxygen scavenger method can also be applied to a blood purifier filled with a low moisture content hollow fiber membrane having a moisture content of less than 5% by mass in the selectively permeable hollow fiber membrane, and is suitable for weight reduction. However, an oxygen scavenger is necessary, and the packaging bag needs to use a material having high oxygen and water vapor barrier properties, which is disadvantageous in terms of economy. On the other hand, the degassing water method is advantageous in terms of economy because it is not essential to use an oxygen scavenger and a general-purpose material can be used for the packaging bag. However, the moisture content in the selectively permeable hollow fiber membrane is required to be 5% by mass or more, which is disadvantageous in terms of weight reduction. Each has contradictory characteristics, and can be selected and used as appropriate according to market requirements. For example, in the case of products for extremely cold regions, the oxygen scavenger method is suitable.

本発明においては、前述したごとく、中空糸膜束よりのポリビニルピロリドンの溶出が10ppm以下であることが好ましい。   In the present invention, as described above, the elution of polyvinyl pyrrolidone from the hollow fiber membrane bundle is preferably 10 ppm or less.

ポリビニルピロリドンの溶出量が10ppmを超えた場合は、この溶出するポリビニルピロリドンによる長期透析時の副作用や合併症が起こる可能性がある。該特性を満足させる方法は限定無く任意であるが、例えば、ポリスルホン系樹脂に対するポリビニルピロリドンの含有量を上記した範囲にしたり、中空糸膜束の製膜条件を最適化する等により達成できる。より好ましいポリビニルピロリドンの溶出量は8ppm以下、さらに好ましくは6ppm以下、よりさらに好ましくは4ppm以下である。該ポリビニルピロリドンの溶出量は、透析型人工腎臓装置製造承認基準の溶出試験法に準じた方法で抽出された抽出液を用いて定量し求めたものである。すなわち、乾燥状態の中空糸膜束から任意に中空糸膜を取り出し1.0gをはかりとる。これに100mlのRO水を加え、70℃で1時間抽出を行うことにより得られた抽出液について定量する。   When the elution amount of polyvinylpyrrolidone exceeds 10 ppm, side effects and complications during long-term dialysis may occur due to the eluted polyvinylpyrrolidone. The method for satisfying the characteristics is optional without limitation. For example, it can be achieved by setting the content of polyvinylpyrrolidone relative to the polysulfone resin to the above range or optimizing the film forming conditions of the hollow fiber membrane bundle. More preferably, the elution amount of polyvinylpyrrolidone is 8 ppm or less, more preferably 6 ppm or less, and still more preferably 4 ppm or less. The elution amount of the polyvinyl pyrrolidone is determined by quantification using an extract extracted by a method according to the elution test method of the dialysis-type artificial kidney device manufacturing approval standard. That is, the hollow fiber membrane is arbitrarily taken out from the dried hollow fiber membrane bundle and weighed 1.0 g. The extract obtained by adding 100 ml of RO water to this and performing extraction at 70 ° C. for 1 hour is quantified.

該ポリビニルピロリドンの溶出量を減ずる方策は、限定無く任意であるが、前述した過酸化水素溶出量やポリビニルピロリドンの表面濃度を同時に満足するように、ポリスルホン系樹脂に対するポリビニルピロリドンの含有量や中空糸膜の製膜条件や洗浄方法を最適化することが好ましい。また、放射線照射により架橋することも有効である。   A measure for reducing the elution amount of the polyvinyl pyrrolidone is optional without limitation, but the content of polyvinyl pyrrolidone relative to the polysulfone resin and the hollow fiber so that the hydrogen peroxide elution amount and the surface concentration of polyvinyl pyrrolidone described above are satisfied at the same time. It is preferable to optimize the film forming conditions and the cleaning method of the film. It is also effective to crosslink by irradiation.

本発明の血液浄化器は、放射線照射後室温で1年以上保存した後に、血液浄化器より中空糸膜を取り出し、透析型人工腎臓装置製造承認基準により定められた試験を実施した時の中空糸膜の抽出液におけるUV(220〜350nm)吸光度の最大値が0.10以下であるのが好ましい。2年以上経過しても該特性が維持されるのがより好ましい。血液浄化器の保障期間は3年に設定されているので少なくとも3年間該特性が維持されるのが特に好ましい。1年経過でUV(220〜350nm)吸光度が0.06以下が維持されれば3年間の維持が可能であることを経験的に確認している。   The blood purifier of the present invention is a hollow fiber when the hollow fiber membrane is taken out from the blood purifier after being stored at room temperature for one year or more after irradiation and the test defined by the dialysis artificial kidney device manufacturing approval standard is performed. The maximum value of UV (220 to 350 nm) absorbance in the membrane extract is preferably 0.10 or less. More preferably, the characteristics are maintained even after two years or more. Since the warranty period of the blood purifier is set to 3 years, it is particularly preferable that the characteristics are maintained for at least 3 years. It has been empirically confirmed that if the UV (220-350 nm) absorbance is maintained at 0.06 or less after 1 year, it can be maintained for 3 years.

本発明においては、上記の方法で得られた血液浄化器の接着端面に含まれる変形中空糸の割合が1%以下であることが好ましい。ここで、変形中空糸とは、扁平糸、潰れ糸、異形糸をあわせたものを指し、扁平とは中空糸断面内径の長径と短径の比が1/2以下のものを言い、潰れとは長径と短径の比が1/5以下の扁平の極端なものあるいは実質的に潰れたもの、また異形とは長径と短径の比が不明確な非円形、非長円形のものである。変形中空糸膜の割合は0.5%以下がより好ましく、0.1%以下がさらに好ましい。1%を超えた場合は、残血性の低下に繋がることがある。   In the present invention, the proportion of the deformed hollow fiber contained in the adhesion end face of the blood purifier obtained by the above method is preferably 1% or less. Here, the deformed hollow fiber refers to a combination of a flat yarn, a crushed yarn, and a deformed yarn, and the flat shape means that the ratio of the major axis to the minor axis of the hollow fiber cross-sectional inner diameter is 1/2 or less, Is an extremely flat or substantially flattened one whose ratio of major axis to minor axis is 1/5 or less, and an irregular shape is a non-circular or non-elliptical one whose ratio of major axis to minor axis is unclear. . The proportion of the deformed hollow fiber membrane is more preferably 0.5% or less, and further preferably 0.1% or less. If it exceeds 1%, residual blood may be reduced.

上記特性を付与する方法は限定されないが、前述のクリンプ付与工程の最適化が重要である。前述した本発明のクリンプ付与方法で実施するのが好ましい。   The method for imparting the above properties is not limited, but optimization of the above-described crimp imparting step is important. It is preferable to carry out the crimping method of the present invention described above.

以下、本発明の有効性を実施例で説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例における物性の評価方法は以下の通りである。   Hereinafter, the effectiveness of the present invention will be described with reference to examples, but the present invention is not limited thereto. In addition, the evaluation method of the physical property in the following examples is as follows.

1、透水率の測定
透析器の血液出口部回路(圧力測定点よりも出口側)を鉗子により封止し、全ろ過とする。37℃に保温した純水を加圧タンクに入れ、レギュレーターにより圧力を制御しながら、37℃恒温槽で保温した透析器へ純水を送り、透析液側から流出した濾液量をメスシリンダーで測定する。膜間圧力差(TMP)は
TMP=(Pi+Po)/2
とする。ここでPiは透析器入り口側圧力、Poは透析器出口側圧力である。TMPを4点変化させ濾過流量を測定し、それらの関係の傾きから透水率(mL/hr/mmHg)を算出する。このときTMPと濾過流量の相関係数は0.999以上でなくてはならない。また回路による圧力損失誤差を少なくするために、TMPは100mmHg以下の範囲で測定する。中空糸膜束の透水率は膜面積と透析器の透水率から算出する。
UFR(H)=UFR(D)/A
ここでUFR(H)は中空糸膜束の透水率(mL/m2/hr/mmHg)、UFR(D)は透析器の透水率(mL/hr/mmHg)、Aは透析器の膜面積(m2)である。
1. Measurement of water permeability The blood outlet circuit of the dialyzer (the outlet side from the pressure measurement point) is sealed with forceps and is subjected to total filtration. Purified water kept at 37 ° C is put into a pressurized tank, and the pressure is controlled by a regulator. The pure water is sent to a dialyzer kept warm in a 37 ° C constant temperature bath, and the amount of filtrate flowing out from the dialysate side is measured with a graduated cylinder. To do. The transmembrane pressure difference (TMP) is TMP = (Pi + Po) / 2
And Here, Pi is the dialyzer inlet side pressure, and Po is the dialyzer outlet side pressure. The TMP is changed at four points, the filtration flow rate is measured, and the water permeability (mL / hr / mmHg) is calculated from the slope of the relationship. At this time, the correlation coefficient between TMP and the filtration flow rate must be 0.999 or more. In order to reduce the pressure loss error due to the circuit, TMP is measured in the range of 100 mmHg or less. The water permeability of the hollow fiber membrane bundle is calculated from the membrane area and the water permeability of the dialyzer.
UFR (H) = UFR (D) / A
Here, UFR (H) is the water permeability of the hollow fiber membrane bundle (mL / m 2 / hr / mmHg), UFR (D) is the water permeability of the dialyzer (mL / hr / mmHg), and A is the membrane area of the dialyzer. (M 2 ).

2、膜面積の計算
透析器の膜面積は中空糸膜の内径基準として求める。
A=n×π×d×L
ここで、nは透析器内の中空糸膜本数、πは円周率、dは中空糸膜の内径(m)、Lは透析器内の中空糸膜の有効長(m)である。
2. Calculation of membrane area The membrane area of the dialyzer is obtained as a reference for the inner diameter of the hollow fiber membrane.
A = n × π × d × L
Here, n is the number of hollow fiber membranes in the dialyzer, π is the circumference, d is the inner diameter (m) of the hollow fiber membrane, and L is the effective length (m) of the hollow fiber membrane in the dialyzer.

3、バースト圧
約10,000本の中空糸膜束よりなる血液浄化器の透析液側を水で満たし栓をする。血液側から室温で乾燥空気または窒素を送り込み1分間に0.5MPaの割合で加圧していく。圧力を上昇させ、中空糸膜束が加圧空気によって破裂(バースト)し、透析液側に満たした液に気泡が発生した時点の空気圧をバースト圧とする。
3. Burst pressure Fill the dialysis solution side of a blood purifier consisting of about 10,000 hollow fiber membrane bundles with water and plug it. Dry air or nitrogen is fed from the blood side at room temperature and pressurized at a rate of 0.5 MPa per minute. The pressure is increased, and the air pressure when the hollow fiber membrane bundle bursts (bursts) with pressurized air and bubbles are generated in the liquid filled on the dialysate side is defined as the burst pressure.

4、偏肉度
中空糸膜100本の断面を200倍の投影機で観察する。一視野中、最も膜厚差がある一本の糸断面について、最も厚い部分と最も薄い部分の厚みを測定する。
偏肉度=最薄部/最厚部
偏肉度=1で膜厚が完璧に均一となる。
4. Unevenness of thickness The cross section of 100 hollow fiber membranes is observed with a 200 times projector. In one field of view, the thickness of the thickest part and the thinnest part is measured with respect to one yarn cross section having the largest film thickness difference.
Thickness unevenness = thinnest part / thickest part thickening degree = 1, and the film thickness is perfectly uniform.

5、ポリビニルピロリドンの溶出量
透析型人工腎臓装置製造基準に定められた方法で抽出し、該抽出液中のポリビニルピロリドンを比色法で定量した。
乾燥中空糸膜血液浄化器の場合には、中空糸膜束1gに純水100mlを加え、70℃で1時間抽出する。得られた抽出液2.5ml、0.2モルクエン酸水溶液1.25ml、0.006規定のヨウ素水溶液0.5mlをよく混合し、室温で10分間放置した、後に470nmでの吸光度を測定した。定量は標品のポリビニルピロリドンを用いて上記方法に従い測定する事により求めた検量線にて行った。
湿潤中空糸膜血液浄化器の場合は、血液浄化器の透析液側流路に生理食塩水を500mL/minで5分間通液し、ついで血液側流路に200mL/minで通液した。その後血液側から透析液側に200mL/minでろ過をかけながら3分間通液した後にフリーズドライして乾燥膜を得て、該乾燥膜を用いて上記定量を行った。
5. Elution amount of polyvinyl pyrrolidone Extracted by the method defined in the dialysis artificial kidney device production standard, and polyvinyl pyrrolidone in the extract was quantified by a colorimetric method.
In the case of a dry hollow fiber membrane blood purifier, 100 ml of pure water is added to 1 g of a hollow fiber membrane bundle and extracted at 70 ° C. for 1 hour. The obtained extract (2.5 ml), 0.2 molar aqueous citric acid solution (1.25 ml) and 0.006 normal iodine aqueous solution (0.5 ml) were mixed well and allowed to stand at room temperature for 10 minutes, and the absorbance at 470 nm was measured. Quantification was performed with a calibration curve obtained by measuring according to the above method using a standard polyvinylpyrrolidone.
In the case of the wet hollow fiber membrane blood purifier, physiological saline was passed through the dialysate side flow path of the blood purifier at 500 mL / min for 5 minutes, and then passed through the blood side flow path at 200 mL / min. Thereafter, the solution was passed through for 3 minutes while filtering from the blood side to the dialysate side at 200 mL / min, and then freeze-dried to obtain a dry membrane, and the above quantification was performed using the dry membrane.

6、UV(220−350nm)吸光度
透析型人工腎臓装置製造承認基準に定められた方法で抽出した抽出液を分光光度計(日立製作所製、U−3000)を用いて波長範囲200〜350nmの吸光度を測定し、この波長範囲での最大の吸光度を求めた。
該測定は、中空糸膜束を長手方向に2.7cmずつ10個に等分し、各々の部位から乾燥状態の中空糸膜束1gをはかりとり全サンプルについて測定した。
湿潤中空糸膜血液浄化器の場合は、ポリビニルピロリドン溶出量の測定と同様に処理することにより得た乾燥膜を用いて測定した。
6. UV (220-350 nm) Absorbance Absorbance in the wavelength range of 200 to 350 nm using a spectrophotometer (manufactured by Hitachi, U-3000) of the extract extracted by the method defined in the dialysis-type artificial kidney device manufacturing approval standard And the maximum absorbance in this wavelength range was determined.
In the measurement, the hollow fiber membrane bundle was equally divided into 10 pieces of 2.7 cm in the longitudinal direction, and 1 g of the hollow fiber membrane bundle in a dry state was weighed from each portion and measured for all samples.
In the case of a wet hollow fiber membrane blood purifier, measurement was performed using a dry membrane obtained by processing in the same manner as the measurement of the amount of polyvinylpyrrolidone eluted.

7、過酸化水素の定量
透析型人工腎臓装置製造承認基準に定められた方法で抽出した抽出液2.6mlに塩化アンモニウム緩衝液(PH8.6)0.2mlとモル比で当量混合したTiCl4の塩化水素溶液と4−(2−ピリジルアゾ)レゾルシノールのNa塩水溶液との混合液を加え、さらに0.4mMに調製した発色試薬0.2mlを加え、50℃で5分間加温後、室温に冷却し508nmの吸光度を測定した。標品を用いて同様に測定して求めた検量線を利用して定量値を求めた。
該測定は、中空糸膜束を長手方向に2.7cmずつ10個に等分し、各々の部位から乾燥状態の中空糸膜束1gをはかりとり全サンプルについて測定した。
湿潤中空糸膜血液浄化器の場合は、ポリビニルピロリドン溶出量の測定と同様に処理することにより得た乾燥膜を用いて測定した。また、湿潤状態の中空糸膜束について定量する場合は、フリーズドライ法で乾燥して得た乾燥膜について測定した。
7. Quantitative determination of hydrogen peroxide TiCl 4 mixed in an equimolar ratio with an ammonium chloride buffer solution (PH 8.6) 0.2 ml in 2.6 ml of the extract extracted by the method defined in the dialysis artificial kidney device manufacturing approval standard A mixture of a hydrogen chloride solution of 4- (2-pyridylazo) resorcinol with an aqueous Na salt solution was added, 0.2 ml of a coloring reagent prepared to 0.4 mM was further added, and the mixture was heated at 50 ° C. for 5 minutes, and then brought to room temperature. After cooling, the absorbance at 508 nm was measured. A quantitative value was obtained using a calibration curve obtained by measuring in the same manner using a sample.
In the measurement, the hollow fiber membrane bundle was equally divided into 10 pieces of 2.7 cm in the longitudinal direction, and 1 g of the hollow fiber membrane bundle in a dry state was weighed from each portion and measured for all samples.
In the case of a wet hollow fiber membrane blood purifier, measurement was performed using a dry membrane obtained by processing in the same manner as the measurement of the amount of polyvinylpyrrolidone eluted. Moreover, when quantifying about the hollow fiber membrane bundle of a wet state, it measured about the dry membrane obtained by drying by the freeze-dry method.

8、中空糸膜束の保存安定性
各実施例および比較例で得られた乾燥状態の中空糸膜束を、湿度50%RHに調湿されたドライボックス中(雰囲気は空気)で3ヶ月間保存した後に、透析型人工腎臓装置製造承認基準に定められた方法でUV(220−350nm)吸光度を測定した。該保存によるUV(220−350nm)吸光度の増加度で安定性を判定した。該増加度は中空糸膜束を長手方向に10個に等分し、それぞれのサンプルについて測定し、その最大値で判定した。最大値が0.10を超えないものを合格とした。
8. Storage stability of hollow fiber membrane bundles The dry hollow fiber membrane bundles obtained in each of the examples and comparative examples were kept in a dry box (atmosphere: air) adjusted to a humidity of 50% RH for 3 months. After storage, UV (220-350 nm) absorbance was measured by a method defined in the dialysis-type artificial kidney device manufacturing approval standard. Stability was determined by the degree of increase in UV (220-350 nm) absorbance due to the storage. The degree of increase was obtained by equally dividing the hollow fiber membrane bundle into 10 pieces in the longitudinal direction, measuring each sample, and determining the maximum value. Those whose maximum value did not exceed 0.10 were considered acceptable.

9、包装袋内および水中の酸素濃度の測定
包装袋内の酸素濃度の測定はガスクロマトグラフィーにて行った。カラムとしてモレキュラーシーヴ(GLサイエンス製 モレキュラーシーヴ 13X−S メッシュ60/80)を充填したものを使用し、キャリアガスはアルゴンガスを、検出器は熱伝導方式を用い、カラム温度60℃で分析した。包装袋内ガスはシリンジのニードルを直接未開封の包装袋に突き刺して採取した。
水中の酸素濃度は、HORIBA製作所社製溶存酸素計OM−51−L1を用いて測定を行った。
9. Measurement of oxygen concentration in the packaging bag and in water The oxygen concentration in the packaging bag was measured by gas chromatography. A column packed with molecular sieve (Molecular sieve 13X-S mesh 60/80 manufactured by GL Science) was used, the carrier gas was analyzed using argon gas, the detector was analyzed using a heat conduction method, and the column temperature was 60 ° C. The gas in the packaging bag was collected by piercing the syringe needle directly into the unopened packaging bag.
The oxygen concentration in water was measured using a dissolved oxygen meter OM-51-L1 manufactured by HORIBA.

10、中空糸膜の内径、膜厚の測定
中空糸型膜を長さ方向に対して垂直に鋭利な剃刀でカットし、断面を倍率200倍で顕微鏡で観察する。内径値と外径値をそれぞれn=5で測定し、平均値を算出する。
膜厚[μm]={(外径)−(内径)}/2
10. Measurement of inner diameter and film thickness of hollow fiber membrane The hollow fiber membrane is cut with a sharp razor perpendicular to the length direction, and the cross section is observed with a microscope at a magnification of 200 times. The inner diameter value and the outer diameter value are measured at n = 5, and the average value is calculated.
Film thickness [μm] = {(outer diameter) − (inner diameter)} / 2

11、血液浄化器の保存安定性
放射線照射後の血液浄化器を室温で一年間保存した後、前記した方法でUV(220−350nm)吸光度を測定した。該保存によるUV(220−350nm)吸光度の増加度で安定性を判定した。該増加度は中空糸膜束を長手方向に10個に等分し、それぞれのサンプルについて測定し、その最大値で判定した。最大値が0.10を超えないものを合格とした。
11. Storage stability of blood purifier After storing the blood purifier after irradiation at room temperature for one year, UV (220-350 nm) absorbance was measured by the method described above. Stability was determined by the degree of increase in UV (220-350 nm) absorbance due to the storage. The degree of increase was obtained by equally dividing the hollow fiber membrane bundle into 10 pieces in the longitudinal direction, measuring each sample, and determining the maximum value. Those whose maximum value did not exceed 0.10 were considered acceptable.

12、中空糸膜の含水率
中空糸膜の含水率は、乾燥前の中空糸膜の質量(g)を測定し、その後減圧下(−750mmHg以下)で真空乾燥を12時間実施し、乾燥後の中空糸膜の質量(g)を測定する。乾燥前後の質量差を減量(g)として乾燥後質量(g)を基準にして%で求める。以下の式で含水率を決定する。
(減量/乾燥後質量)×100=含水率(質量%)
ここで、中空糸膜の質量は1〜2gの範囲内とすることで、2時間後に絶乾状態(これ以上質量変化がない状態)にすることができる。
12. Moisture content of hollow fiber membrane The moisture content of the hollow fiber membrane was measured by measuring the mass (g) of the hollow fiber membrane before drying, and then performing vacuum drying under reduced pressure (-750 mmHg or less) for 12 hours, after drying The mass (g) of the hollow fiber membrane is measured. The mass difference between before and after drying is determined as a weight loss (g) in% based on the mass after drying (g). The moisture content is determined by the following formula.
(Weight loss / mass after drying) × 100 = moisture content (mass%)
Here, by setting the mass of the hollow fiber membrane within the range of 1 to 2 g, it can be in an absolutely dry state (a state in which there is no further mass change) after 2 hours.

13、中空糸膜内外表面の最表層におけるポリビニルピロリドンの含有量
ポリビニルピロリドンの含有量は、X線光電子分光法(ESCA法)で求めた。
中空糸膜1本を内表面の一部が露出するようにカミソリで斜めに切断し、内外表面が測定できるように試料台にはりつけてESCAで測定を行った。測定条件は次に示す通りである。
測定装置:アルバック・ファイ ESCA5800
励起X線:MgKα線
X線出力:14kV,25mA
光電子脱出角度:45°
分析径:400μmφ
パスエネルギー:29.35eV
分解能:0.125eV/step
真空度:約10-7Pa以下
窒素の測定値(N)と硫黄の測定値(S)から、次の式により表面でのポリビニルピロリドン含有量を算出した。
<ポリビニルピロリドン添加PES(ポリエーテルスルホン)膜の場合>
ポリビニルピロリドン含有量(Hポリビニルピロリドン)[質量%]
=100×(N×111)/(N×111+S×232)
<ポリビニルピロリドン添加PSf(ポリスルホン)膜の場合>
ポリビニルピロリドン含有量(Hポリビニルピロリドン)[質量%]
=100×(N×111)/(N×111+S×442)
13. Content of polyvinyl pyrrolidone in the outermost layer on the inner and outer surfaces of the hollow fiber membrane The content of polyvinyl pyrrolidone was determined by X-ray photoelectron spectroscopy (ESCA method).
One hollow fiber membrane was cut obliquely with a razor so that a part of the inner surface was exposed, and was attached to a sample stage so that the inner and outer surfaces could be measured, and measurement was performed by ESCA. The measurement conditions are as follows.
Measuring device: ULVAC-Phi ESCA5800
Excitation X-ray: MgKα ray X-ray output: 14 kV, 25 mA
Photoelectron escape angle: 45 °
Analysis diameter: 400μmφ
Pass energy: 29.35 eV
Resolution: 0.125 eV / step
Degree of vacuum: about 10 −7 Pa or less From the measured value (N) of nitrogen and the measured value (S) of sulfur, the polyvinylpyrrolidone content on the surface was calculated by the following formula.
<Polyvinylpyrrolidone-added PES (polyethersulfone) membrane>
Polyvinylpyrrolidone content (H polyvinylpyrrolidone) [mass%]
= 100 × (N × 111) / (N × 111 + S × 232)
<Polyvinylpyrrolidone-added PSf (polysulfone) membrane>
Polyvinylpyrrolidone content (H polyvinylpyrrolidone) [mass%]
= 100 × (N × 111) / (N × 111 + S × 442)

14、中空糸膜全体でのポリビニルピロリドン含有量の測定方法
中空糸膜を、真空乾燥器を用いて、80℃で48時間乾燥させ、その10mgをCHNコーダー(ヤナコ分析工業社製、MT−6型)で分析し、窒素含有量からポリビニルピロリドンの含有量を下記式で計算し求めた。
ポリビニルピロリドンの含有量(質量%)=窒素含有量(質量%)×111/14
14. Measuring method of polyvinyl pyrrolidone content in the whole hollow fiber membrane The hollow fiber membrane was dried at 80 ° C. for 48 hours using a vacuum dryer, and 10 mg thereof was CHN coder (manufactured by Yanaco Analytical Industries, MT-6). The content of polyvinyl pyrrolidone was calculated from the nitrogen content by the following formula.
Polyvinylpyrrolidone content (mass%) = nitrogen content (mass%) × 111/14

15、プライミング性
血液浄化器の透析液側ポートに蓋をした状態で、血液側入口ポートから200mL/minで注射用蒸留水を流し、出口ポートに注射用蒸留水が到達した時点から10秒経過するまでの間に血液浄化器容器を鉗子で5回軽くたたいて脱泡した後、1分間の気泡の通過個数を目視にて確認した。判定は以下の基準で行った。
10個/分以下:○
11個/分以上30個/分未満:△
30個/分以上:×
15. Priming property In the state where the dialysate side port of the blood purifier is covered, distilled water for injection is allowed to flow from the blood side inlet port at 200 mL / min, and 10 seconds have passed since the distilled water for injection reached the outlet port. In the meantime, the blood purifier container was tapped 5 times with forceps to defoam, and the number of bubbles passed for 1 minute was visually confirmed. The determination was made according to the following criteria.
10 / min or less: ○
11 / min or more and less than 30 / min: △
30 pieces / minute or more: ×

16、尿素クリアランス
膜面積1.5m2の血液浄化器を用い、血液側流量200ml/min、透析液側流量500ml/minで日本透析医学会発行のダイアライザー性能評価基準に準じて尿素クリアランスを測定する。
16. Urea clearance Using a blood purifier with a membrane area of 1.5 m 2 , urea clearance is measured according to the dialyzer performance evaluation standard issued by the Japanese Dialysis Medical Association at a blood flow rate of 200 ml / min and a dialysate flow rate of 500 ml / min. .

17、降伏伸度
降伏伸度は、糸引っ張り試験機(インストロンエンジニアリングコーポレーション社製インストロン(モデルNo.TM))を用いて測定した。全長15cmの単糸を水中に沈めた状態のチャック(チャック間10cm)に固定し、20mm/分の速度でチャックに連結したフルスケール100gのセルを上昇させた。チャート紙から糸が切れた破断伸度と破断強力を読み取り、S−Sカーブとした。図4のように極大点を持たない場合は、初期勾配を延長させた補助線を設ける。二つの補助線が交差した点を降伏点と定義し、その点における強力を降伏強力、伸度を降伏伸度とする。また、図5のように極大点を持つ場合、初期勾配を延長させた補助線と、極大点における傾きゼロの補助線が交わる点を降伏点と定義し、その点における伸度を降伏伸度とする。
17. Yield elongation Yield elongation was measured using a yarn tensile tester (Instron (Model No. TM) manufactured by Instron Engineering Corporation). A single yarn having a total length of 15 cm was fixed to a chuck (10 cm between chucks) immersed in water, and a full-scale 100 g cell connected to the chuck was raised at a speed of 20 mm / min. The breaking elongation and breaking strength at which the yarn was cut from the chart paper were read and used as the SS curve. When there is no maximum point as shown in FIG. 4, an auxiliary line with an extended initial gradient is provided. The point where two auxiliary lines intersect is defined as the yield point, and the strength at that point is the yield strength and the elongation is the yield elongation. In addition, in the case of having a local maximum point as shown in FIG. 5, a point where an auxiliary line with an extended initial slope and an auxiliary line with zero inclination at the local maximum point is defined as a yield point, and the elongation at that point is defined as the yield elongation. And

18、クリンプの波長および振幅
クリンプの波長は図6に示す山の頂上から次の山の頂上までの長さを表し、実際の測定では100mmの長さに幾つの周期が存在するかをカウントし、その数を100mmを除した値で表示した。また、振幅は、山の頂上から谷の底部までの波高を測定し、その1/2の値とした。
18, Crimp wavelength and amplitude The crimp wavelength represents the length from the top of the mountain shown in FIG. 6 to the top of the next mountain. In actual measurement, the number of periods in 100 mm length is counted. The number was expressed as a value obtained by dividing 100 mm. In addition, the amplitude was measured by measuring the wave height from the top of the mountain to the bottom of the valley, and was set to a half value thereof.

19、変形中空糸の割合
50倍の顕微鏡で、血液浄化器の上断面、下断面各々の中空糸膜断面の全数を観察し、観察された偏平、異形、閉塞の各中空糸膜の数を計測し2で割った値で表示。変形中空糸とは、扁平糸、潰れ糸、異形糸をあわせたものを指し、扁平とは中空糸断面内径の長径と短径の比が1/2以下のものを言い、潰れとは長径と短径の比が1/5以下の扁平の極端なものあるいは実質的に潰れたもの、また異形とは長径と短径の比が不明確な非円形、非長円形のものである。
19. Ratio of deformed hollow fiber Using a 50x microscope, observe the total number of hollow fiber membrane cross sections of the upper and lower blood purifiers, and determine the number of flat, deformed, and obstructed hollow fiber membranes. Measured and displayed by dividing by 2. A deformed hollow fiber refers to a combination of a flat yarn, a crushed yarn, and a deformed yarn, and a flat shape refers to a ratio of a major axis to a minor axis of the hollow fiber cross-sectional inner diameter of 1/2 or less. An extreme flattened or substantially crushed flat having a minor axis ratio of 1/5 or less, and an irregular shape are non-circular or non-oval having an unclear ratio of major axis to minor axis.

(実施例1)
2本の枠型ブレードが自転、公転するいわゆるプラネタリー運動により混練効果を発現する形式の混練溶解機に、ポリエーテルスルホン(住化ケムテックス社製、スミカエクセル(登録商標)4800P)1質量部、ポリビニルピロリドン(BASF社製コリドン(登録商標)K90)0.175質量部およびジメチルアセトアミド(DMAc)1質量部を仕込み、2時間攪拌し混練をおこなった。引き続き3.02質量部のDMAcとRO水0.16質量部の混合液を1時間を要して添加した。攪拌機の回転数を上げてさらに1時間攪拌を続行し均一に溶解した。このとき、混練および溶解は窒素雰囲気下で行なった。混練および溶解時の温度は40℃を超えないように冷却した。最終溶解時の攪拌のフルード数および撹拌レイノルズ数はそれぞれ1.0および100であった。脱泡が完了した後、系内は再度窒素置換を行い弱加圧状態で維持した。なお、上記ポリビニルピロリドンは、過酸化水素含有量130ppmのものを用いた。製膜溶液を15μm、15μmの2段の焼結フィルターに順に通した後、80℃に加温した60個のチューブインオリフィスノズルから中空形成剤として35質量%DMAc水溶液とともに同時に吐出し、紡糸管により外気と遮断された650mmの乾式部を通過後、75℃の15質量%DMAc水溶液中で凝固させた。凝固浴から引き揚げられた中空糸膜は85℃の水洗槽を45秒間通過させ溶媒と過剰の親水性高分子ポリビニルピロリドンを除去した。水洗浴を経た中空糸膜を、水洗浴を出た所で12本単位で合糸し、乾燥工程を経ずに図2および3に示すような構造のクリンプ付与機構を有したクリンプ付与装置を用いて、ローラー間ピッチ10mm、ローラー径5mmで糸条の上下蛇行の幅が5mmになるようにセットされた、自由に回転するローラー付きチェーンの間をチェーンの走行とともに糸条を室温にて走行させた。この中空糸膜にクリンプを付与する工程においては、連続的に供給される中空糸膜は、合糸単位で幅方向に分割し走行させ、湿潤状態のまま綛に捲き上げた。中空糸膜の降伏伸度[A]を測定したところ2.5%であった。また、中空糸膜の外径は約260μmであり、ローラー径から計算される中空糸膜のローラーに当たる側と反対側の最外部の延伸[B]は、偏平化を無視すると10.4%であった。したがって、[B]/[A]は4.16倍であった。該中空糸膜約10,000本の束の周りにポリエチレン製のフィルムを巻きつけた後、27cmの長さに切断し(以下バンドルと称する)、121℃の水中で30分間×3回洗浄した。
Example 1
In a kneading and dissolving machine that expresses a kneading effect by so-called planetary motion in which two frame-type blades rotate and revolve, 1 part by mass of polyethersulfone (manufactured by Sumika Chemtex, Sumika Excel (registered trademark) 4800P), 0.175 parts by mass of polyvinylpyrrolidone (BASF Koridone (registered trademark) K90) and 1 part by mass of dimethylacetamide (DMAc) were charged, and the mixture was stirred for 2 hours and kneaded. Subsequently, a mixed solution of 3.02 parts by mass of DMAc and 0.16 parts by mass of RO water was added over 1 hour. Stirring was continued for an additional hour by increasing the number of revolutions of the stirrer and dissolved uniformly. At this time, kneading and dissolution were performed in a nitrogen atmosphere. The temperature during kneading and dissolution was cooled so as not to exceed 40 ° C. The stirring fluid number and stirring Reynolds number at the final dissolution were 1.0 and 100, respectively. After the defoaming was completed, the inside of the system was again purged with nitrogen and maintained in a weakly pressurized state. The polyvinyl pyrrolidone having a hydrogen peroxide content of 130 ppm was used. The membrane-forming solution was passed through a two-stage sintered filter of 15 μm and 15 μm in order, and then simultaneously discharged together with 35 mass% DMAc aqueous solution as a hollow forming agent from 60 tube-in orifice nozzles heated to 80 ° C. After passing through a 650 mm dry section cut off from the outside by the above, it was coagulated in a 15 mass% DMAc aqueous solution at 75 ° C. The hollow fiber membrane pulled up from the coagulation bath was passed through a water washing tank at 85 ° C. for 45 seconds to remove the solvent and excess hydrophilic polymer polyvinylpyrrolidone. A crimping device having a crimping mechanism having a structure as shown in FIGS. 2 and 3 is obtained by combining the hollow fiber membranes that have undergone the water washing bath in units of 12 at the place where the water washing bath has been exited, and without undergoing a drying step. Using a roller with a pitch of 10 mm, a roller diameter of 5 mm, and a width of the upper and lower meanders of the yarn set to 5 mm, the chain runs freely between the chains with rollers and the yarn runs at room temperature. I let you. In the step of crimping the hollow fiber membranes, the continuously supplied hollow fiber membranes were divided and run in the width direction in units of combined yarns, and were rolled up in a wet state. The yield elongation [A] of the hollow fiber membrane was measured and found to be 2.5%. Moreover, the outer diameter of the hollow fiber membrane is about 260 μm, and the outermost stretch [B] on the opposite side to the side of the hollow fiber membrane calculated from the roller diameter is 10.4% if flattening is ignored. there were. Therefore, [B] / [A] was 4.16 times. A polyethylene film was wound around a bundle of about 10,000 hollow fiber membranes, cut to a length of 27 cm (hereinafter referred to as a bundle), and washed in water at 121 ° C. for 30 minutes × 3 times. .

得られた湿潤中空糸膜束を、遠赤外線ヒーターおよびオーブンを減圧にするための排気系を有したマイクロ波乾燥機に導入し、以下の条件で乾燥した。7kPaの減圧下、1.5kWの出力で30分間中空糸膜束を加熱した後、マイクロ波照射を停止すると同時に減圧度を1.5kPaにし3分間維持した。つづいて減圧度を7kPaに戻し、かつマイクロ波を照射し0.5kWの出力で10分間中空糸膜束を加熱した後、マイクロ波を切断し減圧度0.7kPaを3分間維持した。さらに減圧度を7kPaに戻し、0.2kWの出力で8分間マイクロ波の照射を行い中空糸膜束を加熱した。マイクロ波切断後、減圧度を0.5kPaにし遠赤外線のみ10分間照射し中空糸膜束の乾燥を終了した。なお、乾燥中の中空糸膜束の温度が50℃以下になるように遠赤外線ヒーターの出力調整をした。
この際の中空糸膜束表面の最高到達温度は65℃であった。乾燥前の中空糸膜束の含水率は330質量%、1段目終了後の中空糸膜束の含水率は34質量%、2段目終了後の中空糸膜束の含水率は11質量%、3段目終了後の中空糸膜束の含水率は2.4質量%であった。得られた中空糸膜の内径は200μm、膜厚は30μm、膜中のポリビニルピロリドンの含有量は3.5質量%であった。
The obtained wet hollow fiber membrane bundle was introduced into a microwave dryer having an exhaust system for reducing the pressure of the far infrared heater and the oven, and dried under the following conditions. After heating the hollow fiber membrane bundle for 30 minutes under a reduced pressure of 7 kPa at an output of 1.5 kW, the microwave irradiation was stopped and at the same time the reduced pressure was set to 1.5 kPa and maintained for 3 minutes. Subsequently, the degree of vacuum was returned to 7 kPa, the microwave was irradiated and the hollow fiber membrane bundle was heated at an output of 0.5 kW for 10 minutes, then the microwave was cut and the degree of vacuum of 0.7 kPa was maintained for 3 minutes. Furthermore, the degree of vacuum was returned to 7 kPa, and microwave irradiation was performed for 8 minutes at an output of 0.2 kW to heat the hollow fiber membrane bundle. After the microwave cutting, the degree of vacuum was set to 0.5 kPa, and only the far infrared rays were irradiated for 10 minutes to finish drying the hollow fiber membrane bundle. The output of the far infrared heater was adjusted so that the temperature of the hollow fiber membrane bundle during drying was 50 ° C. or lower.
The maximum temperature reached on the surface of the hollow fiber membrane bundle at this time was 65 ° C. The moisture content of the hollow fiber membrane bundle before drying is 330% by mass, the moisture content of the hollow fiber membrane bundle after the first stage is 34% by mass, and the moisture content of the hollow fiber membrane bundle after the second stage is 11% by mass. The water content of the hollow fiber membrane bundle after the third stage was 2.4% by mass. The hollow fiber membrane thus obtained had an inner diameter of 200 μm, a thickness of 30 μm, and a polyvinyl pyrrolidone content in the membrane of 3.5% by mass.

得られた中空糸膜束を長手方向に10個に等分し、各々の部位から乾燥状態の中空糸膜束1gをはかりとり、過酸化水素溶出量を測定した。過酸化水素は全部位において低レベルで安定していた。得られた中空糸膜束を乾燥状態で保存した。3ヶ月保存後においても中空糸膜束の透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の最大値は0.04であり、基準値の0.10以下が維持されており保存安定性は良好であった。   The obtained hollow fiber membrane bundle was equally divided into 10 pieces in the longitudinal direction, and 1 g of the hollow fiber membrane bundle in a dry state was weighed from each portion, and the amount of hydrogen peroxide eluted was measured. Hydrogen peroxide was stable at low levels at all sites. The obtained hollow fiber membrane bundle was stored in a dry state. Even after storage for 3 months, the maximum value of UV (220-350 nm) absorbance, which is the standard for approval of dialysis artificial kidney device manufacture for hollow fiber membrane bundles, is 0.04, and the standard value of 0.10 or less is maintained. The storage stability was good.

得られた中空糸膜束を充填率55容量%で血液浄化器容器に装填し、端部をウレタン樹脂で接着し、樹脂を切り出して中空糸膜端部を開口させて血液浄化器を組み立てた。該血液浄化器を汎用タイプの脱酸素剤(王子タック株式会社製タモツ(登録商標))2個および細孔容積1.05cc/g、表面積320m2/g、粒径8メッシュのシリカゲルに塩化カルシウムを10質量%担持した改良シリカゲルBを紙パックに封入した調湿剤とともに外層がポリエステルフイルム、中間層がアルミ箔、内層がポリエチレンフイルムよりなる酸素透過率および水蒸気透過率がそれぞれ1cm3/m2・24h・MPa(20℃,90%RH)以下および5g/m2・24h・MPa(40℃,90%RH)以下のアルミラミネートシートよりなる包装袋にて熱シール法でシールし密封した。調湿剤は、事前に相対湿度85%RHの環境で24時間シーズニングしたものを用いた。包装体を室温で72時間保存した後に、25kGyのγ線を照射し滅菌を行った。滅菌処理品と同時に密封した包装体の包装袋内の酸素濃度を測定した。0.1%以下で実質的な無酸素状態になっていた。また、相対湿度は75%RHであった。 The obtained hollow fiber membrane bundle was loaded into a blood purifier container at a filling rate of 55% by volume, the ends were bonded with urethane resin, the resin was cut out, and the hollow fiber membrane end was opened to assemble the blood purifier. . The blood purifier is composed of two general-purpose oxygen scavengers (Tamotsu (registered trademark) manufactured by Oji Tac Co., Ltd.), a pore volume of 1.05 cc / g, a surface area of 320 m 2 / g, and a silica gel having a particle size of 8 mesh and calcium chloride. An oxygen transmission rate and a water vapor transmission rate of 1 cm 3 / m 2 each consisting of a modified silica gel B loaded with 10% by mass of a silica gel B in a paper pack and an outer layer made of polyester film, an intermediate layer made of aluminum foil, and an inner layer made of polyethylene film. -Sealed by a heat sealing method and sealed in a packaging bag made of an aluminum laminate sheet of 24 h · MPa (20 ° C, 90% RH) or less and 5 g / m 2 · 24 h · MPa (40 ° C, 90% RH) or less. The humidity control agent used was seasoned in advance in an environment with a relative humidity of 85% RH for 24 hours. The package was stored at room temperature for 72 hours and then sterilized by irradiation with 25 kGy of γ rays. The oxygen concentration in the packaging bag of the package sealed simultaneously with the sterilized product was measured. It was in a substantially oxygen-free state at 0.1% or less. The relative humidity was 75% RH.

血液浄化器を包装袋に密封したまま室温で1年間保存した。1年保存後の血液浄化器より中空糸膜を取り出し、中空糸膜中の人工腎臓承認基準試験に準じて得た抽出液のUV吸光度(220−350nm)および過酸化水素溶出量を測定した。これらの測定は、10分割した試料の全部について測定し、その最大値で評価した。また、γ線照射をしてもUV吸光度(220−350nm)は悪化せず、透析型人工腎臓装置製造承認基準試験の基準値である0.1未満が維持されていた。   The blood purifier was stored in a packaging bag and stored at room temperature for 1 year. The hollow fiber membrane was taken out from the blood purifier after one year storage, and the UV absorbance (220-350 nm) and hydrogen peroxide elution amount of the extract obtained according to the artificial kidney approval standard test in the hollow fiber membrane were measured. In these measurements, all of the 10 divided samples were measured and evaluated by the maximum value. In addition, the UV absorbance (220-350 nm) did not deteriorate even when γ-ray irradiation was performed, and the standard value of the dialysis-type artificial kidney device manufacturing approval reference test was less than 0.1.

また、本実施例で得られた中空糸膜束はクリンプが付与されているため、透析液の偏流が抑制されており、尿素クリアランスの性能が優れていた。また、血液浄化器間の性能バラツキも小さかった。   In addition, since the hollow fiber membrane bundle obtained in this example was crimped, the drift of the dialysate was suppressed and the urea clearance performance was excellent. Moreover, the performance variation between blood purifiers was small.

また、中空糸膜の偏肉度が少なく、かつクリンプ付与工程が最適化されており中空糸膜の傷発生が少なくパースト圧が優れていた。また、血液浄化器より中空糸膜を取り出し、外表面を顕微鏡にて観察したところ傷等の欠陥は観察されなかった。また、クエン酸加新鮮牛血を血液流量200mL/min、ろ過速度10mL/min/m2で血液浄化器に流したが、血球リークはみられなかった。中空糸膜外側から中空糸膜内側にろ過されたエンドトキシンは検出限界以下であり、問題ないレベルであった。 Further, the hollow fiber membrane had a small thickness deviation, and the crimp application process was optimized, and the hollow fiber membrane was less likely to be scratched and the perfect pressure was excellent. Further, when the hollow fiber membrane was taken out from the blood purifier and the outer surface was observed with a microscope, defects such as scratches were not observed. In addition, citrated fresh bovine blood was passed through the blood purifier at a blood flow rate of 200 mL / min and a filtration rate of 10 mL / min / m 2 , but no blood cell leak was observed. Endotoxin filtered from the outside of the hollow fiber membrane to the inside of the hollow fiber membrane was below the detection limit, and was at a level with no problem.

また、本実施例で得られた血液浄化器の保存安定性は良好であり、1年間保存後の血液浄化器に充填されている中空糸膜束の透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の最大値は0.05であり、基準値の0.10以下が維持されていた。   In addition, the storage stability of the blood purifier obtained in this example is good, and UV, which is a manufacturing approval standard for a dialysis artificial kidney device for a bundle of hollow fiber membranes filled in the blood purifier after storage for one year. The maximum value of (220-350 nm) absorbance was 0.05, and the standard value of 0.10 or less was maintained.

これらの評価結果を表3に示す。   These evaluation results are shown in Table 3.

Figure 2006288415
Figure 2006288415

Figure 2006288415
Figure 2006288415

Figure 2006288415
Figure 2006288415

Figure 2006288415
Figure 2006288415

Figure 2006288415
Figure 2006288415

(比較例1)
実施例1において、クリンプ付与を取り止める以外は、実施例1と同様にして血液浄化器を得た。得られた中空糸膜束および血液浄化器の特性を表1、2および4に示す。本比較例で得られた中空糸膜束はクリンプが付与されていないため、透析液の偏流が起こり、尿素クリアランスの性能が劣っていた。また、血液浄化器間の性能バラツキも大きいものであった。
(Comparative Example 1)
In Example 1, a blood purifier was obtained in the same manner as in Example 1 except that the application of crimp was stopped. The characteristics of the obtained hollow fiber membrane bundle and blood purifier are shown in Tables 1, 2 and 4. Since the hollow fiber membrane bundle obtained in this comparative example was not crimped, the dialysate drifted and the urea clearance performance was inferior. Moreover, the performance variation between blood purifiers was large.

(比較例2)
実施例1において、過酸化水素含有量が500ppmのポリビニルピロリドンを原料とし、混練および溶解温度を85℃とし、原料供給系や溶解槽の窒素ガス置換を取り止め、中空糸膜束の洗浄回数を1回とし、ローラー間ピッチ20mm、ローラー径5mmで糸条の上下蛇行の幅が3mmになるようにセットされたクリンプ付与装置を通過させるように変更し、該湿潤状態の選択透過性中空糸膜束の乾燥を常圧下でマイクロ波を照射し含水率が0.5質量%になるまで乾燥した以外は、実施例1と同様にして選択透過性中空糸膜束および血液浄化器を得た。中空糸膜の降伏伸度[A]を測定したところ2.3%であった。また、中空糸膜の外径は約258μmであり、ローラー径から計算される中空糸膜のローラーに当たる側と反対側の最外部の延伸[B]は、偏平化を無視すると10.3%であった。したがって、[B]/[A]は4.48倍であった。得られた選択透過性中空糸膜束および血液浄化器の特性を表1、2および4に示す。中空糸膜は過酸化水素溶出量が多く、保存安定性が劣っていた。さらに、UV(220−350nm)吸光度はレベルが高く、かつサンプリング個所による変動が大きく、軽度ではあるが部分固着が発生し、血液浄化器組み立ての作業性が良くなかった。また、本比較例で得られたγ線照射を受けた後の血液浄化器中の選択透過性中空糸膜は過酸化水素溶出量が高く、血液浄化器の保存安定性も劣っていた。
(Comparative Example 2)
In Example 1, polyvinyl pyrrolidone having a hydrogen peroxide content of 500 ppm was used as a raw material, the kneading and dissolution temperature was 85 ° C., nitrogen gas replacement in the raw material supply system and dissolution tank was stopped, and the number of washings of the hollow fiber membrane bundle was 1 The permitted hollow fiber membrane bundle in the wet state is changed to pass through a crimping device set so that the pitch between the rollers is 20 mm, the roller diameter is 5 mm, and the vertical meandering width of the yarn is 3 mm. A selectively permeable hollow fiber membrane bundle and a blood purifier were obtained in the same manner as in Example 1 except that drying was performed under normal pressure by microwave irradiation until the water content became 0.5% by mass. The yield elongation [A] of the hollow fiber membrane was measured and found to be 2.3%. Moreover, the outer diameter of the hollow fiber membrane is about 258 μm, and the outermost stretch [B] on the opposite side to the side of the hollow fiber membrane calculated from the roller diameter is 10.3% when flattening is ignored. there were. Therefore, [B] / [A] was 4.48 times. Tables 1, 2 and 4 show the characteristics of the obtained selectively permeable hollow fiber membrane bundle and blood purifier. The hollow fiber membrane had a large amount of elution of hydrogen peroxide and was inferior in storage stability. Furthermore, the UV (220-350 nm) absorbance was high and varied greatly depending on the sampling location, and although it was mild, partial sticking occurred and the workability of assembling the blood purifier was not good. In addition, the selectively permeable hollow fiber membrane in the blood purifier after receiving the γ-ray irradiation obtained in this comparative example had a high hydrogen peroxide elution amount, and the storage stability of the blood purifier was also inferior.

(比較例3)
実施例1において、選択透過性中空糸膜束の洗浄を取り止め、ローラー間ピッチ20mm、ローラー径15mmで糸条の上下蛇行の幅が10mmになるようにセットされたクリンプ付与装置を通過させるように変更し、該湿潤状態の中空糸膜束を比較例2と同様の方法で乾燥した以外は、実施例1と同様にして選択透過性中空糸膜束および血液浄化器を得た。中空糸膜の降伏伸度[A]を測定したところ2.3%であった。また、中空糸膜の外径は約258μmであり、ローラー径から計算される中空糸膜のローラーに当たる側と反対側の最外部の延伸[B]は、偏平化を無視すると3.4%であった。したがって、[B]/[A]は1.48倍であった。得られた選択透過性中空糸膜束および血液浄化器の特性を表1、2および4に示す。乾燥上がりの中空糸膜のPVP溶出量は14ppmであった。中空糸膜の洗浄不良が考えられた。
(Comparative Example 3)
In Example 1, the cleaning of the selectively permeable hollow fiber membrane bundle is stopped, and it is passed through a crimping device set such that the pitch between the rollers is 20 mm, the roller diameter is 15 mm, and the vertical meandering width of the yarn is 10 mm. A selectively permeable hollow fiber membrane bundle and a blood purifier were obtained in the same manner as in Example 1, except that the wet hollow fiber membrane bundle was changed and dried in the same manner as in Comparative Example 2. The yield elongation [A] of the hollow fiber membrane was measured and found to be 2.3%. The outer diameter of the hollow fiber membrane is about 258 μm, and the outermost stretch [B] on the opposite side to the side of the hollow fiber membrane calculated from the roller diameter is 3.4% if flattening is ignored. there were. Therefore, [B] / [A] was 1.48 times. Tables 1, 2 and 4 show the characteristics of the obtained selectively permeable hollow fiber membrane bundle and blood purifier. The PVP elution amount of the hollow fiber membrane after drying was 14 ppm. The poor cleaning of the hollow fiber membrane was considered.

また、本比較例で得られた選択透過性中空糸膜束および血液浄化器は比較例3のものよりさらに低品質であった。   In addition, the selectively permeable hollow fiber membrane bundle and blood purifier obtained in this Comparative Example were of lower quality than those of Comparative Example 3.

(比較例4)
実施例1において、中空糸膜60本全てを合糸してクリンプ付与装置を通過させた以外は実施例1と同様にして中空糸膜を得た。また、血液浄化器を包装袋に密封する際、調湿剤を入れなかった以外は、実施例1と同様にして血液浄化器包装体を得た。包装袋内の相対湿度は35%RH(25℃)であった。得られた中空糸膜束および血液浄化器の特性を表1、2および4に示す。本比較例4で得られた中空糸膜は、合糸の状態でクリンプ付与装置を通過させたため、中空糸膜間で波長および振幅にばらつきがみられ、また扁平や閉塞が多数みられた。得られた血液浄化器は、γ線照射により過酸化水素溶出量が増大した。そのため、血液浄化器の保存安定性も劣っており、保存経時によりUV吸光度(220−350nm)も大幅に悪化した。γ線照射時の中空糸膜束周辺の雰囲気の湿度が低いためにγ線照射により中空糸膜束中のポリビニルピロリドンの劣化が起こることにより引き起こされたものと考えられる。また、血液浄化器の生産性が低下し、血液浄化器間でクリアランス性能にばらつきがみられた。
(Comparative Example 4)
In Example 1, a hollow fiber membrane was obtained in the same manner as in Example 1 except that all 60 hollow fiber membranes were combined and passed through a crimping device. Moreover, when the blood purifier was sealed in the packaging bag, a blood purifier package was obtained in the same manner as in Example 1 except that the humidity control agent was not added. The relative humidity in the packaging bag was 35% RH (25 ° C.). The characteristics of the obtained hollow fiber membrane bundle and blood purifier are shown in Tables 1, 2 and 4. Since the hollow fiber membrane obtained in this Comparative Example 4 was passed through the crimping device in a combined state, the wavelength and amplitude varied among the hollow fiber membranes, and many flatnesses and blockages were observed. The obtained blood purifier increased the elution amount of hydrogen peroxide by γ-ray irradiation. Therefore, the storage stability of the blood purifier was also inferior, and the UV absorbance (220-350 nm) was also greatly deteriorated with the storage time. This is considered to be caused by the deterioration of the polyvinyl pyrrolidone in the hollow fiber membrane bundle due to the irradiation of γ rays because the humidity in the atmosphere around the hollow fiber membrane bundle at the time of γ ray irradiation is low. Moreover, the productivity of blood purifiers decreased, and clearance performance varied among blood purifiers.

(比較例5)
実施例1において、中空糸膜の膜厚を70μmとした以外は、実施例1と同様にして中空糸膜束を得た。得られた中空糸膜束を充填率55容量%になるように実施例と同様の方法で血液浄化器を作製した。また、得られた血液浄化器は包装袋内への脱酸素剤の封入を取り止める以外は、実施例1と同様にして血液浄化器包装体を得た。得られた中空糸膜束および血液浄化器の特性を表1、2および4に示す。本比較例5で得られた血液浄化器は比較例4で得られた血液浄化器と同様に低品質であった。本比較例においては、脱酸素剤が封入されていないため、γ線照射時の中空糸膜束周辺の雰囲気の酸素濃度が高く酸化を抑制する状態になっていなかったのでγ線照射により中空糸膜束中のポリビニルピロリドンの劣化が起こることにより引き起こされたものと考えられる。また、中空糸膜の膜厚が厚いために、中空糸膜束の乾燥時および血液浄化器作製時にクリンプが緩和してしまい、クリアランス性能が発現しなかった。
(Comparative Example 5)
In Example 1, a hollow fiber membrane bundle was obtained in the same manner as in Example 1 except that the film thickness of the hollow fiber membrane was 70 μm. A blood purifier was produced in the same manner as in the example so that the obtained hollow fiber membrane bundle had a filling rate of 55% by volume. Moreover, the obtained blood purifier obtained the blood purifier package in the same manner as in Example 1 except that the sealing of the oxygen scavenger in the packaging bag was stopped. The characteristics of the obtained hollow fiber membrane bundle and blood purifier are shown in Tables 1, 2 and 4. The blood purifier obtained in Comparative Example 5 was of low quality, as was the blood purifier obtained in Comparative Example 4. In this comparative example, since the oxygen scavenger was not enclosed, the oxygen concentration in the atmosphere around the hollow fiber membrane bundle at the time of γ-ray irradiation was not high and the oxidation was not suppressed. This is considered to be caused by the deterioration of polyvinylpyrrolidone in the membrane bundle. Further, since the hollow fiber membrane was thick, the crimp was relaxed when the hollow fiber membrane bundle was dried and when the blood purifier was prepared, and clearance performance was not exhibited.

(実施例2)
ポリエーテルスルホン(住化ケムテックス社製、スミカエクセル(登録商標)4800P)1質量部、ポリビニルピロリドン(BASF社製コリドン(登録商標)K−90)00.10質量部、DMAc1.5質量部を2軸のスクリュータイプの混練機で混練した。得られた混練物をDMAc2.57質量部および水0.28質量部を仕込んだ攪拌式の溶解タンク内に投入し、3時間攪拌し溶解した。混練および溶解は内温が30℃以上に上がらないように冷却した。ついで真空ポンプを用いて系内を−700mmHgまで減圧した後、溶媒等が揮発して製膜溶液組成が変化しないように直ぐに溶解タンクを密閉し10分間放置した。この操作を3回繰り返して製膜溶液の脱泡を行った。なお、上記ポリビニルピロリドンとしては、過酸化水素含有量100ppmのものを用い、原料供給系での供給タンクや前記の溶解タンクを窒素ガス置換した。また、溶解時のフルード数および撹拌レイノルズ数はそれぞれ1.1および120であった。得られた製膜溶液を15μm、15μmの2段のフィルターに通した後、70℃に加温したチューブインオリフィスノズルから中空形成剤として予め−700mmHgで2時間脱気処理した50℃の50質量%DMAc水溶液と同時に吐出し、紡糸管により外気と遮断された350mmのエアギャップ部を通過後、60℃の水中で凝固させた。使用したチューブインオリフィスノズルのノズルスリット幅は、平均45μmであり、最大45.5μm、最小44.5μm、スリット幅の最大値、最小値の比は1.02、ドラフト比は1.06であった。凝固浴から引き揚げられた中空糸膜束は85℃の水洗槽を45秒間通過させ溶媒と過剰のポリビニルピロリドンを除去した。水洗浴を経た中空糸膜を、ローラー間ピッチ10mm、ローラー径5mmで糸条の上下蛇行の幅が5mmになるようにセットされた、自由に回転するローラー付きチェーンの間をチェーンの走行とともに室温にて走行させクリンプを付与した後、湿潤状態のまま綛に捲き上げた。該中空糸膜約10,000本の束の周りに実施例1と同様のポリエチレン製のフィルムを巻きつけた後、30℃の40vol%イソプロパノール水溶液で30分×2回浸漬洗浄した。
(Example 2)
1 part by weight of polyethersulfone (manufactured by Sumika Chemtex, Sumika Excel (registered trademark) 4800P), 2 parts by weight of polyvinylpyrrolidone (Collidon (registered trademark) K-90 by BASF), 1.5 parts by weight of DMAc It knead | mixed with the screw type kneader of the axis | shaft. The obtained kneaded material was put into a stirring type dissolution tank charged with 2.57 parts by mass of DMAc and 0.28 parts by mass of water, and stirred for 3 hours to dissolve. The kneading and dissolution were cooled so that the internal temperature did not rise above 30 ° C. Next, after the pressure in the system was reduced to −700 mmHg using a vacuum pump, the dissolution tank was immediately sealed and allowed to stand for 10 minutes so that the solvent and the like would volatilize and the film forming solution composition would not change. This operation was repeated three times to degas the film forming solution. The polyvinyl pyrrolidone having a hydrogen peroxide content of 100 ppm was used, and the supply tank in the raw material supply system and the dissolution tank were replaced with nitrogen gas. Further, the Froude number and the stirring Reynolds number at the time of dissolution were 1.1 and 120, respectively. The obtained film-forming solution was passed through a two-stage filter of 15 μm and 15 μm, and then degassed in advance at −700 mmHg for 2 hours as a hollow forming agent from a tube-in orifice nozzle heated to 70 ° C. 50 mass at 50 ° C. The solution was discharged at the same time as the% DMAc aqueous solution, passed through a 350 mm air gap portion cut off from the outside air by a spinning tube, and then coagulated in water at 60 ° C. The nozzle slit width of the tube-in-orifice nozzle used was an average of 45 μm, the maximum was 45.5 μm, the minimum was 44.5 μm, the ratio of the maximum and minimum slit widths was 1.02, and the draft ratio was 1.06. It was. The hollow fiber membrane bundle pulled up from the coagulation bath was passed through a water washing tank at 85 ° C. for 45 seconds to remove the solvent and excess polyvinylpyrrolidone. A hollow fiber membrane that has undergone a water washing bath is set at room temperature as the chain travels between chains with freely rotating rollers set so that the pitch between the rollers is 10 mm, the roller diameter is 5 mm, and the width of the thread meandering is 5 mm. It was run at, and crimped, and then rolled up in a wet state. A polyethylene film similar to that of Example 1 was wrapped around a bundle of about 10,000 hollow fiber membranes, and then washed by immersing twice in a 40 vol% isopropanol aqueous solution at 30 ° C. for 30 minutes.

得られた湿潤選択透過性中空糸膜束を実施例1と同様の方法で乾燥した。乾燥選択透過性中空糸膜の含水率は2.8質量%であった。紡糸工程中の糸道変更のためのローラーは表面が鏡面加工されたものを使用し、固定ガイドは表面が梨地処理されたものを使用した。得られた中空糸膜の内径は200.0μm、膜厚は28.2μm、ポリエーテルスルホンに対するポリビニルピロリドンの含有量は3.3質量%であった。これらの製造条件の一部を表1に示す。   The obtained wet selective permeable hollow fiber membrane bundle was dried in the same manner as in Example 1. The moisture content of the dry selectively permeable hollow fiber membrane was 2.8% by mass. The roller for changing the yarn path during the spinning process was a mirror-finished surface, and the fixing guide was a satin-finished surface. The obtained hollow fiber membrane had an inner diameter of 200.0 μm, a film thickness of 28.2 μm, and the content of polyvinyl pyrrolidone relative to polyethersulfone was 3.3% by mass. Some of these manufacturing conditions are shown in Table 1.

得られた乾燥選択透過性中空糸膜束を長手方向に2.7cmずつ10個に等分し、各々の部位から乾燥状態の中空糸膜束1gをはかりとり、過酸化水素溶出量を定量した。該過酸化水素溶出量は全部位において低レベルで安定しており、選択透過性中空糸膜束の保存安定性に優れていた。   The obtained dry permselective hollow fiber membrane bundle was equally divided into 10 pieces of 2.7 cm in the longitudinal direction, and 1 g of the hollow fiber membrane bundle in a dry state was weighed from each part, and the hydrogen peroxide elution amount was quantified. . The hydrogen peroxide elution amount was stable at a low level in all parts, and the storage stability of the selectively permeable hollow fiber membrane bundle was excellent.

このようにして得られた中空糸膜束を用いて、血液浄化器を組み立てた。リークテストを行った結果、中空糸膜同士の固着に起因するような接着不良は認められなかった。該血液浄化器を脱酸素剤として水分放出型である(三菱ガス化学社製 エージレスZ−200PT(商標登録))に切換え、かつ調湿剤の使用を取り止め、包装袋を密封後滅菌までの保存時間を216時間とする以外は、実施例1と同様の方法で滅菌処理を行った。γ線照射後の血液浄化器より選択透過性中空糸膜束を切り出し、溶出物試験に供したところ、ポリビニルピロリドン溶出量は4ppm、過酸化水素溶出量の最大値は2ppmであり問題ないレベルであった。また、本実施例で得られた血液浄化器の保存安定性は良好であり、1年間保存後の中空糸膜束の透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の最大値は0.06であり、基準値の0.1以下が維持されていた。また血液浄化器より選択透過性中空糸膜束を取り出し、外表面を顕微鏡にて観察したところ傷等の欠陥は観察されなかった。従って、バースト圧が高く、牛血液を用いた血液リークテストでは血球リークはみられなかった。また、実施例1の血液浄化器と同様に、中空糸膜束はクリンプが付与されているため、透析液の偏流が抑制されており、尿素クリアランスの性能が優れていた。また、血液浄化器間の性能バラツキも小さかった。   A blood purifier was assembled using the hollow fiber membrane bundle thus obtained. As a result of the leak test, no adhesion failure caused by the sticking of the hollow fiber membranes was observed. Switch the blood purifier to an oxygen release agent (ageless Z-200PT (registered trademark) manufactured by Mitsubishi Gas Chemical Co., Ltd.), stop using the humidity control agent, seal the packaging bag and store it until sterilization Sterilization was performed in the same manner as in Example 1 except that the time was 216 hours. When the selectively permeable hollow fiber membrane bundle was cut out from the blood purifier after γ-irradiation and subjected to the eluate test, the polyvinylpyrrolidone elution amount was 4 ppm, and the maximum hydrogen peroxide elution amount was 2 ppm. there were. In addition, the storage stability of the blood purifier obtained in this example is good, and the maximum UV (220-350 nm) absorbance, which is the approval standard for manufacturing a dialysis artificial kidney device for a hollow fiber membrane bundle after storage for one year. The value was 0.06, and the reference value of 0.1 or less was maintained. Further, when the selectively permeable hollow fiber membrane bundle was taken out from the blood purifier and the outer surface was observed with a microscope, no defects such as scratches were observed. Therefore, the burst pressure was high and no blood cell leak was observed in the blood leak test using bovine blood. Moreover, since the hollow fiber membrane bundle was crimped like the blood purifier of Example 1, the drift of the dialysate was suppressed and the performance of urea clearance was excellent. Moreover, the performance variation between blood purifiers was small.

また、血液浄化器のポリビニルピロリドン溶出量が低く、プライミング時の透水性発現性も良好であり血液浄化器として実用性の高いものであった。   Moreover, the amount of polyvinylpyrrolidone eluted from the blood purifier was low, the water permeability was excellent during priming, and the blood purifier was highly practical.

得られた選択透過性中空糸膜および血液浄化器の評価結果を表1〜3に示す。   The evaluation results of the obtained selectively permeable hollow fiber membrane and blood purifier are shown in Tables 1 to 3.

(比較例6)
ポリエーテルスルホン(住化ケムテックス社製、スミカエクセル(登録商標)5200P)16質量%、ポリビニルピロリドン(BASF社製コリドン(登録商標)K−90)5.4質量%、ジメチルアセトアミド(DMAc)75.6質量%、水3質量%を攪拌機を有した溶解タンクに直接仕込み、75℃で溶解した。このとき、溶解のフルード数および撹拌レイノルズ数はそれぞれ1.0および120で行った。次いで、製膜溶液の脱泡を行った。なお、上記ポリビニルピロリドンとしては、過酸化水素含有量250ppmのものを用い、原料供給系での供給タンクや前記の溶解タンクを窒素ガス置換しなかった。この製膜溶液を30μmのフィルターに通した後、60℃に加温したチューブインオリフィスノズルから中空形成剤として50℃の30質量%DMAc水溶液を用いて同時に吐出、紡糸管により外気と遮断された600mmの乾式部を通過後、濃度10質量%、60℃のDMAc水溶液中で凝固させた。使用したチューブインオリフィスノズルのノズルスリット幅は、平均100μmであり、最大110μm、最小90μm、スリット幅の最大値、最小値の比は1.22、ドラフト比は2.4であった。得られた中空糸膜束は40℃の水洗槽を45秒間通過させ溶媒と過剰のポリビニルピロリドンを除去し、円柱形ピンの間のピッチ10mm、ピンの直径2mmで糸条の上下蛇行の幅が10mmになるようにセットされた、表面を梨地加工した円柱形ピン付きチェーンの間をチェーン走行とともに室温走行させクリンプを付与した後、湿潤状態のまま巻き上げ比較例2と同様にして乾燥した。得られた中空糸膜束の内径は201μm、膜厚は34μmであった。中空糸膜の降伏伸度[A]を測定したところ2.4%であった。また、中空糸膜の外径は約269μmであり、ローラー径から計算される中空糸膜のローラーに当たる側と反対側の最外部の延伸[B]は、偏平化を無視すると26.9%であった。したがって、[B]/[A]は11.2倍であった。本比較例で得られた選択透過性中空糸膜束の過酸化水素およびポリビニルピロリドン溶出量はレベルが高く、かつ過酸化水素溶出量のサンプリング個所による変動が大きい。
(Comparative Example 6)
16% by mass of polyethersulfone (manufactured by Sumika Chemtex, Sumika Excel (registered trademark) 5200P), 5.4% by mass of polyvinylpyrrolidone (Collidon (registered trademark) K-90, manufactured by BASF), 75% dimethylacetamide (DMAc). 6% by mass and 3% by mass of water were directly charged into a dissolution tank having a stirrer and dissolved at 75 ° C. At this time, the dissolution fluid number and the stirring Reynolds number were 1.0 and 120, respectively. Subsequently, the film forming solution was defoamed. The polyvinyl pyrrolidone having a hydrogen peroxide content of 250 ppm was used, and the supply tank in the raw material supply system and the dissolution tank were not replaced with nitrogen gas. The membrane-forming solution was passed through a 30 μm filter, and simultaneously discharged from a tube-in orifice nozzle heated to 60 ° C. using a 30% by mass DMAc aqueous solution at 50 ° C. as a hollow forming agent, and was blocked from the outside air by a spinning tube. After passing through a 600 mm dry part, it was solidified in a DMAc aqueous solution having a concentration of 10% by mass and 60 ° C. The nozzle slit width of the tube-in-orifice nozzle used was an average of 100 μm, the maximum was 110 μm, the minimum was 90 μm, the ratio between the maximum value and the minimum value of the slit width was 1.22, and the draft ratio was 2.4. The obtained hollow fiber membrane bundle was passed through a 40 ° C. water washing tank for 45 seconds to remove the solvent and excess polyvinylpyrrolidone, and the pitch between the cylindrical pins was 10 mm, the pin diameter was 2 mm, and the width of the upper and lower meanders of the yarn was A chain with a cylindrical pin with a textured surface set to a thickness of 10 mm was run at room temperature along with the chain running to give a crimp, and then rolled up in a wet state and dried in the same manner as in Comparative Example 2. The obtained hollow fiber membrane bundle had an inner diameter of 201 μm and a film thickness of 34 μm. The yield elongation [A] of the hollow fiber membrane was measured and found to be 2.4%. The outer diameter of the hollow fiber membrane is about 269 μm, and the outermost stretch [B] on the opposite side to the side of the hollow fiber membrane calculated from the roller diameter is 26.9% when flattening is ignored. there were. Therefore, [B] / [A] was 11.2 times. The selectively permeable hollow fiber membrane bundle obtained in this comparative example has a high level of elution amount of hydrogen peroxide and polyvinylpyrrolidone, and the amount of hydrogen peroxide elution amount varies greatly depending on the sampling location.

このようにして得られた選択透過性中空糸膜束を用いて、比較例2と同様の方法で、血液浄化器を組み立ておよび滅菌処理を行った。血液浄化器より中空糸膜束を切り出し、溶出物試験に供したところ、ポリビニルピロリドン溶出量は23ppm、過酸化水素溶出量の最大値は22ppmであった。本比較例で得られた血液浄化器中の選択透過性中空糸膜束は過酸化水素溶出量が高いため、保存安定性が劣っていた。本比較例で得られた血液浄化器は約7ヵ月の保存で既に透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の最大値を0.10以下に維持することができなくなった。また、中空糸膜の偏肉度が高くパースト圧が劣っていた。そのために、該血液浄化器に、0.1MPaの圧力で加圧空気を充填し、10秒間の圧力降下が30mmAq以下の血液浄化器を試験に用いた。牛血液を用いた血液リークテストでは血液浄化器30本中、2本に血球リークがみられた。偏肉度が小さいことと外表面孔径が大きすぎることより、ピンホールの発生及び/または破れが発生したものと思われる。   Using the permselective hollow fiber membrane bundle thus obtained, a blood purifier was assembled and sterilized in the same manner as in Comparative Example 2. When the hollow fiber membrane bundle was cut out from the blood purifier and subjected to the eluate test, the polyvinylpyrrolidone elution amount was 23 ppm and the maximum hydrogen peroxide elution amount was 22 ppm. Since the permselective hollow fiber membrane bundle in the blood purifier obtained in this comparative example had a high hydrogen peroxide elution amount, the storage stability was poor. The blood purifier obtained in this comparative example can not maintain the maximum value of UV (220-350 nm) absorbance, which is already a dialysis-type artificial kidney device manufacturing approval standard, after storage for about 7 months. It was. In addition, the hollow fiber membrane had a high thickness deviation and a poor partial pressure. Therefore, the blood purifier was filled with pressurized air at a pressure of 0.1 MPa, and a blood purifier having a pressure drop for 10 seconds of 30 mmAq or less was used for the test. In the blood leak test using bovine blood, two of 30 blood purifiers had blood cell leaks. From the fact that the uneven thickness is small and the outer surface hole diameter is too large, it seems that pinholes are generated and / or broken.

これらの結果を表1、2および4に示した。   These results are shown in Tables 1, 2 and 4.

(実施例3)
実施例2と同様の方法で、ポリスルホン(アモコ社製P−3500)18質量%、ポリビニルピロリドン(BASF社製コリドン(登録商標)K−60)9質量%、ジメチルアセトアミド(DMAc)68質量%、水5質量%よりなる製膜溶液を調製した。なお、上記ポリビニルピロリドンとしては、過酸化水素含有量100ppmのものを用いた。得られた製膜溶液を15μm、15μmの2段のフィルターに通した後、40℃に加温したチューブインオリフィスノズルから中空形成剤として予め減圧脱気した60℃の55質量%DMAc水溶液と同時に吐出し、紡糸管により外気と遮断された600mmのエアギャップ部を通過後、50℃の水中で凝固させた。使用したチューブインオリフィスノズルのノズルスリット幅は、平均60μmであり、最大61μm、最小59μm、スリット幅の最大値、最小値の比は1.03、ドラフト比は1.09であった。凝固浴から引き揚げられた中空糸膜は85℃の水洗槽を45秒間通過させ溶媒と過剰のポリビニルピロリドンを除去し、実施例1と同様の方法でクリンプ付与を行い湿潤状態のまま巻き上げた。該中空糸膜約10,000本の束を純水に浸漬し、121℃×1時間オートクレーブにて洗浄処理を行った。洗浄後の中空糸膜束の周りに実施例1と同様のポリエチレン製のフィルムを巻きつけた後、実施例1と同様にして乾燥した。紡糸工程中の糸道変更のためのローラーは表面が鏡面加工されたものを使用し、固定ガイドは表面が梨地処理されたものを使用した。得られた中空糸膜の内径は201.0μm、膜厚は44.0μmであった。含水率は2.3質量%、ポリスルホンに対するポリビニルピロリドンの含有量は4.2質量%であった。表3、4より明らかなごとく、過酸化水素溶出量は全部位において低レベルで安定していた。従って、該選択透過性中空糸膜束の保存安定性は良好であった。これらの製造条件の一部を表1に示す。
(Example 3)
In the same manner as in Example 2, 18% by mass of polysulfone (P-3500 manufactured by Amoco), 9% by mass of polyvinylpyrrolidone (Collidon (registered trademark) K-60 manufactured by BASF), 68% by mass of dimethylacetamide (DMAc), A film forming solution consisting of 5% by mass of water was prepared. As the polyvinyl pyrrolidone, one having a hydrogen peroxide content of 100 ppm was used. The obtained film-forming solution was passed through a two-stage filter of 15 μm and 15 μm, and simultaneously with a 55 mass% DMAc aqueous solution at 60 ° C. that had been degassed in advance as a hollow forming agent from a tube-in orifice nozzle heated to 40 ° C. After discharging and passing through a 600 mm air gap portion cut off from the outside air by a spinning tube, it was solidified in 50 ° C. water. The nozzle slit width of the tube-in-orifice nozzle used was an average of 60 μm, the maximum 61 μm, the minimum 59 μm, the ratio of the maximum and minimum slit widths was 1.03, and the draft ratio was 1.09. The hollow fiber membrane pulled up from the coagulation bath was passed through a water washing tank at 85 ° C. for 45 seconds to remove the solvent and excess polyvinylpyrrolidone, applied with crimp in the same manner as in Example 1, and wound up in a wet state. A bundle of about 10,000 hollow fiber membranes was immersed in pure water and washed in an autoclave at 121 ° C. for 1 hour. A polyethylene film similar to that in Example 1 was wound around the hollow fiber membrane bundle after washing, and then dried in the same manner as in Example 1. The roller for changing the yarn path during the spinning process was a mirror-finished surface, and the fixing guide was a satin-finished surface. The resulting hollow fiber membrane had an inner diameter of 201.0 μm and a film thickness of 44.0 μm. The water content was 2.3% by mass, and the content of polyvinyl pyrrolidone relative to polysulfone was 4.2% by mass. As is clear from Tables 3 and 4, the hydrogen peroxide elution amount was stable at a low level in all sites. Therefore, the storage stability of the selectively permeable hollow fiber membrane bundle was good. Some of these manufacturing conditions are shown in Table 1.

このようにして得られた選択透過性中空糸膜束を用いて、血液浄化器を組み立てた。該血液浄化器にRO水を中空糸膜型脱気装置を通すことにより得た溶存酸素濃度が0.05ppmの脱酸素水で、血液側を200ml/分で5分間充填した後、血液側を止めて、0.1MPaの圧力で、60℃の窒素ガスで充填水を追い出し、さらに該通気を続けることにより中空糸膜中の含水率を100質量%に調整した。上記操作は窒素雰囲気下で行った。血液浄化器内の酸素濃度は0.5容量%であった。該環境下で乾燥された血液浄化器の血液および透析液の出入り口全てをエチレン−プロピレン系合成ゴムよりなるキャップで密栓し、外層が厚み25μmの2軸延伸ポリアミドフィルムと内層が厚み50μmの未延伸ポリエチレンフィルムの積層体よりなる包装袋に密封した。   A blood purifier was assembled using the selectively permeable hollow fiber membrane bundle thus obtained. After the RO side was filled with deoxygenated water having a dissolved oxygen concentration of 0.05 ppm obtained by passing RO water through the hollow fiber membrane type deaerator into the blood purifier, the blood side was filled at 200 ml / min for 5 minutes. The water content in the hollow fiber membrane was adjusted to 100 mass% by stopping and expelling the filling water with nitrogen gas at 60 ° C. at a pressure of 0.1 MPa and continuing the ventilation. The above operation was performed in a nitrogen atmosphere. The oxygen concentration in the blood purifier was 0.5% by volume. All the blood and dialysate inlets and outlets of the blood purifier dried in the environment are sealed with caps made of ethylene-propylene synthetic rubber, the outer layer is a biaxially stretched polyamide film with a thickness of 25 μm and the inner layer is unstretched with a thickness of 50 μm. It sealed in the packaging bag which consists of a laminated body of a polyethylene film.

密栓してから室温で120時間保存した後に、25kGyのγ線を照射した。血液浄化器より中空糸膜束を切り出し、溶出物試験に供したところ、ポリビニルピロリドン溶出量は4ppm、過酸化水素溶出量の最大値は3ppmであり問題ないレベルであった。該血液浄化器に、0.1MPaの圧力で加圧空気を充填し、10秒間の圧力降下が30mmAq以下のリークテスト合格品を以後の試験に用いた。また、血液浄化器より中空糸膜束を取り出し、外表面を顕微鏡にて観察したところ傷等の欠陥は観察されなかった。また、クエン酸加新鮮牛血を血液流量200mL/min、ろ過速度10mL/minで血液浄化器に流したが、血球リークはみられなかった。中空糸外側から中空糸内側にろ過されたエンドトキシンは検出限界以下であり、問題ないレベルであった。また、本実施例で得られた血液浄化器の保存安定性は良好であり、1年間保存後の血液浄化器中の選択透過性中空糸膜束の透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の最大値は0.05であり、基準値の0.1以下が維持されていた。リークテストを行った結果、中空糸同士の固着に起因するような接着不良は認められなかった。   After sealing and storing at room temperature for 120 hours, 25 kGy of γ rays were irradiated. When the hollow fiber membrane bundle was cut out from the blood purifier and subjected to the eluate test, the polyvinylpyrrolidone elution amount was 4 ppm, and the maximum hydrogen peroxide elution amount was 3 ppm, which was a satisfactory level. The blood purifier was filled with pressurized air at a pressure of 0.1 MPa, and a product that passed the leak test with a pressure drop for 10 seconds of 30 mmAq or less was used in subsequent tests. Further, when the hollow fiber membrane bundle was taken out from the blood purifier and the outer surface was observed with a microscope, defects such as scratches were not observed. In addition, citrated fresh cow blood was flowed to the blood purifier at a blood flow rate of 200 mL / min and a filtration rate of 10 mL / min, but no blood cell leak was observed. Endotoxin filtered from the outer side of the hollow fiber to the inner side of the hollow fiber was below the detection limit and was at a level with no problem. In addition, the storage stability of the blood purifier obtained in this example is good, and UV is the dialysis artificial kidney device manufacturing approval standard for the selectively permeable hollow fiber membrane bundle in the blood purifier after storage for one year. The maximum value of (220-350 nm) absorbance was 0.05, and the reference value of 0.1 or less was maintained. As a result of the leak test, no adhesion failure caused by the sticking of the hollow fibers was found.

また、実施例1の血液浄化器と同様に、中空糸膜束はクリンプが付与されているため、透析液の偏流が抑制されており、尿素クリアランスの性能が優れていた。また、血液浄化器間の性能バラツキも小さかった。   Moreover, since the hollow fiber membrane bundle was crimped like the blood purifier of Example 1, the drift of the dialysate was suppressed and the performance of urea clearance was excellent. Moreover, the performance variation between blood purifiers was small.

また、血液浄化器のポリビニルピロリドン溶出量が低く、プライミング時の透水性発現性も良好であり血液浄化器として実用性の高いものであった。   Moreover, the amount of polyvinyl pyrrolidone eluted from the blood purifier was low, the water permeability was excellent during priming, and the blood purifier was highly practical.

以上の本実施例で得られた選択透過性中空糸膜および血液浄化器の評価結果を表1〜3に示す。   Tables 1 to 3 show the evaluation results of the selectively permeable hollow fiber membranes and blood purifiers obtained in the above Examples.

(比較例7)
比較例1で得られた血液浄化器を用いて、実施例3と同様にして血液浄化器に充填されている中空糸膜束の含水率調整をした。密栓を取り止めるように変更して、実施例3と同様にして滅菌処理を行った。結果を表1、2および5に示す。本比較例で得られた血液浄化器は、比較例1で得られた血液浄化器の課題に加えて、密栓されていないので、血液浄化器内に空気が浸入し、γ線照射時に中空糸膜束の周りが空気で満たされると共に、中空糸膜中の水にも酸素ガスが溶解するために、中空糸膜中の水分によるγ線照射によるポリビニルピロリドンの劣化抑制効果が低下するので、γ線照射により過酸化水素溶出量が増大した。従って、血液浄化器長期保存安定性が悪化した。
(Comparative Example 7)
Using the blood purifier obtained in Comparative Example 1, the moisture content of the hollow fiber membrane bundle filled in the blood purifier was adjusted in the same manner as in Example 3. The sterilization treatment was performed in the same manner as in Example 3 by changing the seal plug to be stopped. The results are shown in Tables 1, 2 and 5. The blood purifier obtained in this comparative example is not hermetically sealed in addition to the problems of the blood purifier obtained in comparative example 1, so that air enters the blood purifier and the hollow fiber is irradiated during γ-ray irradiation. Since the circumference of the membrane bundle is filled with air and oxygen gas is dissolved in the water in the hollow fiber membrane, the effect of suppressing the degradation of polyvinylpyrrolidone due to the γ-ray irradiation by the moisture in the hollow fiber membrane is reduced. The amount of elution of hydrogen peroxide was increased by irradiation. Therefore, long-term storage stability of the blood purifier deteriorated.

(比較例8)
比較例1で得られた血液浄化器を用いて、実施例3と同様にして血液浄化器に充填されている中空糸膜束の含水率調整をした。この際、組立てた血液浄化器に充填する水を脱気せずに溶存酸素量が8ppmのRO水を用いるように変更し、滅菌までの保存時間を40時間とした以外は、実施例3と同様にして滅菌処理を行った。結果を表1、2および5に示す。本比較例で得られた血液浄化器は、比較例2で得られた血液浄化器の課題に加えて、選択透過性中空糸膜中に存在する水が脱酸素されていないため、γ線照射により中空糸膜の劣化が起こり過酸化水素溶出量が増大した。そのために、血液浄化器の保存安定性が劣っていた。
(Comparative Example 8)
Using the blood purifier obtained in Comparative Example 1, the moisture content of the hollow fiber membrane bundle filled in the blood purifier was adjusted in the same manner as in Example 3. At this time, the water to be filled in the assembled blood purifier was changed to use RO water having a dissolved oxygen amount of 8 ppm without degassing, and the storage time until sterilization was set to 40 hours. Sterilization was performed in the same manner. The results are shown in Tables 1, 2 and 5. In addition to the problem of the blood purifier obtained in Comparative Example 2, the blood purifier obtained in this comparative example is not subjected to deoxygenation of water present in the selectively permeable hollow fiber membrane. As a result, the hollow fiber membrane deteriorated and the amount of hydrogen peroxide eluted increased. For this reason, the storage stability of the blood purifier was poor.

(比較例9)
比較例7の方法において、組立てた血液浄化器に充填された脱気水の追い出しおよび中空糸膜中の含水率調整を乾燥空気に変更し、滅菌までの保存時間を216時間とした以外は、比較例6と同様にして血液浄化器の組立ておよび滅菌処理を行った。血液浄化器内の酸素濃度は21容量%であった。結果を表1、2および5に示す。本比較例で得られた血液浄化器は比較例7で得られた血液浄化器よりも品質が悪化した。
(Comparative Example 9)
In the method of Comparative Example 7, excluding degassed water filled in the assembled blood purifier and changing the moisture content in the hollow fiber membrane to dry air, except that the storage time until sterilization was 216 hours, As in Comparative Example 6, the blood purifier was assembled and sterilized. The oxygen concentration in the blood purifier was 21% by volume. The results are shown in Tables 1, 2 and 5. The blood purifier obtained in this comparative example was worse in quality than the blood purifier obtained in comparative example 7.

(比較例10)
比較例1で得られた血液浄化器を用いて、選択透過性中空糸膜の含水率調整をせずに、含水率が2.4質量%の状態のまま(すなわち、脱気水の充填および追い出し操作も行わない状態)でγ線照射を行うように変更する以外は、実施例3と同様の方法で滅菌処理を行い血液浄化器を得た。結果を表1、2および5に示す。本比較例で得られた血液浄化器に装填されている選択透過性中空糸膜中のポリビニルピロリドンは中空糸膜中の含水率が低いために、ポリビニルピロリドンの架橋が進行しなかった。そのために、ポリビニルピロリドン溶出量が多く低品質であった。また、中空糸膜中の含水率が低いために、γ線照射により、ポリビニルピロリドンの劣化反応が増大し、過酸化水素溶出量が増大した。したがって、血液浄化器の保存安定性もよくなかった。
(Comparative Example 10)
Using the blood purifier obtained in Comparative Example 1, without adjusting the moisture content of the selectively permeable hollow fiber membrane, the moisture content remained in a state of 2.4% by mass (that is, filling with deaerated water and A blood purifier was obtained by performing sterilization in the same manner as in Example 3 except that the γ-ray irradiation was changed in a state where no eviction operation was performed. The results are shown in Tables 1, 2 and 5. Polyvinylpyrrolidone in the selectively permeable hollow fiber membranes loaded in the blood purifier obtained in this comparative example has a low water content in the hollow fiber membranes, so that the crosslinking of polyvinylpyrrolidone did not proceed. Therefore, the amount of polyvinylpyrrolidone eluted was large and the quality was low. Moreover, since the moisture content in the hollow fiber membrane was low, the degradation reaction of polyvinylpyrrolidone was increased by γ-ray irradiation, and the hydrogen peroxide elution amount was increased. Therefore, the storage stability of the blood purifier was not good.

(実施例4)
実施例2と同様の方法で、ポリスルホン(アモコ社製P−1700)17質量%、ポリビニルピロリドン(BASF社製コリドン(登録商標)K−60)5質量%、ジメチルアセトアミド(DMAc)73質量%、水5質量%よりなる製膜溶液を調製した。なお、上記ポリビニルピロリドンとしては、過酸化水素含有量120ppmのものを用いた。得られた製膜溶液を15μm、15μmの2段のフィルターに通した後、40℃に加温したチューブインオリフィスノズルから中空形成剤として減圧脱気された60℃の35質量%DMAc水溶液と同時に吐出し、紡糸管により外気と遮断された600mmのエアギャップ部を通過後、50℃の水中で凝固させた。使用したチューブインオリフィスノズルのノズルスリット幅は、平均60μmであり、最大61μm、最小59μm、スリット幅の最大値、最小値の比は1.03、ドラフト比は1.01であった。凝固浴から引き揚げられた中空糸膜束は85℃の水洗槽を45秒間通過させ溶媒と過剰のポリビニルピロリドンを除去した後、実施例1と同様の方法でクリンプ付与を行い湿潤状態のまま巻き上げた。該中空糸膜約10,000本の束を純水に浸漬し、121℃×1時間オートクレーブにて洗浄処理を行い、実施例1と同様の方法で乾燥を行った。含水率は3.8質量%であった。
Example 4
In the same manner as in Example 2, 17% by mass of polysulfone (Amoco P-1700), 5% by mass of polyvinylpyrrolidone (BASF Kollidon (registered trademark) K-60), 73% by mass of dimethylacetamide (DMAc), A film forming solution consisting of 5% by mass of water was prepared. As the polyvinyl pyrrolidone, one having a hydrogen peroxide content of 120 ppm was used. The obtained film-forming solution was passed through a two-stage filter of 15 μm and 15 μm, and simultaneously with a 35 mass% DMAc aqueous solution at 60 ° C. degassed as a hollow forming agent from a tube-in orifice nozzle heated to 40 ° C. After discharging and passing through a 600 mm air gap portion cut off from the outside air by a spinning tube, it was solidified in 50 ° C. water. The nozzle slit width of the tube-in-orifice nozzle used was an average of 60 μm, the maximum 61 μm, the minimum 59 μm, the ratio of the maximum and minimum slit widths was 1.03, and the draft ratio was 1.01. The hollow fiber membrane bundle pulled up from the coagulation bath was passed through a water washing tank at 85 ° C. for 45 seconds to remove the solvent and excess polyvinylpyrrolidone, and then crimped in the same manner as in Example 1 and rolled up in a wet state. . About 10,000 bundles of the hollow fiber membranes were immersed in pure water, washed in an autoclave at 121 ° C. for 1 hour, and dried in the same manner as in Example 1. The water content was 3.8% by mass.

乾燥処理中の中空糸膜束の最高到達温度は56℃であった。紡糸工程中の糸道変更のためのローラーは表面が鏡面加工されたものを使用し、固定ガイドは表面が梨地処理されたものを使用した。得られた選択透過性中空糸膜束の内径は200.2μm、膜厚は45.3μmであった。表1、2より明らかなごとく、過酸化水素溶出量は全部位において低レベルで安定しており、選択透過性中空糸膜の保存安定性に優れていた。   The highest temperature reached of the hollow fiber membrane bundle during the drying process was 56 ° C. The roller for changing the yarn path during the spinning process was a mirror-finished surface, and the fixing guide was a satin-finished surface. The resulting selectively permeable hollow fiber membrane bundle had an inner diameter of 200.2 μm and a film thickness of 45.3 μm. As is clear from Tables 1 and 2, the elution amount of hydrogen peroxide was stable at a low level in all parts, and the storage stability of the selectively permeable hollow fiber membrane was excellent.

このようにして得られた選択透過性中空糸膜束を用いて、実施例1と同様の方法で血液浄化器を組み立てた。RO水を中空糸膜型脱気装置に通すことで溶存酸素濃度0.05ppmとした脱酸素水に窒素をバブリングし、窒素飽和水を調製した。この窒素飽和水を血液浄化器の血液側に200ml/分で5分間充填した後、血液側を止めて、0.1MPaの圧力で、60℃の空気で充填水を追い出し、さらに該通気を続けることにより中空糸膜中の含水率を10質量%に調整した。該条件により乾燥された血液浄化器の血液および透析液の出入口すべてをエチレンープロピレン系合成ゴムよりなるキャップで密栓し、外層が厚み25μmの2軸延伸ポリアミドフィルムと内層が厚み50μmの未延伸ポリエチレンフィルムの積層体よりなる包装袋に密封した。密栓してから50時間後にγ線に変え加速電圧が5000KVである電子線照射機を用いて電子線を照射し滅菌処理を行った。   A blood purifier was assembled in the same manner as in Example 1 using the selectively permeable hollow fiber membrane bundle thus obtained. Nitrogen was bubbled through deoxygenated water having a dissolved oxygen concentration of 0.05 ppm by passing RO water through a hollow fiber membrane type deaerator to prepare nitrogen-saturated water. After filling the blood side of the blood purifier with 200 ml / min for 5 minutes with this nitrogen-saturated water, the blood side was stopped, the filling water was expelled with 60 ° C. air at a pressure of 0.1 MPa, and the ventilation was continued. Thus, the water content in the hollow fiber membrane was adjusted to 10% by mass. The blood and dialysate inlet / outlet of the blood purifier dried under the above conditions are sealed with a cap made of ethylene-propylene synthetic rubber, a biaxially stretched polyamide film having an outer layer thickness of 25 μm and an unstretched polyethylene having an inner layer thickness of 50 μm. It sealed in the packaging bag which consists of a laminated body of a film. 50 hours after sealing, it was changed to γ-rays and sterilized by irradiation with an electron beam using an electron beam irradiation machine having an acceleration voltage of 5000 KV.

得られた血液浄化器のリークテストを行った結果、中空糸膜同士の固着に起因するような接着不良は認められなかった。滅菌処理後の血液浄化器より中空糸膜束を切り出し、溶出物試験に供したところ、ポリビニルピロリドン溶出量5ppm、過酸化水素溶出量の最大値は3ppmであり問題ないレベルであった。また、血液浄化器より中空糸膜束を取り出し、外表面を顕微鏡にて観察したところ傷等の欠陥は観察されなかった。また、クエン酸加新鮮牛血を血液流量200mL/min、ろ過速度10mL/minで血液浄化器に流したが、血球リークはみられなかった。中空糸外側から中空糸内側にろ過されたエンドトキシンは検出限界以下であり、問題ないレベルであった。また、本実施例で得られた血液浄化器の保存安定性は良好であり、1年間保存後の血液浄化器中の選択透過性中空糸膜束の透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の最大値は0.06であり、基準値の0.10以下が維持されていた。また、実施例1の血液浄化器と同様に中空糸膜束はクリンプが付与されているため、透析液の偏流が抑制されており、尿素クリアランスの性能が優れていた。また、血液浄化器間の性能バラツキも小さかった。   As a result of conducting a leak test of the obtained blood purifier, no adhesion failure caused by the sticking of the hollow fiber membranes was observed. When the hollow fiber membrane bundle was cut out from the sterilized blood purifier and subjected to the eluate test, the polyvinylpyrrolidone elution amount was 5 ppm and the maximum hydrogen peroxide elution amount was 3 ppm, which was a satisfactory level. Further, when the hollow fiber membrane bundle was taken out from the blood purifier and the outer surface was observed with a microscope, defects such as scratches were not observed. In addition, citrated fresh cow blood was flowed to the blood purifier at a blood flow rate of 200 mL / min and a filtration rate of 10 mL / min, but no blood cell leak was observed. Endotoxin filtered from the outer side of the hollow fiber to the inner side of the hollow fiber was below the detection limit and was at a level with no problem. In addition, the storage stability of the blood purifier obtained in this example is good, and UV is the dialysis artificial kidney device manufacturing approval standard for the selectively permeable hollow fiber membrane bundle in the blood purifier after storage for one year. The maximum value of (220-350 nm) absorbance was 0.06, and the reference value of 0.10 or less was maintained. Moreover, since the hollow fiber membrane bundle was crimped similarly to the blood purifier of Example 1, the drift of the dialysate was suppressed, and the urea clearance performance was excellent. Moreover, the performance variation between blood purifiers was small.

また、血液浄化器のポリビニルピロリドン溶出量が低く、プライミング時の透水性発現性も良好であり血液浄化器として実用性の高いものであった。評価結果を表1〜3に示す。   Moreover, the amount of polyvinyl pyrrolidone eluted from the blood purifier was low, the water permeability was excellent during priming, and the blood purifier was highly practical. The evaluation results are shown in Tables 1-3.

従来、中空糸膜束において、過酸化水素の挙動に着目した品質管理の手法は全く知られていない。中空糸膜束の品質の良さという点については多くの観点から検討することができるが、例えば、中空糸膜束を長手方向に27cmに切断し、それを2.7cmの10等分間隔にして、それぞれの部位で過酸化水素の溶出量を測定する。最大溶出量、最小溶出量をもとに、較差Aが求められる。そして、それを平均することにより平均溶出量を算定する。また、最大溶出量または最小溶出量と、平均溶出量の較差の最大値Bを品質のバラツキ度の程度とする。図8は、実施例1のバラツキの状態を示す。比較例2の場合も同様に求めることができる。このようにして算定した値を表4に纏める。   Conventionally, there is no known quality control method focusing on the behavior of hydrogen peroxide in hollow fiber membrane bundles. The quality of the hollow fiber membrane bundle can be examined from many points of view. For example, the hollow fiber membrane bundle is cut into 27 cm in the longitudinal direction and is divided into 10 equal intervals of 2.7 cm. Measure the elution amount of hydrogen peroxide at each site. The difference A is obtained based on the maximum and minimum elution amounts. And an average elution amount is calculated by averaging it. Further, the maximum value B of the difference between the maximum elution amount or the minimum elution amount and the average elution amount is set as the degree of quality variation. FIG. 8 shows a variation state of the first embodiment. In the case of Comparative Example 2, it can be obtained similarly. The values calculated in this way are summarized in Table 4.

過酸化水素溶出量が、特に5ppm程度を境界にして、中空糸膜束の品質のバラツキ度の関係を調べると、図9のようになる。過酸化水素溶出量が多くなると、中空糸膜束の10等分における各部位の過酸化水素溶出量にアンバランスが生じるため、各部位の溶出量の較差が大きくなる。そうすると、同じ材料で、過酸化水素の溶出に違いがあるということは、その分、中空糸膜の性能、機能にも影響するから、品質の管理上好ましくない。中空糸膜束の各部位にアンバランスがないということは、中空糸膜の品質においても優れていることが理解できる。そして、5ppm程度の範囲は、バラツキ度を抑制するという点で、臨界的な範囲であることが理解できる。   When the hydrogen peroxide elution amount is particularly about 5 ppm as a boundary, the relationship of the degree of variation in the quality of the hollow fiber membrane bundle is examined as shown in FIG. When the hydrogen peroxide elution amount increases, an unbalance occurs in the hydrogen peroxide elution amount of each part in 10 equal parts of the hollow fiber membrane bundle, so that the difference in the elution amount of each part increases. In that case, the difference in elution of hydrogen peroxide with the same material is unfavorable in terms of quality control because it affects the performance and function of the hollow fiber membrane. It can be understood that the fact that there is no unbalance in each part of the hollow fiber membrane bundle is also excellent in the quality of the hollow fiber membrane. It can be understood that the range of about 5 ppm is a critical range in terms of suppressing variation.

図10は、中空糸膜束より溶出するポリビニルピロリドンの溶出量を10ppm以下に抑え、かつ中空糸膜束からの過酸化水素の溶出量を5ppm以下に抑えた中空糸膜束が充填された血液浄化器を1年保存した場合のUV吸光度の挙動を示す。過酸化水素の溶出量を5ppm以下に抑えたものは、長期間保存してもUV吸光度を0.1以下に抑えることができるため、中空糸膜束からの過酸化水素溶出量を5ppm以下に抑えることは血液浄化器の品質の安定に著しく寄与すると言える。   FIG. 10 shows blood filled with a hollow fiber membrane bundle in which the elution amount of polyvinylpyrrolidone eluted from the hollow fiber membrane bundle is suppressed to 10 ppm or less and the hydrogen peroxide elution amount from the hollow fiber membrane bundle is suppressed to 5 ppm or less. The behavior of UV absorbance when the purifier is stored for one year is shown. Those whose hydrogen peroxide elution amount is suppressed to 5 ppm or less can suppress the UV absorbance to 0.1 or less even after long-term storage, so the hydrogen peroxide elution amount from the hollow fiber membrane bundle is 5 ppm or less. It can be said that the suppression significantly contributes to the stability of the quality of the blood purifier.

本発明のポリスルホン系選択透過性中空糸膜束は、過酸化水素溶出量が抑制されており、該過酸化水素により引き起される中空糸膜束を長期に渡り保存した場合のポリビニルピロリドン等の劣化が抑制されるので、長期保存をしても透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度を0.10以下に維持するができる。また、本発明のポリスルホン系選択透過性中空糸膜束はクリンプが付与されているので、血液浄化器の性能を最大限に発揮することができる。従って、慢性腎不全の治療に用いる高透水性能を有する血液透析法中空糸型血液浄化器用等として好適であるという利点がある。
また、本発明の血液浄化器は、ドライタイプであるので、軽い、凍結しない、雑菌が繁殖しにくい等の利点がある。また、本発明の血液浄化器に充填されているポリスルホン系選択透過性中空糸膜束はラジカル捕捉剤が含まれていないので、血液浄化用として使用する場合は、事前に該ラジカル捕捉剤を洗浄除去する操作が不要であるという利点がある。さらに、本発明においては、ドライ状態で、かつラジカル捕捉剤の非存在下で、放射線照射しても放射線照射による選択透過性中空糸膜の劣化が抑制されるという従来技術では達成しえない効果が発現されるので、該劣化反応により生ずる過酸化水素生成が少なく、本発明の血液浄化器は、抗血栓性に優れ、かつ長期保存安定性に優れているという利点を有する。従って、産業界に寄与することが大である。
The polysulfone-based permselective hollow fiber membrane bundle of the present invention has a reduced hydrogen peroxide elution amount, such as polyvinyl pyrrolidone when the hollow fiber membrane bundle caused by the hydrogen peroxide is stored for a long period of time. Since deterioration is suppressed, UV (220-350 nm) absorbance, which is a dialysis artificial kidney device manufacturing approval standard, can be maintained at 0.10 or less even after long-term storage. In addition, since the polysulfone-based permselective hollow fiber membrane bundle of the present invention is crimped, the performance of the blood purifier can be maximized. Therefore, there is an advantage that it is suitable for a hemodialysis method hollow fiber blood purifier having high water permeability used for the treatment of chronic renal failure.
In addition, since the blood purifier of the present invention is a dry type, there are advantages such as being light, not freezing, and being difficult for bacteria to propagate. In addition, since the polysulfone-based permselective hollow fiber membrane bundle packed in the blood purifier of the present invention does not contain a radical scavenger, the radical scavenger is washed beforehand when used for blood purification. There is an advantage that an operation to remove is unnecessary. Furthermore, in the present invention, even in the dry state and in the absence of a radical scavenger, even if irradiated with radiation, the effect of the conventional technique that the deterioration of the selectively permeable hollow fiber membrane due to irradiation is suppressed is not achieved. Therefore, the production of hydrogen peroxide due to the deterioration reaction is small, and the blood purifier of the present invention has the advantages of excellent antithrombogenicity and excellent long-term storage stability. Therefore, it is important to contribute to the industry.

本発明のクリンプ付与装置の一例を示す装置構成図である。It is an apparatus block diagram which shows an example of the crimp provision apparatus of this invention. 本発明のクリンプ付与装置の主要部分を示す図である。It is a figure which shows the principal part of the crimp provision apparatus of this invention. 図2の拡大図である。FIG. 3 is an enlarged view of FIG. 2. 極大点を持たない場合の降伏点の求め方を示す図である。It is a figure which shows how to obtain | require the yield point in the case of not having a local maximum point. 極大点を持つ場合の降伏点の求め方を示す図である。It is a figure which shows how to obtain | require a yield point in the case of having a local maximum point. 本発明におけるクリンプの波長と振幅の模式図である。It is a schematic diagram of the wavelength and amplitude of the crimp in the present invention. 血液浄化器の断面図である。It is sectional drawing of a blood purifier. 中空糸膜を10等分したときの各部位の過酸化水素溶出量を示す模式図である。It is a schematic diagram which shows the hydrogen peroxide elution amount of each site | part when a hollow fiber membrane is divided into 10 equal parts. 中空糸膜束内の品質のバラツキ度を示す模式図である。It is a schematic diagram which shows the variation degree of the quality in a hollow fiber membrane bundle. 血液浄化器の保存期間中のUV吸光度の変化を示す模式図である。It is a schematic diagram which shows the change of UV light absorbency during the preservation | save period of a blood purifier.

符号の説明Explanation of symbols

1:糸条
2:歯付きタイミングベルト
3:加熱ボックス
4:熱風入口
5:熱風出口
6:フリーローラー
7:タイミングプーリー
9:血液浄化器
10:ハウジング
11:中空糸膜束
12:接着樹脂
13:キャップ
14a:透析液導入口
14b:透析液排出口
15a:血液導入口
15b:血液排出口
1: Thread 2: Toothed timing belt 3: Heating box 4: Hot air inlet 5: Hot air outlet 6: Free roller 7: Timing pulley 9: Blood purifier 10: Housing 11: Hollow fiber membrane bundle 12: Adhesive resin 13: Cap 14a: Dialysate inlet 14b: Dialysate outlet 15a: Blood inlet 15b: Blood outlet

Claims (5)

ポリビニルピロリドンを含有するポリスルホン系選択透過性中空糸膜束において、下記特性を同時に満足することを特徴とするポリスルホン系選択透過性中空糸膜束。
(1)中空糸膜束からのポリビニルピロリドンの溶出が10ppm以下であること。
(2)中空糸膜束を長手方向に10個に分割して、各部位について透析型人工腎臓装置製造承認基準により定められた試験を実施したとき、得られた抽出液の過酸化水素溶出量が全ての部位で5ppm以下であること。
(3)中空糸膜の膜厚が10〜60μm、単糸の降伏伸度が5.0%以下であること。
(4)中空糸膜に波長10mm以上、振幅0.2mm以上のクリンプが付与されていること。
A polysulfone-based permselective hollow fiber membrane bundle containing polyvinylpyrrolidone, which simultaneously satisfies the following characteristics:
(1) The elution of polyvinylpyrrolidone from the hollow fiber membrane bundle is 10 ppm or less.
(2) When the hollow fiber membrane bundle is divided into 10 pieces in the longitudinal direction and the test defined by the dialysis-type artificial kidney device manufacturing approval standard is performed for each part, the hydrogen peroxide elution amount of the obtained extract Is 5 ppm or less at all sites.
(3) The film thickness of the hollow fiber membrane is 10 to 60 μm, and the yield elongation of the single yarn is 5.0% or less.
(4) A crimp having a wavelength of 10 mm or more and an amplitude of 0.2 mm or more is applied to the hollow fiber membrane.
ポリスルホン系選択透過性中空糸膜が紡糸、凝固および水洗工程までは単糸で走行させた後に2〜50本の単糸を合糸して、クリンプ工程に連続的に供給することによりクリンプが付与されたことを特徴とする請求項1に記載のポリスルホン系選択透過性中空糸膜束。   The polysulfone-based permselective hollow fiber membrane is run as a single yarn until the spinning, coagulation and water washing steps, and then 2 to 50 single yarns are combined and continuously supplied to the crimping step. The polysulfone-based permselective hollow fiber membrane bundle according to claim 1, wherein ポリスルホン系選択透過性中空糸膜が連続的に供給される複数本の中空糸膜列を、一定間隔をおいて走行する糸ガイドの間を蛇行させることによりクリンプが付与されてなることを特徴とする請求項1または2に記載のポリスルホン系選択透過性中空糸膜束。   A plurality of hollow fiber membrane rows to which polysulfone-based permselective hollow fiber membranes are continuously supplied are crimped by meandering between yarn guides that travel at regular intervals. The polysulfone-based permselective hollow fiber membrane bundle according to claim 1 or 2. ポリスルホン系選択透過性中空糸膜束を室温で3ヶ月以上保存した後に、透析型人工腎臓装置製造承認基準により定められた試験を実施した時の中空糸膜の抽出液におけるUV(220〜350nm)吸光度が0.10以下であることを特徴とする請求項1〜3のいずれかに記載のポリスルホン系選択透過性中空糸膜束。   UV (220 to 350 nm) in the extract of the hollow fiber membrane when the polysulfone-based permselective hollow fiber membrane bundle is stored at room temperature for 3 months or more and then subjected to the test defined by the dialysis artificial kidney device manufacturing approval criteria Absorbance is 0.10 or less, The polysulfone type permselective hollow fiber membrane bundle in any one of Claims 1-3 characterized by the above-mentioned. 請求項1〜4いずれか記載のポリスルホン系選択透過性中空糸膜束が充填されてなることを特徴とする血液浄化器。   A blood purifier filled with the polysulfone-based permselective hollow fiber membrane bundle according to any one of claims 1 to 4.
JP2005108854A 2005-04-05 2005-04-05 Bundle of polysulfone-based permselective hollow fiber membrane and hemocatharsis apparatus Withdrawn JP2006288415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005108854A JP2006288415A (en) 2005-04-05 2005-04-05 Bundle of polysulfone-based permselective hollow fiber membrane and hemocatharsis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005108854A JP2006288415A (en) 2005-04-05 2005-04-05 Bundle of polysulfone-based permselective hollow fiber membrane and hemocatharsis apparatus

Publications (1)

Publication Number Publication Date
JP2006288415A true JP2006288415A (en) 2006-10-26

Family

ID=37409696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005108854A Withdrawn JP2006288415A (en) 2005-04-05 2005-04-05 Bundle of polysulfone-based permselective hollow fiber membrane and hemocatharsis apparatus

Country Status (1)

Country Link
JP (1) JP2006288415A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093654A1 (en) * 2007-01-30 2008-08-07 Toray Industries, Inc. Hollow-fiber membrane and hollow-fiber-membrane module having the same included therein
JP2008272352A (en) * 2007-05-07 2008-11-13 Asahi Kasei Kuraray Medical Co Ltd Hollow fiber membrane type blood purifier
JP2008284471A (en) * 2006-11-28 2008-11-27 Toyobo Co Ltd Polymeric porous hollow fiber membrane
CN109140981A (en) * 2018-08-27 2019-01-04 湖南正中制药机械有限公司 A kind of soft bag direct hanging type cold-hot wind continuous drying equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066274A (en) * 2000-06-13 2002-03-05 Toyobo Co Ltd Semipermeable hollow fiber membrane, and method and apparatus for preparing the same
JP2003275549A (en) * 2002-03-25 2003-09-30 Toray Ind Inc Method for manufacturing hollow fiber membrane and apparatus for manufacturing the same
JP2004305840A (en) * 2003-04-03 2004-11-04 Toyobo Co Ltd Method for preserving hollow fiber membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066274A (en) * 2000-06-13 2002-03-05 Toyobo Co Ltd Semipermeable hollow fiber membrane, and method and apparatus for preparing the same
JP2003275549A (en) * 2002-03-25 2003-09-30 Toray Ind Inc Method for manufacturing hollow fiber membrane and apparatus for manufacturing the same
JP2004305840A (en) * 2003-04-03 2004-11-04 Toyobo Co Ltd Method for preserving hollow fiber membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284471A (en) * 2006-11-28 2008-11-27 Toyobo Co Ltd Polymeric porous hollow fiber membrane
WO2008093654A1 (en) * 2007-01-30 2008-08-07 Toray Industries, Inc. Hollow-fiber membrane and hollow-fiber-membrane module having the same included therein
JPWO2008093654A1 (en) * 2007-01-30 2010-05-20 東レ株式会社 Hollow fiber membrane and hollow fiber membrane module incorporating the same
JP2008272352A (en) * 2007-05-07 2008-11-13 Asahi Kasei Kuraray Medical Co Ltd Hollow fiber membrane type blood purifier
CN109140981A (en) * 2018-08-27 2019-01-04 湖南正中制药机械有限公司 A kind of soft bag direct hanging type cold-hot wind continuous drying equipment
CN109140981B (en) * 2018-08-27 2024-03-26 湖南正中制药机械有限公司 Soft bag direct-hanging type cold and hot air continuous drying equipment

Similar Documents

Publication Publication Date Title
JP3772909B1 (en) Blood purifier
JP4846587B2 (en) Polysulfone-based selectively permeable hollow fiber membrane module and method for producing the same
JP3636199B1 (en) Polysulfone-based permselective hollow fiber membrane bundle, method for producing the same and blood purifier
JP4843988B2 (en) Polysulfone hollow fiber membrane blood purifier
JP2006288415A (en) Bundle of polysulfone-based permselective hollow fiber membrane and hemocatharsis apparatus
JP4839631B2 (en) Polysulfone-based permselective hollow fiber membrane bundle and blood purifier
JP4483651B2 (en) Sterilization method of blood purification module
JP4596171B2 (en) Blood purifier
JP2013009962A (en) Hollow fiber membrane type hemocatharsis apparatus
JP2006263600A (en) Method for manufacturing hollow fiber membrane
JP4876704B2 (en) Blood purifier
JP2006304826A (en) Blood purification device
JP2006288413A (en) Hollow fiber membrane type hemocatharsis apparatus
JP3815505B1 (en) Blood purification module package and sterilization method thereof
JP2006068689A (en) Drying method for bundle of hollow fiber membrane
JP2006230905A (en) Blood purifier
JP4501155B2 (en) Method for producing polysulfone-based permselective hollow fiber membrane bundle
JP4748348B2 (en) Polysulfone-based permselective hollow fiber membrane bundle
JP4379803B2 (en) Method for drying hollow fiber membrane bundle
JP4839630B2 (en) Polysulfone-based permselective hollow fiber membrane bundle and blood purifier
JP4843992B2 (en) Blood purifier
JP2006239063A (en) Blood purifier
JP2006304827A (en) Blood purifier
JP4807608B2 (en) Method for drying hollow fiber membrane bundle
JP5580616B2 (en) Method for drying polysulfone-based permselective hollow fiber membrane bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110325