JP4807608B2 - Method for drying hollow fiber membrane bundle - Google Patents

Method for drying hollow fiber membrane bundle Download PDF

Info

Publication number
JP4807608B2
JP4807608B2 JP2004363736A JP2004363736A JP4807608B2 JP 4807608 B2 JP4807608 B2 JP 4807608B2 JP 2004363736 A JP2004363736 A JP 2004363736A JP 2004363736 A JP2004363736 A JP 2004363736A JP 4807608 B2 JP4807608 B2 JP 4807608B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
membrane bundle
drying
bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004363736A
Other languages
Japanese (ja)
Other versions
JP2006167597A (en
Inventor
公洋 馬淵
英之 横田
勝朗 久世
浩文 小川
仁 大野
典昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2004363736A priority Critical patent/JP4807608B2/en
Publication of JP2006167597A publication Critical patent/JP2006167597A/en
Application granted granted Critical
Publication of JP4807608B2 publication Critical patent/JP4807608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Drying Of Solid Materials (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

本発明は、湿潤状態の中空糸膜束の乾燥方法、中空糸膜束および血液浄化用モジュールに関するものである。より詳しくは、湿潤状態の中空糸膜束の乾燥方法に関し、従来技術に比して簡略化された方法によって、作業性に優れ、かつ乾燥工程での中空糸膜の変形を抑制するとともに乾燥の均一性の向上および中空糸膜成分の劣化を低減し、高性能で、安全性が高く、かつモジュール組み立て性や保存安定性に優れた中空糸膜束が製造できる中空糸膜束の乾燥方法に関する。さらに詳しくは、中空糸膜束の乾燥効率と中空糸膜束間の乾燥の均一性や乾燥上がりの中空糸膜束品質とのバランスがとれるコストパフォーマンスの高い中空糸膜束の乾燥方法に関する。   The present invention relates to a method for drying a wet hollow fiber membrane bundle, a hollow fiber membrane bundle, and a blood purification module. More specifically, regarding a method for drying a hollow fiber membrane bundle in a wet state, it is excellent in workability by a method simplified as compared with the prior art, and the deformation of the hollow fiber membrane in the drying process is suppressed and the drying is suppressed. The present invention relates to a method for drying a hollow fiber membrane bundle, which can produce a hollow fiber membrane bundle with improved uniformity and reduced deterioration of the hollow fiber membrane components, which can produce a high performance, high safety, and excellent module assembly property and storage stability. . More specifically, the present invention relates to a method for drying a hollow fiber membrane bundle with high cost performance that can balance the drying efficiency of the hollow fiber membrane bundle with the uniformity of drying between the hollow fiber membrane bundles and the quality of the hollow fiber membrane bundle after drying.

近年、選択的な透過性を有する膜を利用する技術がめざましく進歩し、これまでに気体や液体の分離フィルター、医療分野における血液透析器、血液濾過器、血液成分分離フィルター等の広範な分野での実用化が進んでいる。該膜の材料としては、セルロース系(再生セルロース系、酢酸セルロース系、化学変性セルロース系等)、ポリアクリロニトリル系、ポリメチルメタクリレート系、ポリスルホン系、ポリエチレンビニルアルコール系、ポリアミド系等の樹脂が用いられてきた。このうちポリスルホン系樹脂は、その熱安定性、耐酸、耐アルカリ性に加え、製膜溶液に親水化剤を添加して製膜することにより、血液適合性が向上することから、半透膜素材として注目され研究が進められてきた。   In recent years, technology using membranes with selective permeability has made remarkable progress, and so far in a wide range of fields such as gas and liquid separation filters, hemodialyzers, blood filters, blood component separation filters in the medical field. Is being put to practical use. As the material of the membrane, resins such as cellulose (regenerated cellulose, cellulose acetate, chemically modified cellulose, etc.), polyacrylonitrile, polymethyl methacrylate, polysulfone, polyethylene vinyl alcohol, and polyamide are used. I came. Of these, the polysulfone-based resin, in addition to its thermal stability, acid resistance, and alkali resistance, improves the blood compatibility by adding a hydrophilizing agent to the film-forming solution, so that it can be used as a semipermeable membrane material. Attention has been paid to research.

腎不全治療などにおける血液浄化療法では、血液中の尿毒素、老廃物を除去する目的で、透析膜や限外濾過膜を分離材として用いた血液透析器、血液濾過器あるいは血液透析濾過器などのモジュールが広く使用されている。特に中空糸型の膜を分離材として用いたモジュールは体外循環血液量の低減、血中の物質除去効率の高さ、さらにモジュール生産時の生産性などの利点から透析器分野での重要度が高い。   In blood purification therapy for the treatment of renal failure, etc., hemodialyzers, hemofilters or hemodialyzers using dialysis membranes or ultrafiltration membranes as separators to remove uremic toxins and waste products in the blood The module is widely used. In particular, modules using hollow fiber membranes as separation materials are important in the dialyzer field due to advantages such as reduction of the amount of blood circulating outside the body, high efficiency of removing substances in the blood, and productivity during module production. high.

一方、中空糸膜束を接着してモジュールを作製するためには中空糸膜束を乾燥させる必要があるが、有機高分子よりなる多孔膜、なかでもポリスルホン系等の疎水性樹脂からなる透析膜、限外濾過膜は、製膜後に乾燥させると乾燥前に比べ著しく透水量が低下することが知られている。そのため膜は常に湿潤状態か、水に浸漬させた状態で取り扱う必要があった。   On the other hand, in order to produce a module by bonding the hollow fiber membrane bundle, it is necessary to dry the hollow fiber membrane bundle. However, the porous membrane made of organic polymer, especially dialysis membrane made of hydrophobic resin such as polysulfone In addition, it is known that when the ultrafiltration membrane is dried after film formation, the water permeation amount is remarkably reduced as compared with that before drying. Therefore, it was necessary to handle the membrane always in a wet state or in a state immersed in water.

この対策として従来よりとられてきた方法は、製膜後、乾燥前にグリセリン等の低揮発性有機液体を多孔膜中の空孔部分に詰めておくことであった。しかしながら、低揮発性有機液体は、一般に高粘度なため、洗浄除去に時間がかかり、膜をモジュール成型して洗浄後も微量ではあるが低揮発性有機液体由来の溶出物等(低揮発性有機液体と化学反応して生成した様々な誘導体)がモジュール封入液中にみられることに問題があった。   As a countermeasure against this problem, a conventional method has been to pack a low-volatile organic liquid such as glycerin in the pores in the porous film after film formation and before drying. However, since low-volatile organic liquids generally have high viscosity, it takes time for cleaning and removal, and even after the membrane is molded into a module, a small amount of effluent derived from low-volatile organic liquids (low-volatile organic There was a problem in that various derivatives produced by chemical reaction with liquid were found in the module sealing liquid.

低揮発性有機液体を用いずに乾燥させる方法として、低揮発性有機液体の代わりに塩化カルシウム等の無機塩を用いる方法が開示されているが、洗浄除去する必要性に変わりはない。また、微量であるとしても残存した無機塩が透析患者に与える悪影響が危惧される(特許文献1参照)。
特開平6−277470号公報
As a method for drying without using a low-volatile organic liquid, a method using an inorganic salt such as calcium chloride in place of the low-volatile organic liquid is disclosed, but the necessity for washing and removing remains unchanged. Moreover, even if it is a trace amount, there is a concern that the remaining inorganic salt may adversely affect the dialysis patient (see Patent Document 1).
JP-A-6-277470

また、膜の乾燥方法として、中空糸膜に対し水蒸気による湿熱処理を行いながらマイクロ波を照射する中空糸膜の製造方法が開示されている(特許文献2参照)。しかし、乾燥でありながら膜の変形を防ぐために水蒸気処理していることから乾燥時間を長くする必要があるなどの欠点があり、さらに、グリセリン等の低揮発性有機液体を付着させてからの乾燥であることから、膜からの溶出物を低減させるという目的は達成されない。
特開平11−332980号公報
Moreover, as a method for drying the membrane, a method for producing a hollow fiber membrane in which microwave irradiation is performed while performing wet heat treatment with water vapor on the hollow fiber membrane is disclosed (see Patent Document 2). However, there is a disadvantage that it is necessary to lengthen the drying time because it is treated with steam to prevent deformation of the membrane while being dry, and further, drying after attaching a low volatile organic liquid such as glycerin Therefore, the object of reducing the effluent from the membrane is not achieved.
JP 11-332980 A

低揮発性有機液体を用いずに乾燥処理をしたポリビニルピロリドンを含む親水化膜が開示されている(特許文献3および4参照)。これらには、血液から血漿成分を分離する性能が記載されているが、血漿タンパクが透過することから透析膜としては有効でないことが分かる。また、ポリビニルピロリドンを分解・変性させる温度で乾燥していることから、膜からの溶出物を低減させるという目的においては極めて好ましくない製法である。
特開平8−52331号公報 特公平8−9668号公報
A hydrophilized film containing polyvinyl pyrrolidone that has been dried without using a low-volatile organic liquid is disclosed (see Patent Documents 3 and 4). These describe the ability to separate plasma components from blood, but it is found that plasma proteins permeate and are not effective as dialysis membranes. In addition, since it is dried at a temperature at which polyvinylpyrrolidone is decomposed and modified, it is an extremely undesirable production method for the purpose of reducing the amount of eluate from the membrane.
JP-A-8-52331 Japanese Patent Publication No.8-9668

また、特定の性能を有する湿潤膜をグリセリン等の低揮発性有機液体に含浸せずに120℃以下の温度で乾燥して高性能な血液浄化膜を製造する方法が開示されている(特許文献5参照)。しかし、この方法は、糸束状にして乾燥した場合には、糸束の中心部と外周部の膜とでは若干の性能差が生じることが同一発明者等により明らかにされている。
特許第3281364号公報
In addition, a method for producing a high-performance blood purification membrane by drying a wet membrane having a specific performance at a temperature of 120 ° C. or less without impregnating with a low-volatile organic liquid such as glycerin is disclosed (Patent Document). 5). However, it has been clarified by the same inventors that when this method is dried in the form of a yarn bundle, there is a slight difference in performance between the central portion and the outer peripheral portion of the yarn bundle.
Japanese Patent No. 3281364

特許文献5と同一発明者らにより特許文献5に開示されている乾燥方法の課題解決の方策として、マイクロ波を照射して乾燥する方法が開示されている(特許文献6〜9参照)。これらの方法は低揮発性有機液体に含浸せず乾燥する方法であり、かつ中空糸膜束の分離性能を低下させずに乾燥できる点では好ましい方法である。しかしながら、これらの方法はいずれもが、中空糸膜束内に気体を通風し乾燥の均一化を図る方法である。該方法は、マイクロ波照射機構に加え、中空糸膜束内に気体を通風するための補助機構の設置が必要であり乾燥機の構造が複雑になるという課題を有する。また、該方法は中空糸膜束内に気体を通風するための補助機構に被乾燥中空糸膜束を固定する必要があり、該固定部の構造が複雑になり、かつ中空糸膜束を所定の場所にセットしたり、通風量を制御したりする等乾燥の準備や乾燥操作が煩雑になるという課題を有する。
また、別の発明者により減圧により中空糸膜束内部に空気を通過させながらマイクロ波を照射して中空糸膜束を乾燥する方法が開示されている(特許文献10参照)。該方法も同様の課題を有する。
特開2003−175320号公報 特開2003−175321号公報 特開2003−175322号公報 特開2003−284931号公報 特開平9−888号公報
As a measure for solving the problem of the drying method disclosed in Patent Document 5 by the same inventors as Patent Document 5, a method of drying by irradiating microwaves is disclosed (see Patent Documents 6 to 9). These methods are preferable in that they are dried without impregnating the low-volatile organic liquid and can be dried without deteriorating the separation performance of the hollow fiber membrane bundle. However, any of these methods is a method in which a gas is passed through the hollow fiber membrane bundle to achieve uniform drying. In addition to the microwave irradiation mechanism, this method requires the installation of an auxiliary mechanism for ventilating the gas in the hollow fiber membrane bundle, and has a problem that the structure of the dryer becomes complicated. The method also requires that the hollow fiber membrane bundle to be dried be fixed to an auxiliary mechanism for venting gas into the hollow fiber membrane bundle, the structure of the fixing part becomes complicated, and the hollow fiber membrane bundle is There is a problem that the preparation for drying and the drying operation become complicated, such as setting in the above-mentioned place and controlling the air flow rate.
Another inventor has disclosed a method of drying a hollow fiber membrane bundle by irradiating microwaves while passing air through the hollow fiber membrane bundle under reduced pressure (see Patent Document 10). This method also has the same problem.
JP 2003-175320 A JP 2003-175321 A JP 2003-175322 A JP 2003-284931 A JP-A-9-888

また、上記特許文献の方法は通風乾燥が併用されているために、通風乾燥において通風条件を厳密に制御しないと、中空糸膜束内での通風の不均一性等により乾燥工程において被乾燥中空糸膜の収縮斑等の中空糸膜の変形差が発生し中空糸膜の折れ、配列乱れおよび糸長変動等が引き起こされる。中空糸膜の折れや配列乱れが発生するとモジュール化の折に接着剤による両端の包埋部の中空糸膜に傾きが生じ、例えば、血液浄化用に使用した場合に血液の偏流が起こり残血糸の発生に繋がる。また、中空糸膜の折れや配列乱れが発生するとモジュール組み立て工程におけるモジュールのハウジングへの中空糸膜束の挿入性が低下し、中空糸膜の傷や中空糸膜の断面が変形した潰れ糸が発生する。傷は血液リークに繋がる。また、潰れ糸は血液の偏流原因となり残血糸の発生に繋がる。糸長変動に関しては、収縮率が大きく糸長の短い中空糸膜が発生すると、接着剤による両端の包埋時に中空糸膜の中空部に接着剤が浸入し易くなり目詰まり糸の発生に繋がり、血液の偏流原因となり残血糸の発生が起こる。逆に、収縮率が低く糸長の長い中空糸膜が発生すると中空糸膜折れや配列乱れの発生に繋がり上記の課題が引き起こされる。   Further, since the method of the above-mentioned patent document uses ventilation drying together, if the ventilation conditions are not strictly controlled in the ventilation drying, the hollow to be dried in the drying process is caused by the non-uniformity of ventilation in the hollow fiber membrane bundle. Differences in deformation of the hollow fiber membrane such as contraction spots of the yarn membrane occur, causing breakage of the hollow fiber membrane, disorder of arrangement, variation in yarn length, and the like. When the hollow fiber membrane breaks or the arrangement is disrupted, the hollow fiber membranes at the embedding parts at both ends of the adhesive are inclined when modularized.For example, when used for blood purification, blood drift occurs and residual blood It leads to the generation of yarn. Further, when the hollow fiber membrane is broken or the arrangement is disturbed, the insertability of the hollow fiber membrane bundle into the module housing in the module assembling process is lowered, and the hollow fiber membrane is damaged or the crushed yarn in which the cross section of the hollow fiber membrane is deformed. appear. Wounds can lead to blood leaks. In addition, the crushed thread causes blood drift and leads to the generation of residual blood thread. Regarding the yarn length variation, if a hollow fiber membrane with a large shrinkage rate and a short yarn length occurs, the adhesive can easily enter the hollow portion of the hollow fiber membrane when embedding both ends with an adhesive, leading to the generation of clogged yarn. This causes blood drift and the generation of residual blood thread. On the contrary, when a hollow fiber membrane having a low shrinkage rate and a long yarn length is generated, the hollow fiber membrane is broken and the arrangement is disturbed, causing the above-mentioned problems.

また、上記特許文献の方法は中空糸膜素材の長期保存安定性に対する配慮が不足しておりその改善も必要である。中空糸膜を血液浄化療法用の分離膜として使用する場合は、親水性化合物の溶出が多くなると人体に取り異物である親水化合物の長期透析時の体内蓄積が増え副作用や合併症等を引き起こす可能性があり透析型人工腎臓装置製造承認基準において中空糸膜の抽出液におけるUV(220〜350nm)吸光度の基準が設定されている。上記特許文献の方法においても、代表値の測定はされている。
本発明者等は、上記の透析型人工腎臓装置製造承認基準により定められた試験法で抽出された抽出液中には、従来公知のUV吸光度では測定できない過酸化水素が含まれていることを見出した。該過酸化水素が存在すると、例えばポリビニルピロリドンの酸化劣化を促進し、中空糸膜束を保存した時にポリビニルピロリドンの溶出量が増加する事を見出した。さらに、過酸化水素は中空糸膜束の特定部位に存在しても、その個所より中空糸膜束素材の劣化反応が開始され中空糸膜束の全体に伝播していくため、モジュールと用いられる中空糸膜束の長手方向の存在量が全領域に渡り、一定量以下を確保する必要がある事を見出した。上記特許文献の方法で実施した場合は、該過酸化水素の溶出量が多くなり該中空糸膜束を長期保存した場合にポリビニルピロリドンの酸化劣化が促進され、経時によりUV(220〜350nm)吸光度が増加するという課題が発生する。
Moreover, the method of the said patent document lacks consideration with respect to long-term storage stability of a hollow fiber membrane raw material, and the improvement is also required. When a hollow fiber membrane is used as a separation membrane for blood purification therapy, if the elution of the hydrophilic compound increases, the accumulation of the hydrophilic compound as a foreign substance in the human body increases during long-term dialysis, which may cause side effects and complications. In the dialysis-type artificial kidney device manufacturing approval standard, UV (220 to 350 nm) absorbance standards for hollow fiber membrane extracts are set. Also in the method of the above-mentioned patent document, the representative value is measured.
The present inventors have confirmed that the extract extracted by the test method defined by the above-mentioned dialysis artificial kidney device manufacturing approval standard contains hydrogen peroxide that cannot be measured by conventionally known UV absorbance. I found it. It has been found that the presence of hydrogen peroxide accelerates the oxidative degradation of polyvinylpyrrolidone, for example, and increases the elution amount of polyvinylpyrrolidone when the hollow fiber membrane bundle is stored. Furthermore, even if hydrogen peroxide is present in a specific part of the hollow fiber membrane bundle, the deterioration reaction of the hollow fiber membrane bundle material starts from that point and propagates to the entire hollow fiber membrane bundle, so it is used as a module. It has been found that the abundance of the hollow fiber membrane bundle in the longitudinal direction needs to ensure a certain amount or less over the entire region. When carried out by the method of the above-mentioned patent document, the amount of the hydrogen peroxide eluted increases, and when the hollow fiber membrane bundle is stored for a long period of time, the oxidative degradation of polyvinylpyrrolidone is promoted, and the UV (220 to 350 nm) absorbance over time. The problem that increases will occur.

上記特許文献の方法で実施した場合は、通風の入り口側から出口側への中空糸膜束の長手方向での乾燥の不均一化が起こり、過酸化水素が局所的に発生し上記課題の発生に繋がる。   When carried out by the method of the above patent document, non-uniform drying occurs in the longitudinal direction of the hollow fiber membrane bundle from the inlet side to the outlet side of the ventilation, and hydrogen peroxide is locally generated, resulting in the occurrence of the above problem It leads to.

また、上記特許文献の方法で実施した場合は、通風の入り口側から出口側への中空糸膜束の長手方向が乾燥の不均一化により、UV(220〜350nm)吸光度についても中空糸膜束の長手方向の変動が大きいという課題が発生する。該変動は安全性の低下に繋がる。また、UV(220〜350nm)吸光度の変動は中空糸膜束外表面のポリビニルピロリドンの表面濃度をも反映しており、湿潤状態の中空糸膜束を乾燥した場合に乾燥上がりに中空糸膜束表面のポリビニルピロリドン濃度の高い部分で部分的な中空糸膜同士のくっつき(固着)が発生するという課題に繋がる。該部分的な固着が発生するとモジュール組み立て性が悪化する等の問題に繋がるので改善が必要である。上記特許文献においては、これらの課題に対する配慮が全くなされていない。   Moreover, when implemented by the method of the above-mentioned patent document, the longitudinal direction of the hollow fiber membrane bundle from the inlet side to the outlet side of the ventilation is made non-uniform in drying, so that the UV (220 to 350 nm) absorbance is also measured for the hollow fiber membrane bundle. The problem that the fluctuation | variation of the longitudinal direction of this is large generate | occur | produces. This fluctuation leads to a decrease in safety. The fluctuation in UV (220 to 350 nm) absorbance also reflects the surface concentration of polyvinyl pyrrolidone on the outer surface of the hollow fiber membrane bundle. This leads to a problem that partial sticking (adhesion) of the hollow fiber membranes occurs in a portion having a high polyvinylpyrrolidone concentration on the surface. If this partial sticking occurs, it will lead to problems such as deterioration of the module assemblability, so improvement is necessary. In the above patent document, no consideration is given to these problems.

上記した特許文献5〜9の乾燥方法は乾燥膜中の水分率を1質量%未満にすることが実施例において記載されている。また、上記の従来公知のマイクロ波を照射して乾燥する方法は何れもが常圧状態でマイクロ波を照射する方法であり、減圧下でマイクロ波を照射することの効果に関しては全く言及されていない。   The above-described drying methods of Patent Documents 5 to 9 describe that the moisture content in the dried film is less than 1% by mass in Examples. In addition, any of the above known methods of irradiating and drying microwaves is a method of irradiating microwaves under normal pressure, and no mention is made of the effect of irradiating microwaves under reduced pressure. Absent.

従来技術に比して簡略化された方法により乾燥工程における作業性に優れ、かつ乾燥工程での中空糸膜の変形を抑制するとともに乾燥の均一性の向上および中空糸膜成分の劣化を低減し、高性能で、安全性が高く、かつ保存安定性やモジュール組み立て性に優れた中空糸膜束が製造でき、さらに詳しくは、中空糸膜束の乾燥効率と中空糸膜束間の乾燥の均一性や乾燥上がりの中空糸膜束品質とのバランスがとれるコストパフォーマンスの高い中空糸膜束の乾燥方法を提供することにある。   The process simplified in comparison with the prior art is excellent in workability in the drying process, suppresses the deformation of the hollow fiber membrane in the drying process, improves the uniformity of drying and reduces the deterioration of the components of the hollow fiber membrane. High performance, high safety, hollow fiber membrane bundles with excellent storage stability and module assemblability can be manufactured. It is an object of the present invention to provide a method for drying a hollow fiber membrane bundle with high cost performance that can balance the quality and quality of the hollow fiber membrane bundle after drying.

本発明は、湿潤状態の中空糸膜束の複数本をトレイに並列に配置し中空糸膜束の長手方向が水平に対して45度以下の角度になるようにマイクロ波照射オーブン中に配置して乾燥する方法において、単位中空糸膜束の直径をdとした時に隣接する中空糸膜束との間隔を中空糸膜束中心間距離で1.5d以上3.0d以下離した位置に配置することを特徴とする中空糸膜束の乾燥方法である。
また、湿潤状態の中空糸膜束の複数本をトレイに並列に配置し中空糸膜束の長手方向が水平に対して45度以下の角度になるようにマイクロ波照射オーブン中に配置して乾燥する方法において、単位中空糸膜束の直径をdとした時に隣接する中空糸膜束との間隔を中空糸膜束中心間距離で1.5d以内とした位置に配置したときに、その1.5d以内に配置される中空糸膜束の本数を2本以内とすることを特徴とする中空糸膜束の乾燥方法である。
In the present invention, a plurality of wet hollow fiber membrane bundles are arranged in parallel on a tray, and are arranged in a microwave irradiation oven so that the longitudinal direction of the hollow fiber membrane bundle is at an angle of 45 degrees or less with respect to the horizontal. In the method of drying, the distance between adjacent hollow fiber membrane bundles when the diameter of the unit hollow fiber membrane bundle is d is arranged at a position 1.5 to 3.0 d away from the center of the hollow fiber membrane bundle. This is a method for drying a hollow fiber membrane bundle.
In addition, a plurality of wet hollow fiber membrane bundles are arranged in parallel on the tray, and are placed in a microwave irradiation oven so that the longitudinal direction of the hollow fiber membrane bundles is at an angle of 45 degrees or less with respect to the horizontal. When the unit hollow fiber membrane bundle has a diameter d and the distance between adjacent hollow fiber membrane bundles is 1.5d or less, the distance between the center of the hollow fiber membrane bundles is 1. The hollow fiber membrane bundle drying method is characterized in that the number of hollow fiber membrane bundles arranged within 5d is within two.

本発明の中空糸膜束の乾燥方法は、従来公知技術であった中空糸膜束内に気体を通過させ乾燥の均一化を図る通風方式を併用することも可能ではあるが、あえて使用しなくても十分な乾燥が遂行できるので、この通風を施すための治具が不要で乾燥機の構造が簡略化される上に、被乾燥中空糸膜束をこの通風を施すための治具に固定する必要がないので被乾燥中空糸膜束の乾燥機へ配置する作業性が向上する。また、従来公知技術の課題であった被乾燥中空糸膜束の配置方向や通風の不均一性等による乾燥工程における被乾燥中空糸膜束の中空糸膜の折れ、配列乱れ等の中空糸膜の変形や収縮斑が抑制されるので、本発明方法で乾燥された乾燥中空糸膜束は、例えば、血液浄化用のモジュール組み立て工程におけるモジュール容器への中空糸膜束の挿入性が向上すると共に、次工程のモジュール組み立て時の接着作業が向上する。さらに、変形や収縮斑に起因した傾き中空糸膜、潰れ中空糸膜および目詰まり中空糸膜等の欠点中空糸膜の発生が抑制され、これらの欠点により引き起される残血性が改善されるという利点がある。また、中空糸膜の折れや傷発生が抑制されるので、血液リーク性が改善される。また、本発明においては湿潤状態の中空糸膜束が中空状の包装体で拘束されているので、被乾燥中空糸膜束の乾燥機へ配置する作業性が向上する上に、乾燥された中空糸膜束を用いて組立てるモジュールに装填する本数単位として中空状の包装体で拘束されており、乾燥された中空糸膜束をそのままモジュール容器に装填し、その後に包装体を抜き取ることにより中空糸膜束をモジュール容器に装填することができ、該装填の作業性が大幅に向上でき、装填時の欠点糸の発生が抑制されるという利点がある。その上、上記包装体で拘束された被乾燥中空糸膜束の複数本をトレイに固定し乾燥機に配置されるので被乾燥中空糸膜束の乾燥機への配置の作業性がより向上し、かつその複数本の中空糸膜束間の乾燥の均一性が発現できるようにその配置が特定化されており、乾燥工程のコストパフォーマンスが高いという利点を有する。   The drying method of the hollow fiber membrane bundle of the present invention can be used in combination with a conventionally known technique of passing a gas through the hollow fiber membrane bundle to make the drying uniform, but it is not used intentionally. However, since it is possible to perform sufficient drying, the jig for applying this ventilation is not required, the structure of the dryer is simplified, and the hollow fiber membrane bundle to be dried is fixed to the jig for applying this ventilation. Therefore, the workability of placing the hollow fiber membrane bundle to be dried in the dryer is improved. In addition, hollow fiber membranes such as broken or misaligned hollow fiber membranes in a drying process in the drying process due to the arrangement direction of the hollow fiber membrane bundles to be dried and the non-uniformity of ventilation, which has been a problem of the prior art Therefore, the dry hollow fiber membrane bundle dried by the method of the present invention improves the insertability of the hollow fiber membrane bundle into the module container in the module assembly process for blood purification, for example. Adhesion work at the time of module assembly in the next process is improved. Furthermore, the occurrence of defective hollow fiber membranes such as tilted hollow fiber membranes, crushed hollow fiber membranes and clogged hollow fiber membranes due to deformation and shrinkage spots is suppressed, and residual blood properties caused by these defects are improved. There is an advantage. In addition, since the hollow fiber membrane is prevented from being broken or damaged, blood leakage is improved. Further, in the present invention, since the wet hollow fiber membrane bundle is restrained by the hollow package, the workability of placing the hollow fiber membrane bundle to be dried in the dryer is improved, and the dried hollow fiber membrane bundle is It is restrained by a hollow packaging body as a unit of number to be loaded into a module to be assembled using a yarn membrane bundle. The membrane bundle can be loaded into the module container, and the workability of the loading can be greatly improved, and there is an advantage that generation of defective yarns during loading is suppressed. In addition, since a plurality of the hollow fiber membrane bundles to be dried restrained by the packaging body are fixed to the tray and arranged in the dryer, the workability of arranging the hollow fiber membrane bundles to be dried in the dryer is further improved. And the arrangement | positioning is specified so that the uniformity of drying between the several hollow fiber membrane bundles can be expressed, and it has the advantage that the cost performance of a drying process is high.

さらに、従来公知技術の課題であった通風方向、すなわち、中空糸膜束の長手方向における乾燥の不均一化が改善されるので、ポリビニルピロリドンの局所的な劣化が低減され、該劣化により生成する過酸化水素溶出量が抑制される。従って、本発明により得られた中空糸膜束は、該過酸化水素により引起されるポリビニルピロリドン等の劣化が抑制されるので、長期保存をしても透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の平均値を0.10以下に維持することができる利点がある。また、該乾燥の均一化により中空糸膜束の長手方向におけるポリビニルピロリドンの劣化の変動が小さく、中空糸膜束の長手方向における上記のUV(220−350nm)吸光度変動が抑制され、中空糸膜束の含水率が適度な範囲に設定されており、かつその変動率が抑制されているので、これらの変動により引き起こされる中空糸膜束の部分固着の発生が抑制され、モジュール組み立て性の優れた中空糸膜束が安定して製造できるという特徴を有する。また、該中空糸膜束の長手方向におけるUV(220−350nm)吸光度変動の抑制は、血液浄化用に使用した場合の安全性の向上にも繋がる。従って、慢性腎不全の治療に用いる高透水性を有する血液浄化器等に用いられる中空糸膜束の乾燥方法として好適であるいう利点がある。また、本発明のポリビニルピロリドンを含むポリスルホン系樹脂よりなる中空糸膜束は、上記の従来公知技術で得られる中空糸膜束の有する課題特性が改善されているので、血液浄化器等に好適に使用することができるという利点がある。さらに、本発明で得られた血液浄化用モジュールは、装填されている中空糸膜束が高性能で安全性や性能の安定性が高く、保存安定性に優れ、かつ残血糸が少ないという利点がある。   Furthermore, since the non-uniformity of drying in the ventilation direction, that is, the longitudinal direction of the hollow fiber membrane bundle, which has been a problem of the prior art, is improved, the local degradation of polyvinyl pyrrolidone is reduced and the degradation is generated by the degradation. Hydrogen peroxide elution amount is suppressed. Therefore, since the hollow fiber membrane bundle obtained by the present invention suppresses deterioration of polyvinyl pyrrolidone and the like caused by the hydrogen peroxide, it is UV that is a dialysis type artificial kidney device manufacturing approval standard even after long-term storage. There is an advantage that the average value of (220-350 nm) absorbance can be maintained at 0.10 or less. Further, the uniform drying makes the variation in the degradation of polyvinyl pyrrolidone in the longitudinal direction of the hollow fiber membrane bundle small, suppresses the above UV (220-350 nm) absorbance variation in the longitudinal direction of the hollow fiber membrane bundle, and the hollow fiber membrane. Since the moisture content of the bundle is set in an appropriate range and the fluctuation rate is suppressed, the occurrence of partial sticking of the hollow fiber membrane bundle caused by these fluctuations is suppressed, and the module assembly property is excellent. The hollow fiber membrane bundle is characterized in that it can be produced stably. Moreover, suppression of UV (220-350 nm) absorbance fluctuation in the longitudinal direction of the hollow fiber membrane bundle also leads to an improvement in safety when used for blood purification. Therefore, there is an advantage that it is suitable as a method for drying a hollow fiber membrane bundle used in a blood purifier having high water permeability used for the treatment of chronic renal failure. In addition, the hollow fiber membrane bundle made of the polysulfone-based resin containing polyvinylpyrrolidone of the present invention has improved the problem characteristics possessed by the hollow fiber membrane bundle obtained by the above-mentioned conventionally known technology, so it is suitable for blood purifiers and the like. There is an advantage that it can be used. Furthermore, the blood purification module obtained by the present invention has the advantages that the loaded hollow fiber membrane bundle has high performance, high safety and stability, excellent storage stability, and few residual blood threads. There is.

以下、本発明を詳細に説明する。
本発明は、湿潤状態の中空糸膜束の複数本をトレイに並列に配置し中空糸膜束の長手方向が水平に対して45度以下の角度になるようにマイクロ波照射オーブン中に配置して乾燥する方法において、単位中空糸膜束の直径をdとした時に隣接する中空糸膜束との間隔を中空糸膜束中心間距離で1.5d以上3.0d以下離した位置に配置すること、あるいは1.5d以内とした位置に配置したときに、その1.5d以内に配置される中空糸膜束の本数を2本以内とすることが好ましい。
中空糸膜束の角度は30度以下がより好ましく、0度、すなわち水平置きが最も好ましい。角度が45度超、例えば従来技術で開示されている90度である垂直に配置した場合は、中空糸膜束の乾燥の進行に従い、水により拘束されていた中空糸膜束の集合性が低下し中空糸膜束の動きの自由度が増し、例えば自重による変形である座屈が発生する可能性が高まる。該変形が起こると中空糸膜束の折れ曲がりに繋がる。また、中空糸膜束間の配列乱れに繋がり、モジュール組み立て時のモジュール容器への中空糸膜束の挿入性の低下、挿入時の中空糸膜束とモジュール容器あるいは中空糸膜束同士の擦れによる中空糸膜の傷や潰れ中空糸膜の発生および挿入した後の中空糸膜束を接着によりモジュール容器に固定する接着工程の作業性や接着作業による接着不良、傾き中空糸膜の発生や接着剤の中空糸膜内孔への接着剤の浸入による目詰まり中空糸膜の発生増大等の課題に繋がる。従って、本発明は中空糸膜束の直径(D)と長さ(L)との比であるL/Dが2以上の中空糸膜束の乾燥に適用するのが好ましい。L/Dが3以上の中空糸膜束の乾燥に適用するのがより好ましい。
Hereinafter, the present invention will be described in detail.
In the present invention, a plurality of wet hollow fiber membrane bundles are arranged in parallel on a tray, and are arranged in a microwave irradiation oven so that the longitudinal direction of the hollow fiber membrane bundle is at an angle of 45 degrees or less with respect to the horizontal. In the method of drying, the distance between adjacent hollow fiber membrane bundles when the diameter of the unit hollow fiber membrane bundle is d is arranged at a position 1.5 to 3.0 d away from the center of the hollow fiber membrane bundle. In other words, it is preferable that the number of hollow fiber membrane bundles arranged within 1.5d when arranged at a position within 1.5d be within two.
The angle of the hollow fiber membrane bundle is more preferably 30 degrees or less, and most preferably 0 degree, that is, horizontal placement. If the angle is more than 45 degrees, for example, 90 degrees disclosed in the prior art, the assembly of the hollow fiber membrane bundle restrained by water decreases as the drying of the hollow fiber membrane bundle progresses. The degree of freedom of movement of the hollow fiber membrane bundle increases, and the possibility that buckling, which is deformation due to its own weight, for example, increases. When the deformation occurs, the hollow fiber membrane bundle is bent. Moreover, it leads to the disorder of the arrangement between the hollow fiber membrane bundles, the insertability of the hollow fiber membrane bundle into the module container at the time of module assembly, and the friction between the hollow fiber membrane bundle and the module container or the hollow fiber membrane bundle at the time of insertion. Occurrence of flaws and crushing of hollow fiber membranes and bonding of hollow fiber membrane bundles after insertion to a module container by bonding, poor adhesion due to bonding operations, generation of inclined hollow fiber membranes and adhesives This leads to problems such as increased generation of clogged hollow fiber membranes due to the penetration of the adhesive into the hollow fiber membrane inner holes. Therefore, the present invention is preferably applied to drying of hollow fiber membrane bundles having a ratio L / D of 2 or more, which is the ratio of the diameter (D) to the length (L) of the hollow fiber membrane bundles. It is more preferable to apply to drying of hollow fiber membrane bundles having L / D of 3 or more.

本発明者らは、乾燥現場では、湿潤状態の被乾燥中空糸膜束の複数本をトレイに並列に配置してマイクロ波照射オーブン中に無造作に導入して乾燥するこすることがとかく多いが、一体如何なる乾燥仕様が、中空糸膜束の乾燥を均一にして、しかも品質管理に寄与するかという観点で検討した結果、そのマイクロ波照射オーブン中における中空糸膜束の配列も大きく関係しているということを知見したものである。これは、マイクロ波照射オーブン装置という特有の乾燥装置において、被乾燥中空糸膜束という特殊な対象物であるという関係において見られる新規な知見である。   In the drying site, the inventors often arrange a plurality of wet hollow fiber membrane bundles in a wet state in parallel on a tray and randomly introduce them into a microwave irradiation oven for drying. As a result of examining what drying specifications make the drying of the hollow fiber membrane bundle uniform and contributing to quality control, the arrangement of the hollow fiber membrane bundle in the microwave irradiation oven is also greatly related. It has been found that. This is a novel finding that is found in the relationship of a special object called a hollow fiber membrane bundle to be dried in a specific drying apparatus called a microwave irradiation oven apparatus.

本発明においては、湿潤状態の被乾燥中空糸膜束の複数本をトレイに並列に配置してマイクロ波照射オーブン中に導入する必要がある。この場合、乾燥機の効率の点では、出来るだけ中空糸膜束が最密充填されるように乾燥機内に導入、配置するのが好ましい。しかしながら、本発明におけるマイクロ波照射による乾燥方法では、複数本を最密充填になる配置で乾燥すると配置場所によるマイクロ波の照射エネルギーに差が生じ、中空糸膜束間の乾燥の均一性が低下するという課題に遭遇した。本発明者等はこの課題解決について鋭意検討を進め、本発明を完成した。すなわち、乾燥効率と乾燥の均一性のバランスをとること、すなわち、コストパフォーマンスを高めるには、隣接する中空糸膜束間に特定された空間を設ける必要があることを見出した。   In the present invention, it is necessary to place a plurality of wet hollow fiber membrane bundles in a wet state in parallel with the tray and introduce them into the microwave irradiation oven. In this case, from the viewpoint of the efficiency of the dryer, it is preferable to introduce and place it in the dryer so that the hollow fiber membrane bundle is packed as closely as possible. However, in the drying method using microwave irradiation according to the present invention, if a plurality of tubes are dried in a close-packed arrangement, there is a difference in microwave irradiation energy depending on the arrangement location, and the uniformity of drying between the hollow fiber membrane bundles is reduced. I encountered a challenge to do. The present inventors have intensively studied to solve this problem and completed the present invention. That is, it has been found that it is necessary to provide a specified space between adjacent hollow fiber membrane bundles in order to balance drying efficiency and drying uniformity, that is, to improve cost performance.

本発明の第一の方法は、単位中空糸膜束の直径をdとした時に隣接する中空糸膜束との間隔を中空糸膜束中心間距離で1.5d以上3.0d以下離した位置に配置することが好ましい。該間隔は縦、横および斜めのいずれの方向に対しても満足する必要がある。1.7d以上がより好ましく、1.9d以上がさらに好ましい。1.5d未満に配置した場合は、その本数が3本以上になると外側の中空糸膜束と中間部の中空糸膜束で乾燥速度に差が生じ中空糸膜束間の乾燥の均一性が低下する。中間部の中空糸膜束の乾燥速度が遅くなる。従って、中空糸膜束群の外側の中空糸膜束の含水率に合わせて乾燥を制御すると中間部の中空糸膜束が乾燥不足になる。逆に、中間部の中空糸膜束の含水率に合わせて乾燥を制御すると外側の中空糸膜束が過乾燥になり、全中空糸膜束の含水率を本発明が求める好ましい範囲に制御することができなくなる。この場合、1.5d以内に近接する中空糸膜束が2本の場合はこの現象が起こらないので許容される。従って、本発明の第二の方法は、1.5d以内とした位置に配置したときに、その1.5d以内に配置される中空糸膜束の本数を2本以内とすることが好ましい。この2本の配置は縦、横および斜めのいずれの方向に対しても満足する必要がある。すなわち、縦、横各2本の合計4本のブロックに関しては、該ブロック間の距離を1.5d以上にすることで上記課題は回避できる。第二の方法の方が最密充填に近づけられるのでコストパフォーマンスが高くより好ましい方法である。
The first method of the present invention is a position where the distance between adjacent hollow fiber membrane bundles when the diameter of the unit hollow fiber membrane bundle is d is 1.5 d or more and 3.0 d or less in the distance between the hollow fiber membrane bundle centers. It is preferable to arrange in. The interval needs to be satisfied in any of the vertical, horizontal, and diagonal directions. 1.7 d or more is more preferable, and 1.9 d or more is more preferable. When the number is less than 1.5d, when the number is 3 or more, there is a difference in drying speed between the outer hollow fiber membrane bundle and the middle hollow fiber membrane bundle, and the uniformity of drying between the hollow fiber membrane bundles is increased. descend. The drying speed of the hollow fiber membrane bundle in the middle part is slow. Therefore, if the drying is controlled in accordance with the moisture content of the hollow fiber membrane bundle outside the group of hollow fiber membrane bundles, the hollow fiber membrane bundle in the middle part becomes insufficiently dried. Conversely, when the drying is controlled in accordance with the moisture content of the hollow fiber membrane bundle in the middle part, the outer hollow fiber membrane bundle is overdried, and the moisture content of the entire hollow fiber membrane bundle is controlled within the preferred range required by the present invention. I can't do that. In this case, if there are two hollow fiber membrane bundles close to each other within 1.5d, this phenomenon does not occur and is allowed. Therefore, when the second method of the present invention is arranged at a position within 1.5 d, it is preferable that the number of hollow fiber membrane bundles arranged within 1.5 d is within two. These two arrangements must be satisfied in any of the vertical, horizontal and diagonal directions. In other words, regarding the total of four blocks in the vertical and horizontal directions, the above problem can be avoided by setting the distance between the blocks to 1.5 d or more. The second method is more preferable because it is close to the closest packing and has high cost performance.

単位中空糸膜束の直径dに基づく束の間隔を順次変化させ、その特定値における中空糸膜束の乾燥状況を、特に束の中心部、中間部および外周部の中空糸膜を採取して、その含水率を測定する。束のその含水率の測定値の最大較差に基づくバラツキ度を算定したものが、表5である。そして束の中心部、中間部および外周部から1本程度の中空糸膜を採取し、その端部、又長手方向における中間部という具合に同一条件の位置の部分を採取することが含水率のバランスの信頼値をあげるにおいて有益である。中空糸膜束間の距離が一定値、即ち1.5dを超えると、束の中心部、中間部および外周部の中空糸膜の含水率の測定値の最大較差が小さくなり安定した含水率の乾燥中空束が得られるということである。しかし、一方で中空糸膜束間の距離を大きくすると、乾燥の為のマイクロ波が少ない特定の中空糸膜束に集中する恐れがあり、その特定の中空糸膜束を著しく損傷させることになる。さらに、中空糸膜束間の距離を大きくすると、乾燥の為に乾燥機収納する中空糸膜束の数が減ることになり、生産性を著しく阻害することになる。それらのバランスを考慮すれば、上記に示す、1.5d以上、1.7d以上がより好ましく、1.9d以上がさらに好ましい。最大でも2.0d、場合によっては3.0d程度であることも有り得る。   The interval between the bundles based on the diameter d of the unit hollow fiber membrane bundle is sequentially changed. Measure its moisture content. Table 5 shows the degree of variation calculated based on the maximum difference in the measured moisture content of the bundle. And about one hollow fiber membrane is sampled from the central part, middle part and outer peripheral part of the bundle, and the part of the position of the same condition such as the end part and the middle part in the longitudinal direction is collected. It is useful in raising the confidence value of the balance. When the distance between the hollow fiber membrane bundles exceeds a certain value, that is, 1.5 d, the maximum difference in the measured values of the moisture content of the hollow fiber membranes at the center, middle, and outer periphery of the bundle becomes small, and the stable moisture content This means that a dry hollow bundle is obtained. However, on the other hand, if the distance between the hollow fiber membrane bundles is increased, there is a risk that the microwave for drying will concentrate on a specific hollow fiber membrane bundle with few microwaves, and that specific hollow fiber membrane bundle will be significantly damaged. . Furthermore, when the distance between the hollow fiber membrane bundles is increased, the number of hollow fiber membrane bundles stored in the dryer for drying is reduced, which significantly impedes productivity. Considering the balance, 1.5d or more and 1.7d or more are more preferable, and 1.9d or more are more preferable. It is possible that the maximum value is 2.0d, and in some cases, about 3.0d.

中空糸膜束の直径dに基づく束の間隔を順次変化させ、それと束の中心部s、中間部mおよび外周部uの中空糸膜の含水率の測定値から、大きい測定値を最大含水率U、一番小さい測定値の含水率を最小含水率Lとし、その三点の平均を平均含水率M(s+m+u/3)とする。その平均含水率Mと最大含水率Uとの較差(U−M)および平均含水率Mと最小含水率Lとの較差(M−L)を求め、その絶対値の大きい方の値を採用して、これをバラツキ度(±ΔB)とする。その直径dに基づく束の間隔とバラツキどの関係を求めたものが、図9である。この図9に示す傾向を見れば、1.5d以上の間隔では、バラツキ度として許容できるが、バラツキ度は、束の間隔距離が2d以上というように大きくなれば、一定値に収束することになる。このバラツキ度が大きいということは、束の中心部s、中間部mおよび外周部uの中空糸膜の含水率の較差が大きいということでもあり、束全体の均一な乾燥が達成されていないという指標にもなる。例えば中空糸膜の中心部の含水率が2質量%であり、外周部の含水率が4質量%のよう場合に、含水率の違いに起因する中空糸膜の部分固着性に違いができる。含水率の違いが乾燥条件の違いに基づくものであるから、それにより発生する過酸化水素の発生原因、傾き中空糸膜の割合などの別表に示す諸特性に少なからぬ影響をする。それ以前の問題として、中空糸膜束の乾燥を達成するにおいて、乾燥にアンバラを生じること自体が問題となることは明白である。   The bundle interval based on the diameter d of the hollow fiber membrane bundle is sequentially changed, and from the measured value of the moisture content of the hollow fiber membrane at the center portion s, the middle portion m, and the outer peripheral portion u of the bundle, The water content of the smallest measured value is the minimum water content L, and the average of the three points is the average water content M (s + m + u / 3). Find the difference between the average moisture content M and the maximum moisture content U (UM) and the difference between the average moisture content M and the minimum moisture content L (ML), and adopt the value with the larger absolute value. This is the variation degree (± ΔB). FIG. 9 shows the relationship between the bundle interval and the variation based on the diameter d. As can be seen from the tendency shown in FIG. 9, when the interval is 1.5d or more, the variation degree is acceptable. However, the variation degree converges to a constant value when the distance between the bundles becomes 2d or more. . That the degree of variation is large also means that the difference in the moisture content of the hollow fiber membranes at the center portion s, the middle portion m and the outer peripheral portion u of the bundle is large, and uniform drying of the entire bundle is not achieved. It also becomes an indicator. For example, when the water content in the center of the hollow fiber membrane is 2% by mass and the water content in the outer peripheral part is 4% by mass, the partial stickiness of the hollow fiber membrane due to the difference in water content can be different. Since the difference in moisture content is based on the difference in drying conditions, it has a considerable influence on the various characteristics shown in the attached table, such as the cause of the generation of hydrogen peroxide and the ratio of the inclined hollow fiber membrane. As a problem before that, it is obvious that in the drying of the hollow fiber membrane bundle, the unraveling of the drying itself becomes a problem.

上記方法により、トレイ上に配置した複数本数の中空糸膜束間の乾燥の均一性が確保できる理由は明確ではないが、マイクロ波の中空糸膜束への浸透距離が関与しているものと推察している。すなわち、中空糸膜束間の距離が1.5dを超えた場合は、各中空糸膜束の全面より均等にマイクロ波が照射されるが、中空糸膜束間距離が1.5d未満になると
隣接の中空糸膜束によるマイクロ波の遮蔽効果が生じ、中間部の中空糸膜束に到達するマイクロ波が減衰することにより照射エネルギーが低下し中間部の中空糸膜束の乾燥速度が遅くなると推察している。
Although the reason why the uniformity of drying between a plurality of hollow fiber membrane bundles arranged on a tray can be ensured by the above method is not clear, the penetration distance of microwaves into the hollow fiber membrane bundle is involved. I guess. That is, when the distance between the hollow fiber membrane bundles exceeds 1.5 d, the microwaves are evenly irradiated from the entire surface of each hollow fiber membrane bundle, but when the distance between the hollow fiber membrane bundles is less than 1.5 d When the microwave shielding effect by the adjacent hollow fiber membrane bundle is generated, and the microwave reaching the hollow fiber membrane bundle in the middle part is attenuated, the irradiation energy is reduced and the drying speed of the hollow fiber membrane bundle in the middle part is slowed down. I guess.

従って、単位中空糸膜束の直径dが25〜50mmであることが好ましい。30〜45mmがより好ましい。   Therefore, the diameter d of the unit hollow fiber membrane bundle is preferably 25 to 50 mm. 30 to 45 mm is more preferable.

本発明においては、乾燥上がりの中空糸膜束の含水率は1〜5質量%が好ましい。1.5〜4質量%がより好ましく、2〜3質量%がさらに好ましい。
本発明における中空糸膜束の含水率は、以下の式により計算した。
含水率%=100×(Ww−Wd)/Wd
ここで、Wwは乾燥前の選択透過性分離膜重量(g)、Wdは、120℃の乾熱オーブンで2時間乾燥後(絶乾後)の選択透過性分離膜重量(g)である。ここで、Wwは1〜2gの範囲内とすることで、2時間後に絶乾状態(これ以上重量変化がない状態)にすることができる。
In the present invention, the moisture content of the dried hollow fiber membrane bundle is preferably 1 to 5% by mass. 1.5-4 mass% is more preferable, and 2-3 mass% is further more preferable.
The moisture content of the hollow fiber membrane bundle in the present invention was calculated by the following formula.
Moisture content% = 100 × (Ww−Wd) / Wd
Here, Ww is the weight of the selectively permeable separation membrane before drying (g), and Wd is the weight of the selectively permeable separation membrane after drying for 2 hours (after absolutely dry) in a dry heat oven at 120 ° C. (g). Here, by setting Ww within the range of 1 to 2 g, it can be in an absolutely dry state (a state in which there is no further weight change) after 2 hours.

水分率が1質量%未満になるよう乾燥すると、中空糸膜束素材のポリビニルピロリドンの劣化が増大し、該劣化物の溶出量が増大し、かつ、中空糸膜束の長手方向の該溶出量の変動が大きくなり、例えば血液浄化用に用いる場合の安全性の低下に繋がる。また、中空糸膜束の長手方向での中空糸膜束の外表面における該劣化物等親水性化合物の表面濃度の変動が大きくなり、中空糸膜束の親水性化合物の表面濃度の高い部分で部分的な固着が発生するという課題に繋がる。該部分的な固着が発生するとモジュール組み立て性が悪化する等の問題に繋がる。さらに、過酸化水素の溶出量が増大し、かつ中空糸膜束の長手方向の該溶出量の変動が大きくなる。過酸化水素が存在すると、例えばポリビニルピロリドンの酸化劣化を促進し、中空糸膜束を保存した時に該ポリビニルピロリドンの溶出量が増加する。すなわち、保存安定性が悪化する。過酸化水素は中空糸膜束の特定部位に存在しても、その個所より中空糸膜束素材の劣化反応が開始され中空糸膜束の全体に伝播していくため、モジュールと用いられる中空糸膜束の長手方向の存在量が全領域に渡り、一定量以下を確保する必要がある。従って、過酸化水素溶出量が増大することは例え局部的といえども安全性の低下に繋がる。一方、5質量%を超えた場合は、保存時菌が増殖しやすくなったり、中空糸膜の自重により糸潰れが発生したり、モジュール組み立て時に接着剤の接着障害が発生する可能性があるため好ましくない。また、保存時菌が増殖しやすくなったり、中空糸膜の自重により糸潰れが発生したりすることに繋がる。   When dried so that the moisture content is less than 1% by mass, the degradation of polyvinyl pyrrolidone of the hollow fiber membrane bundle material increases, the elution amount of the degraded product increases, and the elution amount in the longitudinal direction of the hollow fiber membrane bundle The fluctuation of the pressure increases, leading to a decrease in safety when used for blood purification, for example. In addition, the variation in the surface concentration of the hydrophilic compound such as the deteriorated product on the outer surface of the hollow fiber membrane bundle in the longitudinal direction of the hollow fiber membrane bundle becomes large, and the surface concentration of the hydrophilic compound in the hollow fiber membrane bundle is high. This leads to the problem that partial sticking occurs. If the partial sticking occurs, it will lead to problems such as deterioration in module assembly. Furthermore, the elution amount of hydrogen peroxide increases, and the variation of the elution amount in the longitudinal direction of the hollow fiber membrane bundle increases. In the presence of hydrogen peroxide, for example, the oxidative degradation of polyvinyl pyrrolidone is promoted, and the amount of the polyvinyl pyrrolidone eluted increases when the hollow fiber membrane bundle is stored. That is, storage stability deteriorates. Even if hydrogen peroxide is present in a specific part of the hollow fiber membrane bundle, the degradation reaction of the hollow fiber membrane bundle material starts from that location and propagates to the entire hollow fiber membrane bundle. It is necessary to ensure a certain amount or less of the film bundle in the longitudinal direction over the entire region. Therefore, an increase in the hydrogen peroxide elution amount leads to a decrease in safety even if it is localized. On the other hand, if it exceeds 5% by mass, the bacteria may proliferate during storage, the hollow fiber membrane may be crushed by its own weight, or adhesive failure of the adhesive may occur during module assembly. It is not preferable. Moreover, it leads to that a microbe becomes easy to proliferate at the time of a preservation | save, or a thread crushing generate | occur | produces by the dead weight of a hollow fiber membrane.

上記の乾燥終了時の水分率管理の方法は限定されない。赤外線吸収法等によりオンライン計測をしても良いし、サンプリングによるオフライン計測で行っても良い。   The method for managing the moisture content at the end of drying is not limited. Online measurement may be performed by an infrared absorption method or the like, or offline measurement by sampling may be performed.

本発明においては、中空状の包装体で拘束しトレイ上に配置するのが好ましい。このことにより中空糸膜束の取り扱い性が向上し、配置の作業性が改善される。この場合の湿潤状態の中空糸膜束の拘束は次工程のモジュール組み立てに配慮して行うのが好ましい。すなわち、モジュールに必要な単位の本数の中空糸膜束をモジュールのハウジングの内径より少し小さめの包装体で拘束し、乾燥された中空糸膜束を包装体ごとにハウジング内に挿入し、挿入された状態で包装体のみを抜き出すことにより乾燥中空糸膜束のハウジングへの挿入の作業性や該作業における中空糸膜の傷発生等のトラブル発生を抑制することができるので特に好ましい方法として推奨される。該方法においては、被乾燥中空糸膜束の単位長さも得られた乾燥中空糸膜束を充填するモジュールのハウジングの長さに見合う長さに設定するのが好ましい。この場合、乾燥による中空糸膜束の収縮度を配慮して被乾燥中空糸膜束の長さの設定をすることが好ましい。   In the present invention, it is preferable to constrain with a hollow package and place it on a tray. This improves the handleability of the hollow fiber membrane bundle and improves the workability of the arrangement. In this case, it is preferable to restrain the wet hollow fiber membrane bundle in consideration of module assembly in the next step. That is, the number of units of the hollow fiber membrane bundle required for the module is constrained by a package that is slightly smaller than the inner diameter of the module housing, and the dried hollow fiber membrane bundle is inserted into the housing for each package. It is recommended as a particularly preferable method because it is possible to suppress the occurrence of troubles such as the workability of inserting the dry hollow fiber membrane bundle into the housing and the occurrence of scratches on the hollow fiber membrane in the work by pulling out only the package in a state where The In this method, it is preferable to set the unit length of the hollow fiber membrane bundle to be dried to a length corresponding to the length of the housing of the module filled with the obtained dry hollow fiber membrane bundle. In this case, it is preferable to set the length of the hollow fiber membrane bundle to be dried in consideration of the degree of shrinkage of the hollow fiber membrane bundle due to drying.

湿潤状態の中空糸膜束の長さの設定は、乾燥された中空糸膜束を装填するモジュール用ハウジング長さをA(mm)、該モジュール組立て時の中空糸膜束両端部の切り代を合わせた長さをB(mm)とした時に中空糸膜束の乾燥上がりでA+B(mm)に設定するのが好ましい。   The length of the wet hollow fiber membrane bundle is set by setting the length of the module housing for loading the dried hollow fiber membrane bundle to A (mm). When the combined length is B (mm), it is preferably set to A + B (mm) after the hollow fiber membrane bundle is dried.

また、中空状の包装体は断面形状が円形であるプラスチックよりなり、その外径が乾燥中空糸膜束を装填するモジュールのハウジングの内径の70〜99.9%であることが好ましい実施態様である。中空状の包装体の外径が乾燥中空糸膜束を装填するモジュールのハウジングの内径の80〜99.0%がより好ましく、90〜98.0%がさらに好ましい。99.9%を超えた場合は、該包装体をモジュールのハウジングの装填が困難になるので好ましくない。逆に70%未満では、モジュール内の中空糸膜束の占める空間が小さくなるため、モジュール内に無駄な空間が生じたり、中空糸膜束のモジュール内での位置の偏りが生じ、例えば、血液浄化器として使用する場合に、透析液の偏流が起こり易くなり透析効率の低下に繋がる。また、中空糸膜束をハウジング内に固定する接着工程の作業性も低下する。   In a preferred embodiment, the hollow package is made of plastic having a circular cross-sectional shape, and the outer diameter thereof is 70 to 99.9% of the inner diameter of the housing of the module loaded with the dry hollow fiber membrane bundle. is there. The outer diameter of the hollow package is more preferably 80 to 99.0%, more preferably 90 to 98.0%, of the inner diameter of the housing of the module loaded with the dry hollow fiber membrane bundle. If it exceeds 99.9%, it becomes difficult to load the package into the module housing. On the other hand, if it is less than 70%, the space occupied by the bundle of hollow fiber membranes in the module becomes small, so a useless space is created in the module, or the position of the hollow fiber membrane bundle is uneven in the module. When used as a purifier, the dialysis fluid is liable to drift, leading to a reduction in dialysis efficiency. Moreover, the workability | operativity of the adhesion | attachment process which fixes a hollow fiber membrane bundle in a housing also falls.

中空状の包装体の厚みは0.05〜1mmが好ましい。0.1〜0.8mmがより好ましく、0.15〜0.7mmがさらに好ましい。0.05mm未満では形状の保持性が低下し、変形しやすくなり中空糸膜束の形状変形の発生やハウジングへの装填の作業性の悪化に繋がるので好ましくない。逆に、1mmを超えた場合は、形状の保持性や装填の作業性の改善効果が飽和し過剰品質になる。   The thickness of the hollow package is preferably 0.05 to 1 mm. 0.1-0.8 mm is more preferable and 0.15-0.7 mm is further more preferable. If the thickness is less than 0.05 mm, the shape retainability is lowered, the shape is easily deformed, the shape deformation of the hollow fiber membrane bundle is generated, and the workability of loading into the housing is deteriorated. On the other hand, if the thickness exceeds 1 mm, the effect of improving the shape retention and loading workability is saturated, resulting in excessive quality.

中空状の包装体で拘束される中空糸膜束の充填密度は、中空状の包装体の断面積に対して、拘束される中空糸膜束の各中空糸膜の外径断面積の総和で40〜90容量%が好ましい。43〜80容量%が好ましく、46〜70容量%がさらに好ましい。40容量%未満ではモジュール組立て後のモジュール内での無駄な空間体積が増大し、モジュールの径が大きくなるので好ましくない。また、例えば、血液浄化器として用いる場合に透析液の偏流が起こり透析効率の低下に繋がるので好ましくない。逆に90容量%を超えた場合は、乾燥中空糸膜束のハウジングへの装填の作業時の中空状の包装体を抜き取る際の抜き取りの作業性が低下する上に中空糸膜の潰れや傷の発生が起こり易くなり、欠点糸の発生に繋がるので好ましくない。また、中空糸膜束をハウジング内に固定する接着工程において、中空糸膜間の空間への接着剤の浸透性が低下し接着不良個所の増加にも繋がるので好ましくない。   The filling density of the hollow fiber membrane bundle restrained by the hollow packaging body is the sum of the outer diameter cross-sectional areas of the hollow fiber membranes of the hollow fiber membrane bundle restrained relative to the cross-sectional area of the hollow packaging body. 40 to 90% by volume is preferred. 43-80 volume% is preferable and 46-70 volume% is more preferable. If it is less than 40% by volume, useless space volume in the module after assembling the module is increased, and the diameter of the module is increased. Also, for example, when used as a blood purifier, the dialysate drifts and leads to a decrease in dialysis efficiency, which is not preferable. On the other hand, if it exceeds 90% by volume, the workability of extraction when the hollow packaging body is extracted when the dry hollow fiber membrane bundle is loaded into the housing is deteriorated, and the hollow fiber membrane is crushed or damaged. Is likely to occur, leading to the generation of defective yarns. In addition, in the bonding step of fixing the hollow fiber membrane bundle in the housing, the permeability of the adhesive into the space between the hollow fiber membranes is lowered, leading to an increase in the number of defective bonding points, which is not preferable.

上記の湿潤状態の中空糸膜束を拘束する中空状の包装体の材質は、1MHzでの誘電率と誘電正接の積が0.02以下である樹脂より選択するのが好ましい。0.018以下がより好ましく、0.016以下がさらに好ましい。該樹脂としてはポリエチレンやポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート系樹脂、ポリスルホン樹脂やエーテルスルホン樹脂等のポリスルホン系樹脂、ポリエーテルエーテルケトン樹脂およびポリイミド樹脂等が挙げられる。該樹脂を用いることによりマイクロ波の透過性が向上し、中空糸膜束の乾燥の均一性が向上するので好ましい。ポリオレフィン系樹脂は1MHzでの誘電率と誘電正接の積が0.0005以下と極めて低い上に、柔らかく、かつ中空糸膜束の滑り性がよく、中空糸膜の挿入や抜き取りの折に中空糸膜束に傷が付き難いという長所も兼ね備えているので特に好ましい。
一方、ポリ塩化ビニル樹脂、ポリメチルメタアクリレート樹脂およびポリカーボネート樹脂等の1MHzでの誘電率と誘電正接の積が0.02を超える樹脂を用いた場合は、マイクロ波の透過性が低下するために包装体が加熱され、拘束された中空糸膜束の包装体と接触部あるいは近傍の中空糸膜の温度が上昇し、中空糸膜中のポリビニルピロリドンの劣化の増大や中空糸膜の長手方向の乾燥の均一性の低下および中空糸膜の収縮等が増大するので好ましくない。
The material of the hollow package that restrains the wet hollow fiber membrane bundle is preferably selected from resins whose product of dielectric constant and dielectric loss tangent at 1 MHz is 0.02 or less. 0.018 or less is more preferable, and 0.016 or less is more preferable. Examples of the resin include polyolefin resins such as polyethylene and polypropylene, polyethylene terephthalate resins, polysulfone resins such as polysulfone resins and ether sulfone resins, polyether ether ketone resins, and polyimide resins. Use of the resin is preferable because microwave permeability is improved and drying uniformity of the hollow fiber membrane bundle is improved. Polyolefin resin has a very low product of dielectric constant and dielectric loss tangent at 1 MHz of 0.0005 or less, is soft, and has a good sliding property of the hollow fiber membrane bundle. This is particularly preferable because it also has the advantage that the film bundle is hardly damaged.
On the other hand, if a resin whose dielectric constant and dielectric loss tangent at 1 MHz exceeds 0.02, such as polyvinyl chloride resin, polymethyl methacrylate resin, and polycarbonate resin, the microwave transmission is reduced. When the package is heated, the temperature of the constrained hollow fiber membrane bundle and the hollow fiber membrane in contact with or in the vicinity thereof increases, and the deterioration of polyvinylpyrrolidone in the hollow fiber membrane increases or the longitudinal direction of the hollow fiber membrane increases. This is not preferable because the drying uniformity and shrinkage of the hollow fiber membrane increase.

また、該包装体は、シームレスのチューブ状包装体を用いる方法が好ましい。例えば、中空状のパイプ等を用いるのが好ましい。特に、フィルムやシートを予め溶断シール等でチューブ状に成型したものに湿潤状態の中空糸膜束を充填するのがより好ましい。   The package is preferably a method using a seamless tube-shaped package. For example, it is preferable to use a hollow pipe or the like. In particular, it is more preferable to fill a hollow fiber membrane bundle in a wet state into a film or sheet that has been previously formed into a tube shape by a fusing seal or the like.

上記の中空糸膜束を固定するトレイの構造は前記要件を満たすような配置に固定できるものであれば限定はされない。トレイの形状も限定なく、湿潤状態の中空糸膜束が拘束された包装体の形状の窪みをつけたり、包装体が固定できる突起を付けて包装体を固定する方式、中空状の空間を設け該空間に包装体を収納し固定する方式等が挙げられる。トレイの上面に包装体の形状に合わせた半円形の窪みを付けて、この窪みに包装体で拘束された被乾燥中空糸膜束を固定する方式が作業性の点より好ましい。該トレイは水平方向と垂直方向の両方に複数本の中空糸膜束が配置された形態であっても、水平あるいは垂直方向のみ複数本配置され、反対方向は単数本とした分割トレイを複数個組み合わせて単位トレイとしてもよい。取り扱い性より水平方向に複数本配列した分割トレイを複数個積み上げて単位トレイとする方法が推奨される。   The structure of the tray for fixing the hollow fiber membrane bundle is not limited as long as it can be fixed in an arrangement that satisfies the above requirements. There is no limitation on the shape of the tray, and a method of fixing the package by attaching a recess in the shape of the package in which a bundle of hollow fiber membranes in a wet state is constrained, or by attaching a protrusion that can fix the package, Examples include a method of storing and fixing the package in the space. From the viewpoint of workability, it is preferable to attach a semicircular recess according to the shape of the package on the upper surface of the tray and fix the dried hollow fiber membrane bundle restrained by the package in this recess. Even if the tray has a configuration in which a plurality of hollow fiber membrane bundles are arranged in both the horizontal direction and the vertical direction, a plurality of divided trays are arranged only in the horizontal or vertical direction, and in the opposite direction are single pieces. A unit tray may be combined. From the viewpoint of handling, a method of stacking a plurality of divided trays arranged in a horizontal direction to form a unit tray is recommended.

上記セットトレイに配する中空糸膜束の本数は、前記要件を満たせば限定されずマイクロ波乾燥機のサイズや構造により適宜選択すればよいが、縦に2〜4本、横に2〜6本が好ましい。すなわち、横方向に2〜6本の中空糸膜束を並列に固定した単位トレイを2〜4段積み上げてセットトレイとするのが好ましい。   The number of hollow fiber membrane bundles arranged on the set tray is not limited as long as the above requirements are satisfied, and may be appropriately selected depending on the size and structure of the microwave dryer, but 2 to 4 vertically and 2 to 6 horizontally. Books are preferred. That is, it is preferable that 2 to 4 unit trays each having 2 to 6 hollow fiber membrane bundles fixed in parallel in the lateral direction are stacked to form a set tray.

上記トレイの材質は、中空糸膜束を拘束する中空状の包装体の材質と同様に、1MHzでの誘電率と誘電正接の積が0.02以下である樹脂より選択するのが好ましい。0.018以下がより好ましく、0.016以下がさらに好ましい。該樹脂としては上述のごとくポリエチレンやポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート系樹脂、ポリスルホン樹脂やポリエーテルスルホン樹脂等のポリスルホン系樹脂、ポリエーテルエーテルケトン樹脂およびポリイミド樹脂等が挙げられる。該樹脂を用いることによりマイクロ波の透過性が向上し、トレイの発熱が抑制され、中空糸膜束の乾燥の均一性が向上するので好ましい。繰り返し使用の必要があるので、耐熱性の優れたポリスルホン系樹脂やポリエーテルエーテルケトン樹脂の使用が好ましい。一方、ポリ塩化ビニル樹脂、ポリメチルメタアクリレート樹脂およびポリカーボネート樹脂等の1MHzでの誘電率と誘電正接の積が0.02を超える樹脂を用いた場合は、マイクロ波の透過性が低下するためにトレイの発熱が増大し、トレイと接触している部分の包装体やその近傍の中空糸膜束の温度が上昇し、その部分の中空糸膜中のポリビニルピロリドンの劣化の増大や中空糸膜の長手方向の乾燥の均一性が低下、中空糸膜の収縮が増大し各中空糸膜束内での品質変動が増大するので好ましくない。   The material of the tray is preferably selected from resins having a product of a dielectric constant and a dielectric loss tangent at 1 MHz of 0.02 or less, like the material of the hollow packaging body that restrains the hollow fiber membrane bundle. 0.018 or less is more preferable, and 0.016 or less is more preferable. Examples of the resin include polyolefin resins such as polyethylene and polypropylene, polyethylene terephthalate resins, polysulfone resins such as polysulfone resins and polyethersulfone resins, polyetheretherketone resins, and polyimide resins. Use of the resin is preferable because microwave permeability is improved, heat generation of the tray is suppressed, and drying uniformity of the hollow fiber membrane bundle is improved. Since it is necessary to use it repeatedly, it is preferable to use a polysulfone resin or a polyether ether ketone resin having excellent heat resistance. On the other hand, if a resin whose dielectric constant and dielectric loss tangent at 1 MHz exceeds 0.02, such as polyvinyl chloride resin, polymethyl methacrylate resin, and polycarbonate resin, the microwave transmission is reduced. The heat generation of the tray increases, the temperature of the package in the part in contact with the tray and the hollow fiber membrane bundle in the vicinity thereof increases, the deterioration of polyvinylpyrrolidone in the hollow fiber membrane of the part increases, and the hollow fiber membrane This is not preferable because the uniformity of drying in the longitudinal direction is lowered, the shrinkage of the hollow fiber membranes is increased, and the quality variation in each hollow fiber membrane bundle is increased.

本発明においては、上記トレイで固定された被乾燥中空糸膜束を回転機能を有する水平に設定されたテーブル上に配置し、回転させながら乾燥することが好ましい。また、中空糸膜束が回転中心に対して略放射状になるようにトレイを回転テーブル上に配することが好ましい。略等間隔に配するのがより好ましい。該対応により後述の実施事項との相乗効果により、被乾燥中空糸膜束の長手方向を含めた被乾燥中空糸膜束の乾燥の均一性を向上させることができる。本方法によれば、回転テーブルの上に置くのみで配置ができるので乾燥機への被乾燥中空糸膜束の配置の作業が極めて単純で効率的に行うことができる。また、テーブルを回転させることにより被乾燥中空糸膜束に照射されるマイクロ波のエネルギーが均一化でき、被乾燥中空糸膜束の乾燥の均一性を向上させることができる。該テーブルの回転数は3〜20rpmが好ましい。なお、テーブル上のトレイの配置場所にトレイの形状の窪みを付けたり、逆に、トレイが固定できる突起を付けてトレイの配置場所を特定化し配置の作業性を向上させる等の手段をとることも好ましい実施態様である。分割トレイ方式の場合は、予め単位トレイに組立ててから回転テーブルに固定してもよいし、回転テーブル上で単位トレイの組立てを行ってもよい。また、上記乾燥の前工程である遠心脱水工程のトレイと乾燥工程のトレイを共用し、本乾燥工程に用いるトレイに中空糸膜束を固定し遠心脱水を行ない、そのまま乾燥工程に流す方法を採用してもよい。本方式は作業性がより向上するので好ましい実施態様として推奨される。   In the present invention, it is preferable that the hollow fiber membrane bundle to be dried fixed by the tray is placed on a horizontally set table having a rotation function and dried while rotating. Moreover, it is preferable to arrange | position a tray on a rotary table so that a hollow fiber membrane bundle may become substantially radial with respect to a rotation center. More preferably, they are arranged at substantially equal intervals. Due to this correspondence, the uniformity of drying of the hollow fiber membrane bundle to be dried including the longitudinal direction of the hollow fiber membrane bundle to be dried can be improved by a synergistic effect with the implementation items described later. According to this method, since it can arrange | position only by putting on a rotary table, the operation | work of arrangement | positioning of the to-be-dried hollow fiber membrane bundle to a dryer can be performed very simply and efficiently. Further, by rotating the table, the energy of the microwave irradiated to the hollow fiber membrane bundle to be dried can be made uniform, and the drying uniformity of the hollow fiber membrane bundle to be dried can be improved. The rotation speed of the table is preferably 3 to 20 rpm. Take measures such as adding a dent in the shape of the tray to the location of the tray on the table, or conversely, adding a protrusion that can fix the tray to identify the location of the tray and improve the workability of the placement. Is also a preferred embodiment. In the case of the divided tray system, the unit tray may be assembled in advance and then fixed to the rotary table, or the unit tray may be assembled on the rotary table. In addition, the centrifugal dehydration process tray, which is the previous process of drying, is shared with the drying process tray, the hollow fiber membrane bundle is fixed to the tray used for the main drying process, centrifugal dehydration is performed, and the flow is directly passed to the drying process. May be. This method is recommended as a preferred embodiment because it improves workability.

上記回転テーブルは金属製の回転保持具上に厚みが3mm以上のプラスチック製のスペーサーを設置した構造よりなり、該スペーサーの上にトレイを設置するのが好ましい。スペーサーの厚みは4mm以上がより好ましく、5mm以上がさらに好ましい。プラスチック製のスペーサーの厚みが3mm未満では、該プラスチック製のスペーサーを支える金属製の回転保持具でマイクロ波が反射され、該反射されたマイクロ波により回転保持具側の中空糸膜の乾燥が促進され、被乾燥中空糸膜束の加熱の均一性が低下し本発明の効果が低下するので好ましくない。該プラスチック製のスペーサーの材質も限定されず、ポリプロピレン、ポリエチレンテレフタレート等の汎用性樹脂であっても構わないが、耐熱性の点より、ポリカーボネート、ポリスルホン系樹脂、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、アラミド、全芳香族ポリエステル等のいわゆるエンジニアリンプラスチックよりなるものが好ましい。ポリスルホン系樹脂が好ましい。回転保持具を含めてプラスチック製にすることも本発明の範疇に含まれる。   The rotary table has a structure in which a plastic spacer having a thickness of 3 mm or more is installed on a metal rotary holder, and a tray is preferably installed on the spacer. The thickness of the spacer is more preferably 4 mm or more, and further preferably 5 mm or more. When the thickness of the plastic spacer is less than 3 mm, the microwave is reflected by the metal rotating holder that supports the plastic spacer, and the reflected microwave accelerates the drying of the hollow fiber membrane on the rotating holder side. In addition, the uniformity of heating of the hollow fiber membrane bundle to be dried is lowered, and the effect of the present invention is lowered. The material of the plastic spacer is not limited and may be a general-purpose resin such as polypropylene or polyethylene terephthalate. However, from the viewpoint of heat resistance, polycarbonate, polysulfone resin, polyether ether ketone, polyphenylene sulfide, aramid Those made of so-called engineering plastics such as wholly aromatic polyesters are preferred. Polysulfone resin is preferred. It is also included in the scope of the present invention to make the plastic including the rotating holder.

本発明における上記回転テーブルの位置は、単位トレイの被乾燥中空糸膜束群の中心点がマイクロ波発振器の導波管出口の中心部付近になるように設定するのがよい。   The position of the rotary table in the present invention is preferably set so that the center point of the dry hollow fiber membrane bundle group of the unit tray is near the center of the waveguide outlet of the microwave oscillator.

本発明方法で得られる中空糸膜束が具備すべき第一の特性は、前述のごとく、単位トレイ中の中空糸膜束の乾燥上がりの中空糸膜束中の含水率が全本数ともに1〜5質量%であることが好ましい。   As described above, the first characteristic of the hollow fiber membrane bundle obtained by the method of the present invention is that, as described above, the moisture content in the hollow fiber membrane bundle after drying of the hollow fiber membrane bundle in the unit tray is from 1 to all. It is preferably 5% by mass.

本発明方法で得られる中空糸膜束が具備すべき第二の特性は、乾燥時の中空糸膜束中の中空糸膜の長手方向の収縮率変動幅が特定範囲であることが好ましい。すなわち、乾燥終了後の中空状の包装体で拘束された中空糸膜束の外周部と内周部との中空糸膜長さの平均値の差が3mm以内であることが好ましい。
ここで、中空糸膜束の外周部とは、中空糸膜束の円形断面において、中心点からの半径の1/4の外周部をいう。また、内周部とは中心点からの半径の1/4の内周部をいう。中空糸膜長さの平均値とは、外周部および内周部よりサンプリングされた中空糸膜よりそれぞれ500本をランダムに採取し、それぞれ500本の全てについて以下の方法でその糸長を測定しその平均値を求めたものである。
(糸長の測定法)
各中空糸膜の両端をそれぞれ端部より5mm内部をコクヨWクリップ口幅15mm、豆(コクヨ社製:クリーJ36)で挟み、一方のクリップを固定、もう一方のクリップをフリーとして中空糸膜を吊り下げ、この状態で糸長を定規にて測定する。
As for the second characteristic that the hollow fiber membrane bundle obtained by the method of the present invention should have, it is preferable that the fluctuation range of the shrinkage rate in the longitudinal direction of the hollow fiber membrane in the hollow fiber membrane bundle during drying is in a specific range. That is, it is preferable that the difference in the average value of the hollow fiber membrane length between the outer peripheral portion and the inner peripheral portion of the hollow fiber membrane bundle constrained by the hollow package after the drying is within 3 mm.
Here, the outer peripheral portion of the hollow fiber membrane bundle refers to an outer peripheral portion of ¼ of the radius from the center point in the circular cross section of the hollow fiber membrane bundle. Further, the inner peripheral portion means an inner peripheral portion having a quarter of the radius from the center point. The average value of the length of the hollow fiber membrane is that 500 pieces are randomly sampled from the hollow fiber membranes sampled from the outer peripheral portion and the inner peripheral portion, and the yarn length is measured for all 500 pieces by the following method. The average value is obtained.
(Measurement method of yarn length)
Each hollow fiber membrane is sandwiched between KOKUYO W clip mouth width 15 mm and beans (Kokuyo Co., Ltd .: Cree J36), 5 mm from both ends of each hollow fiber membrane, one clip is fixed, and the other clip is free Suspend and measure the yarn length with a ruler in this state.

中空糸膜長さの平均値の差は2mm以下がより好ましく、1mm以下がさらに好ましい。中空糸膜長さの平均値の差が3mmを超えた場合は、該中空糸膜束を用いてモジュール化した場合に、後述のごとく傾き中空糸膜の割合や目詰まり糸の割合が増大し、例えば血液浄化用に用いた場合の残血糸の増大に繋がるので好ましくない。   The difference in the average value of the hollow fiber membrane length is more preferably 2 mm or less, and further preferably 1 mm or less. If the difference in the average value of the hollow fiber membrane length exceeds 3 mm, when the hollow fiber membrane bundle is used as a module, the ratio of the inclined hollow fiber membrane and the ratio of clogged yarn increase as described later. This is not preferable because it leads to an increase in residual blood thread when used for blood purification, for example.

上記特性は、本発明の乾燥方法を実施することにより容易に達成することができる。本発明の乾燥方法の構成要件の総和の効果として発現されるが、中でも前述した包装体やトレイの材質選択の効果の寄与が大きい。   The above characteristics can be easily achieved by carrying out the drying method of the present invention. Although expressed as an effect of the sum of the constituent requirements of the drying method of the present invention, the contribution of the effect of selecting the material of the package or tray described above is significant.

本発明においては、以下の要件を満たすことも好ましい実施態様である。
本発明者等は、前述のごとく透析型人工腎臓装置製造承認基準により定められた試験法で抽出された抽出液中には、従来公知のUV吸光度では測定できない過酸化水素が含まれていることを見出した。該過酸化水素が存在すると、例えばポリビニルピロリドンの酸化劣化を促進し、中空糸膜束を保存した時にポリビニルピロリドンの溶出量が増加する事を見出した。さらに、過酸化水素は中空糸膜束の特定部位に存在しても、その個所より中空糸膜束素材の劣化反応が開始され中空糸膜束の全体に伝播していくため、モジュールと用いられる中空糸膜束の長手方向の存在量が全領域に渡り、一定量以下を確保する必要がある事を見出した。従来公知の方法で実施した場合は、該過酸化水素の溶出量が多くなり該中空糸膜束を長期保存した場合にポリビニルピロリドンの酸化劣化が促進され、経時によりUV(220〜350nm)吸光度が増加するという課題が発生することを見出した。
In the present invention, satisfying the following requirements is also a preferred embodiment.
The inventors of the present invention, as described above, that the extract extracted by the test method defined by the dialysis-type artificial kidney device manufacturing approval standard contains hydrogen peroxide that cannot be measured by a conventionally known UV absorbance. I found. It has been found that the presence of hydrogen peroxide accelerates the oxidative degradation of polyvinylpyrrolidone, for example, and increases the elution amount of polyvinylpyrrolidone when the hollow fiber membrane bundle is stored. Furthermore, even if hydrogen peroxide is present in a specific part of the hollow fiber membrane bundle, the deterioration reaction of the hollow fiber membrane bundle material starts from that point and propagates to the entire hollow fiber membrane bundle, so it is used as a module. It has been found that the abundance of the hollow fiber membrane bundle in the longitudinal direction needs to ensure a certain amount or less over the entire region. When carried out by a conventionally known method, the elution amount of the hydrogen peroxide increases, and when the hollow fiber membrane bundle is stored for a long time, the oxidative degradation of polyvinylpyrrolidone is promoted, and the UV (220 to 350 nm) absorbance increases with time. We found that the problem of increasing would occur.

すなわち、以下に示す特性の中空糸膜束が得られることが好ましい。すなわち、本発明方法で得られる中空糸膜束が具備すべき第三の特性は、中空糸膜束の保存安定性を支配する中空糸膜束の過酸化水素溶出量に関する特性であり、中空糸膜束を長手方向に10個に分割し、各々を透析型人工腎臓装置製造承認基準により定められた試験を実施したとき、10個に分割したすべての部位で抽出液中の過酸化水素濃度が5ppm以下あることが好ましい。ここで、透析型人工腎臓装置製造承認基準の溶出試験は、該分割した中空糸膜束から1gをはかりとる。これに100mlの純水を加え、70℃で1時間抽出を行い、抽出液のUV(220−350nm)吸光度を測定するものであるが、該抽出液中の過酸化水素を定量することにより求めたものである。   That is, it is preferable to obtain a hollow fiber membrane bundle having the following characteristics. That is, the third characteristic that the hollow fiber membrane bundle obtained by the method of the present invention should have is a characteristic relating to the hydrogen peroxide elution amount of the hollow fiber membrane bundle that governs the storage stability of the hollow fiber membrane bundle. When the membrane bundle is divided into 10 pieces in the longitudinal direction, and each of them is subjected to the test defined by the dialysis-type artificial kidney device manufacturing approval standard, the concentration of hydrogen peroxide in the extract at all the divided portions is 10. It is preferably 5 ppm or less. Here, the elution test of the dialysis-type artificial kidney device manufacturing approval standard measures 1 g from the divided hollow fiber membrane bundle. 100 ml of pure water is added to this, extraction is performed at 70 ° C. for 1 hour, and the UV (220-350 nm) absorbance of the extract is measured. It is obtained by quantifying hydrogen peroxide in the extract. It is a thing.

該過酸化水素溶出量は、4ppm以下がより好ましく、3ppm以下がさらに好ましい。過酸化水素の溶出量が5ppmを超えた場合は、過酸化水素による酸化劣化等で前記の保存安定性が悪化し、例えば、長期保存した場合にポリビニルピロリドンの溶出量が増大することがある。保存安定性としては、該ポリビニルピロリドンの溶出量の増加が最も顕著な現象であるが、その他、ポリスルホン系高分子の劣化が引き起こされて中空糸膜束が脆くなるとか、モジュール組み立てに用いるポリウレタン系接着剤の劣化を促進し該劣化物の溶出量が増加し安全性の低下に繋がる可能性がある。該長期保存における過酸化水素の酸化作用により引き起こされる劣化起因の溶出量の増加は透析型人工腎臓装置製造承認基準により設定されているUV(220−350nm)吸光度の測定により評価できる。
従って、本発明においては、本発明により得られた乾燥中空糸膜束をドライボックス中(雰囲気は空気)に室温で3ヶ月保存した後の中空糸膜束を長手方向に10個に分割し、各々を透析型人工腎臓装置製造承認基準により定められた試験を実施したとき、中空糸膜の抽出液におけるUV(220〜350nm)吸光度が平均値で0.10以下であることが好ましい。5ヶ月以上保存しても上記特性が維持されるのがより好ましい。そのためには、3ヶ月保存後のUV(220〜350nm)吸光度が0.08以下であることがより好ましく、0.06以下であることがさらに好ましい。中空糸膜束の製造工程、輸送および在庫用の保管等で乾燥状態の中空糸膜束を保管することを考慮すると上記特性の付与が好ましい。
The hydrogen peroxide elution amount is more preferably 4 ppm or less, and further preferably 3 ppm or less. When the elution amount of hydrogen peroxide exceeds 5 ppm, the storage stability is deteriorated due to oxidative degradation due to hydrogen peroxide, and the elution amount of polyvinylpyrrolidone may increase when stored for a long period of time, for example. As for storage stability, the increase in the amount of polyvinylpyrrolidone eluted is the most remarkable phenomenon. In addition, the deterioration of the polysulfone-based polymer causes the hollow fiber membrane bundle to become brittle, or the polyurethane system used for module assembly. There is a possibility that the deterioration of the adhesive is promoted, the amount of elution of the deteriorated product is increased, and the safety is lowered. The increase in the amount of elution due to deterioration caused by the oxidizing action of hydrogen peroxide in the long-term storage can be evaluated by measuring UV (220-350 nm) absorbance set by the dialysis artificial kidney device manufacturing approval standard.
Therefore, in the present invention, the dry hollow fiber membrane bundle obtained by the present invention is stored in a dry box (atmosphere is air) at room temperature for 3 months, and then the hollow fiber membrane bundle is divided into 10 pieces in the longitudinal direction, When each of them is subjected to a test defined by the dialysis artificial kidney device manufacturing approval criteria, the UV (220 to 350 nm) absorbance in the hollow fiber membrane extract is preferably 0.10 or less on average. More preferably, the above properties are maintained even after storage for 5 months or longer. Therefore, the UV (220 to 350 nm) absorbance after storage for 3 months is more preferably 0.08 or less, and further preferably 0.06 or less. In consideration of storing the hollow fiber membrane bundle in a dry state in the manufacturing process of the hollow fiber membrane bundle, transportation and storage for inventory, etc., it is preferable to give the above characteristics.

また、具備すべき第四の特性は、中空糸膜束の部分固着を支配する特性であり、乾燥上がりの中空糸膜束は、中空糸膜束を長手方向に10個に分割し、各々を透析型人工腎臓装置製造承認基準により定められた試験を実施したとき、中空糸膜の抽出液におけるUV(220〜350nm)吸光度の最大値が0.10未満であり、かつ同一中空糸膜束内における最大値と最小値の差が0.05以下にすることも重要である。該抽出液におけるUV(220〜350nm)吸光度は、中空糸膜束の固着に悪影響を及ぼす中空糸膜表面のポリビニルピロリドン含有率の指標であり、該中空糸膜束の長手方向の抽出液におけるUV(220〜350nm)吸光度変動を抑えることにより、中空糸膜束の長手方向における中空糸膜表面におけるポリビニルピロリドンの含有率の変動が抑制されるので中空糸膜束の部分固着の発生が抑制される。また、該変動の抑制は中空糸膜束全体のポリビニルピロリドンの溶出量を低いレベルに保つことに繋がるので、血液浄化用に使用した場合に安全性が向上する。したがって、0.04以下が好ましく、0.03以下がさらに好ましく、0.02以下がよりさらに好ましい。   The fourth characteristic to be provided is the characteristic that governs the partial fixation of the hollow fiber membrane bundle. The hollow fiber membrane bundle after drying divides the hollow fiber membrane bundle into 10 pieces in the longitudinal direction. When the test defined by the dialysis-type artificial kidney device manufacturing approval standard is carried out, the maximum value of UV (220 to 350 nm) absorbance in the extract of the hollow fiber membrane is less than 0.10, and within the same hollow fiber membrane bundle It is also important that the difference between the maximum value and the minimum value is 0.05 or less. The UV (220 to 350 nm) absorbance in the extract is an indicator of the polyvinylpyrrolidone content on the surface of the hollow fiber membrane that adversely affects the fixation of the hollow fiber membrane bundle, and the UV in the extract in the longitudinal direction of the hollow fiber membrane bundle. (220 to 350 nm) By suppressing the fluctuation in absorbance, the fluctuation of the content of polyvinylpyrrolidone on the surface of the hollow fiber membrane in the longitudinal direction of the hollow fiber membrane bundle is suppressed, so that the occurrence of partial sticking of the hollow fiber membrane bundle is suppressed. . Moreover, since the suppression of the fluctuation leads to keeping the elution amount of polyvinyl pyrrolidone in the entire hollow fiber membrane bundle at a low level, the safety is improved when it is used for blood purification. Therefore, 0.04 or less is preferable, 0.03 or less is more preferable, and 0.02 or less is even more preferable.

該UV吸光度の最大値は、固着に影響をおよぼす外表面の親水性高分子の含有率が少なく、かつ抽出される溶出物が存在しないという意味からUV吸光度の下限値は0であることが好ましいが、本発明に於いてUV吸光度の最大値は0.03以上0.1未満であることが好ましい。0.03に満たなくなると膜内表面の親水性高分子の含有率が十分ではないために、膜の濡れ性に乏しく、膜性能を十分に発揮できない可能性がある。より好ましくは0.04〜0.09、さらに好ましくは0.05〜0.08、最も好ましくは0.06〜0.07である。   The maximum value of the UV absorbance is preferably 0 because the content of the hydrophilic polymer on the outer surface that affects the fixation is small and there is no eluate to be extracted. However, in the present invention, the maximum value of UV absorbance is preferably 0.03 or more and less than 0.1. When less than 0.03, the content of the hydrophilic polymer on the inner surface of the film is not sufficient, so that the film has poor wettability, and the film performance may not be fully exhibited. More preferably, it is 0.04-0.09, More preferably, it is 0.05-0.08, Most preferably, it is 0.06-0.07.

本発明においては、前述のごとく包装体やトレイの材質として本発明で特定した特性の材質のものを選択しないと包装体と接触している中空糸膜束の最外層およびその近傍の中空糸膜の劣化や乾燥の均一性が低下することより、中空糸膜束の外周部の中空糸膜についても上記特性を有する必要がある。ここで、外周部とは中空糸膜束の円形状断面において外周から半径で1/4の範囲をいう。   In the present invention, as described above, the outermost layer of the bundle of hollow fiber membranes in contact with the package and the hollow fiber membrane in the vicinity thereof are selected unless the material having the characteristics specified in the present invention is selected as the material of the package or tray. Therefore, the hollow fiber membranes at the outer periphery of the bundle of hollow fiber membranes must have the above characteristics. Here, the outer peripheral portion refers to a range of ¼ radius from the outer periphery in the circular cross section of the hollow fiber membrane bundle.

本発明における中空糸膜束の構成材料としては、再生セルロース、セルロースアセテート、セルローストリアセテートなどのセルロース系、ポリスルホンやポリエーテルスルホンなどのポリスルホン系、ポリアクリロニトリル、ポリメチルメタクリレート、エチレンビニルアルコール共重合体などが上げられるが、セルロース系やポリスルホン系が好ましい。また、親水性高分子を含有する疎水性高分子よりなるものが好ましい。特に、ポリビニルピロリドンを含むポリスルホン系樹脂より構成されてなる系が、生体適合性に優れ、かつ透水性能や分離特性の優れた選択透過性分離膜を得ることができるので好ましい。   Examples of the constituent material of the hollow fiber membrane bundle in the present invention include cellulose such as regenerated cellulose, cellulose acetate, and cellulose triacetate, polysulfone such as polysulfone and polyethersulfone, polyacrylonitrile, polymethyl methacrylate, and ethylene vinyl alcohol copolymer. Cellulose type and polysulfone type are preferable. Moreover, what consists of hydrophobic polymer containing a hydrophilic polymer is preferable. In particular, a system composed of a polysulfone-based resin containing polyvinylpyrrolidone is preferable because a selective permeable separation membrane having excellent biocompatibility and excellent water permeability and separation characteristics can be obtained.

ポリスルホン系樹脂とは、スルホン結合を有する樹脂の総称であり特に限定されないが、例を挙げると化1、化2で示される繰り返し単位をもつポリスルホン樹脂やポリエーテルスルホン樹脂がポリスルホン系樹脂として広く市販されており、入手も容易なため好ましい。
Polysulfone resin is a generic term for resins having a sulfone bond, and is not particularly limited. For example, polysulfone resins and polyethersulfone resins having repeating units represented by chemical formulas 1 and 2 are widely available as polysulfone resins. It is preferable because it is easily available.

ポリビニルピロリドンは、N−ビニルピロリドンをビニル重合させた水溶性の高分子化合物であり、BASF社より「コリドン」、ISP社より「プラスドン」、第一工業製薬社より「ピッツコール」の商品名で市販されており、それぞれ各種の分子量の製品がある。一般には、親水性の付与効率では低分子量のものが、一方、溶出量を低くする点では高分子量のものを用いるのが好適であるが、最終製品の中空糸膜束の要求特性に合わせて適宜選択される。単一の分子量のものを用いても良いし、分子量の異なる製品を2種以上混合して用いても良い。また、市販の製品を精製し、例えば分子量分布をシャープにしたものを用いても良い。ポリビニルピロリドンの分子量としては質量平均分子量10,000〜1,500,000のものを用いることができる。具体的には、例えばBASF社より市販されている分子量9,000のもの(K17)、以下同様に45,000(K30)、450,000(K60)、900,000(K80)、1,200,000(K90)を用いるのが好ましく、目的とする用途、特性、構造を得るために、それぞれ単独で用いてもよく、適宜2種以上を組み合わせて用いても良い。   Polyvinyl pyrrolidone is a water-soluble polymer compound obtained by vinyl polymerization of N-vinyl pyrrolidone. There are products of various molecular weights that are commercially available. In general, it is preferable to use a low molecular weight in terms of imparting hydrophilicity, while a high molecular weight is preferable in terms of reducing the amount of elution, but in accordance with the required characteristics of the hollow fiber membrane bundle of the final product. It is selected appropriately. Those having a single molecular weight may be used, or two or more products having different molecular weights may be mixed and used. Moreover, you may use what refine | purified a commercial product and sharpened molecular weight distribution, for example. As the molecular weight of polyvinylpyrrolidone, those having a mass average molecular weight of 10,000 to 1,500,000 can be used. Specifically, for example, those having a molecular weight of 9,000 (K17) commercially available from BASF, and the same shall apply hereinafter, 45,000 (K30), 450,000 (K60), 900,000 (K80), 1,200 000 (K90) is preferable, and in order to obtain the intended use, characteristics, and structure, each may be used alone, or two or more may be used in combination as appropriate.

本発明におけるポリスルホン系樹脂に対するポリビニルピロリドンの膜中の構成割合は、中空糸膜に十分な親水性や、高い含水率を付与できる範囲であれば特に限定されず任意に設定することができるが、ポリスルホン系樹脂に対するポリビニルピロリドンの質量割合で1〜20質量%が好ましく、3〜15質量%がより好ましい。1質量%未満では、膜の親水性付与効果が不足する可能性がある。一方、20質量%を超えると、親水性付与効果が飽和し、かつ親水性高分子の膜からの溶出量が増大し安全性が低下する。   The composition ratio of polyvinylpyrrolidone in the membrane relative to the polysulfone resin in the present invention is not particularly limited as long as it is within a range that can impart sufficient hydrophilicity and high water content to the hollow fiber membrane, but can be arbitrarily set, The mass ratio of polyvinylpyrrolidone to the polysulfone resin is preferably 1 to 20 mass%, more preferably 3 to 15 mass%. If it is less than 1% by mass, the hydrophilicity-imparting effect of the film may be insufficient. On the other hand, if it exceeds 20% by mass, the effect of imparting hydrophilicity is saturated, and the amount of elution from the membrane of the hydrophilic polymer increases, resulting in a decrease in safety.

本発明における中空糸膜束の製造方法は何ら限定されるものではないが、例えば特開2000−300663公報で知られるような方法が例示される。例えば、ポリエーテルスルホン(4800P、住友化学社製)16質量%とポリビニルピロリドン(K−90、BASF社製)5質量%、ジメチルアセトアミド74質量%、水5質量%を混合溶解し、脱泡したものを紡糸溶液として、50%ジメチルアセトアミド水溶液を芯液として使用し、これを2重管オリフィスの外側、内側より同時に吐出し、50cmの空走部を経て、75℃、水の凝固浴中に導き中空糸膜束を形成し、水洗後まきとり、湿潤状態の中空糸膜束を製造することができる。   Although the manufacturing method of the hollow fiber membrane bundle in this invention is not limited at all, For example, the method known by Unexamined-Japanese-Patent No. 2000-300663 is illustrated. For example, 16% by mass of polyethersulfone (4800P, manufactured by Sumitomo Chemical Co., Ltd.), 5% by mass of polyvinylpyrrolidone (K-90, manufactured by BASF), 74% by mass of dimethylacetamide and 5% by mass of water were mixed and dissolved, and defoamed. As a spinning solution, 50% dimethylacetamide aqueous solution is used as the core solution, and this is simultaneously discharged from the outside and inside of the double tube orifice. A guided hollow fiber membrane bundle can be formed and scraped after washing with water to produce a wet hollow fiber membrane bundle.

本発明における乾燥方法は、例えば上記方法等により得られた湿潤状態の中空糸膜束に適用するのが好ましい実施態様である。   The drying method in the present invention is a preferred embodiment that is applied to a wet hollow fiber membrane bundle obtained by the above method, for example.

本発明においては、前述のごとく、従来公知技術であった中空糸膜束内に気体を通過させ乾燥の均一化を図る通風方式を排除しており、簡略化された方法で乾燥が実施でき、かつ通風方式により引き起こされる各種課題が改善されるが、前述の本発明で得られる中空糸膜束が具備すべく特性を安定して得るには、前記の達成要件に加え中空糸膜束の乾燥の均一化を達成するための手段を取り入れることが好ましい。以下に、該方策について言及する。   In the present invention, as described above, it eliminates the ventilating method for allowing gas to pass through the hollow fiber membrane bundle, which has been conventionally known, to achieve uniform drying, and drying can be performed by a simplified method, Various problems caused by the ventilation method are improved, but in order to stably obtain the characteristics that the hollow fiber membrane bundle obtained in the present invention has, the hollow fiber membrane bundle can be dried in addition to the above achievement requirements. It is preferable to incorporate means for achieving the homogenization. Hereinafter, this measure will be mentioned.

マイクロ波発振器をマイクロ波照射オーブンの側壁に設置し、マイクロ波を回転テーブルの側面方向より照射することが好ましい。また、マイクロ波発振器からオーブンに向かう入射波のエネルギーEiとオーブンで反射されオーブンより発振器に向かう反射波のエネルギーErとの比(Er/Ei)が0.2以下であるマイクロ波発振器を用いてマイクロ波を照射し加熱することがより好ましい。該マイクロ波発振器からオーブンに向かう入射波のエネルギーEiとオーブンで反射されオーブンより発振器に向かう反射波のエネルギーErの測定は、マイクロ波発振器からオーブンに向かう導波管部にエネルギー検知器を設置して測定し求めたものである。Er/Eiが0.2を超えた場合は、中空糸膜束に当るマイクロ波のエネルギーが不均一となり、後述する各種の均一加熱のための手段を講じても本発明の効果を十分に発現することができなくなるので好ましくない。また、Er/Eiが大きいと反射波により発振器のマグネトロンが破壊されることがある。Er/Eiは0.15以下がより好ましく、0.10以下がさらに好ましい。本発明においては、上記のEr/Eiを0.1以下にする方法は限定されないが、特開2000−340356号公報に開示されている各種の方策を採用するのが好ましい実施態様である。   It is preferable to install a microwave oscillator on the side wall of the microwave irradiation oven and irradiate the microwave from the side surface direction of the rotary table. In addition, a microwave oscillator in which the ratio (Er / Ei) of the energy Ei of the incident wave from the microwave oscillator toward the oven and the energy Er of the reflected wave reflected from the oven toward the oscillator is 0.2 or less is used. It is more preferable to heat by irradiating with microwaves. Measurement of the energy Ei of the incident wave from the microwave oscillator toward the oven and the energy Er of the reflected wave reflected from the oven toward the oscillator is performed by installing an energy detector in the waveguide section from the microwave oscillator toward the oven. Measured and obtained. When Er / Ei exceeds 0.2, the energy of the microwaves hitting the hollow fiber membrane bundle becomes non-uniform, and the effects of the present invention are fully exhibited even if various means for uniform heating described below are taken. This is not preferable because it cannot be performed. If Er / Ei is large, the magnetron of the oscillator may be destroyed by the reflected wave. Er / Ei is more preferably 0.15 or less, and further preferably 0.10 or less. In the present invention, the method for reducing the above Er / Ei to 0.1 or less is not limited, but it is a preferred embodiment to employ various measures disclosed in Japanese Patent Laid-Open No. 2000-340356.

上記対応と前述した被乾燥中空糸膜束の配置により被乾燥中空糸膜束に照射されるマイクロ波の強度分布が均一化され、中空糸膜束の乾燥が均一化され、前述の本発明の中空糸膜束が具備すべき好ましい特性を付与することができる。   The above-mentioned correspondence and the arrangement of the hollow fiber membrane bundle to be dried make the intensity distribution of the microwaves irradiated to the hollow fiber membrane bundle to be dried uniform, and the drying of the hollow fiber membrane bundle is made uniform. The preferable characteristic which a hollow fiber membrane bundle should have can be provided.

本発明においては、中空糸膜束中の含水率が10〜20質量%に低下した時点でマイクロ波の照射を中止し、引き続き遠赤外線照射により乾燥することが好ましい。この場合、本発明においては、トレイ内の中空糸膜束間の乾燥の均一性が高いので、どの位置の中空糸膜束の含水率に注目して上記切り替えを行ってもよいが、セットトレイの最外部に位置する中空糸膜束のいずれか1本に注目し切り替えを行うのが好ましい。10〜15質量%がより好ましい。含水率が10質量%未満までマイクロ波照射による乾燥を行うと、ポリビニルピロリドンの劣化が増大し過酸化水素の抽出量が増大し、中空糸膜束の保存安定性が低下するので好ましくない。また、中空糸膜束の長手方向の含水率やUV(220〜350nm)吸光度の変動率が増大し中空糸膜束の部分固着の発生が増大するので好ましくない。逆に、20質量%を超えた時点でマイクロ波照射を中止すると最終含水率に乾燥するまでのトータルの乾燥時間が長くなるので好ましくない。   In the present invention, it is preferable to stop the microwave irradiation at the time when the water content in the hollow fiber membrane bundle is reduced to 10 to 20% by mass and subsequently dry by far infrared irradiation. In this case, in the present invention, since the drying uniformity between the hollow fiber membrane bundles in the tray is high, the above switching may be performed by paying attention to the moisture content of the hollow fiber membrane bundle at any position. It is preferable to perform switching by paying attention to any one of the hollow fiber membrane bundles located at the outermost part of the fiber. 10-15 mass% is more preferable. Drying by microwave irradiation to a moisture content of less than 10% by mass is not preferable because degradation of polyvinylpyrrolidone increases, the amount of hydrogen peroxide extracted increases, and the storage stability of the hollow fiber membrane bundle decreases. Further, the moisture content in the longitudinal direction of the hollow fiber membrane bundle and the fluctuation rate of UV (220 to 350 nm) absorbance increase, and the occurrence of partial sticking of the hollow fiber membrane bundle increases, which is not preferable. On the contrary, if microwave irradiation is stopped when it exceeds 20% by mass, the total drying time until drying to the final moisture content becomes longer, which is not preferable.

本発明においては、上述のごとく乾燥工程においてポリビニルピロリドンの酸化劣化を抑制することが重要である。従って、上記のマイクロ波照射や遠赤外線照射を窒素ガス等の不活性ガス雰囲気下で実施するのが好ましいが、経済的に不利である。一方、減圧下でマイクロ波乾燥や遠赤外線乾燥を行い、酸化劣化を抑制する方法は、乾燥効率の向上にも繋がり経済的であり推奨される。両乾燥の両方ともに減圧下で行うのが最も好ましい実施態様である。例えば、マイクロ波乾燥の乾燥条件としては、20KPa以下の減圧下で出力0.1〜100KWのマイクロ波を照射することが好ましい実施態様である。また、該マイクロ波の周波数は1,000〜5,000MHzであり、乾燥処理中の中空糸膜束の最高到達温度が90℃以下であることが好ましい実施態様である。減圧という手段を併設すれば、それだけで水分の乾燥が促進されるので、マイクロ波の照射の出力を低く抑え、照射時間も短縮できる利点もあるが、温度の上昇も比較的低くすることができるので、全体的には中空糸膜束の性能低下に与える影響が少ない。さらに、減圧という手段を伴う乾燥は、乾燥温度を比較的下げることができるという利点があり、特に親水性高分子の劣化分解を著しく抑えることができるという有意な点がある。適正な乾燥温度は20〜80℃で十分足りるということになる。より好ましくは20〜60℃、さらに好ましくは20〜50℃、よりさらに好ましくは30〜40℃である。   In the present invention, as described above, it is important to suppress oxidative degradation of polyvinylpyrrolidone in the drying step. Therefore, it is preferable to carry out the above-described microwave irradiation or far-infrared irradiation in an inert gas atmosphere such as nitrogen gas, but it is economically disadvantageous. On the other hand, a method of suppressing oxidation deterioration by performing microwave drying or far-infrared drying under reduced pressure leads to improvement in drying efficiency and is recommended because it is economical. In the most preferred embodiment, both drying operations are performed under reduced pressure. For example, as a drying condition for microwave drying, it is preferable to irradiate microwaves with an output of 0.1 to 100 KW under a reduced pressure of 20 KPa or less. Moreover, the frequency of this microwave is 1,000-5,000 MHz, and it is a preferable embodiment that the highest ultimate temperature of the hollow fiber membrane bundle during a drying process is 90 degrees C or less. If a means of decompression is also provided, drying of moisture is promoted by itself, so there is an advantage that the output of microwave irradiation can be suppressed and the irradiation time can be shortened, but the temperature rise can also be made relatively low. Therefore, the influence on the performance degradation of the hollow fiber membrane bundle is small as a whole. Furthermore, drying accompanied by means of reduced pressure has the advantage that the drying temperature can be relatively lowered, and has a significant point that deterioration and decomposition of the hydrophilic polymer can be remarkably suppressed. An appropriate drying temperature is sufficient from 20 to 80 ° C. More preferably, it is 20-60 degreeC, More preferably, it is 20-50 degreeC, More preferably, it is 30-40 degreeC.

減圧を伴うということは、中空糸膜束の中心部および外周部に均等に低圧が作用することになり、水分の蒸発が均一に促進されることになり、中空糸膜の乾燥が均一になされるために、乾燥の不均一に起因する中空糸膜束の障害を是正することになる。それに、マイクロ波による加熱も、中空糸膜束の中心および外周全体にほぼ等しく作用することになるから、均一な加熱において、相乗的に機能することになり、中空糸膜束の乾燥において、特有の意義があることになる。減圧度についてはマイクロ波の出力、中空糸膜束の有する総水分含量および中空糸膜束の本数により適宜設定すれば良いが、乾燥中の中空糸膜束の温度上昇を防ぐため減圧度は20kPa以下、より好ましくは15kPa以下、さらに好ましくは10kPa以下で行う。20kPa以上では水分蒸発効率が低下するばかりでなく、中空糸膜束を形成するポリマーの温度が上昇してしまい劣下してしまう可能性がある。また、減圧度は高い方が温度上昇抑制と乾燥効率を高める意味で好ましいが、装置の密閉度を維持するためにかかるコストが高くなるので0.1kPa以上が好ましい。より好ましくは0.25kPa以上、さらに好ましくは0.4kPa以上である。   The fact that the pressure is reduced means that the low pressure acts uniformly on the center portion and the outer peripheral portion of the hollow fiber membrane bundle, the moisture evaporation is promoted uniformly, and the hollow fiber membrane is uniformly dried. Therefore, the failure of the hollow fiber membrane bundle due to non-uniform drying is corrected. In addition, heating by microwaves also acts almost equally on the entire center and outer periphery of the hollow fiber membrane bundle, so it functions synergistically in uniform heating, and is unique in drying the hollow fiber membrane bundle. It will be of significance. The degree of vacuum may be appropriately set according to the output of the microwave, the total moisture content of the hollow fiber membrane bundle, and the number of hollow fiber membrane bundles, but the degree of vacuum is 20 kPa to prevent the temperature of the hollow fiber membrane bundle during drying. Hereinafter, it is performed more preferably at 15 kPa or less, and further preferably at 10 kPa or less. If it is 20 kPa or more, not only the water evaporation efficiency is lowered, but also the temperature of the polymer forming the hollow fiber membrane bundle may be increased and deteriorated. Moreover, although the one where a pressure reduction degree is higher is preferable in the meaning which raises temperature rise suppression and drying efficiency, since the cost concerning maintaining the sealing degree of an apparatus becomes high, 0.1 kPa or more is preferable. More preferably, it is 0.25 kPa or more, and further preferably 0.4 kPa or more.

乾燥時間短縮を考慮するとマイクロ波の出力は高いほうが好ましいが、例えばポリビニルピロリドンを含有する中空糸膜束では過乾燥や過加熱によるポリビニルピロリドンの劣化、分解が起こったり、使用時の濡れ性低下が起こるなどの問題があるため、出力はあまり上げないのが好ましい。また0.1kW未満の出力でも中空糸膜束を乾燥することは可能であるが、乾燥時間が伸びることによる処理量低下の問題が起こる可能性がある。減圧度とマイクロ波出力の組合せの最適値は、中空糸膜束の保有水分量および中空糸膜束の処理本数により異なるものであって、試行錯誤のうえ適宜設定値を求めるのが好ましい。
例えば、本発明の乾燥条件を実施する一応の目安として、中空糸膜束1本当たり50gの水分を有する中空糸膜束を20本乾燥した場合、総水分含量は50g×20本=1,000gとなり、この時のマイクロ波の出力は1.5kW、減圧度は5kPaが適当である。
In consideration of shortening the drying time, a higher microwave output is preferable.For example, in a hollow fiber membrane bundle containing polyvinylpyrrolidone, the polyvinylpyrrolidone is deteriorated or decomposed due to overdrying or overheating, and the wettability during use is reduced. It is preferable not to raise the output much because there are problems such as occurring. Further, the hollow fiber membrane bundle can be dried even with an output of less than 0.1 kW, but there is a possibility that a problem of reduction in throughput due to an increase in drying time may occur. The optimum value of the combination of the degree of decompression and the microwave output varies depending on the water content of the hollow fiber membrane bundle and the number of processed hollow fiber membrane bundles, and it is preferable to obtain a set value as appropriate through trial and error.
For example, as a temporary guide for carrying out the drying conditions of the present invention, when 20 hollow fiber membrane bundles having a moisture content of 50 g per hollow fiber membrane bundle are dried, the total moisture content is 50 g × 20 fibers = 1,000 g. At this time, it is appropriate that the microwave output is 1.5 kW and the decompression degree is 5 kPa.

より好ましいマイクロ波出力は0.1〜80kW、さらに好ましいマイクロ波出力は0.1〜60kWである。マイクロ波の出力は、例えば、中空糸膜の総数と総含水量により決まるが、いきなり高出力のマイクロ波を照射すると、短時間で乾燥が終了するが、中空糸膜が部分的に変性することがあり、縮れのような変形を起こすことがある。マイクロ波を使用して乾燥するという場合に、例えば、中空糸膜に保水剤のようなものを用いた場合に、高出力やマイクロ波を用いて過激に乾燥することは保水剤の飛散による消失の原因にもなる。それに特に減圧下の条件をともなうと中空糸膜への影響を考えれば、従来においては減圧下でマイクロ波を照射することは意図していなかった。本発明の減圧下でマイクロ波を照射するということは、水性液体の蒸発が比較的温度が低い状態においても活発になるため、高出力マイクロ波および高温によるポリビニルピロリドンの劣化や中空糸膜の変形等の中空糸膜の損傷を防ぐという二重の効果を奏することになる。   A more preferable microwave output is 0.1 to 80 kW, and a more preferable microwave output is 0.1 to 60 kW. The output of the microwave is determined by, for example, the total number of hollow fiber membranes and the total water content, but when suddenly high-power microwaves are irradiated, drying is completed in a short time, but the hollow fiber membrane is partially denatured. And may cause deformation such as curling. When drying using microwaves, for example, when using something like a water retention agent in the hollow fiber membrane, high power and extreme drying using microwaves will disappear due to scattering of the water retention agent It becomes the cause of. In consideration of the influence on the hollow fiber membrane, especially under conditions under reduced pressure, conventionally, irradiation with microwaves under reduced pressure was not intended. Irradiation of microwaves under reduced pressure according to the present invention means that the evaporation of aqueous liquid is active even in a relatively low temperature state, so that degradation of polyvinylpyrrolidone and deformation of hollow fiber membranes due to high output microwaves and high temperatures Thus, a double effect of preventing damage to the hollow fiber membrane is obtained.

本発明は、減圧下におけるマイクロ波により乾燥をするという、マイクロ波の出力を一定にした一段乾燥を可能としているが、別の実施態様として、乾燥の進行に応じて、マイクロ波の出力を順次段階的に下げる、いわゆる多段乾燥を好ましい態様として包含している。そこで、多段乾燥の意義を説明すると次のようになる。減圧下で、しかも30〜90℃程度の比較的低い温度で、マイクロ波で乾燥する場合に、中空糸膜束の乾燥の進み具合に合わせて、マイクロ波の出力を順次下げていくという多段乾燥方法が優れている。乾燥をする中空糸膜の総量、工業的に許容できる適正な乾燥時間などを考慮して、減圧の程度、温度、マイクロ波の出力および照射時間を決めればよい。多段乾燥は、例えば、2〜6段という任意に何段も可能であるが、生産性を考慮して工業的に適正と許容できるのは、2〜3段乾燥にするのが適当である。中空糸膜束に含まれる水分の総量にもよるが、比較的多い場合に、多段乾燥は、例えば、90℃以下の温度における、5〜20kPa程度の減圧下で、一段目は30〜100kWの範囲で、二段目は10〜30kWの範囲で、三段目は0.1〜10kWというように、マイクロ波照射時間を加味して決めることができる。マイクロ波の出力を、例えば、高い部分で90kW、低い部分で0.1kWのように、出力の較差が大きい場合には、その出力を下げる段数を例えば4〜8段と多くすればよい。本発明の場合に、減圧というマイクロ波照射に技術的な配慮をしているから、比較的マイクロ波の出力を下げた状態でもできるという有利な点がある。例えば、一段目は10〜20kWのマイクロ波により10〜100分程度、二段目は3〜10kW程度で5〜80分程度、三段目は0.1〜3kW程度で1〜60分程度という段階で乾燥する。各段のマイクロ波の出力および照射時間は、中空糸膜に含まれる水分の総量の減り具合に連動して下げていくことが好ましい。この乾燥方法は、中空糸膜束に非常に温和な乾燥方法であり、前掲の特許文献8〜10の先行技術においては期待できないことから、本発明の作用効果を有意にしている。   Although the present invention enables one-stage drying in which the microwave output is constant, i.e., drying by microwaves under reduced pressure, as another embodiment, the microwave output is sequentially changed according to the progress of drying. So-called multi-stage drying, which lowers in stages, is included as a preferred embodiment. Therefore, the significance of multi-stage drying will be described as follows. When drying with microwaves at a relatively low temperature of about 30 to 90 ° C. under reduced pressure, multi-stage drying in which the output of the microwaves is sequentially reduced in accordance with the progress of drying of the hollow fiber membrane bundle. The method is excellent. The degree of pressure reduction, temperature, microwave output, and irradiation time may be determined in consideration of the total amount of hollow fiber membranes to be dried, industrially acceptable drying time, and the like. Multistage drying can be performed in any number of stages, for example, 2 to 6 stages, but it is appropriate to use 2 to 3 stages of drying that is industrially appropriate in consideration of productivity. Depending on the total amount of water contained in the hollow fiber membrane bundle, when relatively large, multistage drying is performed at a temperature of 90 ° C. or lower, for example, at a reduced pressure of about 5 to 20 kPa, and the first stage is 30 to 100 kW. The range can be determined in consideration of the microwave irradiation time such that the second stage is in the range of 10 to 30 kW and the third stage is in the range of 0.1 to 10 kW. When the output of the microwave is large, such as 90 kW in the high part and 0.1 kW in the low part, the number of stages for reducing the output may be increased to 4 to 8 stages, for example. In the case of the present invention, since technical consideration is given to the microwave irradiation called decompression, there is an advantage that the microwave output can be relatively lowered. For example, the first stage is about 10 to 100 minutes by 10 to 20 kW microwave, the second stage is about 3 to 10 kW and about 5 to 80 minutes, and the third stage is about 0.1 to 3 kW and about 1 to 60 minutes. Dry in stages. It is preferable that the microwave output and irradiation time of each stage are lowered in conjunction with the reduction in the total amount of moisture contained in the hollow fiber membrane. This drying method is a very gentle drying method for hollow fiber membrane bundles and cannot be expected in the prior arts of the above-mentioned Patent Documents 8 to 10, and thus makes the effects of the present invention significant.

別の態様を説明すると、中空糸膜束の水分総量が比較的少ないという、いわゆる含水率が400質量%以下の場合には、12kW以下の低出力マイクロ波による照射が優れている場合がある。例えば、中空糸膜束総量の水分量が1〜7kg程度と比較的少量の場合には、80℃以下、好ましくは60℃以下の温度における、3〜10kPa程度の減圧下において、12kW以下の出力の、例えば1〜5kW程度のマイクロ波で10〜240分、0.5〜1kW未満のマイクロ波で3〜240分程度、0.1〜0.5kW未満のマイクロ波で1〜240分程度照射するという、乾燥の程度に応じてマイク口波の照射出力および照射時間を調整すれば乾燥が均一に行われる。減圧度は各段において、一応0.1〜20kPaという条件を設定しているが、中空糸膜の水分含量の比較的多い一段目を例えば0.1〜5kPaと減圧を高め、マイクロ波の出力を10〜30kWと高める、ニ段目、三段目を5〜20kPaの減圧下で0.1〜5kWによる一段よりやや高い圧力下でマイクロ波を照射するという、いわゆる各段の減圧度を状況に応じて適正に調整して変えることなどは、中空糸膜束の水分総量および含水率の低下の推移を考慮して任意に設定することが可能である。各段において、減圧度を変える操作は、本発明の減圧下でマイクロ波を照射するという意義をさらに大きくする。勿論、マイクロ波照射装置内におけるマイクロ波の均一な照射および排気には常時配慮する必要がある。   To explain another aspect, when the so-called moisture content of the hollow fiber membrane bundle is relatively small, that is, a so-called moisture content of 400% by mass or less, irradiation with a low output microwave of 12 kW or less may be excellent. For example, when the amount of water in the total amount of the hollow fiber membrane bundle is about 1 to 7 kg, the output is 12 kW or less under a reduced pressure of about 3 to 10 kPa at a temperature of 80 ° C. or less, preferably 60 ° C. or less. For example, irradiation with a microwave of about 1 to 5 kW for 10 to 240 minutes, irradiation with a microwave of less than 0.5 to 1 kW for about 3 to 240 minutes, and irradiation with a microwave of less than 0.1 to 0.5 kW for about 1 to 240 minutes If the irradiation output and the irradiation time of the microphone mouth wave are adjusted according to the degree of drying, drying is performed uniformly. The degree of vacuum is set to 0.1 to 20 kPa for each stage, but the first stage having a relatively high moisture content of the hollow fiber membrane is increased to 0.1 to 5 kPa, for example, and the microwave output is increased. The degree of pressure reduction at each stage, in which the microwave is irradiated at a pressure slightly higher than the first stage of 0.1 to 5 kW under a reduced pressure of 5 to 20 kPa in the second stage and the third stage. It is possible to arbitrarily set the appropriate adjustment in accordance with the change in consideration of the transition of the total moisture content and the moisture content of the hollow fiber membrane bundle. In each stage, the operation of changing the degree of reduced pressure further increases the significance of irradiating microwaves under reduced pressure according to the present invention. Of course, it is necessary to always consider the uniform irradiation and exhaust of the microwave in the microwave irradiation apparatus.

乾燥中の中空糸膜束の最高到達温度は、不可逆性のサーモラベルを中空糸膜束拘束体側面に貼り付けて乾燥を行い、乾燥後に取り出し表示を確認することで測定することができる。この時、乾燥中の中空糸膜束の最高到達温度は90℃以下が好ましく、より好ましくは80℃以下に抑える。さらに好ましくは70℃以下である。最高到達温度が90℃以上になると、膜構造が変化しやすくなり性能低下や酸化劣化を起こしてしまう場合がある。特にポリビニルピロリドンを含有する中空糸膜束では、熱によるポリビニルピロリドンの分解等が起こりやすいので温度上昇をできるだけ防ぐ必要がある。減圧度とマイクロ波出力の最適化と断続的に照射することで温度上昇を防ぐことができる。また、乾燥温度は低い方が好ましいが、減圧度の維持コスト、乾燥時間短縮の面より30℃以上が好ましい。   The maximum temperature reached by the hollow fiber membrane bundle during drying can be measured by attaching an irreversible thermolabel to the side surface of the hollow fiber membrane bundle restraint body, drying, and taking out and confirming the display after drying. At this time, the maximum reached temperature of the hollow fiber membrane bundle during drying is preferably 90 ° C. or lower, more preferably 80 ° C. or lower. More preferably, it is 70 degrees C or less. If the maximum temperature reaches 90 ° C. or higher, the film structure is likely to change, which may cause performance degradation or oxidative degradation. In particular, in a hollow fiber membrane bundle containing polyvinylpyrrolidone, it is necessary to prevent the temperature rise as much as possible because polyvinylpyrrolidone is easily decomposed by heat. Temperature rise can be prevented by optimizing the degree of decompression and microwave output and irradiating intermittently. Moreover, although the one where a drying temperature is lower is preferable, 30 degreeC or more is preferable from the surface of the maintenance cost of pressure reduction degree, and the shortening of drying time.

マイクロ波の照射周波数は、中空糸膜束への照射斑の抑制や、細孔内の水を細孔より押出す効果などを考慮すると1,000〜5,000MHzが好ましい。より好ましくは1,500〜4,000MHz、さらに好ましくは2,000〜3,000MHzである。   The microwave irradiation frequency is preferably 1,000 to 5,000 MHz in consideration of the suppression of irradiation spots on the hollow fiber membrane bundle and the effect of extruding water in the pores from the pores. More preferably, it is 1,500-4,000 MHz, More preferably, it is 2,000-3,000 MHz.

該マイクロ波照射による乾燥は中空糸膜束を均一に加熱し乾燥することが重要である。上記したマイクロ波乾燥においては、マイクロ波の発生時時に付随発生する反射波による不均一加熱が発生するので、該反射波による不均一加熱を低減する手段を取る事が重要である。該方策は限定されず任意であるが、例えば、特開2000−340356号公報において開示されているオーブン中に反射板を設けて反射波を反射させ加熱の均一化を行う方法が好ましい実施態様の一つである。   In drying by microwave irradiation, it is important to uniformly heat and dry the hollow fiber membrane bundle. In the above-described microwave drying, nonuniform heating due to a reflected wave that occurs accompanying the generation of microwaves occurs. Therefore, it is important to take measures to reduce the nonuniform heating due to the reflected wave. The method is not limited and is arbitrary. For example, a method of providing a reflector in an oven disclosed in Japanese Patent Application Laid-Open No. 2000-340356 to reflect reflected waves and uniformize heating is a preferred embodiment. One.

一方、マイクロ波乾燥終了後に行う遠赤外線照射による乾燥の場合は、マイクロ波乾燥の場合と異なり、減圧下で照射しても放電現象は発生しないので、マイクロ波乾燥の場合より減圧度を高めて行うことができる。乾燥効率の点より2kPa以下が好ましく、1kPa以下がより好ましい。遠赤外線照射の照射エネルギーは。オーブンの中心部に設けた熱電対で検出される温度で80℃以下になるように制御するのが好ましい。70℃以下で制御するのがより好ましい。   On the other hand, in the case of drying by far-infrared irradiation performed after the completion of microwave drying, unlike the case of microwave drying, the discharge phenomenon does not occur even if irradiation is performed under reduced pressure. It can be carried out. From the point of drying efficiency, 2 kPa or less is preferable and 1 kPa or less is more preferable. What is the irradiation energy of far-infrared irradiation? It is preferable to control so that the temperature detected by a thermocouple provided at the center of the oven is 80 ° C. or lower. It is more preferable to control at 70 ° C. or lower.

前記の遠赤外線照射はマイクロ波照射終了後に照射を開始してもよいし、マイクロ波照射時にも照射し、マイクロ波乾燥と遠赤外線乾燥とを同時進行で実施してもよい。マイクロ波と遠赤外線照射を同時に行うことにより、マイクロ波照射により励起され中空糸膜表面に移動してきた水の蒸発が遠赤外線照射により加速され乾燥効率向上に繋がる。また、この表面水分の効率的な蒸発により、表面水分により誘導されるポリビニルピロリドンの中空糸膜表面の濃度変動が抑制され、部分固着発生抑制に繋げられるので好ましい。上述のごとくマイクロ波乾燥についても減圧下で実施するのが好ましいので、減圧下でマイクロ波乾燥と遠赤外線乾燥とを同時進行で実施して、前記の水分率になった時点でマイクロ波照射を中止し、減圧状態を維持したまま遠赤外線照射を続行し、さらなる乾燥を続けることにより乾燥を終了させる方法が好ましい。このおりに、マイクロ波の照射終了後に系の減圧度を下げて、コンディショニングを行った後に再度減圧度を上げて遠赤外線照射を開始してもよい。従って、本発明においては、加熱オーブン内に遠赤外線ヒーターが取り付けられており、かつ加熱オーブンが減圧にできる排気系が取り付けられたマイクロ波乾燥機を用いて乾燥することが好ましい実施態様である。   The far-infrared irradiation may be started after the end of microwave irradiation, or may be performed at the time of microwave irradiation, and microwave drying and far-infrared drying may be performed simultaneously. By performing the microwave and far infrared irradiation simultaneously, the evaporation of water that has been excited by the microwave irradiation and moved to the surface of the hollow fiber membrane is accelerated by the far infrared irradiation, leading to an improvement in drying efficiency. Further, this efficient evaporation of surface moisture suppresses the concentration fluctuation of the surface of the hollow fiber membrane of polyvinylpyrrolidone induced by the surface moisture, which is preferable because it leads to suppression of partial sticking. As described above, microwave drying is preferably performed under reduced pressure. Therefore, microwave drying and far-infrared drying are simultaneously performed under reduced pressure, and microwave irradiation is performed when the moisture content is reached. A method of stopping drying by continuing far-infrared irradiation while maintaining a reduced pressure state and continuing further drying is preferable. In this case, after the microwave irradiation is completed, the degree of decompression of the system may be lowered, and after conditioning, the degree of decompression may be raised again to start far-infrared irradiation. Therefore, in the present invention, it is a preferred embodiment that drying is performed using a microwave dryer in which a far-infrared heater is attached in the heating oven and an exhaust system capable of reducing the pressure of the heating oven is attached.

本発明において、遠赤外線の照射波長は1〜30μmであることが好ましい。水や有機物は波長3〜12μmの遠赤外線の吸収率が高いため、遠赤外線の波長が短すぎても長すぎても、被乾燥物の温度が上がり難くなるため、乾燥時間が延びるなど乾燥にかかるコストが増大することがある。したがって、照射する遠赤外線の波長は1.5〜26μmがより好ましく、2〜22μmがさらに好ましく、2.5〜18μmがよりさらに好ましい。   In this invention, it is preferable that the irradiation wavelength of a far infrared ray is 1-30 micrometers. Since water and organic matter have a high absorption rate of far infrared rays having a wavelength of 3 to 12 μm, it is difficult to increase the temperature of the object to be dried even if the wavelength of the far infrared rays is too short or too long. Such costs may increase. Therefore, the wavelength of the far infrared ray to be irradiated is more preferably 1.5 to 26 μm, further preferably 2 to 22 μm, and further preferably 2.5 to 18 μm.

本発明において、遠赤外線を照射するための放射媒体としては、表面に酸化金属の被膜を有するステンレス媒体を使用するのが好ましい実施態様である。例えば、特開平10−5265号に記載されているようなオーステナイト系ステンレス鋼粉体にAl、Fe、TiO、CaO、MgO、KO、NaO等の酸化金属をコーティングした遠赤外線放射体を用いるのが、安価で効率的に遠赤外線を取り出すことができるため、より好ましい実施態様である。 In the present invention, as a radiation medium for irradiating far-infrared rays, a stainless steel medium having a metal oxide film on the surface is preferably used. For example, an austenitic stainless steel powder as described in JP-A-10-5265 is coated with a metal oxide such as Al 2 O 3 , Fe 2 O 3 , TiO 2 , CaO, MgO, K 2 O and Na 2 O. It is a more preferable embodiment to use a far-infrared radiator coated with, because far-infrared rays can be extracted efficiently at low cost.

一方、マイクロ波乾燥終了後に行う遠赤外線照射による乾燥の場合は、マイクロ波乾燥の場合と異なり、減圧下で照射しても放電現象は発生しないので、マイクロ波乾燥の場合より減圧度を高めて行うことができる。乾燥効率の点より5kPa以下が好ましく、4kPa以下がより好ましく、3kPa以下がさらに好ましく、2kPa以下がよりさらに好ましい。遠赤外線照射の照射エネルギーは、オーブンの中心部に設けた熱電対で検出される温度で80℃以下になるように制御するのが好ましい。70℃以下で制御するのがより好ましい。   On the other hand, in the case of drying by far-infrared irradiation performed after the completion of microwave drying, unlike the case of microwave drying, the discharge phenomenon does not occur even if irradiation is performed under reduced pressure. It can be carried out. From the point of drying efficiency, 5 kPa or less is preferable, 4 kPa or less is more preferable, 3 kPa or less is more preferable, and 2 kPa or less is more preferable. The irradiation energy of the far-infrared irradiation is preferably controlled so as to be 80 ° C. or lower at a temperature detected by a thermocouple provided at the center of the oven. It is more preferable to control at 70 ° C. or lower.

前記の遠赤外線照射はマイクロ波照射終了後に照射を開始してもよいし、マイクロ波照射時にも照射し、マイクロ波乾燥と遠赤外線乾燥とを同時進行で実施してもよい。マイクロ波と遠赤外線照射を同時に行うことにより、マイクロ波照射により励起され中空糸膜表面に移動してきた水の蒸発が遠赤外線照射により加速されるため乾燥効率向上に繋がる。また、この表面水分の効率的な蒸発により、表面水分により誘導されるポリビニルピロリドンの中空糸膜表面の濃度変動が抑制され、部分固着発生抑制に繋げられるので好ましい。上述のごとくマイクロ波乾燥についても減圧下で実施するのが好ましいので、減圧下でマイクロ波乾燥と遠赤外線乾燥とを同時進行で実施して、前記の水分率になった時点でマイクロ波照射を中止し、減圧状態を維持したまま遠赤外線照射を続行し、さらなる乾燥を続ける方法が好ましい。この折に、マイクロ波の照射終了後に系の減圧度を下げて、コンディショニングを行った後に、再度減圧度を上げて遠赤外線照射を開始してもよい。従って、本発明においては、加熱オーブン内に遠赤外線ヒーターが取り付けられており、かつ加熱オーブン内を減圧(真空)にできる排気系が取り付けられたマイクロ波乾燥機を用いて乾燥することが好ましい実施態様である。   The far-infrared irradiation may be started after the end of microwave irradiation, or may be performed at the time of microwave irradiation, and microwave drying and far-infrared drying may be performed simultaneously. By performing microwave and far-infrared irradiation simultaneously, evaporation of water that has been excited by microwave irradiation and moved to the surface of the hollow fiber membrane is accelerated by irradiation with far-infrared radiation, leading to improved drying efficiency. Further, this efficient evaporation of surface moisture suppresses the concentration fluctuation of the surface of the hollow fiber membrane of polyvinylpyrrolidone induced by the surface moisture, which is preferable because it leads to suppression of partial sticking. As described above, microwave drying is preferably performed under reduced pressure. Therefore, microwave drying and far-infrared drying are simultaneously performed under reduced pressure, and microwave irradiation is performed when the moisture content is reached. A method of stopping, continuing far-infrared irradiation while maintaining a reduced pressure state, and continuing further drying is preferable. At this time, after the microwave irradiation is completed, the degree of decompression of the system may be lowered and conditioning may be performed, and then the degree of decompression may be increased again to start far-infrared irradiation. Therefore, in the present invention, it is preferable to perform drying using a microwave dryer in which a far-infrared heater is attached in the heating oven and an exhaust system capable of reducing the pressure in the heating oven is attached. It is an aspect.

本発明においては、乾燥終了後に乾燥系内を常圧に戻す折に窒素ガス等の不活性ガスを用いることが好ましい実施態様である。乾燥終了直後は、中空糸膜束の温度が高いため、乾燥庫内を常圧に戻す際、空気等の酸素を含む気体を送入すると、ポリビニルピロリドンを含有する中空糸膜の場合、ポリビニルピロリドンが酸素と熱の影響により酸化劣化を受けることがある。したがって、乾燥終了後に乾燥庫内を常圧に戻す際に、不活性ガスを送入することにより中空糸膜束中のポリビニルピロリドンの酸化劣化が抑制される。   In the present invention, it is a preferred embodiment that an inert gas such as nitrogen gas is used when the inside of the drying system is returned to normal pressure after drying. Immediately after the drying, the temperature of the hollow fiber membrane bundle is high, so when returning the inside of the drying chamber to atmospheric pressure, when a gas containing oxygen such as air is fed, in the case of a hollow fiber membrane containing polyvinylpyrrolidone, polyvinylpyrrolidone May undergo oxidative degradation due to the effects of oxygen and heat. Therefore, when the inside of the drying chamber is returned to normal pressure after the drying is completed, the oxidative deterioration of the polyvinyl pyrrolidone in the hollow fiber membrane bundle is suppressed by feeding the inert gas.

中空糸膜束の乾燥は、マイクロ波、遠赤外線を使用して、時間的に無制限に乾燥に供することが品質に良い影響を与えることにはならない。中空糸膜束を構成する疎水性高分子の、又は親水性高分子材料の熱劣化や、酸素、水、蒸気などの環境劣化の影響も考えられるからである。したがって、工業的な生産ということからすれば、乾燥時間にも自ずと許容される適正な時間を考慮する必要がある。本発明者等は、マイクロ波、遠赤外線という比較的過酷な乾燥条件に供する中空糸膜の品質を保護するという観点から、さらに工業的生産性という観点から考えれば、乾燥開始から終了するまでの乾燥時間は3時間以内が好ましい。より好ましくは2.5時間以内、さらに好ましくは2時間以内である。   For the drying of the hollow fiber membrane bundle, the use of microwaves and far-infrared rays for an unlimited time does not affect the quality. This is because the influence of thermal degradation of the hydrophobic polymer or the hydrophilic polymer material constituting the hollow fiber membrane bundle and environmental degradation such as oxygen, water, and steam can be considered. Therefore, in view of industrial production, it is necessary to consider an appropriate time that is naturally allowed for the drying time. From the viewpoint of protecting the quality of the hollow fiber membrane subjected to relatively harsh drying conditions such as microwaves and far infrared rays, from the viewpoint of industrial productivity, the inventors of the present invention are from the start to the end of drying. The drying time is preferably within 3 hours. More preferably within 2.5 hours, still more preferably within 2 hours.

中空糸膜束の適正な乾燥時間とは、マイクロ波による乾燥領域時間に遠赤外線による乾燥領域を加算したもの、勿論、この場合に両者を併用した乾燥手段も包含されることもありうるが、本発明者らは、マイクロ波による乾燥領域時間と遠赤外線による乾燥領域との切り換え状態がいかなる技術条件に最も依存しているかという挙動を解析したものである。図1に基づいて説明すると、実線の1、2で囲まれる領域に収まる範囲で乾燥すれば、比較的品質の良好な製品が容易に得られるということである。たとえば、図1の破線(1)、(2)の領域になれば、中空糸膜束の品質に少なからず影響が出るということである。これは、図1に示す統計学的な解釈を参酌すれば容易に理解できる。   The appropriate drying time of the hollow fiber membrane bundle is a value obtained by adding a drying region by far infrared rays to a drying region time by microwave, of course, in this case, a drying means using both of them may be included, The present inventors have analyzed the behavior of whether the switching state between the drying region time by microwaves and the drying region by far infrared rays is most dependent on the technical conditions. If it demonstrates based on FIG. 1, if it dries within the range enclosed by the area | region enclosed with 1 and 2 of a continuous line, it is that a product with comparatively good quality is easily obtained. For example, if it becomes the area | region of the broken lines (1) and (2) of FIG. 1, it will have a considerable influence on the quality of a hollow fiber membrane bundle. This can be easily understood by taking into account the statistical interpretation shown in FIG.

このような解析を注視すると、比較的含水率の高い中空糸膜を乾燥する手法としては、マイクロ波による乾燥が、この場合に減圧下のマイクロ波乾燥が最適であり、それに適しているが、コンディショニングを含む遠赤外線による乾燥は、それに付随させることが適正な乾燥であるということもできる。この切り換えについて、本発明者等が検討した結果、マイクロ波による乾燥により、中空糸膜束の含水率が5〜30質量%、より好ましくは8〜25質量%、さらに好ましくは10〜20質量%に達した段階で切り換えるのが最も適しているという事実を知見したものである。   Looking closely at such an analysis, as a method of drying a hollow fiber membrane having a relatively high moisture content, microwave drying is optimal in this case, microwave drying under reduced pressure is suitable for it, It can also be said that the drying by far-infrared including conditioning is appropriate drying. As a result of examination by the inventors about this switching, the moisture content of the hollow fiber membrane bundle is 5 to 30% by mass, more preferably 8 to 25% by mass, and further preferably 10 to 20% by mass by drying with microwaves. The fact that it is most suitable to switch at the stage of reaching is found.

例えば、中空糸膜束の含水率が60〜400質量%という、比較的高い場合には、マイクロ波による、場合により減圧を付加して強制的に所定の含水率にまで下げて、それから、遠赤外線を併用する手法が最も適しているということを本発明者等は知見したものである。この適正な含水率10〜20質量%という範囲は、ポリマー材料、構造等により、若干の違いがあるが、その範囲であれば汎用の中空糸膜束の乾燥に適用できるということができる。   For example, when the moisture content of the hollow fiber membrane bundle is relatively high, such as 60 to 400% by mass, it is forcibly reduced to a predetermined moisture content by applying a reduced pressure by a microwave in some cases. The present inventors have found that a technique using infrared rays is most suitable. The appropriate range of 10 to 20% by mass of water content is slightly different depending on the polymer material, structure, etc., but within this range, it can be said that it can be applied to drying of general-purpose hollow fiber membrane bundles.

この乾燥切り換えの10〜20質量%の範囲を、中空糸膜束の品質に影響する事例を解析したものが、図2である。実施例および比較例に基づいて、何点かの事例をプロットしたものである。この傾向は、中空糸膜束の含水率10〜20質量%を境界にして、中空糸膜束のバラツキに影響しているということが容易に理解できる。マイクロ波に遠赤外線を併用するという着想は、本発明者等の知見に基づくものであるが、その切り換えの条件として、中空糸膜束の含水率10〜20質量%という範囲の設定に関しても、本発明者等の知見に基づくものであり、新規な着想である。   FIG. 2 shows an analysis of an example in which the range of 10 to 20% by mass of the dry switching affects the quality of the hollow fiber membrane bundle. Based on Examples and Comparative Examples, several examples are plotted. It can be easily understood that this tendency influences the variation of the hollow fiber membrane bundle, with the water content of the hollow fiber membrane bundle being 10 to 20% by mass as a boundary. The idea of using far-infrared rays in combination with microwaves is based on the knowledge of the present inventors. This is based on the knowledge of the present inventors and is a new idea.

本発明における中空糸膜束は、前述のごとく過酸化水素溶出量が抑制されていることが好ましい。本特性を付与することに関しては、上述の乾燥方法や乾燥条件を選ぶことが重要であるが、過酸化水素の生成の原因物質であるポリビニルピロリドンの品質や取り扱い等も重要な要因であり配慮が必要である。例えば、ポリビニルピロリドンとして過酸化水素含有率が300ppm以下のものを用いて製造することが好ましい。原料として用いるポリビニルピロリドン中の該過酸化水素含有率を300ppm以下にすることで、製膜後の中空糸膜束の過酸化水素溶出量を5ppm以下に抑えることができ、本発明の中空糸膜束の品質安定化が達成できるので好ましい。したがって、原料として用いるポリビニルピロリドン中の過酸化水素含有率は250ppm以下がより好ましく、200ppm以下がさらに好ましく、150ppm以下がよりさらに好ましい。   In the hollow fiber membrane bundle according to the present invention, it is preferable that the elution amount of hydrogen peroxide is suppressed as described above. Regarding the provision of this property, it is important to select the drying method and conditions described above, but the quality and handling of polyvinyl pyrrolidone, the causative agent of hydrogen peroxide generation, are also important factors and considerations are required. is necessary. For example, it is preferable to produce using polyvinyl pyrrolidone having a hydrogen peroxide content of 300 ppm or less. By making the hydrogen peroxide content in polyvinyl pyrrolidone used as a raw material 300 ppm or less, the hydrogen peroxide elution amount of the hollow fiber membrane bundle after film formation can be suppressed to 5 ppm or less, and the hollow fiber membrane of the present invention It is preferable because the bundle quality can be stabilized. Therefore, the hydrogen peroxide content in the polyvinyl pyrrolidone used as a raw material is more preferably 250 ppm or less, further preferably 200 ppm or less, and further preferably 150 ppm or less.

該原料として用いるポリビニルピロリドン中に含有される過酸化水素は、ポリビニルピロリドンの酸化劣化の過程で発生すると推定される。従って、過酸化水素含有率を300ppm以下にするには、ポリビニルピロリドンの製造工程でポリビニルピロリドンの酸化劣化を抑える方策をとることが有効である。また、ポリビニルピロリドンの搬送や保存時の劣化を抑える手段を取る事も有効であり推奨される。例えば、アルミ箔ラミネート袋を用いて、遮光し、かつ窒素ガス等の不活性ガスで封入するとか、脱酸素剤を併せて封入し保存することが好ましい実施態様である。また、該包装体を開封し小分けする場合の計量や仕込みは、不活性ガス置換をして行い、かつその保存についても上記の対策を取るのが好ましい。また、中空糸膜束の製造工程においても、原料供給系での供給タンク等を不活性ガス置換する等の手段をとることも好ましい実施態様として推奨される。また、再結晶法や抽出法で過酸化水素量を低下させる方法をとることも排除されない。   It is estimated that hydrogen peroxide contained in polyvinylpyrrolidone used as the raw material is generated in the process of oxidative degradation of polyvinylpyrrolidone. Therefore, to reduce the hydrogen peroxide content to 300 ppm or less, it is effective to take measures to suppress the oxidative degradation of polyvinylpyrrolidone in the production process of polyvinylpyrrolidone. It is also effective and recommended to take measures to suppress deterioration during transportation and storage of polyvinylpyrrolidone. For example, it is preferable to use an aluminum foil laminated bag to shield the light and enclose it with an inert gas such as nitrogen gas, or to enclose and store an oxygen scavenger together. In addition, it is preferable that the measurement and preparation when the package is opened and subdivided be performed after inert gas replacement, and the above-mentioned measures are taken for the storage. Also, in the manufacturing process of the hollow fiber membrane bundle, it is also recommended as a preferred embodiment to take a means such as replacing the supply tank or the like in the raw material supply system with an inert gas. In addition, it is not excluded to take a method of reducing the amount of hydrogen peroxide by a recrystallization method or an extraction method.

また、ポリスルホン系樹脂、ポリビニルピロリドン、溶媒からなる紡糸溶液を撹拌、溶解する際、ポリビニルピロリドン中に過酸化水素が含まれていると、溶解タンク内に存在する酸素の影響および溶解時の加熱の影響により、過酸化水素が爆発的に増加することがわかった。したがって、溶解タンクに原料を投入する際には、予め不活性ガスにて置換された溶解タンク内に原料を投入するのが好ましい。不活性ガスとしては、窒素、アルゴンなどが好適に用いられる。また、溶媒、場合によっては非溶媒を添加することもあるが、これら溶媒、非溶媒中に溶存している酸素を不活性ガスで置換して用いるのも好適な実施態様である。   In addition, when a spinning solution comprising a polysulfone resin, polyvinyl pyrrolidone, and a solvent is stirred and dissolved, if polyvinyl pyrrolidone contains hydrogen peroxide, the effects of oxygen present in the dissolution tank and the heating during dissolution It was found that hydrogen peroxide increased explosively due to the influence. Therefore, when charging the raw material into the dissolution tank, it is preferable to input the raw material into the dissolution tank that has been previously replaced with an inert gas. As the inert gas, nitrogen, argon or the like is preferably used. Moreover, although a solvent, and a non-solvent may be added depending on the case, it is also a preferable embodiment that oxygen dissolved in these solvent and non-solvent is replaced with an inert gas.

該過酸化水素溶出量を上記の規制された範囲に制御する方法としては、例えば、前述したごとく原料として用いるポリビニルピロリドン中の過酸化水素量を300ppm以下にすることが有効な方法であるが、該過酸化水素は上記した中空糸膜の製造過程でも生成するので、該中空糸膜の製造条件を厳密に制御する必要がある。特に、該中空糸膜を製造する際の乾燥工程での生成の寄与が大きいので、乾燥条件の最適化が重要である。特に、この乾燥条件の最適化は、過酸化水素の生成抑制に大きく寄与するので重要である。さらに、該乾燥条件の最適化は、中空糸膜の長手方向の溶出量変動を小さくすることに関して有効な手段となる。   As a method for controlling the elution amount of hydrogen peroxide to the above regulated range, for example, as described above, it is effective to make the amount of hydrogen peroxide in polyvinylpyrrolidone used as a raw material 300 ppm or less. Since the hydrogen peroxide is also generated during the manufacturing process of the hollow fiber membrane described above, it is necessary to strictly control the manufacturing conditions of the hollow fiber membrane. In particular, since the contribution of the production in the drying process when producing the hollow fiber membrane is large, it is important to optimize the drying conditions. In particular, the optimization of the drying conditions is important because it greatly contributes to the suppression of hydrogen peroxide production. Furthermore, the optimization of the drying conditions is an effective means for reducing the fluctuation in the elution amount in the longitudinal direction of the hollow fiber membrane.

また、過酸化水素の発生を抑制する他の方法として、製膜溶液を溶解する際、短時間に溶解することも重要な要件である。そのためには、通常、溶解温度を高くすることおよび/または撹拌速度を上げればよい。しかしながら、そうすると温度および撹拌線速度、剪断力の影響によりポリビニルピロリドンの劣化・分解が進行してしまう。事実、発明者らの検討によれば、製膜溶液中のポリビニルピロリドンの分子量は溶解温度の上昇に従い、分子量のピークトップが分解方向に移動(低分子側にシフト)したり、または低分子側に分解物と思われるショルダーが現れる現象が認められた。以上より原料の溶解速度を向上させる目的で温度を上昇させることは、ポリビニルピロリドンの劣化分解を促進し、ひいては選択透過性分離膜中にポリビニルピロリドンの分解物をブレンドしてしまうことから、例えば、得られた中空糸膜を血液浄化に使用する場合、血液中に分解物が溶出するなど、製品の品質安全上、優れたものとはならなかった。そこで、ポリビニルピロリドンの分解を抑制する目的で低温で原料を混合することを試みた。低温溶解とはいっても氷点下となるような極端な条件にするとランニングコストもかかるため、通常5℃以上70℃以下が好ましい。60℃以下がより好ましい。しかし、単純に溶解温度を下げると溶解時間の長時間化によるポリビニルピロリドン劣化分解、操業性の低下や設備の大型化を招くことになり工業的に実施する上では問題がある。   In addition, as another method for suppressing the generation of hydrogen peroxide, it is an important requirement to dissolve the film forming solution in a short time. For this purpose, it is usually sufficient to increase the dissolution temperature and / or increase the stirring speed. However, when it does so, degradation and decomposition of polyvinyl pyrrolidone will proceed due to the influence of temperature, stirring linear velocity and shearing force. In fact, according to the study by the inventors, the molecular weight of polyvinylpyrrolidone in the film-forming solution moves in the direction of decomposition (shifts to the low molecular side) as the dissolution temperature increases, or the low molecular side. The appearance of a shoulder that appears to be a decomposition product was observed. From the above, increasing the temperature for the purpose of improving the dissolution rate of the raw material accelerates the degradation and decomposition of polyvinylpyrrolidone, and consequently blends the degradation product of polyvinylpyrrolidone into the selectively permeable separation membrane. When the obtained hollow fiber membrane is used for blood purification, the degradation product is eluted in the blood, and it has not been excellent in terms of product quality safety. Then, it tried to mix a raw material at low temperature in order to suppress decomposition | disassembly of polyvinylpyrrolidone. Even if it is low-temperature dissolution, it is usually preferable to have a temperature of 5 ° C. or higher and 70 ° C. or lower because it requires a running cost under extreme conditions that are below freezing. 60 degrees C or less is more preferable. However, simply lowering the melting temperature causes degradation of polyvinylpyrrolidone due to the longer melting time, lowering the operability and increasing the size of the equipment, which causes problems in industrial implementation.

低温で時間をかけずに溶解するための溶解条件について検討を行った結果、溶解に先立ち紡糸溶液を構成する成分を混練した後に溶解させることが好ましいことを見出し本発明に到達した。該混練はポリスルホン系高分子、ポリビニルピロリドンおよび溶媒等の構成成分を一括して混練しても良いし、ポリビニルピロリドンとポリスルホン系高分子とを別個に混練しても良い。前述のごとくポリビニルピロリドンは酸素との接触により劣化が促進され過酸化水素の発生につながるので、該混練時においても不活性ガスで置換した雰囲気で行う等、酸素との接触を抑制する配慮が必要であり別ラインで行うのが好ましい。混練はポリビニルピロリドンと溶媒のみとしてポリスルホン系高分子は予備混練をせずに直接溶解タンクに供給する方法も本発明の範疇に含まれる。   As a result of examining the dissolution conditions for dissolving at low temperature without taking time, it was found that it is preferable to knead the components constituting the spinning solution prior to dissolution, and the present invention was reached. The kneading may be performed by kneading components such as polysulfone polymer, polyvinyl pyrrolidone and a solvent at once, or kneading polyvinyl pyrrolidone and polysulfone polymer separately. As mentioned above, polyvinylpyrrolidone is accelerated by contact with oxygen and leads to the generation of hydrogen peroxide. Therefore, consideration must be given to suppressing contact with oxygen, such as in an atmosphere substituted with an inert gas, even during kneading. It is preferable to carry out in a separate line. A method of supplying only the polyvinyl pyrrolidone and the solvent and supplying the polysulfone polymer directly to the dissolution tank without pre-kneading is also included in the scope of the present invention.

該混練は溶解タンクと別に混練ラインを設けて実施し混練したものを溶解タンクに供給してもよいし、混練機能を有する溶解タンクで混練と溶解の両方を実施しても良い。前者の別個の装置で実施する場合の、混練装置の種類や形式は問わない。回分式、連続式のいずれであっても構わない。スタティックミキサー等のスタティックな方法であっても良いし、ニーダーや攪拌式混練機等のダイナミックな方法であっても良い。混練の効率より後者が好ましい。後者の場合の混練方法も限定なく、ピンタイプ、スクリュータイプ、攪拌器タイプ等いずれの形式でもよい。スクリュータイプが好ましい。スクリューの形状や回転数も混練効率と発熱とのバランスより適宜選択すれば良い。一方、混練機能を有する溶解タンクを用いる場合の溶解タンクの形式も限定されないが、例えば、2本の枠型ブレードが自転、公転するいわゆるプラネタリー運動により混練効果を発現する形式の混練溶解機が推奨される。例えば、井上製作所社製のプラネタリュームミキサーやトリミックス等が本方式に該当する。   The kneading may be performed by providing a kneading line separately from the dissolving tank, and the kneaded product may be supplied to the dissolving tank, or both the kneading and dissolving may be performed in a dissolving tank having a kneading function. The type and form of the kneading apparatus in the former separate apparatus are not limited. Either a batch system or a continuous system may be used. A static method such as a static mixer may be used, or a dynamic method such as a kneader or a stirring kneader may be used. The latter is preferred from the efficiency of kneading. The kneading method in the latter case is not limited, and any type such as a pin type, a screw type, and a stirrer type may be used. Screw type is preferred. What is necessary is just to select suitably the shape and rotation speed of a screw from the balance of kneading | mixing efficiency and heat_generation | fever. On the other hand, the type of dissolution tank when using a dissolution tank having a kneading function is not limited. For example, there is a kneading and dissolving machine of a type that expresses a kneading effect by so-called planetary motion in which two frame-type blades rotate and revolve. Recommended. For example, a planetary mixer or a trimix manufactured by Inoue Seisakusho Co., Ltd. corresponds to this method.

混練時のポリビニルピロリドンやポリスルホン系高分子等の樹脂成分と溶媒との比率も限定されない。樹脂/溶媒の質量比で0.1〜3が好ましい。0.5〜2がより好ましい。   The ratio of the resin component such as polyvinyl pyrrolidone or polysulfone polymer and the solvent during kneading is not limited. A resin / solvent mass ratio of 0.1 to 3 is preferred. 0.5-2 are more preferable.

前述のごとくポリビニルピロリドンの劣化を抑制し、かつ効率的な溶解を行うことが本発明の技術ポイントである。従って、少なくともポリビニルピロリドンが存在する系は窒素雰囲気下、70℃以下の低温で混練および溶解することが好ましい実施態様である。ポリビニルピロリドンとポリスルホン系高分子を別ラインで混練する場合にポリスルホン系高分子の混練ラインに本要件を適用してもよい。混練や溶解の効率と発熱とは二律背反現象である。該二律背反をできるだけ回避した装置や条件の選択が本発明の重要な要素となる。そういう意味で混練機構における冷却方法が重要であり配慮が必要である。   As described above, the technical point of the present invention is to suppress the degradation of polyvinyl pyrrolidone and perform efficient dissolution. Therefore, a system in which at least polyvinylpyrrolidone is present is a preferred embodiment in which the system is kneaded and dissolved at a low temperature of 70 ° C. or lower in a nitrogen atmosphere. When the polyvinyl pyrrolidone and the polysulfone polymer are kneaded in separate lines, this requirement may be applied to the polysulfone polymer kneading line. The efficiency of kneading and dissolution and heat generation are two contradictory phenomena. Selection of an apparatus and conditions that avoid the trade-off as much as possible is an important element of the present invention. In this sense, the cooling method in the kneading mechanism is important and needs attention.

引き続き前記方法で混練されたものの溶解を行う。該溶解方法も限定されないが、例えば、攪拌式の溶解装置による溶解方法が適用できる。低温・短時間(3時間以内)で溶解するためには、フルード数(Fr=nd/g)が0.7以上1.3以下、攪拌レイノルズ数(Re=ndρ/μ)が50以上250以下であることが好ましい。ここでnは翼の回転数(rps)、ρは密度(Kg/m)、μは粘度(Pa・s)、gは重力加速度(=9.8m/s)、dは撹拌翼径(m)である。フルード数が大きすぎると、慣性力が強くなるためタンク内で飛散した原料が壁や天井に付着し、所期の製膜溶液組成が得られないことがある。したがって、フルード数は1.25以下がより好ましく、1.2以下がさらに好ましく、1.15以下がよりさらに好ましい。また、フルード数が小さすぎると、慣性力が弱まるために原料の分散性が低下し、特にポリビニルピロリドンが継粉になり、それ以上溶解することが困難となったり、均一溶解に長時間を要することがある。したがって、フルード数は0.75以上がより好ましく、0.8以上がさらに好ましい。 Subsequently, the material kneaded by the above method is dissolved. Although the dissolution method is not limited, for example, a dissolution method using a stirring type dissolution apparatus can be applied. In order to dissolve at a low temperature for a short time (within 3 hours), the Froude number (Fr = n 2 d / g) is 0.7 or more and 1.3 or less, and the stirring Reynolds number (Re = nd 2 ρ / μ) is It is preferable that they are 50 or more and 250 or less. Here, n is the blade rotation speed (rps), ρ is the density (Kg / m 3 ), μ is the viscosity (Pa · s), g is the gravitational acceleration (= 9.8 m / s 2 ), and d is the stirring blade diameter. (M). If the Froude number is too large, the inertial force becomes strong, so that the raw material scattered in the tank adheres to the walls and ceiling, and the desired film-forming solution composition may not be obtained. Therefore, the fluid number is more preferably 1.25 or less, further preferably 1.2 or less, and further preferably 1.15 or less. On the other hand, if the fluid number is too small, the inertial force is weakened, so that the dispersibility of the raw material is lowered, and in particular, polyvinylpyrrolidone becomes a spatter, which makes it difficult to dissolve further or requires a long time for uniform dissolution. Sometimes. Therefore, the fluid number is more preferably 0.75 or more, and further preferably 0.8 or more.

本願発明における製膜溶液は所謂低粘性流体であるため、撹拌レイノルズ数が大きすぎると、撹拌時、製膜溶液中への気泡のかみこみによる脱泡時間の長時間化や脱泡不足が起こるなどの問題が生ずることがある。そのため、撹拌レイノルズ数はより好ましくは240以下、さらに好ましくは230以下、よりさらに好ましくは220以下である。また、撹拌レイノルズ数が小さすぎると、撹拌力が小さくなるため溶解の不均一化が起こりやすくなることがある。したがって、撹拌レイノルズ数は、35以上がより好ましく、40以上がさらに好ましく、55以上がよりさらに好ましく、60以上が特に好ましい。さらに、このような紡糸溶液で中空糸膜を製膜すると気泡による曳糸性の低下による操業性の低下や品質面でも中空糸膜への気泡の噛み込みによりその部位が欠陥となり、膜の機密性やバースト圧の低下などを引き起こして問題となることがわかった。紡糸溶液の脱泡は効果的な対処策だが、紡糸溶液の粘度コントロールや溶剤の蒸発による紡糸溶液の組成変化を伴うこともありうるので、行う場合には慎重な対応が必要となる。   Since the film-forming solution in the present invention is a so-called low-viscosity fluid, if the stirring Reynolds number is too large, a long defoaming time or insufficient defoaming occurs due to entrapment of bubbles in the film-forming solution during stirring. Problems may occur. Therefore, the stirring Reynolds number is more preferably 240 or less, further preferably 230 or less, and still more preferably 220 or less. On the other hand, when the stirring Reynolds number is too small, the stirring force becomes small, so that dissolution may be easily made nonuniform. Therefore, the stirring Reynolds number is more preferably 35 or more, further preferably 40 or more, still more preferably 55 or more, and particularly preferably 60 or more. Furthermore, when a hollow fiber membrane is formed with such a spinning solution, the operation is deteriorated due to a decrease in spinnability due to bubbles, and in terms of quality, the portion becomes defective due to the entrapment of bubbles in the hollow fiber membrane, and the membrane is not confidential. It has been found that this causes problems such as decreased sex and burst pressure. Defoaming of the spinning solution is an effective countermeasure, but it may involve a change in the composition of the spinning solution due to viscosity control of the spinning solution or evaporation of the solvent.

さらに、ポリビニルピロリドンは空気中の酸素の影響により酸化分解を起こす傾向にあることから、紡糸溶液の溶解は不活性気体封入下で行うのが好ましい。不活性気体としては、窒素、アルゴンなどが上げられるが、窒素を用いるのが好ましい。このとき、溶解タンク内の残存酸素濃度は3%以下であることが好ましい。窒素封入圧力を高めてやれば溶解時間短縮が望めるが、高圧にするには設備費用が嵩む点と、作業安全性の面から大気圧以上2kgf/cm以下が好ましい。 Furthermore, since polyvinylpyrrolidone tends to undergo oxidative degradation due to the influence of oxygen in the air, it is preferable to dissolve the spinning solution in an inert gas enclosure. Nitrogen, argon, etc. are raised as the inert gas, but nitrogen is preferably used. At this time, the residual oxygen concentration in the dissolution tank is preferably 3% or less. If the nitrogen sealing pressure is increased, the melting time can be shortened. However, in order to increase the pressure, the equipment cost increases, and from the viewpoint of work safety, it is preferably from atmospheric pressure to 2 kgf / cm 2 .

その他、本願発明に用いるような低粘性製膜溶液の溶解に用いられる撹拌翼形状としては、ディスクタービン型、パドル型、湾曲羽根ファンタービン型、矢羽根タービン型などの放射流型翼、プロペラ型、傾斜パドル型、ファウドラー型などの軸流型翼が挙げられるが、これらに限定されるものではない。   In addition, as the shape of the stirring blade used for dissolving the low-viscosity film forming solution used in the present invention, a radial turbine blade such as a disk turbine type, a paddle type, a curved blade fan turbine type, an arrow blade turbine type, or a propeller type An axial-flow type wing such as an inclined paddle type or a fiddler type is included, but is not limited thereto.

以上のような低温溶解方法を用いることにより、親水性高分子の劣化分解が抑制された安全性の高い中空糸膜を得ることが可能となる。さらに付言すれば、製膜には原料溶解後の滞留時間が24時間以内の紡糸溶液を使用することが好ましい。なぜなら製膜溶液が保温されている間に熱エネルギーを蓄積し、原料劣化を起こす傾向が認められたためである。   By using the low-temperature dissolution method as described above, it is possible to obtain a highly safe hollow fiber membrane in which the degradation degradation of the hydrophilic polymer is suppressed. In addition, it is preferable to use a spinning solution having a residence time of 24 hours or less after dissolution of the raw material for film formation. This is because thermal energy was accumulated while the film forming solution was kept warm, and a tendency to cause deterioration of the raw material was recognized.

本発明における中空糸膜束のその他の特性は限定されないが、例えば、ポリビニルピロリドンの中空糸膜束の外表面における含有率が25〜50質量%であるのが好ましい。27〜45質量%がより好ましく、30〜45質量%がさらに好ましい。外表面のポリビニルピロリドンの含有率が25質量%未満では膜全体、特に膜内表面のポリビニルピロリドンの含有率が低くなりすぎ、血液適合性や透過性能の低下が起こる可能性がある。また本発明の乾燥方法を適用しても、プライミング性が低下することがある。血液透析器を血液浄化療法に使用する時には、生理食塩水などを血液透析器の中空糸膜束内外部に流すことにより、湿潤化および泡抜きを行う必要がある。このプライミング操作において、中空糸膜束の真円度や端部の潰れ、変形、膜素材の親水性などが、プライミング性に影響を与えると考えられるが、ポリスルホン系高分子とポリビニルピロリドンからなる中空糸膜束であって乾燥膜モジュールの場合には、中空糸膜束の親疎水バランスがプライミング性に大きく影響する。外表面のポリビニルピロリドンの存在割合が50質量%を超すと透析液に含まれるエンドトキシン(内毒素)が血液側へ浸入する可能性が高まり、発熱等の副作用を引き起こすことに繋がるとか、膜を乾燥させた時に膜外表面に存在するポリビニルピロリドンが介在し中空糸膜束同士が固着し、モジュール組み立て性が悪化する等の課題を引き起こす可能性がある。   Although the other characteristic of the hollow fiber membrane bundle in this invention is not limited, For example, it is preferable that the content rate in the outer surface of the hollow fiber membrane bundle of polyvinylpyrrolidone is 25-50 mass%. 27-45 mass% is more preferable, and 30-45 mass% is further more preferable. If the content of polyvinyl pyrrolidone on the outer surface is less than 25% by mass, the content of polyvinyl pyrrolidone on the entire membrane, particularly on the inner surface of the membrane will be too low, and blood compatibility and permeation performance may be deteriorated. Even if the drying method of the present invention is applied, the priming property may be lowered. When the hemodialyzer is used for blood purification therapy, it is necessary to perform wetting and defoaming by allowing physiological saline or the like to flow inside and outside the hollow fiber membrane bundle of the hemodialyzer. In this priming operation, the roundness of the hollow fiber membrane bundle, edge crushing, deformation, hydrophilicity of the membrane material, etc. are thought to affect the priming properties. However, the hollow fiber made of polysulfone polymer and polyvinylpyrrolidone In the case of a yarn membrane bundle and a dry membrane module, the hydrophilic / hydrophobic balance of the hollow fiber membrane bundle greatly affects the priming property. If the proportion of polyvinylpyrrolidone present on the outer surface exceeds 50% by mass, endotoxin (endotoxin) contained in the dialysate may enter the blood, leading to side effects such as fever, or drying the membrane. When this is done, polyvinyl pyrrolidone present on the outer surface of the membrane intervenes and the hollow fiber membrane bundles are fixed to each other, which may cause problems such as deterioration in module assembly.

上記の特性を付与する方法として、例えば、ポリスルホン系高分子に対するポリビニルピロリドンの構成割合を前記した範囲にしたり、中空糸膜束の製膜条件を最適化する等により達成できる。また、製膜された中空糸膜束を洗浄することも有効な方法である。製膜条件としては、ノズル出口のエアギャップ部の湿度調整、延伸条件、凝固浴の温度、凝固液中の溶媒と非溶媒との組成比等の最適化が、また、洗浄方法としては、温水洗浄、アルコール洗浄および遠心洗浄等が有効である。該方法の中で、製膜条件としては、エアギャップ部の湿度および外部凝固液中の溶媒と非溶媒との組成比の最適化が、洗浄方法としてはアルコール洗浄が特に有効である。   As a method for imparting the above properties, for example, the composition ratio of polyvinyl pyrrolidone with respect to the polysulfone-based polymer can be set to the above range, or the film forming conditions of the hollow fiber membrane bundle can be optimized. It is also an effective method to wash the formed hollow fiber membrane bundle. As film forming conditions, humidity adjustment of the air gap part at the nozzle outlet, stretching conditions, temperature of the coagulation bath, optimization of the composition ratio of the solvent and the non-solvent in the coagulation liquid, etc. Washing, alcohol washing, centrifugal washing and the like are effective. Among these methods, as the film forming conditions, optimization of the humidity of the air gap and the composition ratio of the solvent and the non-solvent in the external coagulating liquid is particularly effective as the cleaning method.

内部凝固液としては、0〜80質量%のジメチルアセトアミド(DMAc)水溶液が好ましい。より好ましくは、15〜70質量%、さらに好ましくは25〜60質量%、よりさらに好ましくは30〜50質量%である。内部凝固液濃度が低すぎると、血液接触面の緻密層が厚くなるため、溶質透過性が低下する可能性がある。また内部凝固液濃度が高すぎると、緻密層の形成が不完全になりやすく、分画特性が低下する可能性がある。外部凝固液は0〜50質量%のDMAc水溶液を使用するのが好ましい。外部凝固液濃度が高すぎる場合は、外表面開孔率および外表面平均孔面積が大きくなりすぎ、透析使用時エンドトキシンの血液側への逆流入の増大や、バースト圧の低下を起こす可能性がある。したがって、外部凝固液濃度は、より好ましくは40質量%以下、さらに好ましくは30質量%以下、よりさらに好ましくは25質量%以下である。また、外部凝固液濃度が低すぎる場合には、紡糸溶液から持ち込まれる溶媒を希釈するために大量の水を使用する必要があり、また廃液処理のためのコストが増大する。そのため、外部凝固液濃度の下限はより好ましくは5質量%以上である。   As the internal coagulation liquid, a 0 to 80% by mass dimethylacetamide (DMAc) aqueous solution is preferable. More preferably, it is 15-70 mass%, More preferably, it is 25-60 mass%, More preferably, it is 30-50 mass%. If the concentration of the internal coagulation solution is too low, the dense layer on the blood contact surface becomes thick, which may reduce the solute permeability. On the other hand, if the concentration of the internal coagulating liquid is too high, the formation of the dense layer tends to be incomplete and the fractionation characteristics may be deteriorated. The external coagulation liquid is preferably a 0 to 50% by weight DMAc aqueous solution. If the concentration of the external coagulation solution is too high, the outer surface open area ratio and outer surface average pore area will become too large, which may increase the backflow of endotoxin to the blood side during dialysis and decrease the burst pressure. is there. Therefore, the external coagulation liquid concentration is more preferably 40% by mass or less, further preferably 30% by mass or less, and still more preferably 25% by mass or less. If the concentration of the external coagulation liquid is too low, it is necessary to use a large amount of water to dilute the solvent brought in from the spinning solution, and the cost for waste liquid treatment increases. Therefore, the lower limit of the external coagulation liquid concentration is more preferably 5% by mass or more.

上記中空糸膜束の製造において、完全に中空糸膜束構造が固定される以前に実質的に延伸をかけないことが好ましい。実質的に延伸を掛けないとは、ノズルから吐出された紡糸溶液に弛みや過度の緊張が生じないように紡糸工程中のローラー速度をコントロールすることを意味する。吐出線速度/凝固浴第一ローラー速度比(ドラフト比)は0.7〜1.8が好ましい範囲である。前記比が0.7未満では、走行する中空糸膜束に弛みが生じ生産性の低下に繋がることがあるので、ドラフト比は0.8以上がより好ましく、0.9以上がさらに好ましく、0.95以上がよりさらに好ましい。1.8を超える場合には中空糸膜束の緻密層が裂けるなど膜構造が破壊されることがある。そのため、ドラフト比は、より好ましくは1.7以下、さらに好ましくは1.6以下、よりさらに好ましくは1.5以下、特に好ましくは1.4以下である。ドラフト比をこの範囲に調整することにより細孔の変形や破壊を防ぐことができ、膜孔への血中タンパクの目詰まりを防ぎ経時的な性能安定性やシャープな分画特性を発現することが可能となる。   In the production of the hollow fiber membrane bundle, it is preferable that stretching is not substantially performed before the hollow fiber membrane bundle structure is completely fixed. “Substantially not stretching” means controlling the roller speed during the spinning process so that the spinning solution discharged from the nozzle does not become slack or excessively tensioned. The discharge linear speed / coagulation bath first roller speed ratio (draft ratio) is preferably in the range of 0.7 to 1.8. If the ratio is less than 0.7, the traveling hollow fiber membrane bundle may be slack and lead to a decrease in productivity. Therefore, the draft ratio is more preferably 0.8 or more, further preferably 0.9 or more, 0 .95 or more is even more preferable. When it exceeds 1.8, the membrane structure may be destroyed, for example, the dense layer of the hollow fiber membrane bundle is torn. Therefore, the draft ratio is more preferably 1.7 or less, still more preferably 1.6 or less, still more preferably 1.5 or less, and particularly preferably 1.4 or less. By adjusting the draft ratio to this range, deformation and destruction of the pores can be prevented, clogging of blood protein into the membrane pores can be prevented, and performance stability over time and sharp fractionation characteristics can be expressed. Is possible.

水洗浴を通過した中空糸膜束は、湿潤状態のまま綛に巻き取り、3,000〜20,000本の束にする。ついで、得られた中空糸膜束を洗浄し、過剰の溶媒、ポリビニルピロリドンを除去する。中空糸膜束の洗浄方法として、本発明では、70〜130℃の熱水、または室温〜50℃、10〜40vol%のエタノールまたはイソプロパノール水溶液に中空糸膜束を浸漬して処理するのが好ましい。
(1)熱水洗浄の場合は、中空糸膜束を過剰のRO水に浸漬し70〜90℃で15〜60分処理した後、中空糸膜束を取り出し遠心脱水を行う。この操作をRO水を更新しながら3、4回繰り返して洗浄処理を行う。
(2)加圧容器内の過剰のRO水に浸漬した中空糸膜束を121℃で2時間程度処理する方法をとることもできる。
(3)エタノールまたはイソプロパノール水溶液を使用する場合も、(1)と同様の操作を繰り返すのが好ましい。
(4)遠心洗浄器に中空糸膜束を放射状に配列し、回転中心から40℃〜90℃の洗浄水をシャワー状に吹きつけながら30分〜5時間遠心洗浄することも好ましい洗浄方法である。
前記洗浄方法を2つ以上組み合わせて行ってもよい。いずれの方法においても、処理温度が低すぎる場合には、洗浄回数を増やす等が必要になりコストアップに繋がることがある。また、処理温度が高すぎるとポリビニルピロリドンの分解が加速し、逆に洗浄効率が低下することがある。上記洗浄を行うことにより、外表面ポリビニルピロリドンの存在率の適正化を行い、固着抑制や溶出物の量を減ずることが可能となる。
The hollow fiber membrane bundle that has passed through the water-washing bath is wound into a basket in a wet state to form a bundle of 3,000 to 20,000. Next, the obtained hollow fiber membrane bundle is washed to remove excess solvent, polyvinylpyrrolidone. As a method for washing the hollow fiber membrane bundle, in the present invention, it is preferable to treat the hollow fiber membrane bundle by immersing it in hot water at 70 to 130 ° C. or room temperature to 50 ° C. and 10 to 40 vol% ethanol or isopropanol aqueous solution. .
(1) In the case of hot water washing, the hollow fiber membrane bundle is immersed in excess RO water and treated at 70 to 90 ° C. for 15 to 60 minutes, and then the hollow fiber membrane bundle is taken out and subjected to centrifugal dehydration. This operation is repeated three or four times while updating the RO water to perform the cleaning process.
(2) A method of treating a hollow fiber membrane bundle immersed in excess RO water in a pressurized container at 121 ° C. for about 2 hours may be employed.
(3) When using an ethanol or isopropanol aqueous solution, it is preferable to repeat the same operation as in (1).
(4) It is also a preferable washing method that the hollow fiber membrane bundle is radially arranged in the centrifugal washer, and centrifugal washing is performed for 30 minutes to 5 hours while spraying washing water at 40 ° C. to 90 ° C. from the rotation center in a shower shape. .
Two or more cleaning methods may be combined. In any of the methods, if the processing temperature is too low, it is necessary to increase the number of times of cleaning, which may lead to an increase in cost. On the other hand, if the treatment temperature is too high, the decomposition of polyvinylpyrrolidone is accelerated, and conversely, the cleaning efficiency may be reduced. By performing the above-described cleaning, it is possible to optimize the abundance of the outer surface polyvinyl pyrrolidone, thereby suppressing sticking and reducing the amount of eluate.

上記の本発明の中空糸膜束は、上記の特性を有しており、例えば血液浄化用モジュールの分離膜として好適に用いることができる。   The hollow fiber membrane bundle of the present invention has the above-described characteristics and can be suitably used as a separation membrane for a blood purification module, for example.

本発明の血液浄化器用モジュールは、ポリビニルピロリドンを含むポリスルホン系樹脂よりなる中空糸膜束の両端を樹脂で固定化したモジュールである。   The blood purifier module of the present invention is a module in which both ends of a hollow fiber membrane bundle made of a polysulfone resin containing polyvinylpyrrolidone are fixed with a resin.

血液浄化用モジュールの形状を図3に例示する。
血液浄化用モジュール10は、筒状の容器2内に中空糸膜束3を装填し、中空糸膜束3の両端部を容器2の両端部に接着剤等により固定4し、容器2の両端部をキャップ5a,5bにより被覆してなる。そして、容器2の側部で一方の端部近傍には、容器2内に透析液を導入する透析液導入口6aを、他方の端部近傍には、透析液を排出する透析液排出口6bをそれぞれ突出形成してある。また、一方のキャップ5aには容器2内に血液を導入する血液導入口7aを、他方のキャップ5bには血液を排出する血液排出口7bをそれぞれ突出形成してある。
The shape of the blood purification module is illustrated in FIG.
The blood purification module 10 is loaded with a hollow fiber membrane bundle 3 in a cylindrical container 2, and both ends of the hollow fiber membrane bundle 3 are fixed 4 to both ends of the container 2 with an adhesive or the like. The part is covered with caps 5a and 5b. A dialysate inlet 6a for introducing dialysate into the container 2 is provided near one end of the side of the container 2, and a dialysate outlet 6b for discharging dialysate is provided near the other end. Each is formed to protrude. One cap 5a is formed with a blood introduction port 7a for introducing blood into the container 2, and the other cap 5b is formed with a blood discharge port 7b for discharging blood.

そして、血液は、矢印Aに示すように、血液導入口7aからキャップ5aと中空糸膜束3の一方の端面とにより形成される空間内に入り、中空糸膜束3の中空糸の中を通り、中空糸束3の他方の端面とキャップ5bとにより形成される空間内に入り、血液排出口7bから矢印Bに示すように排出される。一方、透析液は、矢印Cに示すように、透析液導入口6aから容器2内に入り、中空糸膜束3の中空糸の外側を流れ、矢印Dに示すように、透析液排出口6bから排出される。このとき、透析される血液の流れと透析液の流れとは逆方向の所謂対向流とする。この間に、中空糸膜内を流れる血液中の老廃物が中空糸膜を通して外側の透析液中に透析される。   The blood enters the space formed by the cap 5a and one end surface of the hollow fiber membrane bundle 3 from the blood introduction port 7a as indicated by the arrow A, and passes through the hollow fibers of the hollow fiber membrane bundle 3 As shown, the hollow fiber bundle 3 enters the space formed by the other end face of the hollow fiber bundle 3 and the cap 5b, and is discharged from the blood outlet 7b as shown by an arrow B. On the other hand, the dialysate enters the container 2 from the dialysate inlet 6a as shown by the arrow C, flows outside the hollow fiber of the hollow fiber membrane bundle 3, and as shown by the arrow D, the dialysate outlet 6b. Discharged from. At this time, the flow of blood to be dialyzed and the flow of dialysate are opposite so-called opposite flows. During this time, waste in the blood flowing in the hollow fiber membrane is dialyzed into the outer dialysate through the hollow fiber membrane.

前記容器やキャップの素材としては、ポリカーボネート、ポリエステル、ポリプロピレン等が挙げられる。また、両端部固定に用いられる接着剤の材料としてはポリウレタン等が挙げられる。   Examples of the material for the container and the cap include polycarbonate, polyester, and polypropylene. Moreover, polyurethane etc. are mentioned as a material of the adhesive agent used for both ends fixing.

両端部固定に用いられる接着剤の固定部への注入方法は限定されいが、注入すべきモジュール容器を回転させることにより発生する遠心力を利用して注入する遠心接着法が推奨される。該遠心接着法の方法も限定されない。たとえば、乾燥された中空糸膜束が装填されたハウジングの両端に目止め治具を取り付け、遠心接着機にセットする。遠心接着機を所定の回転数で回転させながら、室温付近の温度で透析液導入口6aおよび6bより所定量の未硬化の接着剤樹脂を注入した後、遠心接着機の温度を注入接着剤樹脂の硬化温度に上昇させ、硬化を終了させるか、あるいは少なくとも樹脂の流動性がなくなるまでプレ硬化させて遠心接着機を停止する。後者の場合はポスト硬化を行い硬化を終了させる。また、接着剤の注入は2回以上に分割して実施してもよい。   The method of injecting the adhesive used for fixing both ends into the fixing portion is not limited, but a centrifugal bonding method is recommended in which injection is performed using the centrifugal force generated by rotating the module container to be injected. The method of the centrifugal bonding method is not limited. For example, sealing jigs are attached to both ends of the housing loaded with the dried hollow fiber membrane bundle and set in a centrifugal bonding machine. A predetermined amount of uncured adhesive resin is injected from the dialysate inlets 6a and 6b at a temperature near room temperature while rotating the centrifugal adhesive machine at a predetermined rotational speed, and then the temperature of the centrifugal adhesive machine is injected. The curing temperature is raised and the curing is terminated, or at least the resin is precured until the fluidity of the resin is lost, and the centrifugal bonding machine is stopped. In the latter case, post-curing is performed to complete the curing. Further, the injection of the adhesive may be carried out by being divided into two or more times.

上記遠心接着法の場合、中空糸膜束内の空間全体に接着剤が均一に注入されることが重要である。この注入が不均一になり接着剤の注入量が不充分な箇所が生ずると接着不良に繋がる。特に、中空糸膜同士が固着した部分があると接着剤の浸透が阻害される。従って、この固着部分の解きほぐしをするために、例えば、中空糸膜束端面にノズルより空気を吹き付ける、いわゆる整糸処理等が実施されている。確かに、本整糸処理は固着中空糸膜の解きほぐしには効果があるが、この処理により端面部の中空糸膜束の変形が起こり傾き中空糸膜の発生に繋がるので好ましくない。
本発明の中空糸膜束は乾燥時の部分固着が抑制されているので整糸処理をしなくても接着剤の注入の均一性が確保されるという特徴を有する。従って、整糸処理は不要である。
ただし、接着剤の注入の均一性確保は重要であるので、下記対応等を実施することが好ましい。例えば、接着剤として低粘度の銘柄を選択することが好ましい。二液混合2分後の粘度が2000mPa・s以下が好ましい。1600mPa・s以下がより好ましい。また、モジュール組み立てに用いるハウジングに乾燥中空糸膜束を挿入する時の中空状の包装体で拘束される中空糸膜束の充填密度を低くすることが好ましい。
In the case of the centrifugal bonding method, it is important that the adhesive is uniformly injected into the entire space in the hollow fiber membrane bundle. If this injection becomes non-uniform and a part where the injection amount of the adhesive is insufficient is produced, it leads to poor adhesion. In particular, if there is a portion where the hollow fiber membranes are fixed, penetration of the adhesive is inhibited. Therefore, in order to unravel the adhering portion, for example, so-called yarn trimming treatment in which air is blown from the nozzle onto the end surface of the hollow fiber membrane bundle is performed. Certainly, the present warping treatment is effective in unraveling the fixed hollow fiber membrane, but this treatment is not preferable because the hollow fiber membrane bundle at the end face portion is deformed and the inclined hollow fiber membrane is generated.
The hollow fiber membrane bundle of the present invention is characterized in that the uniformity of the injection of the adhesive is ensured without performing the yarn setting treatment because partial adhesion during drying is suppressed. Therefore, the yarn setting process is unnecessary.
However, since it is important to ensure the uniformity of the injection of the adhesive, it is preferable to implement the following measures. For example, it is preferable to select a low viscosity brand as the adhesive. The viscosity after 2 minutes of mixing the two liquids is preferably 2000 mPa · s or less. 1600 mPa · s or less is more preferable. Moreover, it is preferable to lower the filling density of the hollow fiber membrane bundle restrained by the hollow package when the dry hollow fiber membrane bundle is inserted into the housing used for module assembly.

充填する中空糸膜束の中空糸膜本数、長さは、市場要求や中空糸膜束特性により適宜設定される。ハウジングの長さや径は該充填する中空糸膜束の大きさに見合うように設定される。充填する中空糸膜束は前記した本発明の中空糸膜束を用いるのが好ましいが限定されない。   The number of hollow fiber membranes and the length of the hollow fiber membrane bundle to be filled are appropriately set according to market requirements and hollow fiber membrane bundle characteristics. The length and diameter of the housing are set so as to match the size of the hollow fiber membrane bundle to be filled. The hollow fiber membrane bundle to be filled is preferably, but not limited to, the hollow fiber membrane bundle of the present invention described above.

本発明の血液浄化用モジュールは、ポリビニルピロリドンを含むポリスルホン系樹脂よりなる中空糸膜束の両端を樹脂で固定化した血液浄化用モジュールにおいて、(1)下記方法で評価される樹脂で固定化された部分の中空糸膜の傾き度が15度以上の中空糸膜の本数の割合が0.05%以下であり、(2)下記方法で測定される目詰まり糸の本数の割合が0.05%以下であることを同時に満足することが好ましい。   The blood purification module of the present invention is a blood purification module in which both ends of a hollow fiber membrane bundle made of a polysulfone-based resin containing polyvinylpyrrolidone are fixed with a resin. The ratio of the number of hollow fiber membranes having a degree of inclination of the hollow fiber membrane of 15 degrees or more is 0.05% or less. (2) The ratio of the number of clogged yarns measured by the following method is 0.05. % Is preferably satisfied at the same time.

[傾き中空糸膜の割合評価法]
所定本数の中空糸膜(例えば、10000本)を中空糸束側表面が梨地加工された厚み0.2mmのポリエチレン製のフィルムよりなる中空状包装体で拘束された乾燥中空糸膜束拘束体を所定形状(例えば、内径31mm、長さ255mm)のモジュール容器に挿入し、中空糸膜を固定しながらポリエチレン製のフィルムよりなる包装体を抜き取る。この状態でハウジングの両端に目止め治具を取り付け、遠心接着機にセットする。遠心接着機を500rpmの回転数で回転させながら、透析液導入口6aおよび6bよりポッティング剤(三洋化成社製の二液硬化型ポリウレタン樹脂、主剤:ポリメディカMA−200、硬化剤:ポリメディカMB−200、配合比:52/48、二液混合2分後の粘度:1400mPa・s)を25℃にて1端面当り0.8g/秒で20gを注入した。50℃で30分間硬化をして遠心接着機を停止する。このモジュールを取り出し、室温で1晩ポスト硬化をした後、モジュール端部の両端それぞれ5mmづつを切削、開口して中空糸膜束モジュールを得る。該モジュール端面を厚さ約0.2mmで切削して評価用サンプルを作製する。以上の評価用サンプルの作製法は一例であり限定されない。例えば、モジュール化された血液浄化器の製品について評価する場合は、該モジュールの端面を厚さ約0.2mmで切削して評価用サンプルとしてもよい。この端面をプロジェクターで拡大、投影して端面の法線に対する傾きが15度以上である中空糸膜を傾き中空糸膜とする。具体的な測定方法は次のとおりである。すなわち、まず該サンプルの厚さ(d)を測定し、d×tan15度の値を算出する。サンプルをプロジェクターで20倍〜50倍程度に拡大、投影する。傾いた中空糸膜が存在すると傾き部分の影が生ずる。この影の部分のずれの長さを測定する。この長さが上記d×tan15度よりも大きい中空糸膜の本数を数える。概念図を図4に示す。
傾き中空糸膜の割合は次式で算出する。
傾き中空糸膜の割合(%)=(15度以上の傾きの中空糸膜の本数/サンプル端面の中空糸膜の全本数)×100
[Evaluation method of proportion of inclined hollow fiber membrane]
A dry hollow fiber membrane bundle restraint body in which a predetermined number of hollow fiber membranes (for example, 10000) is restrained by a hollow packaging body made of a polyethylene film having a thickness of 0.2 mm, the surface of the hollow fiber bundle side being textured. It is inserted into a module container having a predetermined shape (for example, an inner diameter of 31 mm and a length of 255 mm), and a package made of a polyethylene film is pulled out while fixing the hollow fiber membrane. In this state, the fixing jigs are attached to both ends of the housing and set in the centrifugal bonding machine. While rotating the centrifugal bonding machine at a rotation speed of 500 rpm, a potting agent (two-component curable polyurethane resin manufactured by Sanyo Kasei Co., Ltd., main agent: Polymedica MA-200, curing agent: Polymedica MB, from the dialysate inlets 6a and 6b. -200, blending ratio: 52/48, viscosity after 2 minutes of mixing of two liquids: 1400 mPa · s) at 25 ° C., 20 g was injected at 0.8 g / sec per end face. Cure for 30 minutes at 50 ° C. and stop the centrifugal bonding machine. After taking out this module and carrying out post-curing overnight at room temperature, 5 mm each of both ends of the module end are cut and opened to obtain a hollow fiber membrane bundle module. The module end face is cut at a thickness of about 0.2 mm to produce a sample for evaluation. The above-described method for producing the sample for evaluation is an example and is not limited. For example, when evaluating a modularized blood purifier product, the end surface of the module may be cut to a thickness of about 0.2 mm to obtain an evaluation sample. This end face is enlarged and projected by a projector, and a hollow fiber membrane whose inclination with respect to the normal of the end face is 15 degrees or more is defined as an inclined hollow fiber membrane. The specific measurement method is as follows. That is, first, the thickness (d) of the sample is measured, and a value of d × tan 15 degrees is calculated. The sample is enlarged and projected by a projector about 20 to 50 times. If a tilted hollow fiber membrane is present, a shadow of the tilted portion occurs. The length of the shift of the shadow portion is measured. The number of hollow fiber membranes whose length is greater than the above d × tan 15 degrees is counted. A conceptual diagram is shown in FIG.
The ratio of the inclined hollow fiber membrane is calculated by the following formula.
Ratio of inclined hollow fiber membrane (%) = (number of hollow fiber membranes inclined at 15 degrees or more / total number of hollow fiber membranes on the sample end face) × 100

中空糸膜束の傾き度が15度を超えた場合は、血液が流れにくくなり、偏流が起こり残血中空糸膜の発生に繋がる。傾き中空糸膜の割合は0.04%以下がより好ましく、0.03%以下がさらに好ましい。0%が特に好ましい。0.05%を超えた場合は残血中空糸膜本数が増加し透析患者に不安感を与えるので好ましくない。本発明においては、本特性は両端面ともが満足するのが好ましい。   When the degree of inclination of the hollow fiber membrane bundle exceeds 15 degrees, it becomes difficult for blood to flow, and drift occurs and leads to the generation of residual blood hollow fiber membranes. The proportion of the inclined hollow fiber membrane is more preferably 0.04% or less, and further preferably 0.03% or less. 0% is particularly preferred. If it exceeds 0.05%, the number of residual blood hollow fiber membranes increases, which causes anxiety to dialysis patients. In the present invention, it is preferable that this characteristic is satisfied on both end faces.

[目詰まり中空糸膜の割合]
上記方法で調製したサンプル端面を赤色のマジックインキ(R)で彩色し、かつ該端面を放射線状に8分割のマーキングをし、8分割した全端面をナショナルライト付き顕微鏡(ライトスコープ100、倍率:100倍、松下電器産業社製)を用いて目詰まり中空糸膜の本数をカウントする。目詰まり中空糸膜の割合は下記式にて算出する。
目詰まり中空糸膜の割合(%)=(目詰まり中空糸膜本数/サンプル端面の中空糸膜の全本数)×100
ここで、目詰まり中空糸膜本数およびサンプル端面の中空糸膜の全本数共に、8分割した端面全ての総合計数である。
[Percentage of clogged hollow fiber membrane]
The end surface of the sample prepared by the above method is colored with red magic ink (R), and the end surface is marked with 8 divisions in a radial pattern. The entire 8 end portions are microscopes with a national light (light scope 100, magnification: 100 times, manufactured by Matsushita Electric Industrial Co., Ltd.) and the number of clogged hollow fiber membranes is counted. The ratio of the clogged hollow fiber membrane is calculated by the following formula.
Ratio of clogged hollow fiber membranes (%) = (number of clogged hollow fiber membranes / total number of hollow fiber membranes on the sample end face) × 100
Here, both the number of clogged hollow fiber membranes and the total number of hollow fiber membranes on the sample end surface are total counts of all end surfaces divided into eight.

上記目詰まり中空糸膜の割合は、0.04%以下がより好ましく、0.03%以下がさらに好ましい。0%が特に好ましい。目詰まり中空糸膜の割合が0.05%を超えた場合は、血液が流れにくくなり、血液の偏流が起こり残血中空糸膜の発生に繋がるので好ましくない。本発明においては、本特性は両端面ともが満足するのが好ましい。   The ratio of the clogged hollow fiber membrane is more preferably 0.04% or less, and further preferably 0.03% or less. 0% is particularly preferred. When the ratio of the clogged hollow fiber membrane exceeds 0.05%, it is not preferable because blood becomes difficult to flow, blood drifts and leads to the generation of residual blood hollow fiber membranes. In the present invention, it is preferable that this characteristic is satisfied on both end faces.

さらに、本発明の血液浄化用モジュールは、モジュール端面の中空糸膜束が接着剤で固定化された部分の最表面部分を下記方法で観察し評価される潰れ中空糸膜本数の割合が0.05%以下であることが好ましい。本発明においては、本特性は両側の端面の両方ともが満足するのが好ましい。0.04%以下がより好ましく、0.03%以下がさらに好ましい。0%が特に好ましい。潰れ中空糸膜の本数の割合が0.05%を超えた場合は、血液が流れにくくなり、血液の偏流が起こり残血糸の発生に繋がる。
[潰れ中空糸膜の割合評価法]
上記の傾き中空糸膜の割合評価に用いるサンプルの端面(モジュール端面側)を放射線状に8分割のマーキングをし、8分割した全端面を200倍の倍率で観察して潰れの個数をカウントした。潰れの基準は中空糸膜1本ずつにおいて短径と長径を測定し、その比が1対2よりも扁平しているものを潰れ中空糸膜とする。潰れ中空糸膜の割合は次式により求める。
潰れ中空糸膜の割合(%)=(潰れ中空糸膜本数/サンプル端面の中空糸膜の全本数)×100
ここで、潰れ中空糸膜本数およびサンプル端面の中空糸膜の全本数共に、8分割した端面全ての総合計数である。
Further, in the blood purification module of the present invention, the ratio of the number of crushed hollow fiber membranes evaluated by observing and evaluating the outermost surface portion of the portion where the hollow fiber membrane bundle on the end surface of the module is fixed with an adhesive is 0.00. It is preferable that it is 05% or less. In the present invention, it is preferable that this characteristic is satisfied on both end faces. 0.04% or less is more preferable, and 0.03% or less is more preferable. 0% is particularly preferred. When the ratio of the number of crushed hollow fiber membranes exceeds 0.05%, blood becomes difficult to flow, blood drifts and leads to the generation of residual blood yarn.
[Method for evaluating the ratio of hollow hollow fiber membranes]
The end face (module end face side) of the sample used for the evaluation of the ratio of the above-mentioned inclined hollow fiber membrane was radially marked with 8 divisions, and the total number of crushing was counted by observing all 8 divided end faces at a magnification of 200 times. . The standard of crushing is to measure the short diameter and long diameter of each hollow fiber membrane, and the one whose ratio is flatter than 1: 2 is regarded as a crushing hollow fiber membrane. The ratio of the collapsed hollow fiber membrane is obtained by the following equation.
Ratio of collapsed hollow fiber membranes (%) = (number of collapsed hollow fiber membranes / total number of hollow fiber membranes on the sample end face) × 100
Here, both the number of crushed hollow fiber membranes and the total number of hollow fiber membranes on the sample end surface are total counts of all the end surfaces divided into eight.

また、本発明の血液浄化用モジュールは、下記方法で測定される残血糸の割合がモジュール当りの全中空糸の本数に対して0.05%以下であることが好ましい。0.04%以下がより好ましく、0.03%以下がさらに好ましい。0%が特に好ましい。0.05%を超えた場合は残血糸本数が増加し透析患者に不安感を与えるので好ましくない。
[残血中空糸膜の割合評価法]
上記方法で得られたモジュールの透析液側を生理食塩水で満たし、健康人から採取したヘパリン加血200mlを血液バッグに詰め、血液バッグとモジュールをチューブで連結し、37℃で血液流速100ml/min、1時間循環する。循環開始前と循環60分との血液をサンプリングし、白血球数、血小板数を測定する。測定した値はヘマトクリットの値で補正する。
補正値=測定値(60分)×ヘマトクリット(0分)/ヘマトクリット(60分)
補正値から白血球と血小板の変化率を算出する。
変化率=補正値(60分)/循環開始前値×100
60分循環終了後、生理食塩水で返血し、残血している糸の本数を数える。残血糸の割合は下記式にて算出する。
残血中空糸膜の割合(%)=(残血中空糸膜の本数/モジュール中の中空糸膜の全本数)×100
In the blood purification module of the present invention, the ratio of residual blood yarn measured by the following method is preferably 0.05% or less with respect to the total number of hollow fibers per module. 0.04% or less is more preferable, and 0.03% or less is more preferable. 0% is particularly preferred. If it exceeds 0.05%, the number of residual blood threads increases, which gives anxiety to dialysis patients.
[Rate evaluation method of residual blood hollow fiber membrane]
The dialyzate side of the module obtained by the above method is filled with physiological saline, 200 ml of heparinized blood collected from a healthy person is packed in a blood bag, the blood bag and the module are connected by a tube, and the blood flow rate is 100 ml / Cycle for 1 hour. Blood samples before the start of circulation and 60 minutes of circulation are sampled, and the white blood cell count and platelet count are measured. The measured value is corrected with the value of hematocrit.
Correction value = measured value (60 minutes) x hematocrit (0 minutes) / hematocrit (60 minutes)
The rate of change of white blood cells and platelets is calculated from the correction value.
Change rate = correction value (60 minutes) / value before circulation start × 100
After circulation for 60 minutes, the blood is returned with physiological saline, and the number of remaining blood is counted. The ratio of residual blood thread is calculated by the following formula.
Ratio of residual blood hollow fiber membrane (%) = (number of residual blood hollow fiber membranes / total number of hollow fiber membranes in module) × 100

さらに、本発明においては、モジュールに水を主体とした液体を充填した状態で室温にて1年間保存した後の中空糸膜束を長手方向に10個に分割し、各々を透析型人工腎臓装置製造承認基準により定められた試験を実施した時の中空糸膜の抽出液におけるUV(220〜350nm)吸光度が0.10以下であることが好ましい。この中空糸膜の抽出液におけるUV(220〜350nm)吸光度は2年以上保存しても上記特性が維持されるのがより好ましい。そのためには、この1年保存後のUV(220〜350nm)吸光度が0.08以下であることがより好ましく、0.06以下であることがさらに好ましい。このことにより血液浄化器の長期にわたる高い安全性が維持できるので好ましい。なお、保存後のUV(220〜350nm)吸光度は中空糸膜束を長手方向に10個に分割し、各々について測定した時の平均値で評価したものである。また、上記のモジュールの保存評価の折にモジュールに充填される液体は、水のみあるいは水に該モジュールのγ線滅菌処理時の中空糸膜束素材の劣化防止のためのピロ亜硫酸ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、アセトンソジウムバイサルファイト、ソジウムホルムアルデヒドスルホキシレート、アスコルビン酸およびグリセリン等を溶解した水溶液が挙げられる。   Furthermore, in the present invention, the hollow fiber membrane bundle after being stored for 1 year at room temperature in a state where the module is filled with a liquid mainly composed of water is divided into 10 pieces in the longitudinal direction, and each is divided into dialysis artificial kidney devices. It is preferable that the UV (220 to 350 nm) absorbance of the hollow fiber membrane extract when the test defined by the manufacturing approval standard is performed is 0.10 or less. More preferably, the UV (220 to 350 nm) absorbance of the hollow fiber membrane extract is maintained even when stored for 2 years or longer. For this purpose, the UV (220-350 nm) absorbance after storage for 1 year is more preferably 0.08 or less, and further preferably 0.06 or less. This is preferable because the long-term safety of the blood purifier can be maintained. In addition, UV (220-350 nm) absorbance after storage is evaluated by an average value when the hollow fiber membrane bundle is divided into 10 pieces in the longitudinal direction and measured for each. In addition, the liquid filled in the module during the storage evaluation of the above-mentioned module may be sodium pyrosulfite or sodium sulfite for preventing deterioration of the hollow fiber membrane bundle material during the γ-ray sterilization treatment of the module with water alone. And an aqueous solution in which sodium bisulfite, acetone sodium bisulfite, sodium formaldehyde sulfoxylate, ascorbic acid, glycerin and the like are dissolved.

上記の血液浄化用モジュールとして具備することが好ましい特性を付与する達成手段は限定されないが、例えば、前記した本発明の中空糸膜束を用いることにより達成することができる。   Although the achievement means which gives the characteristic preferable to comprise as said blood purification module is not limited, For example, it can achieve by using the above-mentioned hollow fiber membrane bundle of this invention.

本発明においては、親水性高分子の中空糸膜の外表面における含有率が25〜50質量%であるのが好ましい。外表面の親水性高分子の含有率が25質量%未満では膜全体、特に膜内表面の親水性高分子の含有率が低くなりすぎ、血液適合性や透過性能の低下が起こる可能性がある。また乾燥膜の場合、濡れ性が低下することがある。血液透析器を血液浄化療法に使用する時には、生理食塩水などを血液透析器の中空糸膜内外部に流すことにより、湿潤化および泡抜きを行う必要がある。このプライミング操作において、中空糸膜の真円度や端部の潰れ、変形、膜素材の親水性などが、プライミング性に影響を与えると考えられるが、疎水性高分子と親水性高分子からなる中空糸膜であって乾燥膜モジュールの場合には、中空糸膜の親疎水バランスがプライミング性に大きく影響する。したがって、より好ましい親水性高分子の含有率は27質量%以上、さらに好ましくは30質量%以上である。外表面の親水性高分子の含有率が50質量%を超すと、透析液に含まれるエンドトキシン(内毒素)が血液側へ浸入する可能性が高まり、発熱等の副作用を引き起こすことに繋がるとか、膜を乾燥させた時に膜外表面に存在する親水性高分子が介在し中空糸膜同士がくっつき(固着し)、モジュール組み立て性が悪化する等の課題を引き起こす可能性がある。したがって、より好ましい含有率は47質量%以下、さらに好ましくは45質量%以下である。   In this invention, it is preferable that the content rate in the outer surface of the hollow fiber membrane of a hydrophilic polymer is 25-50 mass%. When the content of the hydrophilic polymer on the outer surface is less than 25% by mass, the content of the hydrophilic polymer on the entire membrane, particularly the inner surface of the membrane, becomes too low, and blood compatibility and permeation performance may decrease. . In the case of a dry film, wettability may be reduced. When the hemodialyzer is used for blood purification therapy, it is necessary to perform wetting and defoaming by allowing physiological saline or the like to flow inside and outside the hollow fiber membrane of the hemodialyzer. In this priming operation, roundness of the hollow fiber membrane, edge crushing, deformation, hydrophilicity of the membrane material, etc. are thought to affect the priming properties, but it consists of a hydrophobic polymer and a hydrophilic polymer. In the case of a hollow fiber membrane and a dry membrane module, the hydrophilic / hydrophobic balance of the hollow fiber membrane greatly affects the priming property. Therefore, the more preferable content of the hydrophilic polymer is 27% by mass or more, and more preferably 30% by mass or more. If the content of the hydrophilic polymer on the outer surface exceeds 50% by mass, the endotoxin (endotoxin) contained in the dialysate is likely to enter the blood side, leading to side effects such as fever, When the membrane is dried, a hydrophilic polymer existing on the outer surface of the membrane is interposed, and the hollow fiber membranes stick to each other (adhere), which may cause problems such as deterioration in module assembly. Therefore, a more preferable content rate is 47 mass% or less, More preferably, it is 45 mass% or less.

なお、上記した親水性高分子の中空糸膜表面最表層の含有率は、後述のごとくESCA法で測定し算出したものであり、中空糸膜表面の最表層部分(表層からの深さ数Å〜数十Å)の含有率の絶対値を求めたものである。通常は、ESCA法(最表層)では血液接触表面より深さが10nm(100Å)程度までの親水性高分子(PVP)含量を測定可能である。   In addition, the content rate of the hollow polymer membrane surface outermost layer of the above-mentioned hydrophilic polymer was measured and calculated by the ESCA method as described later, and the outermost layer portion (depth number from the surface layer) of the hollow fiber membrane surface was calculated. The absolute value of the content ratio of ˜several tens of liters) is obtained. Normally, the ESCA method (outermost layer) can measure the hydrophilic polymer (PVP) content up to about 10 nm (100 mm) deep from the blood contact surface.

また、本発明においては、中空糸膜外表面の開孔率が8〜25%であることが前記した特性を付与するために有効であり、好ましい実施態様である。開孔率が8%未満の場合には、透水率が低下する可能性がある。また、膜を乾燥させた時に膜外表面に存在する親水性高分子が介在し中空糸膜同士が固着し、モジュール組み立て性が悪化する等の課題を引き起こす。そのため、開孔率は9%以上がより好ましく、10%以上がさらに好ましい。逆に、開孔率が25%を超える場合には、バースト圧が低下したり、血液透析使用時、透析液側から血液側へのエンドトキシンが浸入することがある。そのため、開孔率は23%以下がより好ましく、20%以下がさらに好ましく、17%以下がよりさらに好ましく、特に好ましくは15%以下である。   Moreover, in this invention, it is effective in order to provide an above described property that the porosity of the hollow fiber membrane outer surface is 8 to 25%, and is a preferable embodiment. If the open area ratio is less than 8%, the water permeability may be lowered. Further, when the membrane is dried, the hydrophilic polymer existing on the outer surface of the membrane is interposed, and the hollow fiber membranes are fixed to each other, causing problems such as deterioration in module assemblability. Therefore, the open area ratio is more preferably 9% or more, and further preferably 10% or more. Conversely, when the open area ratio exceeds 25%, the burst pressure may decrease, or endotoxin from the dialysate side to the blood side may enter during hemodialysis. Therefore, the porosity is more preferably 23% or less, further preferably 20% or less, still more preferably 17% or less, and particularly preferably 15% or less.

中空糸膜の膜厚は10μm以上60μm以下が好ましい。60μmを超えると、透水性は高くても、移動速度の遅い中〜高分子量物質の透過性が低下することがある。膜厚は薄い方が物質透過性が高まり、55μm以下がより好ましく、50μm以下がさらに好ましく、よりさらに好ましくは47μm以下である。また、膜厚が10μm未満では、膜強度が低く偏肉度を0.6以上としても、バースト圧が低くなることがある。そのため、膜厚は20μm以上がより好ましく、さらに好ましくは25μm以上、よりさらに好ましくは30μm以上、特に好ましくは35μm以上である。   The film thickness of the hollow fiber membrane is preferably 10 μm or more and 60 μm or less. If it exceeds 60 μm, the permeability of medium to high molecular weight substances having a low movement speed may be lowered even if the water permeability is high. The thinner the film thickness is, the higher the substance permeability is, and it is more preferably 55 μm or less, further preferably 50 μm or less, and still more preferably 47 μm or less. On the other hand, when the film thickness is less than 10 μm, the burst pressure may be lowered even if the film strength is low and the thickness deviation is 0.6 or more. Therefore, the film thickness is more preferably 20 μm or more, further preferably 25 μm or more, still more preferably 30 μm or more, and particularly preferably 35 μm or more.

以下、本発明の有効性を実施例を挙げて説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例における物性の評価方法は以下の通りである。   Hereinafter, the effectiveness of the present invention will be described with reference to examples, but the present invention is not limited thereto. In addition, the evaluation method of the physical property in the following examples is as follows.

1、中空糸膜束の含水率
本発明における選択透過性分離膜の含水率は、以下の式により計算した。
含水率%=100×(Ww−Wd)/Wd
ここで、Wwは乾燥前の中空糸膜重量(g)、Wdは、120℃の乾熱オーブンで2時間乾燥後(絶乾後)の中空糸膜重量(g)である。ここで、Wwは1〜2gの範囲内とすることで、2時間後に絶乾状態(これ以上重量変化がない状態)にすることができる。
1. Water content of hollow fiber membrane bundle The water content of the selectively permeable separation membrane in the present invention was calculated by the following equation.
Moisture content% = 100 × (Ww−Wd) / Wd
Here, Ww is the weight (g) of the hollow fiber membrane before drying, and Wd is the weight (g) of the hollow fiber membrane after being dried for 2 hours in a dry heat oven at 120 ° C. (after completely dried). Here, by setting Ww within the range of 1 to 2 g, it can be in an absolutely dry state (a state in which there is no further weight change) after 2 hours.

2、中空糸膜束の含水率変動率
中空糸膜束を中空糸膜束を長手方向に2.7cmずつ10個に等分し、各々の部位から乾燥状態の中空糸膜束1gをはかりとり、上記方法で含水率を測定し下記式で算出した。
含水率変動率(%)={(含水率最大値−含水率最小値)/含水率平均値}×100
2. Moisture content fluctuation rate of hollow fiber membrane bundle The hollow fiber membrane bundle is equally divided into 10 pieces of 2.7 cm in the longitudinal direction, and 1 g of the dry hollow fiber membrane bundle is weighed from each part. The water content was measured by the above method and calculated by the following formula.
Moisture content fluctuation rate (%) = {(maximum moisture content value−minimum moisture content value) / average moisture content value} × 100

3、UV(220−350nm)吸光度
透析型人工腎臓装置製造基準に定められた方法である中空糸膜束1gに純水100mlを加え、70℃で1時間抽出した抽出液を分光光度計(日立製作所社製、U−3000)を用いて波長範囲200〜350nmの吸光度を測定し、この波長範囲での最大の吸光度を求めた。
該測定は、中空糸膜束を長手方向に2.7cmずつ10個に等分し、各々の部位から乾燥状態の中空糸膜束1gをはかりとり全サンプルについて測定した。
湿潤中空糸膜モジュールの場合は、モジュールの透析液側流路に生理食塩水を500mL/minで5分間通液し、ついで血液側流路に200mL/minで通液した。その後血液側から透析液側に200mL/minでろ過をかけながら3分間通液した後にフリーズドライして乾燥膜を得て、該乾燥膜を用いて上記測定を行った。
3. UV (220-350 nm) absorbance 100 g of pure water was added to 1 g of a hollow fiber membrane bundle, which is a method stipulated in the manufacturing standard for dialysis-type artificial kidney apparatus, and the extracted liquid was extracted at 70 ° C. for 1 hour. Absorbance in the wavelength range of 200 to 350 nm was measured using U-3000) manufactured by Seisakusho Co., Ltd., and the maximum absorbance in this wavelength range was determined.
In the measurement, the hollow fiber membrane bundle was equally divided into 10 pieces of 2.7 cm in the longitudinal direction, and 1 g of the hollow fiber membrane bundle in a dry state was weighed from each portion and measured for all samples.
In the case of the wet hollow fiber membrane module, physiological saline was passed through the dialysate side channel of the module at 500 mL / min for 5 minutes, and then passed through the blood side channel at 200 mL / min. Thereafter, the solution was passed through for 3 minutes while filtering from the blood side to the dialysate side at 200 mL / min, and then freeze-dried to obtain a dry membrane, and the above measurement was performed using the dry membrane.

4、過酸化水素の定量
前記方法で抽出した抽出液2.6mlに塩化アンモニウム緩衝液(PH8.6)0.2mlとモル比で当量混合したTiClの塩化水素溶液と4−(2−ピリジルアゾ)レゾルシノールのNa塩水溶液との混合液を0.4mMに調製した発色試薬0.2mlを加え、50℃で5分間加温後、室温に冷却し508nmの吸光度を測定。標品を用いて同様に測定して求めた検量線にて定量した。
該測定は、中空糸膜束を長手方向に2.7cmずつ10個に等分し、各々の部位から乾燥状態の中空糸膜束1gをはかりとり全サンプルについて測定した。
湿潤中空糸膜モジュールの場合は、UV(220−350nm)吸光度の測定と同様に処理することにより得た乾燥膜を用いて測定した。
4. Determination of hydrogen peroxide Hydrogen chloride solution of TiCl 4 and 4- (2-pyridylazo) mixed in an equimolar ratio with ammonium chloride buffer (PH 8.6) 0.2 ml in 2.6 ml of the extract extracted by the above method ) Add 0.2 ml of coloring reagent prepared to 0.4 mM of a mixed solution of resorcinol with Na salt solution, heat at 50 ° C. for 5 minutes, cool to room temperature, and measure absorbance at 508 nm. It quantified with the analytical curve calculated | required similarly using the sample and calculated | required.
In the measurement, the hollow fiber membrane bundle was equally divided into 10 pieces of 2.7 cm in the longitudinal direction, and 1 g of the hollow fiber membrane bundle in a dry state was weighed from each portion and measured for all samples.
In the case of a wet hollow fiber membrane module, measurement was performed using a dry membrane obtained by processing in the same manner as the measurement of UV (220-350 nm) absorbance.

5、中空糸膜束の部分固着性
包装体で拘束した乾燥中空糸膜束を切断時に発生する熱により中空糸膜同士が融着しないようにSKカッターを使用し、中空糸膜束の長手方向に2cm幅で切断する。その輪切り状の中空糸膜束を除電しながら(キーエンス社製 SJ−F020)ゆっくりと机上の紙面に落とし、複数本以上の塊が発生するかどうか目視で確認した。なお、目視で確認する際、明らかに切断面の融着により塊が生じているものは部分固着ではないと分類した。融着の状態がひどい場合には適宜切断する刃物を交換する。
5. Partial fixing property of hollow fiber membrane bundle Using a SK cutter so that the hollow fiber membrane bundles are not fused by heat generated during cutting of the dry hollow fiber membrane bundle constrained by the package, the longitudinal direction of the hollow fiber membrane bundle Cut into 2 cm widths. While neutralizing the ring-shaped hollow fiber membrane bundle (SJ-F020, manufactured by Keyence Corporation), it was slowly dropped onto the paper surface of the desk, and it was visually confirmed whether or not a plurality of lumps were generated. In addition, when visually confirming, the thing which the lump produced by fusion | melting of the cut surface clearly was classified as not partial adhesion. If the fused state is severe, replace the blade to be cut as appropriate.

6、中空糸膜束の収縮度変動
乾燥上がりの中空糸膜束の円形断面において、中心点からの半径の1/4の外周部と中心点からの半径の1/4の内周部に区分をしてサンプリングをした。この外周部および内周部よりサンプリングされた中空糸膜よりそれぞれ500本をランダムに採取し、それぞれ500本の全てについて以下の方法でその糸長を測定しその平均値を求めた。両平均長の差を求め、以下の基準により判定した。◎および○を合格とした。
(糸長の測定法)
各中空糸膜の両端をそれぞれ端部より5mm内部をコクヨWクリップ口幅15mm、豆(コクヨ社製:クリーJ36)で挟み、一方のクリップを固定、もう一方のクリップをフリーとして中空糸膜を吊り下げ、この状態で糸長を定規にて測定する。
(収縮度変動の判定)
◎:外周部と内周部との中空糸膜長さの平均値の差が1mm未満
○:外周部と内周部との中空糸膜長さの平均値の差が1mmから3mm以下
×:外周部と内周部との中空糸膜長さの平均値の差が3mmを超える
6. Shrinkage fluctuation of hollow fiber membrane bundles In the circular cross section of the hollow fiber membrane bundle after drying, it is divided into an outer peripheral part of ¼ radius from the central point and an inner peripheral part of ¼ radius from the central point. And sampled. 500 pieces of each of the hollow fiber membranes sampled from the outer peripheral portion and the inner peripheral portion were randomly sampled, and the yarn lengths of all 500 pieces were measured by the following method to determine the average value. The difference between the two average lengths was determined and judged according to the following criteria. ◎ and ○ were accepted.
(Measurement method of yarn length)
Each hollow fiber membrane is sandwiched between KOKUYO W clip mouth width 15 mm and beans (Kokuyo Co., Ltd .: Cree J36), 5 mm from both ends of each hollow fiber membrane, one clip is fixed, and the other clip is free Suspend and measure the yarn length with a ruler in this state.
(Determination of shrinkage fluctuation)
A: The difference in the average value of the hollow fiber membrane length between the outer peripheral portion and the inner peripheral portion is less than 1 mm. ○: The difference in the average value of the hollow fiber membrane length between the outer peripheral portion and the inner peripheral portion is 1 mm to 3 mm or less. The difference in the average value of the hollow fiber membrane length between the outer peripheral part and the inner peripheral part exceeds 3 mm

7、乾燥中空糸膜束の保存安定性
乾燥中空糸膜束を湿度50%に調湿されたドライボックス中(雰囲気は空気)に室温で3ヶ月間保存した後、前記方法でUV(220−350nm)吸光度を測定した。該保存によるUV(220−350nm)吸光度の増加度で安定性を判定した。該増加度は中空糸膜束を長手方向に2.7cmずつ10個に等分し、それぞれのサンプルについて測定し、その平均値で判定した。平均値が0.1を超えないものを合格とした。
7. Storage stability of dried hollow fiber membrane bundle The dried hollow fiber membrane bundle was stored in a dry box (atmosphere: air) conditioned at 50% humidity for 3 months at room temperature, and then UV (220- 350 nm) absorbance was measured. Stability was determined by the degree of increase in UV (220-350 nm) absorbance due to the storage. The degree of increase was determined by dividing the hollow fiber membrane bundle into 10 pieces of 2.7 cm in the longitudinal direction, measuring each sample, and determining the average value. Those whose average value did not exceed 0.1 were regarded as acceptable.

8、傾き中空糸膜の割合評価法
実施例および比較例で得られた乾燥中空糸膜束の拘束体を内径31長さ255mmのモジュール用ハウジングに挿入し、中空糸膜を固定しながら包装体を抜き取った。この状態でハウジングの両端を目止め治具を取り付け、遠心接着機にセットした。遠心接着機を500rpmの回転数で回転させながら、透析液導入口6aおよび6bよりポッティング剤(三洋化成社製の二液硬化型ポリウレタン樹脂、主剤:ポリメディカMA−200、硬化剤:ポリメディカMB−200、配合比:52/48、二液混合2分後の粘度:1400mPa・s)を25℃にて1端面当り0.8g/秒で20gを注入した。50℃で30分間キュアリングをして遠心接着機を停止した。このモジュールを取り出し、室温で1晩ポストキュアーをした後、モジュール端部の両端それぞれ5mmづつを切削、開口して中空糸膜束モジュールを得た。該モジュール端面を厚さ約0.2mmで切削して評価用サンプルを作製した。この端面をプロジェクターで拡大、投影して端面の法線に対する傾きが15度以上である中空糸膜を傾き中空糸膜とした。具体的な測定方法は次の通りである。すなわち、まず該サンプルの厚さ(d)を測定し、d×tan15度の値を算出した。サンプルをプロジェクターで20倍〜50倍程度に拡大、投影する。傾いた中空糸膜が存在すると傾き部分の影が生ずる。この影の部分のずれの長さを測定した。この長さが上記d×tan15度よりも大きい中空糸膜の本数を数える。概念図を図2に示した。
傾き中空糸膜の割合は次式で算出する。
傾き中空糸膜の割合(%)=(15度以上の傾きの中空糸膜の本数/サンプル端面の中空糸膜の全本数)×100
傾き中空糸膜の割合で以下の品質区分判定をした。
◎:傾き中空糸膜の割合0.03%未満
○:傾き中空糸膜の割合0.03〜0.05%
×:傾き中空糸膜の割合0.05%を超える
◎および○を合格とした。
8. Inclined Hollow Fiber Membrane Ratio Evaluation Method The dry hollow fiber membrane bundle restraint obtained in the examples and comparative examples is inserted into a module housing having an inner diameter of 31 and a length of 255 mm, and the hollow fiber membrane is fixed while being packaged. Extracted. In this state, sealing jigs were attached to both ends of the housing and set in a centrifugal bonding machine. While rotating the centrifugal bonding machine at a rotation speed of 500 rpm, a potting agent (two-component curable polyurethane resin manufactured by Sanyo Kasei Co., Ltd., main agent: Polymedica MA-200, curing agent: Polymedica MB, from the dialysate inlets 6a and 6b. -200, blending ratio: 52/48, viscosity after 2 minutes of mixing of two liquids: 1400 mPa · s) at 25 ° C., 20 g was injected at 0.8 g / sec per end face. The centrifugal bonding machine was stopped by curing at 50 ° C. for 30 minutes. The module was taken out and post-cured overnight at room temperature, and then 5 mm at each end of the module end was cut and opened to obtain a hollow fiber membrane bundle module. The module end face was cut to a thickness of about 0.2 mm to prepare an evaluation sample. This end face was enlarged and projected by a projector, and a hollow fiber membrane having an inclination of 15 degrees or more with respect to the normal of the end face was defined as an inclined hollow fiber membrane. The specific measurement method is as follows. That is, first, the thickness (d) of the sample was measured, and a value of d × tan 15 degrees was calculated. The sample is enlarged and projected by a projector about 20 to 50 times. If a tilted hollow fiber membrane is present, a shadow of the tilted portion occurs. The length of the shift of the shadow portion was measured. The number of hollow fiber membranes whose length is greater than the above d × tan 15 degrees is counted. A conceptual diagram is shown in FIG.
The ratio of the inclined hollow fiber membrane is calculated by the following formula.
Ratio of inclined hollow fiber membrane (%) = (number of hollow fiber membranes inclined at 15 degrees or more / total number of hollow fiber membranes on the sample end face) × 100
The following quality classification was determined by the ratio of the inclined hollow fiber membrane.
A: Ratio of inclined hollow fiber membrane is less than 0.03%
○: Ratio of inclined hollow fiber membrane 0.03 to 0.05%
X: The proportion of the inclined hollow fiber membrane exceeds 0.05%.

9、潰れ中空糸膜の割合評価法
上記の傾き中空糸膜の割合評価に用いるサンプルの端面(モジュール端面側)を放射状に8分割のマーキングをし、8分割した全端面を200倍の倍率で観察して潰れの個数をカウントした。潰れの基準は中空糸膜1本ずつにおいて短径と長径を測定し、その比が1対2よりも扁平しているものを潰れ中空糸膜とした。潰れ中空糸膜本数の割合は次式により求めた。
潰れ中空糸膜の割合(%)=(潰れ中空糸膜本数/サンプル端面の中空糸膜の全本数)×100
ここで、潰れ糸膜本数およびサンプル端面の中空糸膜の全本数共に、8分割した端面全ての総合計数である。
潰れ中空糸膜の割合で以下の品質区分判定をした。
◎:潰れ中空糸膜の割合0.03%未満
○:潰れ中空糸膜の割合0.03〜0.05%
×:潰れ中空糸膜の割合0.05%を超える
◎および○を合格とした。
9. Ratio evaluation method of collapsed hollow fiber membrane The end surface (module end surface side) of the sample used for the ratio evaluation of the above-mentioned inclined hollow fiber membrane is radially divided into eight parts, and the whole end face divided into eight parts at a magnification of 200 times The number of crushing was counted by observation. The standard for crushing was to measure the short diameter and long diameter of each hollow fiber membrane, and the one whose ratio was flatter than 1: 2 was defined as a crushing hollow fiber membrane. The ratio of the number of crushed hollow fiber membranes was obtained by the following formula.
Ratio of collapsed hollow fiber membranes (%) = (number of collapsed hollow fiber membranes / total number of hollow fiber membranes on the sample end face) × 100
Here, both the number of crushed yarn membranes and the total number of hollow fiber membranes on the sample end surface are total counts of all the end surfaces divided into eight.
The following quality classification was determined based on the ratio of the collapsed hollow fiber membrane.
A: Less than 0.03% of hollow hollow fiber membrane
○: Ratio of collapsed hollow fiber membrane 0.03-0.05%
X: Ratio of crushing hollow fiber membrane exceeding 0.05% ◎ and ○ were regarded as acceptable.

10、目詰まり中空糸膜の割合
上記方法で調製したサンプル端面を赤色のマジックインキ(R)で彩色し、かつ該端面を放射状に8分割のマーキングをし、8分割した全端面をナショナルライト付き顕微鏡(ライトスコープ100、倍率:100倍、松下電器産業社製)を用いて目詰まり糸の本数をカウントした。目詰まり糸の割合は下記式にて算出した。
目詰まり中空糸膜の割合(%)=(目詰まり中空糸膜本数/サンプル端面の中空糸膜の全本数)×100
ここで、目詰まり中空糸膜本数およびサンプル端面の中空糸膜の全本数共に、8分割した端面全ての総合計数である。
目詰まり糸の割合で以下の品質区分判定をした。
◎:目詰まり中空糸膜の割合0.03%未満
○:目詰まり中空糸膜の割合0.03〜0.05%
×:目詰まり中空糸膜の割合0.05%を超える
◎および○を合格とした。
10. Ratio of clogged hollow fiber membrane The sample end face prepared by the above method is colored with red magic ink (R), and the end face is radially marked with 8 divisions, and all 8 end faces are provided with national lights. The number of clogged yarns was counted using a microscope (Lightscope 100, magnification: 100 times, manufactured by Matsushita Electric Industrial Co., Ltd.). The ratio of clogged yarn was calculated by the following formula.
Ratio of clogged hollow fiber membranes (%) = (number of clogged hollow fiber membranes / total number of hollow fiber membranes on the sample end face) × 100
Here, both the number of clogged hollow fiber membranes and the total number of hollow fiber membranes on the sample end surface are total counts of all end surfaces divided into eight.
The following quality classification was judged by the percentage of clogged yarn.
A: Ratio of clogged hollow fiber membrane is less than 0.03%
○: Ratio of clogged hollow fiber membrane 0.03-0.05%
X: The ratio of clogged hollow fiber membranes exceeding 0.05% ◎ and ○ were accepted.

11、残血中空糸膜の割合評価法
上記方法で得られたモジュールの透析液側を生理食塩水で満たし、健康人から採取したヘパリン加血200mlを血液バッグに詰め、血液バッグとモジュールをチューブで連結し、37℃で血液流速100ml/min、1時間循環する。循環開始前と循環60分との血液をサンプリングし、白血球数、血小板数を測定する。測定した値はヘマトクリットの値で補正した。
補正値=測定値(60分)×ヘマトクリット(0分)/ヘマトクリット(60分)
補正値から白血球と血小板の変化率を算出した。
変化率=補正値(60分)/循環開始前値×100
60分循環終了後、生理食塩水で返血し、残血している糸の本数を数えた。残血糸の割合は下記式にて算出した。
残血中空糸膜の割合(%)=(残血中空糸膜本数/モジュール中の中空糸膜の全本数)×100
目詰まり中空糸膜の割合で以下の品質区分判定をした。
◎:残血中空糸膜の割合0.03%未満
○:残血中空糸膜の割合0.03〜0.05%
×:残血中空糸膜の割合0.05%を超える
◎および○を合格とした。
11. Residual blood hollow fiber membrane ratio evaluation method The dialyzate side of the module obtained by the above method is filled with physiological saline, 200 ml of heparinized blood collected from a healthy person is packed in a blood bag, and the blood bag and the module are tubed And circulate at 37 ° C. for 1 hour at a blood flow rate of 100 ml / min. Blood samples before the start of circulation and 60 minutes of circulation are sampled, and the white blood cell count and platelet count are measured. The measured value was corrected with the value of hematocrit.
Correction value = measured value (60 minutes) x hematocrit (0 minutes) / hematocrit (60 minutes)
The change rate of leukocytes and platelets was calculated from the correction value.
Rate of change = correction value (60 minutes) / value before circulation start x 100
After the circulation for 60 minutes, the blood was returned with physiological saline, and the number of remaining blood was counted. The ratio of residual blood thread was calculated by the following formula.
Ratio of residual blood hollow fiber membrane (%) = (number of residual blood hollow fiber membranes / total number of hollow fiber membranes in module) × 100
The following quality classification was judged by the ratio of clogged hollow fiber membranes.
A: Ratio of residual blood hollow fiber membrane less than 0.03%
○: Ratio of residual blood hollow fiber membrane 0.03-0.05%
X: Ratio of residual blood hollow fiber membrane exceeding 0.05% ◎ and ○ were accepted.

12、透水率
透析器の血液出口部回路(圧力測定点よりも出口側)を鉗子により封止した。37℃に保温した純水を加圧タンクに入れ、レギュレーターにより圧力を制御しながら、37℃恒温槽で保温した透析器の血液流路側へ純水を送り、透析液側から流出した濾液量を測定した。膜間圧力差(TMP)は
TMP=(Pi+Po)/2
とする。ここでPiは透析器入口側圧力、Poは透析器出口側圧力である。TMPを4点変化させ濾過流量を測定し、それらの関係の傾きから透水率(mL/hr/mmHg)を算出する。このときTMPと濾過流量の相関係数は0.999以上でなくてはならない。また回路による圧力損失誤差を少なくするために、TMPは100mmHg以下の範囲で測定する。中空糸膜束の透水性は膜面積と透析器の透水率から算出する。
UFR(H)=UFR(D)/A
ここでUFR(H)は中空糸膜束の透水率(mL/m/hr/mmHg)、UFR(D)は透析器の透水率(mL/hr/mmHg)、Aは透析器の膜面積(m)である。
12. Water permeability The blood outlet circuit (outlet side from the pressure measurement point) of the dialyzer was sealed with forceps. Purified water kept at 37 ° C is put into a pressurized tank, and while controlling the pressure with a regulator, pure water is sent to the blood flow path side of the dialyzer kept at 37 ° C constant temperature bath, and the amount of filtrate flowing out from the dialysate side is measured. It was measured. The transmembrane pressure difference (TMP) is TMP = (Pi + Po) / 2
And Here, Pi is the dialyzer inlet side pressure, and Po is the dialyzer outlet side pressure. The TMP is changed at four points, the filtration flow rate is measured, and the water permeability (mL / hr / mmHg) is calculated from the slope of the relationship. At this time, the correlation coefficient between TMP and the filtration flow rate must be 0.999 or more. In order to reduce the pressure loss error due to the circuit, TMP is measured in the range of 100 mmHg or less. The water permeability of the hollow fiber membrane bundle is calculated from the membrane area and the water permeability of the dialyzer.
UFR (H) = UFR (D) / A
Here, UFR (H) is the water permeability of the hollow fiber membrane bundle (mL / m 2 / hr / mmHg), UFR (D) is the water permeability of the dialyzer (mL / hr / mmHg), and A is the membrane area of the dialyzer. (M 2 ).

13、膜面積の計算
透析器の膜面積は中空糸の内径基準として求める。
A=n×π×d×L
ここで、nは透析器内の中空糸本数、πは円周率、dは中空糸の内径(m)、Lは透析器内の中空糸の有効長(m)である。
13. Calculation of membrane area The membrane area of the dialyzer is determined as a reference for the inner diameter of the hollow fiber.
A = n × π × d × L
Here, n is the number of hollow fibers in the dialyzer, π is the circumference, d is the inner diameter (m) of the hollow fiber, and L is the effective length (m) of the hollow fiber in the dialyzer.

14、血液リークテスト
クエン酸を添加し、凝固を抑制した37℃の牛血液を、血液浄化器に200mL/minで送液し、10mL/min(m)の割合で血液をろ過する。このとき、ろ液は血液に戻し、循環系とする。60分間後に血液浄化器のろ液を採取し、赤血球のリークに起因する赤色を目視で観察する。この血液リーク試験を各実施例、比較例ともに30本の血液浄化器を用い、血液リークしたモジュール数を調べる。
14. Blood Leak Test A 37 ° C. bovine blood to which citric acid has been added to suppress coagulation is sent to a blood purifier at 200 mL / min, and the blood is filtered at a rate of 10 mL / min (m 2 ). At this time, the filtrate is returned to blood to be a circulatory system. After 60 minutes, the filtrate from the blood purifier is collected, and the red color resulting from red blood cell leakage is visually observed. In this blood leak test, 30 blood purifiers were used in each example and comparative example, and the number of blood leaked modules was examined.

15、血液浄化器の中空糸膜束の保存安定性
傾き中空糸膜の割合評価法同様の方法で調製したモジュールにRO水を充填し25kGyの吸収線量でγ線を照射し架橋処理を行った。γ線照射後のモジュールを室温で一年間保存した後、前記した方法でUV(220−350nm)吸光度を測定した。該保存によるUV(220−350nm)吸光度の増加度で安定性を判定した。該増加度は中空糸膜束を長手方向に10個に等分し、それぞれのサンプルについて測定し、その平均値で判定した。平均値が透析型人工腎臓装置製造基準の基準値である0.10を超えないものを合格とした。
15. Storage stability of hollow fiber membrane bundle of blood purifier The module prepared by the same method as the ratio evaluation method of tilted hollow fiber membrane was filled with RO water and irradiated with γ-rays at an absorbed dose of 25 kGy and subjected to crosslinking treatment . After storing the module after γ-ray irradiation for one year at room temperature, UV (220-350 nm) absorbance was measured by the method described above. Stability was determined by the degree of increase in UV (220-350 nm) absorbance due to the storage. The degree of increase was obtained by equally dividing the hollow fiber membrane bundle into 10 pieces in the longitudinal direction, measuring each sample, and determining the average value. Those whose average value did not exceed 0.10, which is the reference value of the dialysis artificial kidney device manufacturing standard, were regarded as acceptable.

16、親水性高分子の外表面における含有率
親水性高分子の疎水性高分子に対する含有率は、X線光電子分光法(ESCA法)で求めた。疎水性高分子としてポリスルホン系高分子を、親水性高分子としてポリビニルピロリドンを用いた場合の測定法を例示する。
中空糸膜1本を試料台に貼り付けてX線光電子分光法(ESCA法)で測定を行った。測定条件は次に示す通りである。
測定装置:アルバック・ファイ ESCA5800
励起X線:MgKα線
X線出力:14kV,25mA
光電子脱出角度:45°
分析径:400μmφ
パスエネルギー:29.35eV
分解能:0.125eV/step
真空度:約10−7Pa以下
窒素の測定値(N)と硫黄の測定値(S)から、次の式により表面でのPVP含有率を算出した。
<PVP添加PES(ポリエーテルスルホン)膜の場合>
PVP含有率(Hpvp)[%]
=100×(N×111)/(N×111+S×232)
<PVP添加PSf(ポリスルホン)膜の場合>
PVP含有率(Hpvp)[%]
=100×(N×111)/(N×111+S×442)
16. Content on the outer surface of the hydrophilic polymer The content of the hydrophilic polymer relative to the hydrophobic polymer was determined by X-ray photoelectron spectroscopy (ESCA method). A measurement method in the case of using polysulfone-based polymer as the hydrophobic polymer and polyvinylpyrrolidone as the hydrophilic polymer is exemplified.
One hollow fiber membrane was attached to a sample stage, and measurement was performed by X-ray photoelectron spectroscopy (ESCA method). The measurement conditions are as follows.
Measuring device: ULVAC-Phi ESCA5800
Excitation X-ray: MgKα ray X-ray output: 14 kV, 25 mA
Photoelectron escape angle: 45 °
Analysis diameter: 400μmφ
Pass energy: 29.35 eV
Resolution: 0.125 eV / step
Degree of vacuum: about 10 −7 Pa or less From the measured value of nitrogen (N) and the measured value of sulfur (S), the PVP content on the surface was calculated by the following formula.
<In case of PVP-added PES (polyethersulfone) membrane>
PVP content (Hpvp) [%]
= 100 × (N × 111) / (N × 111 + S × 232)
<In the case of PVP-added PSf (polysulfone) membrane>
PVP content (Hpvp) [%]
= 100 × (N × 111) / (N × 111 + S × 442)

17、膜中の親水性高分子の含有率
親水性高分子としてポリビニルピロリドン(PVP)を用いた場合の測定法を例示する。サンプルを、真空乾燥器を用いて、80℃で48時間乾燥させ、その10mgをCHNコーダー(ヤナコ分析工業社製、MT−6型)で分析し、窒素含有率からPVPの含有率を下記式で計算し求めた。
PVPの含有率(質量%)=窒素含有率(質量%)×111/14
17. Content of hydrophilic polymer in membrane An example of a measurement method using polyvinyl pyrrolidone (PVP) as the hydrophilic polymer is illustrated. The sample was dried at 80 ° C. for 48 hours using a vacuum dryer, and 10 mg of the sample was analyzed with a CHN coder (manufactured by Yanaco Analytical Industrial Co., Ltd., MT-6 type). Calculated with
PVP content (mass%) = nitrogen content (mass%) × 111/14

18、中空糸膜外表面の開孔率
中空糸膜外表面を10,000倍の電子顕微鏡で観察し写真(SEM写真)を撮影する。その画像を画像解析処理ソフトで処理して中空糸膜外表面の開孔率を求めた。画像解析処理ソフトは、例えばImage Pro Plus(Media Cybernetics,Inc.)を使用して測定する。取り込んだ画像を孔部と閉塞部が識別されるように強調・フィルタ操作を実施する。その後、孔部をカウントし、孔内部に下層のポリマー鎖が見て取れる場合には孔を結合して一孔とみなしてカウントする。測定範囲の面積(A)、および測定範囲内の孔の面積の累計(B)を求めて開孔率(%)=B/A×100で求めた。これを10視野実施してその平均を求めた。初期操作としてスケール設定を実施するものとし、また、カウント時には測定範囲境界上の孔は除外しないものとする。
18. Opening ratio of outer surface of hollow fiber membrane The outer surface of the hollow fiber membrane is observed with an electron microscope of 10,000 times and a photograph (SEM photograph) is taken. The image was processed with image analysis processing software to obtain the porosity of the outer surface of the hollow fiber membrane. The image analysis processing software is measured using, for example, Image Pro Plus (Media Cybernetics, Inc.). The emphasis / filtering operation is performed on the captured image so that the hole and the blockage are identified. Thereafter, the holes are counted, and when the lower polymer chain can be seen inside the holes, the holes are combined and counted as one hole. The area (A) of the measurement range and the cumulative area (B) of the areas of the pores within the measurement range were determined, and the area ratio (%) = B / A × 100. This was carried out for 10 views and the average was obtained. Scale setting is performed as an initial operation, and holes on the measurement range boundary are not excluded during counting.

19、中空糸膜の膜厚み
倍率200倍の投影機で中空糸膜の断面を投影し、各視野内で最大、最小、中程度の大きさの中空糸膜の内径(A)および外径(B)を測定し、各中空糸膜の膜厚を次式で求め、
膜厚=(B−A)/2
30視野90個の中空糸膜の膜厚の平均を算出した。
19. Membrane thickness of hollow fiber membrane A cross section of the hollow fiber membrane is projected with a projector having a magnification of 200 times, and the inner diameter (A) and outer diameter (A) and outer diameter (maximum, minimum, and medium) of the hollow fiber membrane within each field of view ( B) is measured, and the film thickness of each hollow fiber membrane is obtained by the following formula,
Film thickness = (B−A) / 2
The average of the film thickness of 90 hollow fiber membranes in 30 fields of view was calculated.

(実施例1)
ポリエーテルスルホン(住化ケムテックス社製、スミカエクセル(R)5200P)1質量部、ポリビニルピロリドン(BASF社製コリドン(R)K−90)0.145質量部、DMAc1.5質量部を2軸のスクリュータイプの混練機で混練した。得られた混練物をDMAc2.96質量部および水0.17質量部を仕込んだ攪拌式の溶解機に添加し、3時間攪拌をし溶解した。混練および溶解は内温が30℃以上に上がらないように冷却した。ついで真空ポンプを用いて系内を−500mmHgまで減圧した後、溶媒等が蒸発して製膜溶液組成が変化しないように直ぐに系内を密閉し15分間放置した。この操作を3回繰り返して製膜溶液の脱泡を行った。脱泡が完了した後、系内を再度窒素置換を行い弱加圧状態で維持した。なお、上記ポリビニルピロリドンとしては、過酸化水素含有率110ppmのものを用い、供給タンクや前記の溶解槽を窒素ガス置換した。また、溶解時のフルード数および撹拌レイノルズ数はそれぞれ1.1および120であった。製膜溶液を10μm、5μmの2段の焼結フィルターに順に通した後、75℃に加温したチューブインオリフィスノズルから中空形成剤として予め−700mmHgで30分間脱気処理した50℃の60質量%DMAc水溶液を用いて吐出、紡糸管により外気と遮断された400mmの乾式部を通過後、60℃の20質量%DMAc水溶液中で凝固させ、湿潤状態のまま綛に捲き上げた。使用したチューブインオリフィスノズルのノズルスリット幅は、平均60μmであり、最大61μm、最小59μm、スリット幅の最大値、最小値の比は1.03、ドラフト比は1.2であった。
(Example 1)
1 part by weight of polyethersulfone (manufactured by Sumika Chemtex, Sumika Excel (R) 5200P), 0.145 parts by weight of polyvinylpyrrolidone (Collidon (R) K-90 by BASF), 1.5 parts by weight of DMAc are biaxial. It knead | mixed with the screw-type kneader. The obtained kneaded material was added to a stirring type dissolver charged with 2.96 parts by mass of DMAc and 0.17 parts by mass of water, and dissolved by stirring for 3 hours. The kneading and dissolution were cooled so that the internal temperature did not rise above 30 ° C. The system was then depressurized to -500 mmHg using a vacuum pump, and the system was immediately sealed and allowed to stand for 15 minutes so that the solvent etc. evaporated and the film forming solution composition did not change. This operation was repeated three times to degas the film forming solution. After the defoaming was completed, the inside of the system was again purged with nitrogen and maintained in a weakly pressurized state. As the polyvinyl pyrrolidone, one having a hydrogen peroxide content of 110 ppm was used, and the supply tank and the dissolution tank were replaced with nitrogen gas. Further, the Froude number and the stirring Reynolds number at the time of dissolution were 1.1 and 120, respectively. The membrane-forming solution was passed through a two-stage sintered filter of 10 μm and 5 μm in order, and then degassed at −700 mmHg for 30 minutes in advance from a tube-in orifice nozzle heated to 75 ° C. for 60 mass at 50 ° C. After passing through a 400 mm dry section cut off from the outside air by discharge and spinning tube using a% DMAc aqueous solution, it was coagulated in a 20 mass% DMAc aqueous solution at 60 ° C., and was rolled up in a wet state. The nozzle slit width of the tube-in-orifice nozzle used was an average of 60 μm, the maximum 61 μm, the minimum 59 μm, the ratio of the maximum and minimum slit widths was 1.03, and the draft ratio was 1.2.

該中空糸膜10,000本を中空糸膜束側表面が梨地加工された厚み(0.2mm)のポリエチレン製のフィルム(誘電率:2.3、誘電正接:0.0002、誘電率と誘電正接との積:0.00046)よりなる断面形状が円形の中空状の包装体(外径36mm)に挿入した後、270mmの長さに切断し、80℃の熱水中で30分間×4回洗浄した。該洗浄した中空糸膜束を拘束した包装体をトレイの上面に包装体の形状に合わせた半円形の窪みを付けたポリスルホン系樹脂製のトレイの窪みの部分に入れて遠心分離式脱水機で140rpmで20分間遠心分離脱水をし、含水率300質量%の脱水中空糸膜束を得た。トレイの幅方向長さは210mmとし、トレイの中央部に幅46mmの空間を設け、その左右にそれぞれ2本づつの中空糸膜束を中心間距離41mmで配置した。   A film made of polyethylene (thickness 0.2 mm, dielectric loss tangent: 0.0002, dielectric constant and dielectric) of 10,000 of the hollow fiber membranes and having a textured surface on the hollow fiber membrane bundle side surface (0.2 mm) The product is inserted into a hollow packaging body (outer diameter 36 mm) having a circular cross-sectional shape (product with tangent: 0.00046), cut to a length of 270 mm, and 30 minutes × 4 in hot water at 80 ° C. Washed twice. A package body in which the washed hollow fiber membrane bundle is constrained is placed in a recess portion of a tray made of a polysulfone resin in which a semicircular recess conforming to the shape of the package body is provided on the upper surface of the tray, and then a centrifugal dehydrator. Centrifugal dehydration was performed at 140 rpm for 20 minutes to obtain a dehydrated hollow fiber membrane bundle having a water content of 300% by mass. The length in the width direction of the tray was 210 mm, a space having a width of 46 mm was provided at the center of the tray, and two hollow fiber membrane bundles were arranged on the left and right sides thereof at a center distance of 41 mm.

得られた脱水中空糸膜束をトレイと共に、マイクロ波発振器を加熱オーブンの側壁に設置し、マイクロ波が水平方向に発振でき、オーブン内部に水平の回転テーブルを有し、遠赤外線ヒーターおよびオーブンを減圧にするための排気系を有したマイクロ波乾燥機の回転テーブル上に中空糸膜束の長手方向が水平になる方向で5セットのトレイを略等間隔で中空糸膜束が回転中心に対して略放射状になるように配置した。前記の単位トレイを2段重ねで配置し1セットとした。上下の中心間距離は41mmであった。中空糸膜束の1セットのトレイおよび中空糸膜束の配置の概念図を図5に示す。該回転テーブルは金属製の保持治具の上に厚みが6mmのポリプロピレン製の板が固定された構造で、テーブルは2段重ねの高さ方向の中心点がマイクロ波発振器の導波管の中心部になるように設置した。   The resulting dehydrated hollow fiber membrane bundle is installed with a tray and a microwave oscillator on the side wall of the heating oven, the microwave can oscillate in the horizontal direction, has a horizontal rotating table inside the oven, has a far infrared heater and oven Five sets of trays are arranged at approximately equal intervals in the direction in which the longitudinal direction of the hollow fiber membrane bundle is horizontal on the rotary table of a microwave dryer having an exhaust system for depressurization. And arranged so as to be substantially radial. The unit trays are arranged in two layers to form one set. The distance between the upper and lower centers was 41 mm. FIG. 5 shows a conceptual diagram of the arrangement of one set of the hollow fiber membrane bundle and the hollow fiber membrane bundle. The rotary table has a structure in which a polypropylene plate having a thickness of 6 mm is fixed on a metal holding jig, and the center point of the two-layer stack in the height direction is the center of the waveguide of the microwave oscillator. It was installed to be a part.

該回転テーブルを8rpmで回転させながら、以下の条件で乾燥した。7KPaの減圧下、1.5kWの出力で25分間中空糸膜束を加熱した後、マイクロ波照射を停止すると同時に減圧度1.5kPaに上げ3分間維持した。つづいて減圧度を7kPaに戻し、かつマイクロ波を照射し0.5kWの出力で8分間中空糸膜束を加熱した後、マイクロ波を切断し減圧度を上げ0.7kPaを3分間維持した。さらに減圧度を7kPaに戻し、0.2kWの出力で5分間マイクロ波の照射を行い中空糸膜束の加熱をした。マイクロ波照射終了後の中空糸膜束中の含水率は13質量%であった。マイクロ波照射停止後、減圧度を0.5kPaに上げ、遠赤外線のみを照射し、10分間維持することにより中空糸膜束の乾燥を終了した。なお、乾燥中は全期間に渡り乾燥オーブンの中心部に設けた熱電対で検出される温度で50℃になるように遠赤外線ヒーターの出力調整をした。この際の中空糸膜束表面の最高到達温度は65℃であった。なお、上記のマイクロ波乾燥機のマイクロ波発振器の導波管はマイクロ波の進行方向に向かい断面積が段々大きくなりかつ導波管出口に円錐形の反射板が円錐の頂点が導波管内部に向く方向で設置された構造を有しており、照射されるマイクロ波のEr/Eiは0.05であった。また、乾燥前の中空糸膜束の含水率は約340質量%であった。最終の乾燥上がりの含水率は2.5質量%であった。含水率の管理は最外側の1本の中空糸膜束に注目して行った。1セットのトレイ中の全中空糸膜束の含水率は2.3〜2.7質量%の範囲に入っており中空糸膜間の乾燥の均一性は良好であった。得られた中空糸膜束の内径は198μm、膜厚は28μmであった。包装体中の乾燥中空糸膜束の充填率は50容量%であった。紡糸工程中、中空糸膜束が接触するローラーは全て表面が鏡面加工されたもの、ガイドは全て表面が梨地加工されたものを使用した。   The rotary table was dried under the following conditions while rotating at 8 rpm. After heating the hollow fiber membrane bundle for 25 minutes at a pressure of 1.5 kW under a reduced pressure of 7 KPa, the microwave irradiation was stopped and simultaneously the pressure was increased to 1.5 kPa and maintained for 3 minutes. Subsequently, the degree of vacuum was returned to 7 kPa, the microwave was irradiated and the hollow fiber membrane bundle was heated at an output of 0.5 kW for 8 minutes, and then the microwave was cut to increase the degree of vacuum and maintain 0.7 kPa for 3 minutes. Furthermore, the degree of vacuum was returned to 7 kPa, and microwave irradiation was performed for 5 minutes at an output of 0.2 kW to heat the hollow fiber membrane bundle. The moisture content in the hollow fiber membrane bundle after the microwave irradiation was 13% by mass. After stopping the microwave irradiation, the degree of vacuum was increased to 0.5 kPa, only far infrared rays were irradiated, and the drying of the hollow fiber membrane bundle was completed by maintaining for 10 minutes. During drying, the output of the far-infrared heater was adjusted so that the temperature detected by a thermocouple provided at the center of the drying oven was 50 ° C. over the entire period. The maximum temperature reached on the surface of the hollow fiber membrane bundle at this time was 65 ° C. Note that the waveguide of the microwave oscillator of the above microwave dryer has a cross-sectional area that gradually increases in the direction of microwave travel, and a conical reflector at the exit of the waveguide. The Er / Ei of the irradiated microwave was 0.05. The moisture content of the hollow fiber membrane bundle before drying was about 340% by mass. The water content after the final drying was 2.5% by mass. The water content was controlled by paying attention to the outermost single hollow fiber membrane bundle. The moisture content of all the hollow fiber membrane bundles in one set of trays was in the range of 2.3 to 2.7% by mass, and the drying uniformity between the hollow fiber membranes was good. The obtained hollow fiber membrane bundle had an inner diameter of 198 μm and a film thickness of 28 μm. The filling rate of the dry hollow fiber membrane bundle in the package was 50% by volume. During the spinning process, all the rollers with which the hollow fiber membrane bundle contacts were mirror-finished on the surface, and the guides were all finished with a satin finish.

1セットのトレイより無作為に1本の乾燥された中空糸膜束を選択し外周部と内周部との中空糸膜長さの平均値の差を求めた。中空糸膜の収縮変動は小さく0.5mm以下であった。また、別のサンプルで中空糸膜束の外周部(半径で1/4の範囲)の中空糸膜をサンプリングし、該サンプルを長手方向に2.7cmずつ10個に等分し、各々の部位から乾燥状態の中空糸膜1gづつをはかりとり、含水率を測定した。また、透析型人工腎臓装置製造承認基準試験に準じて抽出液を得、抽出液中の過酸化水素溶出量およびUV(220−350nm)吸光度を測定した。含水率の変動は小さかった。また、過酸化水素溶出量およびUV(220−350nm)吸光度は全部位において低レベルで安定していた。また、乾燥上がりの中空糸膜束長は265mmと想定して湿潤状態の中空糸膜束の長さを270mmに設定して乾燥した。これらの結果を表1〜3にまとめた。また、得られた中空糸膜束の1サンプルを乾燥状態で保存し保存安定性を評価した。乾燥状態での保存安定性は良好であり3ヶ月間保存後の中空糸膜束を10等分した各部位より得られた抽出液のUV(220−350nm)吸光度の最大値は0.03であり、最大値で見ても基準値の0.10以下が維持されていた。さらに、各部位のUV吸光度レベルは低レベルで安定していた。   One dried hollow fiber membrane bundle was selected at random from one set of trays, and the difference between the average values of the hollow fiber membrane lengths of the outer peripheral portion and the inner peripheral portion was determined. The shrinkage variation of the hollow fiber membrane was small and 0.5 mm or less. In addition, another sample was used to sample the hollow fiber membrane at the outer peripheral portion of the hollow fiber membrane bundle (in the range of a quarter of the radius), and the sample was equally divided into 10 pieces of 2.7 cm in the longitudinal direction. From this, 1 g of a hollow fiber membrane in a dry state was weighed and the water content was measured. Moreover, the extract was obtained according to the dialysis type artificial kidney apparatus manufacture approval reference test, and the hydrogen peroxide elution amount and UV (220-350 nm) absorbance in the extract were measured. The variation of moisture content was small. Further, the elution amount of hydrogen peroxide and the UV (220-350 nm) absorbance were stable at a low level in all sites. Further, the dried hollow fiber membrane bundle length was assumed to be 265 mm, and the wet hollow fiber membrane bundle length was set to 270 mm and dried. These results are summarized in Tables 1-3. Further, one sample of the obtained hollow fiber membrane bundle was stored in a dry state, and the storage stability was evaluated. The storage stability in a dry state is good, and the maximum UV (220-350 nm) absorbance of the extract obtained from each part obtained by dividing the bundle of hollow fiber membranes after storage for 3 months into 10 is 0.03. Yes, even at the maximum value, the reference value of 0.10 or less was maintained. Furthermore, the UV absorbance level at each site was stable at a low level.

上記方法で得られたポリエチレンフィルムで拘束された乾燥中空糸膜束の残りの3サンプルを内径31mm、長さ255mmのモジュール用ハウジングに挿入し、中空糸膜を固定しながらポリエチレン製のフィルムよりなる包装体を抜き取った。この状態でハウジングの両端を目止め治具を取り付け、遠心接着機にセットした。遠心接着機を500rpmの回転数で回転させながら、透析液導入口6aおよび6bよりポッティング剤(三洋化成社製の二液硬化型ポリウレタン樹脂、主剤:ポリメディカMA−200、硬化剤:ポリメディカMB−200、配合比:52/48、二液混合2分後の粘度:1400mPa・s)を25℃にて1端面当り0.8g/秒で20gを注入した。50℃で30分間キュアリングをして遠心接着機を停止した。このモジュールを取り出し、室温で1晩ポストキュアーした。端面を切削、開口して中空糸膜モジュールを得た。該モジュールに予め脱気した純水を充填し25kGyの吸収線量でγ線を照射し架橋処理を行った。本実施例で得られた乾燥中空糸膜束は上記乾燥工程での中空糸膜束の折れ曲がり等の変形がなく、中空糸膜束内の中空糸膜の配列乱れも少なく、かつ、部分固着も発生していないので包装体の抜き取りがスムーズに行うことができた。また、接着処理の作業性も良好であった。接着端面の中空糸膜断面観察による傾き中空糸膜および潰れ中空糸膜本数はゼロであった。また、上記方法で評価した目詰まり糸も検出されなかった。従って、残血糸もなく高品質であった。   The remaining three samples of the dry hollow fiber membrane bundle constrained by the polyethylene film obtained by the above method were inserted into a module housing having an inner diameter of 31 mm and a length of 255 mm, and made of a polyethylene film while fixing the hollow fiber membrane. The package was removed. In this state, sealing jigs were attached to both ends of the housing and set in a centrifugal bonding machine. While rotating the centrifugal bonding machine at a rotation speed of 500 rpm, a potting agent (two-component curable polyurethane resin manufactured by Sanyo Kasei Co., Ltd., main agent: Polymedica MA-200, curing agent: Polymedica MB, from the dialysate inlets 6a and 6b. -200, blending ratio: 52/48, viscosity after 2 minutes of mixing of two liquids: 1400 mPa · s) at 25 ° C., 20 g was injected at 0.8 g / sec per end face. The centrifugal bonding machine was stopped by curing at 50 ° C. for 30 minutes. The module was removed and post-cured overnight at room temperature. The end face was cut and opened to obtain a hollow fiber membrane module. The module was filled with pure water degassed in advance, and γ-rays were irradiated at an absorbed dose of 25 kGy for crosslinking treatment. The dry hollow fiber membrane bundle obtained in this example is not deformed such as bending of the hollow fiber membrane bundle in the drying step, there is little disorder in the arrangement of the hollow fiber membranes in the hollow fiber membrane bundle, and there is also partial adhesion Since it did not occur, the package could be removed smoothly. Also, the workability of the adhesion treatment was good. The number of inclined hollow fiber membranes and collapsed hollow fiber membranes by observation of the cross-section of the hollow fiber membranes on the bonded end face was zero. Moreover, the clogged yarn evaluated by the above method was not detected. Therefore, there was no residual blood thread and the quality was high.

該血液浄化器に、クエン酸を添加した新鮮牛血を血液流量200mL/min、ろ過速度10mL/min(m)で血液浄化器に流したが、中空糸膜同士の固着による接着不良や血液リークはみられなかった。これらの結果を表4に示した。 Fresh bovine blood to which citric acid was added was flowed to the blood purifier at a blood flow rate of 200 mL / min and a filtration rate of 10 mL / min (m 2 ). There was no leak. These results are shown in Table 4.

また、上記血液浄化器を室温で1年間保存した。保存後の血液浄化器より中空糸膜束を切り出し、溶出物試験に供したところUV(220−350nm)吸光度は最大値で見ても0.04であり透析型人工腎臓装置製造承認基準値である0.10以下が維持されていた。   The blood purifier was stored at room temperature for 1 year. When the hollow fiber membrane bundle was cut out from the blood purifier after storage and subjected to the eluate test, the UV (220-350 nm) absorbance was 0.04 in terms of the maximum value. Some 0.10 or less was maintained.

以下の実施例および比較例においても、各種の特性値評価は特に断らない限り、本実施例と同様に1セットのトレイより無作為に選んだ中空糸膜束でおこなった。   Also in the following examples and comparative examples, various characteristic value evaluations were performed with a hollow fiber membrane bundle randomly selected from one set of trays as in this example, unless otherwise specified.

(比較例1)
実施例1において、単位トレイの中心部の空間にも1本の中空糸膜束を配置し、5本の中空糸膜束を中心間距離41mmで並列に固定するように変更する以外は、実施例1と同様にして比較例1の乾燥中空糸膜束を得た。1セットのトレイおよび中空糸膜束の配置の概念図を図6に示す。乾燥は単位トレイの中央部に位置する中空糸膜束の含水率に注目して制御した。1セットのトレイの外側部の中空糸膜束の含水率は、全てが0.4質量%であり過乾燥になっていた。各種特性値はこの最外部の中空糸膜束について評価した。
(Comparative Example 1)
In Example 1, except that one hollow fiber membrane bundle is disposed also in the space in the center of the unit tray, and the five hollow fiber membrane bundles are fixed in parallel at a center distance of 41 mm. In the same manner as in Example 1, a dry hollow fiber membrane bundle of Comparative Example 1 was obtained. The conceptual diagram of arrangement | positioning of 1 set of trays and hollow fiber membrane bundles is shown in FIG. Drying was controlled by paying attention to the moisture content of the hollow fiber membrane bundle located at the center of the unit tray. The moisture content of the hollow fiber membrane bundle on the outer side of one set of trays was 0.4% by mass, and was overdried. Various characteristic values were evaluated for the outermost hollow fiber membrane bundle.

(比較例2)
比較例1の方法において、乾燥を単位のトレイの最外部の一本の含水率に注目して制御した。含水率が2.5質量%になった時点で乾燥を停止した。中央部の中空糸膜束の含水率は7質量%であり乾燥不足であった。この中心部の中空糸膜束は、実施例1と同様にしてモジュールの組み立てを行った所、ウレタン樹脂が発泡し、接着不良を起こしてしまった。これは、中空糸膜束を接近して配置したため、中央部の中空糸膜束にマイクロ波が到達しない部分があったためと推測する。
(Comparative Example 2)
In the method of Comparative Example 1, the drying was controlled by paying attention to the moisture content of the outermost single unit tray. Drying was stopped when the water content reached 2.5% by mass. The water content of the hollow fiber membrane bundle at the center was 7% by mass and was insufficiently dried. When the module was assembled in the same manner as in Example 1, the hollow fiber membrane bundle at the center portion was foamed with urethane resin, causing poor adhesion. This is presumably because the hollow fiber membrane bundles were arranged close to each other, so that there was a portion where the microwave did not reach the hollow fiber membrane bundle at the center.

(比較例3)
実施例1において、湿潤状態の中空糸膜束を拘束する包装体およびトレイの材料を、誘電率:2.9、誘電正接:0.009、誘電率と誘電正接の積0.0261のポリカーボネート樹脂に変更し、かつ被乾燥中空糸膜束が回転テーブルに対して垂直になるようにトレイの配置方向を変更する以外は、実施例1と同様にして比較例3の中空糸膜束を得た。本比較例の場合は、包装体およびトレイがマイクロ波乾燥の透過性の低いポリカーボネート樹脂よりなるために、該包装体およびトレイのマイクロ波による発熱が大きく、中空糸膜束外周部と内周部の中空糸膜の温度差が大きくなり、このことにより収縮率に差が生じ、該発熱の影響の大きい外周部の中空糸膜の収縮が内周部より大きくなるために、それぞれの平均中空糸膜長さの差が4mmにもなった。
(Comparative Example 3)
In Example 1, the packaging body and the tray material that restrain the wet hollow fiber membrane bundle are polycarbonate resin having a dielectric constant of 2.9, a dielectric loss tangent of 0.009, and a product of dielectric constant and dielectric loss tangent of 0.0261. The hollow fiber membrane bundle of Comparative Example 3 was obtained in the same manner as in Example 1 except that the tray arrangement direction was changed so that the hollow fiber membrane bundle to be dried was perpendicular to the rotary table. . In the case of this comparative example, since the package and the tray are made of polycarbonate resin having low microwave drying permeability, the package and the tray generate a large amount of heat generated by the microwaves, and the hollow fiber membrane bundle outer peripheral portion and inner peripheral portion The temperature difference between the hollow fiber membranes of each of the hollow fiber membranes increases, and this causes a difference in shrinkage rate, and the shrinkage of the hollow fiber membranes on the outer peripheral portion, which is greatly affected by the heat generation, is larger than that on the inner peripheral portion. The difference in film length was 4 mm.

また、本比較例で得られた乾燥中空糸膜束の含水率、過酸化水素濃度およびUV吸光度測定値を表1〜3に示す。ここで、過酸化水素濃度およびUV吸光度測定値は、中空糸膜束の外周部(半径で1/4の範囲)の中空糸膜について評価したものである。本比較例の方法では、上記の中空糸膜束の外周部の温度上昇により中空糸膜構成成分のポリビニルピロリドンの劣化が増大し、かつ中空糸膜束の長手方向の乾燥の均一性が低下するので、本比較例で得られた中空糸膜束の過酸化水素溶出量はレベルが高く、かつ過酸化水素溶出量のサンプリング個所による変動が大きく低品質であった。さらに、本比較例の中空糸膜束は過酸化水素溶出量が高いため、保存安定性が劣っていた。本比較例で得られた乾燥状態の中空糸膜束は、約30日の保存で、UV(220−350nm)吸光度が0.10を超えてしまった。また、乾燥上がりの中空糸膜束のUV(220−350nm)吸光度のサンプリング部位による変動が大きく、部分固着の発生があり、モジュール組み立ての作業性が劣っていた。   In addition, Tables 1 to 3 show the water content, the hydrogen peroxide concentration, and the UV absorbance measured values of the dry hollow fiber membrane bundle obtained in this Comparative Example. Here, the hydrogen peroxide concentration and the UV absorbance measurement values are evaluated for the hollow fiber membranes in the outer peripheral portion (in the range of ¼ radius) of the hollow fiber membrane bundle. In the method of this comparative example, deterioration of polyvinyl pyrrolidone, which is a component of the hollow fiber membrane, increases due to an increase in the temperature of the outer peripheral portion of the hollow fiber membrane bundle, and the drying uniformity in the longitudinal direction of the hollow fiber membrane bundle decreases. Therefore, the hydrogen peroxide elution amount of the hollow fiber membrane bundle obtained in this comparative example was high, and the variation in the hydrogen peroxide elution amount depending on the sampling location was large and the quality was low. Furthermore, since the hollow fiber membrane bundle of this comparative example had a high hydrogen peroxide elution amount, the storage stability was inferior. The dried hollow fiber membrane bundle obtained in this comparative example had a UV (220-350 nm) absorbance exceeding 0.10 after storage for about 30 days. In addition, the UV (220-350 nm) absorbance of the dried hollow fiber membrane bundle varied greatly depending on the sampling site, partial sticking occurred, and the module assembly workability was poor.

また、実施例1と同様の方法で血液浄化器を組み立てたが、中空糸膜束内の中空糸膜の配列に乱れがあり包装体の抜き取りがスムーズに行えなかった。従って、包装体を抜き取った後に装填された中空糸膜束端面合わせに手間がかかり、かつ、中空糸膜束の配列乱れのため接着剤の充填性が悪く作業性に劣っていた。また、上記のごとく中空糸膜の収縮斑が大きいため、傾き中空糸膜、潰れ中空糸膜本数や目詰まり糸本数が多数検出された。このため、残血糸が多数発生し低品質であった。さらに、本比較例の中空糸膜束は中空糸膜束の過酸化水素溶出量レベルが高く血液浄化器の保存安定性が劣り、UV(220−350nm)吸光度の平均値は約2ヶ月で透析型人工腎臓装置製造承認基準値の0.10を超えてしまった。結果を表4に示す。   Further, the blood purifier was assembled in the same manner as in Example 1, but the arrangement of the hollow fiber membranes in the hollow fiber membrane bundle was disturbed, and the package could not be removed smoothly. Therefore, it takes time and effort to align the end faces of the hollow fiber membrane bundle loaded after the package is pulled out, and the filling property of the adhesive is poor and the workability is inferior due to the disordered arrangement of the hollow fiber membrane bundle. Moreover, since the shrinkage spots of the hollow fiber membrane were large as described above, a large number of inclined hollow fiber membranes, collapsed hollow fiber membranes, and clogged yarns were detected. For this reason, many residual blood threads were generated and the quality was low. Further, the hollow fiber membrane bundle of this comparative example has a high hydrogen peroxide elution amount level of the hollow fiber membrane bundle and poor storage stability of the blood purifier, and the average value of UV (220-350 nm) absorbance is dialyzed in about 2 months. The value of 0.10, which is the standard value for manufacturing type artificial kidney device, has been exceeded. The results are shown in Table 4.

(比較例4)
実施例1において、被乾燥中空糸膜束が回転テーブルに対して垂直になるようにトレイの配置方向を変更し、マイクロ波乾燥を常圧で2.0kWの出力で45分間照射し、次いで同じく0.9kWの出力で15分間照射するようにし、かつ遠赤外線照射も常圧下で3分間乾燥するように変更する以外は、実施例1と同様の方法により中空糸膜束を得た。本比較例では被乾燥中空糸膜束を垂直に配置したために、得られた乾燥中空糸膜束は乾燥時に発生した座屈により折れ曲がり糸が発生していた。得られた乾燥中空糸膜束の1サンプルを用いて中空糸膜束の全中空糸膜の糸長測定を行った。264mm以下の中空糸膜および268mm以上の中空糸膜が多数存在していた。
(Comparative Example 4)
In Example 1, the arrangement direction of the tray was changed so that the hollow fiber membrane bundle to be dried was perpendicular to the rotary table, and microwave drying was performed at an atmospheric pressure and an output of 2.0 kW for 45 minutes, and then the same A hollow fiber membrane bundle was obtained by the same method as in Example 1 except that irradiation was performed at an output of 0.9 kW for 15 minutes, and far-infrared irradiation was changed to dry for 3 minutes under normal pressure. In this comparative example, since the hollow fiber membrane bundles to be dried were arranged vertically, the obtained dry hollow fiber membrane bundles were bent due to buckling that occurred during drying. Using one sample of the obtained dry hollow fiber membrane bundle, the yarn length of all hollow fiber membranes of the hollow fiber membrane bundle was measured. There were many hollow fiber membranes of 264 mm or less and hollow fiber membranes of 268 mm or more.

また、本比較例で得られた乾燥中空糸膜束の含水率、過酸化水素濃度およびUV吸光度測定値を表1〜3に示す。ここで、過酸化水素濃度およびUV吸光度測定値は、中空糸膜束の外周部(半径で1/4の範囲)の中空糸膜について評価したものである。本比較例の方法では、中空糸膜構成成分のポリビニルピロリドンの劣化が大きく、かつ中空糸膜束の長手方向の乾燥の均一性が劣るので、本比較例で得られた中空糸膜束の過酸化水素溶出量はレベルが高く、かつ過酸化水素溶出量のサンプリング個所による変動が大きく低品質であった。さらに、本比較例の中空糸膜束は過酸化水素溶出量が高いため、保存安定性が劣っていた。本比較例で得られた乾燥状態の中空糸膜束は、約30日の保存で、UV(220−350nm)吸光度の平均値が0.10を超えてしまった。また、乾燥上がりの中空糸膜束のUV(220−350nm)吸光度のサンプリング部位による変動が大きく、部分固着の発生があり、モジュール組み立ての作業性が劣っていた。   In addition, Tables 1 to 3 show the water content, the hydrogen peroxide concentration, and the UV absorbance measured values of the dry hollow fiber membrane bundle obtained in this Comparative Example. Here, the hydrogen peroxide concentration and the UV absorbance measurement values are evaluated for the hollow fiber membranes in the outer peripheral portion (in the range of ¼ radius) of the hollow fiber membrane bundle. In the method of this comparative example, the deterioration of the polyvinyl pyrrolidone component of the hollow fiber membrane is large and the uniformity of drying in the longitudinal direction of the hollow fiber membrane bundle is inferior. The amount of elution of hydrogen oxide was high, and the amount of elution of hydrogen peroxide varied greatly depending on the sampling location. Furthermore, since the hollow fiber membrane bundle of this comparative example had a high hydrogen peroxide elution amount, the storage stability was inferior. The hollow fiber membrane bundle in a dry state obtained in this comparative example had an average value of UV (220-350 nm) absorbance exceeding 0.10 after storage for about 30 days. In addition, the UV (220-350 nm) absorbance of the dried hollow fiber membrane bundle varied greatly depending on the sampling site, partial sticking occurred, and the module assembly workability was poor.

また、実施例1と同様の方法で血液浄化器を組み立てたが、中空糸膜束内の中空糸膜の配列に乱れがあり包装体の抜き取りがスムーズに行えなかった。従って、包装体を抜き取った後に装填された中空糸膜束端面合わせに手間がかかり、かつ、中空糸膜束の配列乱れのため接着剤の充填性が悪く作業性に劣っていた。また、傾き中空糸膜、潰れ中空糸膜本数や目詰まり糸本数が多数検出された。このため、残血糸が多数発生し低品質であった。さらに、本比較例の中空糸膜束は中空糸膜束の過酸化水素溶出量レベルが高く血液浄化器の保存安定性が劣り、UV(220−350nm)吸光度の平均値は約2.5ヶ月で透析型人工腎臓装置製造承認基準値の0.10を超えてしまった。結果を表4に示す。   Further, the blood purifier was assembled in the same manner as in Example 1, but the arrangement of the hollow fiber membranes in the hollow fiber membrane bundle was disturbed, and the package could not be removed smoothly. Therefore, it takes time and effort to align the end faces of the hollow fiber membrane bundle loaded after the package is pulled out, and the filling property of the adhesive is poor and the workability is inferior due to the disordered arrangement of the hollow fiber membrane bundle. A large number of inclined hollow fiber membranes, collapsed hollow fiber membranes, and clogged yarns were detected. For this reason, many residual blood threads were generated and the quality was low. Further, the hollow fiber membrane bundle of this comparative example has a high hydrogen peroxide elution amount level of the hollow fiber membrane bundle and poor storage stability of the blood purifier, and the average value of UV (220-350 nm) absorbance is about 2.5 months. As a result, the dialysis artificial kidney device manufacturing approval standard value of 0.10 was exceeded. The results are shown in Table 4.

(比較例5)
比較例3の方法において、マイクロ波乾燥機のマイクロ波発振器の導波管をマイクロ波の進行方向に向かい断面積が一定の構造で、かつ導波管出口の反射板を設置していない構造で照射されるマイクロ波のEr/Eiは0.3であるマイクロ波発振器に変更し、中空糸膜束の乾燥をマイクロ波乾燥を常圧で2.0kWの出力で20分間照射し、次いで同じく0.9kWの出力で10分間照射する2段のマイクロ波乾燥にし、かつ遠赤外線照射も常圧下で20分間乾燥するように変更する以外は、比較例1と同様にして中空糸膜束を得た。乾燥切り替え時の中空糸膜束の含水率は23質量%であった。得られた中空糸膜束の特性を表1〜3に示す。本比較例で得られた中空糸膜束は、比較例1で得られた中空糸膜束と同様に乾燥工程での中空糸膜の変形が発生し、さらにマイクロ波乾燥の発振器の構造や乾燥条件の変更により中空糸膜束の乾燥の不均一性が増大するので比較例1で得られた中空糸膜束よりさらに品質が劣っていた。例えば、本比較例で得られた乾燥状態の中空糸膜束は、25日の保存で、透析型人工腎臓装置製造承認基準の試験法に準じて調製した抽出液のUV(220−350nm)吸光度の平均値が基準値の0.10を超えてしまった。また、乾燥上がりの中空糸膜束のUV(220−350nm)吸光度のサンプリング部位による変動が大きく、部分固着の発生があり、モジュール組み立ての作業性が比較例1で得られた中空糸膜束より劣っていた。
また、実施例1と同様の方法で血液浄化器を組み立てたが、比較例3で得られた中空糸膜束と同様に、中空糸膜束内の中空糸膜の配列に乱れがあり包装体の抜き取りがスムーズに行えなかった。従って、包装体を抜き取った後に装填された中空糸膜束端面合わせに手間がかかり、かつ、中空糸膜束の配列乱れのため接着剤の充填性が悪く作業性に劣っていた。また、接着端面の観察の結果、傾き中空糸膜、潰れ中空糸膜本数や目詰まり糸本数が多数検出された。そのため、残血糸が多数観察され低品質であった。結果を表4に示す。
(Comparative Example 5)
In the method of Comparative Example 3, the waveguide of the microwave oscillator of the microwave dryer has a structure in which the cross-sectional area is constant facing the traveling direction of the microwave, and the reflector at the waveguide outlet is not installed. The microwave Er / Ei of the microwave to be irradiated was changed to a microwave oscillator having a value of 0.3, and the hollow fiber membrane bundle was dried for 20 minutes at a normal pressure and an output of 2.0 kW at a normal pressure. A hollow fiber membrane bundle was obtained in the same manner as in Comparative Example 1 except that it was changed to two-stage microwave drying with irradiation of 10 minutes at an output of .9 kW and far-infrared irradiation was also performed to dry for 20 minutes under normal pressure. . The moisture content of the hollow fiber membrane bundle at the time of switching to drying was 23% by mass. The characteristics of the obtained hollow fiber membrane bundle are shown in Tables 1-3. In the hollow fiber membrane bundle obtained in this comparative example, deformation of the hollow fiber membrane in the drying process occurred in the same manner as the hollow fiber membrane bundle obtained in comparative example 1, and the structure of the microwave drying oscillator and the drying Since the non-uniformity of drying of the hollow fiber membrane bundle was increased by changing the conditions, the quality was inferior to that of the hollow fiber membrane bundle obtained in Comparative Example 1. For example, the dried hollow fiber membrane bundle obtained in this comparative example was stored for 25 days, and the UV (220-350 nm) absorbance of the extract prepared according to the test method of the dialysis artificial kidney device manufacturing approval standard The average value of exceeded the reference value of 0.10. Further, the UV (220-350 nm) absorbance of the dried hollow fiber membrane bundle varies greatly depending on the sampling site, partial sticking occurs, and the module assembly workability is higher than that of the hollow fiber membrane bundle obtained in Comparative Example 1. It was inferior.
In addition, the blood purifier was assembled by the same method as in Example 1, but as with the hollow fiber membrane bundle obtained in Comparative Example 3, the arrangement of the hollow fiber membranes in the hollow fiber membrane bundle was disturbed, and the packaging body It was not possible to pull out smoothly. Therefore, it takes time and effort to align the end faces of the hollow fiber membrane bundle loaded after the package is pulled out, and the filling property of the adhesive is poor and the workability is inferior due to the disordered arrangement of the hollow fiber membrane bundle. As a result of observation of the bonded end face, a large number of inclined hollow fiber membranes, collapsed hollow fiber membranes and clogged yarns were detected. Therefore, many residual blood threads were observed and the quality was low. The results are shown in Table 4.

(実施例2)
実施例1と同様の方法でポリエーテルスルホン(住化ケムテックス社製、スミカエクセル(R)4800P)18質量%、ポリビニルピロリドン(BASF社製コリドン(R)K−90)3.8質量%、ジメチルアセトアミド(DMAc)73.2質量%、水5質量%からなる製膜溶液を得た。なお、上記ポリビニルピロリドンとしては、過酸化水素含有率90ppmのものを用いた。得られた製膜溶液を15μm、15μmの2段のフィルターに通した後、70℃に加温したチューブインオリフィスノズルから中空形成剤として予め−700mmHgで2時間脱気処理した60℃の50質量%DMAc水溶液と同時に吐出し、紡糸管により外気と遮断された350mmのエアギャップ部を通過後、60℃の水中で凝固させた。使用したチューブインオリフィスノズルのノズルスリット幅は、平均45μmであり、最大45.5μm、最小44.5μm、スリット幅の最大値、最小値の比は1.02、ドラフト比は1.3であった。凝固浴から引き揚げられた中空糸膜束は85℃の水洗槽を45秒間通過させ溶媒と過剰のポリビニルピロリドンを除去した後巻き上げた。
(Example 2)
In the same manner as in Example 1, polyethersulfone (Sumika Chemtex, Sumika Excel (R) 4800P) 18% by mass, polyvinylpyrrolidone (BASF Kollidon (R) K-90) 3.8% by mass, dimethyl A film forming solution consisting of 73.2% by mass of acetamide (DMAc) and 5% by mass of water was obtained. As the polyvinyl pyrrolidone, one having a hydrogen peroxide content of 90 ppm was used. The obtained film-forming solution was passed through a two-stage filter of 15 μm and 15 μm, and then degassed at −700 mmHg for 2 hours in advance from a tube-in orifice nozzle heated to 70 ° C. for 50 mass at 60 ° C. The solution was discharged at the same time as the% DMAc aqueous solution, passed through a 350 mm air gap portion cut off from the outside air by a spinning tube, and then coagulated in water at 60 ° C. The average nozzle slit width of the tube-in-orifice nozzle used was 45 μm, the maximum was 45.5 μm, the minimum was 44.5 μm, the ratio of the maximum and minimum slit widths was 1.02, and the draft ratio was 1.3. It was. The hollow fiber membrane bundle pulled up from the coagulation bath was passed through a water washing tank at 85 ° C. for 45 seconds to remove the solvent and excess polyvinylpyrrolidone, and then wound up.

該中空糸膜10,080本を中空糸束側表面が梨地加工された厚み(0.2mm)のポリプロピレンフィルム(誘電率:2.2、誘電正接:0.0002、誘電率と誘電正接との積:0.00044)よりなる断面形状が円形の中空状の包装体(直径36mm)よりなる包装体に挿入した後、30℃の40vol%イソプロパノール水溶液で30分×2回浸漬洗浄し、これを誘電率:3.3、誘電正接:0.003、誘電率と誘電正接との積:0.0099であるポリエーテルエーテルケトン樹脂よりなる実施例1で用いたと同じ形状のトレイに固定し、実施例1の乾燥法に準じた方法で乾燥し含水率3.0質量%の中空糸膜束を得た。紡糸工程中の糸道変更のためのローラーは表面が鏡面加工されたものを使用し、固定ガイドは表面が梨地処理されたものを使用した。得られた中空糸膜の内径は199μm、膜厚は27μmであった。実施例1と同様に単位トレイ内の全中空糸膜束間の含水率の変動は小さかった。   A polypropylene film (dielectric constant: 2.2, dielectric loss tangent: 0.0002, dielectric constant and dielectric loss tangent) of 10,080 hollow fiber membranes having a thickness (0.2 mm) whose surface on the hollow fiber bundle side is textured. The product is inserted into a package made of a hollow package (diameter: 36 mm) having a circular cross-sectional shape (product: 0.00044), and then immersed and washed in a 40 vol% isopropanol aqueous solution at 30 ° C. for 30 minutes × 2 times. The dielectric constant is 3.3, the dielectric loss tangent is 0.003, and the product of the dielectric constant and the dielectric loss tangent is 0.0099. A hollow fiber membrane bundle having a water content of 3.0% by mass was obtained by drying according to the drying method of Example 1. The roller for changing the yarn path during the spinning process was a mirror-finished surface, and the fixing guide was a satin-finished surface. The resulting hollow fiber membrane had an inner diameter of 199 μm and a film thickness of 27 μm. Similar to Example 1, the variation in the moisture content between all the hollow fiber membrane bundles in the unit tray was small.

本実施例で得られた中空糸膜束は実施例1の中空糸膜束と同様に高品質であった。結果を表1〜3に示す。
また、得られた乾燥中空糸膜束を用いて実施例1と同様の方法により血液浄化器を得た。得られた血液浄化器も実施例1で得られた血液浄化器と同様に高品質であった。結果を表4に示す。
The hollow fiber membrane bundle obtained in this example was of high quality like the hollow fiber membrane bundle of Example 1. The results are shown in Tables 1-3.
In addition, a blood purifier was obtained by the same method as in Example 1 using the obtained dry hollow fiber membrane bundle. The obtained blood purifier was also of high quality like the blood purifier obtained in Example 1. The results are shown in Table 4.

(実施例3)
実施例1と同様の方法で、ポリスルホン(アモコ社製P−3500)18質量%、ポリビニルピロリドン(BASF社製K−60)9質量%、ジメチルアセトアミド(DMAc)68質量%、水5質量%よりなる製膜溶液を得た。なお、上記ポリビニルピロリドンとしては、過酸化水素含有率100ppmのものを用いた。得られた製膜溶液を15μm、15μmの2種のフィルターに通した後、40℃に加温したチューブインオリフィスノズルから中空形成剤として予め減圧脱気した60℃の35質量%DMAc水溶液と同時に吐出し、紡糸管により外気と遮断された600mmのエアギャップ部を通過後、50℃の水中で凝固させた。使用したチューブインオリフィスノズルのノズルスリット幅は、平均60μmであり、最大61μm、最小59μm、スリット幅の最大値、最小値の比は1.03、ドラフト比は1.1であった。凝固浴から引き揚げられた中空糸膜束は85℃の水洗槽を45秒間通過させ溶媒と過剰のポリビニルピロリドンを除去した後巻き上げた。該中空糸膜約10,000本の束を純水に浸漬し、121℃×1時間オートクレーブにて洗浄処理を行った。洗浄後の中空糸膜束を実施例1と同様のポリエチレンフィルムよりなる包装体に挿入し、実施例1で用いたと同じトレイに固定した後、これを実施例1の乾燥法に準じた方法で乾燥し含水率2.0質量%の乾燥中空糸膜束を得た。紡糸工程中の糸道変更のためのローラーは表面が鏡面加工されたものを使用し、固定ガイドは表面が梨地処理されたものを使用した。得られた中空糸膜束の内径は201μm、膜厚は44μmであった。実施例1と同様に単位トレイ内の全中空糸膜束間の含水率の変動は小さかった。
(Example 3)
In the same manner as in Example 1, polysulfone (Amoco P-3500) 18% by mass, polyvinylpyrrolidone (BASF K-60) 9% by mass, dimethylacetamide (DMAc) 68% by mass, water 5% by mass A film forming solution was obtained. In addition, as said polyvinylpyrrolidone, the hydrogen peroxide content rate 100ppm was used. The obtained film-forming solution was passed through two types of filters of 15 μm and 15 μm, and simultaneously with a 35 mass% DMAc aqueous solution at 60 ° C. which was degassed in advance as a hollow forming agent from a tube-in orifice nozzle heated to 40 ° C. After discharging and passing through a 600 mm air gap portion cut off from the outside air by a spinning tube, it was solidified in 50 ° C. water. The nozzle slit width of the tube-in-orifice nozzle used was an average of 60 μm, the maximum 61 μm, the minimum 59 μm, the ratio of the maximum and minimum slit widths was 1.03, and the draft ratio was 1.1. The hollow fiber membrane bundle pulled up from the coagulation bath was passed through a water washing tank at 85 ° C. for 45 seconds to remove the solvent and excess polyvinylpyrrolidone, and then wound up. A bundle of about 10,000 hollow fiber membranes was immersed in pure water and washed in an autoclave at 121 ° C. for 1 hour. The hollow fiber membrane bundle after washing is inserted into a package made of the same polyethylene film as in Example 1, fixed to the same tray as used in Example 1, and then this is a method according to the drying method of Example 1. A dried hollow fiber membrane bundle having a moisture content of 2.0% by mass was obtained. The roller for changing the yarn path during the spinning process was a mirror-finished surface, and the fixing guide was a satin-finished surface. The obtained hollow fiber membrane bundle had an inner diameter of 201 μm and a film thickness of 44 μm. Similar to Example 1, the variation in the moisture content between all the hollow fiber membrane bundles in the unit tray was small.

本実施例で得られた中空糸膜束は実施例1の中空糸膜束と同様に高品質であった。結果を表1〜3に示す。
また、得られた乾燥中空糸膜束を用いて実施例1と同様の方法により血液浄化器を得た。得られた血液浄化器も実施例1で得られた血液浄化器と同様に高品質であった。結果を表4に示す。
The hollow fiber membrane bundle obtained in this example was of high quality like the hollow fiber membrane bundle of Example 1. The results are shown in Tables 1-3.
In addition, a blood purifier was obtained by the same method as in Example 1 using the obtained dry hollow fiber membrane bundle. The obtained blood purifier was also of high quality like the blood purifier obtained in Example 1. The results are shown in Table 4.

(実施例4)
実施例1と同様の方法で、ポリスルホン(アモコ社製P−1700)17質量%、ポリビニルピロリドン(BASF社製K−60)5質量%、ジメチルアセトアミド(DMAc)68質量%、水5質量%よりなる製膜溶液を得た。なお、上記ポリビニルピロリドンとしては、過酸化水素含有率120ppmのものを用いた。得られた製膜溶液を15μm、15μmの2種のフィルターに通した後、40℃に加温したチューブインオリフィスノズルから中空形成剤として減圧脱気された65℃の35質量%DMAc水溶液と同時に吐出し、紡糸管により外気と遮断された600mmのエアギャップ部を通過後、50℃の水中で凝固させた。使用したチューブインオリフィスノズルのノズルスリット幅は、平均60μmであり、最大61μm、最小59μm、スリット幅の最大値、最小値の比は1.03、ドラフト比は1.2であった。凝固浴から引き揚げられた中空糸膜束は85℃の水洗槽を45秒間通過させ溶媒と過剰のポリビニルピロリドンを除去した後巻き上げた。該中空糸膜約10,000本の束を純水に浸漬し、121℃×1時間オートクレーブにて洗浄処理を行った。紡糸工程中の糸道変更のためのローラーは表面が鏡面加工されたものを使用し、固定ガイドは表面が梨地処理されたものを使用した。
Example 4
In the same manner as in Example 1, polysulfone (Amoco P-1700) 17% by mass, polyvinylpyrrolidone (BASF K-60) 5% by mass, dimethylacetamide (DMAc) 68% by mass, water 5% by mass A film forming solution was obtained. The polyvinyl pyrrolidone used was a hydrogen peroxide content of 120 ppm. The obtained film-forming solution was passed through two types of filters of 15 μm and 15 μm, and simultaneously with a 35 mass% DMAc aqueous solution at 65 ° C. degassed as a hollow forming agent from a tube-in orifice nozzle heated to 40 ° C. After discharging and passing through a 600 mm air gap portion cut off from the outside air by a spinning tube, it was solidified in 50 ° C. water. The nozzle slit width of the tube-in-orifice nozzle used was an average of 60 μm, the maximum 61 μm, the minimum 59 μm, the ratio of the maximum and minimum slit widths was 1.03, and the draft ratio was 1.2. The hollow fiber membrane bundle pulled up from the coagulation bath was passed through a water washing tank at 85 ° C. for 45 seconds to remove the solvent and excess polyvinylpyrrolidone, and then wound up. A bundle of about 10,000 hollow fiber membranes was immersed in pure water and washed in an autoclave at 121 ° C. for 1 hour. The roller for changing the yarn path during the spinning process was a mirror-finished surface, and the fixing guide was a satin-finished surface.

洗浄後の中空糸膜束を拘束する包装体およびトレイの材質を誘電率:3.2、誘電正接:0.0021、誘電率と誘電正接の積0.00672のポリエチレンテレフタレート樹脂に変更し、実施例1に準じ含水率が1.5質量%になるまで乾燥した。得られた中空糸膜の内径は201μm、膜厚は43μmであった。実施例1と同様に単位トレイ内の全中空糸膜束間の含水率の変動は小さかった。   The packaging body and tray material for restraining the hollow fiber membrane bundle after washing were changed to polyethylene terephthalate resin having a dielectric constant of 3.2, a dielectric loss tangent of 0.0021, and a product of dielectric constant and dielectric loss tangent of 0.00672. It dried until the moisture content became 1.5 mass% according to Example 1. The resulting hollow fiber membrane had an inner diameter of 201 μm and a film thickness of 43 μm. Similar to Example 1, the variation in the moisture content between all the hollow fiber membrane bundles in the unit tray was small.

本実施例で得られた中空糸膜束は実施例1の中空糸膜束と同様に高品質であった。結果を表1〜3に示す。
また、得られた乾燥中空糸膜束を用いて実施例1と同様の方法により血液浄化器を得た。得られた血液浄化器も実施例1で得られた血液浄化器と同様に高品質であった。結果を表4に示す。
The hollow fiber membrane bundle obtained in this example was of high quality like the hollow fiber membrane bundle of Example 1. The results are shown in Tables 1-3.
In addition, a blood purifier was obtained by the same method as in Example 1 using the obtained dry hollow fiber membrane bundle. The obtained blood purifier was also of high quality like the blood purifier obtained in Example 1. The results are shown in Table 4.

(比較例6)
実施例4の方法において、湿潤状態の中空糸膜束を拘束する包装体の材質を誘電率:2.9、誘電正接:0.009、誘電率と誘電正接の積0.0261のポリカーボネート樹脂に、中空糸膜束の乾燥を以下のごとく変更する以外は、実施例4と同様にして中空糸膜束を得た。中空糸膜束を水平に対して垂直方向になるように、通風機能を有する固定治具に固定して、中空糸膜束の下部から8m/秒の風速にて除湿空気(湿度10%以下)を中空糸膜束の下部より上部へと通風しながら常圧で2.0kWの出力のマイクロ波を40分間照射し含水率が18質量%の中空糸膜束を得た。該中空糸膜束を熱風式乾燥機に移し、常圧下、87℃の温度で1.5時間乾燥し含水率が0.7質量%の乾燥中空糸膜束を得た。
得られた中空糸膜束の特性を表1〜3に示す。得られた乾燥中空糸膜束の1サンプルを用いて中空糸膜束の全中空糸膜の糸長測定を行った。264mm以下の中空糸膜および268mm以上の中空糸膜が多数存在していた。また、本比較例で得られた中空糸膜束の含水率の変動は高かった。さらに、過酸化水素溶出量はレベルが高く、かつ過酸化水素溶出量のサンプリング個所による変動が大きく低品質であった。さらに、本比較例の中空糸膜束は過酸化水素溶出量が高いため、保存安定性が劣っていた。本比較例で得られた乾燥状態の中空糸膜束は、約20日の保存で、UV(220−350nm)吸光度の平均値が基準値の0.10を超えてしまった。また、乾燥上がりの中空糸膜束のUV(220−350nm)吸光度のサンプリング部位による変動が大きく、部分固着の発生があり、モジュール組み立ての作業性が劣っていた。
また、本比較例の乾燥方法は、中空糸膜束を単品で、かつ乾燥機中の固定治具にセットする必要があり乾燥工程における作業性が劣り、作業時間が大幅に増大した。
本比較例で得られた乾燥中空糸膜束を用いて実施例1と同様の方法により血液浄化器を得た。得られた血液浄化器も比較例1や2で得られた血液浄化器と同様に低品質であった。結果を表4に示す。
(Comparative Example 6)
In the method of Example 4, the material of the package that restrains the wet hollow fiber membrane bundle is a polycarbonate resin having a dielectric constant of 2.9, a dielectric loss tangent of 0.009, and a product of dielectric constant and dielectric loss tangent of 0.0261. A hollow fiber membrane bundle was obtained in the same manner as in Example 4 except that the drying of the hollow fiber membrane bundle was changed as follows. The hollow fiber membrane bundle is fixed to a fixing jig having a ventilation function so as to be perpendicular to the horizontal, and dehumidified air (humidity 10% or less) at a wind speed of 8 m / sec from the lower part of the hollow fiber membrane bundle. Was blown from the lower part to the upper part of the hollow fiber membrane bundle and irradiated with a microwave of 2.0 kW at normal pressure for 40 minutes to obtain a hollow fiber membrane bundle having a water content of 18% by mass. The hollow fiber membrane bundle was transferred to a hot air drier and dried under normal pressure at a temperature of 87 ° C. for 1.5 hours to obtain a dry hollow fiber membrane bundle having a water content of 0.7 mass%.
The characteristics of the obtained hollow fiber membrane bundle are shown in Tables 1-3. Using one sample of the obtained dry hollow fiber membrane bundle, the yarn length of all hollow fiber membranes of the hollow fiber membrane bundle was measured. There were many hollow fiber membranes of 264 mm or less and hollow fiber membranes of 268 mm or more. Moreover, the fluctuation | variation of the moisture content of the hollow fiber membrane bundle obtained by this comparative example was high. Furthermore, the hydrogen peroxide elution amount was high, and the amount of hydrogen peroxide elution amount varied greatly depending on the sampling location, resulting in low quality. Furthermore, since the hollow fiber membrane bundle of this comparative example had a high hydrogen peroxide elution amount, the storage stability was inferior. The hollow fiber membrane bundle in the dry state obtained in this comparative example was stored for about 20 days, and the average value of UV (220-350 nm) absorbance exceeded the standard value of 0.10. In addition, the UV (220-350 nm) absorbance of the dried hollow fiber membrane bundle varied greatly depending on the sampling site, partial sticking occurred, and the module assembly workability was poor.
Further, the drying method of this comparative example requires that the hollow fiber membrane bundle is a single product and set on a fixing jig in the dryer, so that the workability in the drying process is inferior and the working time is greatly increased.
A blood purifier was obtained in the same manner as in Example 1 using the dry hollow fiber membrane bundle obtained in this comparative example. The obtained blood purifier was also of low quality, similar to the blood purifiers obtained in Comparative Examples 1 and 2. The results are shown in Table 4.

(比較例7)
比較例3の方法において、湿潤状態の中空糸膜束を拘束する包装体およびトレイの材料を、誘電率:3、誘電正接:0.01、誘電率と誘電正接の積0.030の塩化ビニル樹脂に変更する以外は、比較例3と同様にして比較例7の中空糸膜束を得た。本比較例で得られた中空糸膜束および血液浄化器は比較例3で得られた中空糸膜束や血液浄化器と同様に低品質であった。
(Comparative Example 7)
In the method of Comparative Example 3, the packaging material and the tray material that restrain the wet hollow fiber membrane bundle are made of vinyl chloride having a dielectric constant of 3, a dielectric loss tangent of 0.01, and a product of dielectric constant and dielectric loss tangent of 0.030. A hollow fiber membrane bundle of Comparative Example 7 was obtained in the same manner as Comparative Example 3 except that the resin was changed. The hollow fiber membrane bundle and blood purifier obtained in this comparative example were of low quality, similar to the hollow fiber membrane bundle and blood purifier obtained in comparative example 3.

(実施例5)
実施例1において、中空糸膜束の上下、左右共に中心間距離60mmでそれぞれ3本づつの中空糸膜束が挿入固定できる中空状の空間を有したポリスルホン系樹脂製のトレイを用いて、この空間に9本のポリエチレン製フィルムよりなる拘束体で拘束された中空糸膜束を挿入、固定するように変更する以外は、実施例1と同様にして実施例5の中空糸膜束を得た。1セットのトレイおよび中空糸膜束の配置の概念図を図7に示す。実施例1と同様に単位トレイ内の全中空糸膜束間の含水率の変動は小さかった。
本実施例で得られた中空糸膜束は実施例1の中空糸膜束と同様に高品質であった。結果を表1〜3に示す。また、得られた乾燥中空糸膜束を用いて実施例1と同様の方法により血液浄化器を得た。得られた血液浄化器も実施例1で得られた血液浄化器と同様に高品質であった。結果を表1〜4に示す。
(Example 5)
In Example 1, using a tray made of a polysulfone resin having a hollow space in which three hollow fiber membrane bundles can be inserted and fixed each at a center distance of 60 mm both in the top, bottom, left and right of the hollow fiber membrane bundle, A hollow fiber membrane bundle of Example 5 was obtained in the same manner as in Example 1 except that the hollow fiber membrane bundle restrained by a restraint composed of nine polyethylene films was inserted and fixed in the space. . FIG. 7 shows a conceptual diagram of the arrangement of one set of trays and hollow fiber membrane bundles. Similar to Example 1, the variation in the moisture content between all the hollow fiber membrane bundles in the unit tray was small.
The hollow fiber membrane bundle obtained in this example was of high quality like the hollow fiber membrane bundle of Example 1. The results are shown in Tables 1-3. In addition, a blood purifier was obtained by the same method as in Example 1 using the obtained dry hollow fiber membrane bundle. The obtained blood purifier was also of high quality like the blood purifier obtained in Example 1. The results are shown in Tables 1-4.

(比較例8)
実施例5の方法で、中空糸膜束の中心間距離を全て41mmに縮める以外は、実施例5と同様にして比較例7の中空糸膜束を得た。1セットのトレイおよび中空糸膜束の配置の概念図を図8に示す。乾燥は単位トレイの中心部に位置する中空糸膜束の含水率に注目して制御した。1セットのトレイの外周部の中空糸膜束の含水率は、全てが0.1質量%であり過乾燥になっていた。結果を表1〜4に示す。これらの結果は外周部の過乾燥された中空糸膜束について評価した結果を表示した。
(Comparative Example 8)
A hollow fiber membrane bundle of Comparative Example 7 was obtained in the same manner as in Example 5 except that the distance between the centers of the hollow fiber membrane bundles was all reduced to 41 mm by the method of Example 5. FIG. 8 shows a conceptual diagram of the arrangement of one set of trays and hollow fiber membrane bundles. Drying was controlled by paying attention to the moisture content of the hollow fiber membrane bundle located at the center of the unit tray. The moisture content of the hollow fiber membrane bundle on the outer periphery of one set of trays was 0.1% by mass, and was overdried. The results are shown in Tables 1-4. These results displayed the result evaluated about the over-dried hollow fiber membrane bundle of the outer peripheral part.

(比較例9)
比較例8の方法において、乾燥を単位のトレイの外周部コーナーの一本の含水率に注目して制御した。中空糸膜束1本の含水率が2.5質量%になった時点で乾燥を停止した。中心部の中空糸膜束の含水率は9質量%であり乾燥不足であった。この中心部の中空糸膜束は、実施例1と同様にしてモジュールの組み立てを行った所、ウレタン樹脂が発泡し、接着不良を起こしてしまった。
(Comparative Example 9)
In the method of Comparative Example 8, the drying was controlled by paying attention to the moisture content of one outer peripheral corner of the unit tray. Drying was stopped when the water content of one hollow fiber membrane bundle reached 2.5% by mass. The water content of the hollow fiber membrane bundle at the center was 9% by mass and was insufficiently dried. When the module was assembled in the same manner as in Example 1, the hollow fiber membrane bundle at the center portion was foamed with urethane resin, causing poor adhesion.

本発明の中空糸膜束の乾燥方法は、従来公知技術であった中空糸膜束内に気体を通過させ乾燥の均一化を図る通風方式を排除しており、この通風を施すための治具が不要で乾燥機の構造が簡略化される上に、被乾燥中空糸膜束をこの通風を施すための治具に固定する必要がないので被乾燥中空糸膜束の乾燥機へ配置する作業性が向上する。また、従来公知技術の課題であった被乾燥中空糸膜束の配置方向や通風の不均一性等による乾燥工程における被乾燥中空糸膜束の中空糸膜の折れ、配列乱れ等の中空糸膜の変形や収縮斑が抑制されるので、本発明方法で乾燥された乾燥中空糸膜束は、例えば、血液浄化器用のモジュール組み立て工程におけるモジュールのハウジングへの中空糸膜束の挿入性が向上すると共に、次工程のモジュール組み立て時の接着作業が向上する。さらに、変形や収縮斑に起因した傾き中空糸膜、潰れ中空糸膜および目詰まり中空糸膜等の欠点中空糸膜の発生が抑制され、これらの欠点により引き起される残血性が改善されるという利点がある。また、中空糸膜の折れや傷発生が抑制されるので、血液リーク性が改善される。また、本発明においては湿潤状態の中空糸膜束が中空状の包装体で拘束されているので、被乾燥中空糸膜束の乾燥機へ配置する作業性が向上する上に、乾燥された中空糸膜束を用いて組立てるモジュールに装填する本数単位として中空状の包装体で拘束されおり、乾燥された中空糸膜束をそのままモジュールのハウジングに装填し、その後に包装体を抜き取ることにより中空糸膜束をハウジングに装填することができ、該装填の作業性が大幅に向上でき、装填時の欠点糸の発生が抑制されるという利点がある。その上、上記包装体で拘束された被乾燥中空糸膜束の複数本をトレイに固定し乾燥機に配置されるので被乾燥中空糸膜束の乾燥機へ配置の作業性がより向上し、かつその複数本の中空糸膜束間の乾燥の均一性が発現できるようにその配置が特定化されており、乾燥工程のコストパフォーマンスが高いという利点を有する。さらに、従来公知技術の課題であった通風方向、すなわち、中空糸膜束の長手方向における乾燥の不均一化が改善されるので、ポリビニルピロリドンの局所的な劣化が低減され、該劣化により生成する過酸化水素溶出量が抑制される。従って、本発明により得られた中空糸膜束は、該過酸化水素により引起されるポリビニルピロリドン等の劣化が抑制されるので、長期保存をしても透析型人工腎臓装置製造承認基準であるUV(220−350nm)吸光度の平均値を0.10以下に維持することができる利点がある。また、該乾燥の均一化により中空糸膜束の長手方向におけるポリビニルピロリドンの劣化の変動が小さく、中空糸膜束の長手方向における上記のUV(220−350nm)吸光度変動が抑制され、中空糸膜束の含水率が適度な範囲に設定されており、かつその変動率が抑制されているので、これらの変動により引き起こされる中空糸膜束の部分固着の発生が抑制され、モジュール組み立て性の優れた中空糸膜束が安定して製造できるという特徴を有する。また、該中空糸膜束の長手方向におけるUV(220−350nm)吸光度変動の抑制は、血液浄化用に使用した場合の安全性の向上にも繋がる。従って、慢性腎不全の治療に用いる高透水性を有する血液透析法中空糸型血液浄化器用等に用いられる中空糸膜束の乾燥方法として好適であるいう利点がある。また、本発明のポリビニルピロリドンを含むポリスルホン系樹脂よりなる中空糸膜束は、上記の従来公知技術で得られる中空糸膜束の有する課題特性が改善されているので、血液浄化器用等に好適に使用することができるという利点がある。さらに、本発明で得られた血液浄化器用モジュールは、装填されている中空糸膜束が高性能で安全性や性能の安定性が高く、保存安定性に優れ、かつ残血糸が少ないという利点がある。従って、産業界に寄与することが大である。   The method for drying a hollow fiber membrane bundle according to the present invention excludes a ventilation method for allowing gas to pass through the hollow fiber membrane bundle, which has been conventionally known, to achieve uniform drying, and a jig for applying this ventilation. The structure of the dryer is not required, and it is not necessary to fix the hollow fiber membrane bundle to be dried to a jig for applying this ventilation. Improves. In addition, hollow fiber membranes such as broken or misaligned hollow fiber membranes in a drying process in the drying process due to the arrangement direction of the hollow fiber membrane bundles to be dried and the non-uniformity of ventilation, which has been a problem of the prior art Therefore, the dry hollow fiber membrane bundle dried by the method of the present invention improves the insertability of the hollow fiber membrane bundle into the module housing in the module assembly process for a blood purifier, for example. At the same time, the bonding work at the time of module assembly in the next process is improved. Furthermore, the occurrence of defective hollow fiber membranes such as tilted hollow fiber membranes, crushed hollow fiber membranes and clogged hollow fiber membranes due to deformation and shrinkage spots is suppressed, and residual blood properties caused by these defects are improved. There is an advantage. In addition, since the hollow fiber membrane is prevented from being broken or damaged, blood leakage is improved. Further, in the present invention, since the wet hollow fiber membrane bundle is restrained by the hollow package, the workability of placing the hollow fiber membrane bundle to be dried in the dryer is improved, and the dried hollow fiber membrane bundle is The hollow fiber body is restrained by a hollow packaging body as a unit of number to be loaded into a module to be assembled using the thread membrane bundle, and the dried hollow fiber membrane bundle is loaded as it is into the housing of the module, and then the hollow body is pulled out. The membrane bundle can be loaded into the housing, the workability of the loading can be greatly improved, and there is an advantage that generation of defective yarns during loading is suppressed. In addition, since the plurality of dried hollow fiber membrane bundles restrained by the packaging body are fixed to the tray and placed in the dryer, the workability of placing the dried hollow fiber membrane bundle on the dryer is further improved. And the arrangement | positioning is specified so that the uniformity of drying between the several hollow fiber membrane bundles can be expressed, and it has the advantage that the cost performance of a drying process is high. Furthermore, since the non-uniformity of drying in the ventilation direction, that is, the longitudinal direction of the hollow fiber membrane bundle, which has been a problem of the prior art, is improved, the local degradation of polyvinyl pyrrolidone is reduced and the degradation is generated by the degradation. Hydrogen peroxide elution amount is suppressed. Therefore, since the hollow fiber membrane bundle obtained by the present invention suppresses deterioration of polyvinyl pyrrolidone and the like caused by the hydrogen peroxide, it is UV that is a dialysis type artificial kidney device manufacturing approval standard even after long-term storage. There is an advantage that the average value of (220-350 nm) absorbance can be maintained at 0.10 or less. Further, the uniform drying makes the variation in the degradation of polyvinyl pyrrolidone in the longitudinal direction of the hollow fiber membrane bundle small, suppresses the above UV (220-350 nm) absorbance variation in the longitudinal direction of the hollow fiber membrane bundle, and the hollow fiber membrane. Since the moisture content of the bundle is set in an appropriate range and the fluctuation rate is suppressed, the occurrence of partial sticking of the hollow fiber membrane bundle caused by these fluctuations is suppressed, and the module assembly property is excellent. The hollow fiber membrane bundle is characterized in that it can be produced stably. Moreover, suppression of UV (220-350 nm) absorbance fluctuation in the longitudinal direction of the hollow fiber membrane bundle also leads to an improvement in safety when used for blood purification. Therefore, there is an advantage that it is suitable as a method for drying a hollow fiber membrane bundle used for hemodialysis hollow fiber blood purifiers having high water permeability used for the treatment of chronic renal failure. In addition, the hollow fiber membrane bundle made of the polysulfone-based resin containing polyvinyl pyrrolidone of the present invention is improved in the problem characteristics of the hollow fiber membrane bundle obtained by the above-mentioned conventionally known technology, and therefore suitable for blood purifiers and the like. There is an advantage that it can be used. Furthermore, the blood purifier module obtained in the present invention has the advantage that the loaded hollow fiber membrane bundle has high performance, high safety and stability of performance, excellent storage stability, and few residual blood threads. There is. Therefore, it is important to contribute to the industry.

中空糸膜束の乾燥時間と含水率との相関を示す模式図。The schematic diagram which shows the correlation with the drying time and moisture content of a hollow fiber membrane bundle. 乾燥切り換え含水率と品質のバラツキ度との関係を示す模式図。The schematic diagram which shows the relationship between a dry switching moisture content and the variation degree of quality. 中空糸型血液浄化器の断面図である。It is sectional drawing of a hollow fiber type blood purifier. 傾き中空糸膜の割合評価法の概念図である。It is a conceptual diagram of the ratio evaluation method of an inclination hollow fiber membrane. 実施例1における1セットのトレイおよび中空糸膜束の配置の概念図。FIG. 3 is a conceptual diagram of an arrangement of a set of trays and hollow fiber membrane bundles in Example 1. 比較例1における1セットのトレイおよび中空糸膜束の配置の概念図。The conceptual diagram of arrangement | positioning of 1 set of tray and hollow fiber membrane bundle | flux in the comparative example 1. FIG. 実施例5における1セットのトレイおよび中空糸膜束の配置の概念図。The conceptual diagram of arrangement | positioning of 1 set of tray and hollow fiber membrane bundle | flux in Example 5. FIG. 比較例8、9における1セットのトレイおよび中空糸膜束の配置の概念図。The conceptual diagram of arrangement | positioning of 1 set of tray and hollow fiber membrane bundle | flux in the comparative examples 8 and 9. FIG. 中空糸膜束間の距離と含水率バラツキを示す模式図Schematic showing distance between hollow fiber membrane bundles and moisture content variation

符号の説明Explanation of symbols

1:血液浄化器
2:ハウジング
3:中空糸膜束
4:接着樹脂
5:キャップ
6a:透析液導入口
6b:透析液排出口
7a:血液導入口
7b:血液排出口
8:トレイ
1: Blood purifier 2: Housing 3: Hollow fiber membrane bundle 4: Adhesive resin 5: Cap 6a: Dialysate inlet 6b: Dialysate outlet 7a: Blood inlet 7b: Blood outlet 8: Tray

Claims (12)

湿潤状態の中空糸膜束の複数本をトレイに並列に配置し中空糸膜束の長手方向が水平に対して45度以下の角度になるようにマイクロ波照射オーブン中に配置して乾燥する方法において、単位中空糸膜束の直径をdとした時に隣接する中空糸膜束との間隔を中空糸膜束の中心間距離で1.5d以上3.0d以下離した位置に配置することを特徴とする中空糸膜束の乾燥方法。 A method of arranging a plurality of wet hollow fiber membrane bundles in parallel on a tray and placing them in a microwave irradiation oven so that the longitudinal direction of the hollow fiber membrane bundles is at an angle of 45 degrees or less with respect to the horizontal. , Wherein the distance between adjacent hollow fiber membrane bundles when the diameter of the unit hollow fiber membrane bundle is d is arranged at a position 1.5 to 3.0 d away from the center of the hollow fiber membrane bundle. A method for drying a hollow fiber membrane bundle. 湿潤状態の中空糸膜束の複数本をトレイに並列に配置し中空糸膜束の長手方向が水平に対して45度以下の角度になるようにマイクロ波照射オーブン中に配置して乾燥する方法において、単位中空糸膜束の直径をdとした時に隣接する中空糸膜束との間隔を中空糸膜束の中心間距離で1.5d以内とした位置に配置したときに、その1.5d以内に配置される中空糸膜束の本数を2本以内とすることを特徴とする中空糸膜束の乾燥方法。   A method of arranging a plurality of wet hollow fiber membrane bundles in parallel on a tray and placing them in a microwave irradiation oven so that the longitudinal direction of the hollow fiber membrane bundles is at an angle of 45 degrees or less with respect to the horizontal. When the diameter of the unit hollow fiber membrane bundle is d, the distance between adjacent hollow fiber membrane bundles is 1.5d or less when the distance between the centers of the hollow fiber membrane bundles is 1.5d. The method for drying a hollow fiber membrane bundle is characterized in that the number of hollow fiber membrane bundles arranged within is within two. 中空糸膜束を中空状の包装体で拘束してなることを特徴とする請求項1または2に記載の中空糸膜束の乾燥方法。   The method for drying a hollow fiber membrane bundle according to claim 1 or 2, wherein the hollow fiber membrane bundle is constrained by a hollow package. 湿潤状態の中空糸膜束を拘束する包装体およびトレイの材質が、1MHzでの誘電率と誘電正接の積が0.02以下である樹脂よりなることを特徴とする請求項1〜3のいずれかに記載の中空糸膜束の乾燥方法。   4. The packaging body and tray material for constraining a wet hollow fiber membrane bundle are made of a resin having a product of dielectric constant and dielectric loss tangent at 1 MHz of 0.02 or less. A method for drying a hollow fiber membrane bundle according to claim 1. トレイを回転機能を有する水平に設定されたテーブル上に設置し、回転させながら乾燥することを特徴とする請求項1〜4のいずれかに記載の中空糸膜束の乾燥方法。   The method for drying a hollow fiber membrane bundle according to any one of claims 1 to 4, wherein the tray is placed on a horizontally set table having a rotation function and is dried while being rotated. 中空糸膜束を載せたトレイを回転中心に対して略放射状になるように回転テーブル上に配置することを特徴とする請求項5に記載の中空糸膜束の乾燥方法。   6. The method for drying a hollow fiber membrane bundle according to claim 5, wherein the tray on which the hollow fiber membrane bundle is placed is arranged on a rotary table so as to be substantially radial with respect to the rotation center. マイクロ波発振器をマイクロ波乾燥機の側壁に設置しマイクロ波を水平方向に発振し被乾燥中空糸膜束にマイクロ波を照射することを特徴とする請求項1〜6のいずれかに記載の中空糸膜束の乾燥方法。   The hollow according to any one of claims 1 to 6, wherein a microwave oscillator is installed on a side wall of the microwave dryer, the microwave is oscillated in the horizontal direction, and the microwave is irradiated to the dried hollow fiber membrane bundle. A method for drying the yarn membrane bundle. マイクロ波発振器からオーブンに向かう入射波のエネルギーEiとオーブンで反射されオーブンより発振器に向かう反射波のエネルギーErとの比(Er/Ei)が0.2以下であるマイクロ波発振器を用いてマイクロ波を照射し加熱することを特徴とする請求項7に記載の中空糸膜束の乾燥方法。   Microwave using a microwave oscillator in which the ratio (Er / Ei) between the energy Ei of the incident wave from the microwave oscillator toward the oven and the energy Er of the reflected wave reflected from the oven toward the oscillator is 0.2 or less The method for drying a hollow fiber membrane bundle according to claim 7, wherein the hollow fiber membrane bundle is heated by irradiation. 20kPa以下の減圧下で乾燥することを特徴とする請求項1〜8のいずれかに記載の中空糸膜束の乾燥方法。   It dries under reduced pressure of 20 kPa or less, The drying method of the hollow fiber membrane bundle in any one of Claims 1-8 characterized by the above-mentioned. トレイの最外部に位置する中空糸膜束の中空糸膜中の含水率が10質量%以上の状態でマイクロ波照射を中止し、引き続き減圧下で遠赤外線照射をして乾燥することを特徴とする請求項1〜9中空糸膜束の乾燥方法。   It is characterized in that microwave irradiation is stopped in a state where the moisture content in the hollow fiber membrane of the hollow fiber membrane bundle located at the outermost part of the tray is 10% by mass or more, followed by irradiation with far infrared rays under reduced pressure and drying. A method for drying a hollow fiber membrane bundle. 中空糸膜束がポリビニルピロリドンを含むポリスルホン系樹脂よりなることを特徴とする請求項1〜10のいずれかに記載の中空糸膜束の乾燥方法。   The method for drying a hollow fiber membrane bundle according to any one of claims 1 to 10, wherein the hollow fiber membrane bundle is made of a polysulfone resin containing polyvinylpyrrolidone. 同時に乾燥した中空糸膜束の乾燥終了時の全本数の含水率が1〜5質量%であることを特徴とする請求項1〜11のいずれかに記載の中空糸膜束の乾燥方法。
The method for drying a hollow fiber membrane bundle according to any one of claims 1 to 11, wherein the moisture content of all the hollow fiber membrane bundles dried simultaneously is 1 to 5% by mass.
JP2004363736A 2004-12-15 2004-12-15 Method for drying hollow fiber membrane bundle Active JP4807608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363736A JP4807608B2 (en) 2004-12-15 2004-12-15 Method for drying hollow fiber membrane bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363736A JP4807608B2 (en) 2004-12-15 2004-12-15 Method for drying hollow fiber membrane bundle

Publications (2)

Publication Number Publication Date
JP2006167597A JP2006167597A (en) 2006-06-29
JP4807608B2 true JP4807608B2 (en) 2011-11-02

Family

ID=36668900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363736A Active JP4807608B2 (en) 2004-12-15 2004-12-15 Method for drying hollow fiber membrane bundle

Country Status (1)

Country Link
JP (1) JP4807608B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240035747A1 (en) * 2020-08-12 2024-02-01 Fricke Und Mallah Microwave Technology Gmbh Drying of filter modules and filter housings using a frequency-guided microwave process

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939672B2 (en) * 1977-12-23 1984-09-25 松下電器産業株式会社 infrared dryer
JPS5888005A (en) * 1981-11-18 1983-05-26 Sumitomo Bakelite Co Ltd Formation of separation membrane into module
JPH0243926A (en) * 1988-08-02 1990-02-14 Daicel Chem Ind Ltd Hollow yarn like separation membrane bundle and production thereof
JP3019531B2 (en) * 1991-09-30 2000-03-13 松下電器産業株式会社 Drying processing equipment
JP2863034B2 (en) * 1992-01-22 1999-03-03 シャープ株式会社 microwave
JP2000175675A (en) * 1998-12-17 2000-06-27 Sharp Corp Device for producing feed
JP3293069B2 (en) * 1999-05-28 2002-06-17 エリー株式会社 Method and apparatus for heating object to be heated
JP4325904B2 (en) * 2002-03-27 2009-09-02 旭化成クラレメディカル株式会社 Hollow fiber membrane drying equipment
JP2004305997A (en) * 2003-04-10 2004-11-04 Toyobo Co Ltd Drying method for hollow fiber membrane bundle, and hollow fiber membrane bundle

Also Published As

Publication number Publication date
JP2006167597A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP3642065B1 (en) Permselective separation membrane and method for producing a selectively permeable separation membrane
JP4846587B2 (en) Polysulfone-based selectively permeable hollow fiber membrane module and method for producing the same
WO2006107014A1 (en) Blood purifier
JP3636199B1 (en) Polysulfone-based permselective hollow fiber membrane bundle, method for producing the same and blood purifier
JP4843988B2 (en) Polysulfone hollow fiber membrane blood purifier
JP2006263600A (en) Method for manufacturing hollow fiber membrane
JP4839631B2 (en) Polysulfone-based permselective hollow fiber membrane bundle and blood purifier
JP2006068689A (en) Drying method for bundle of hollow fiber membrane
JP4596171B2 (en) Blood purifier
JP4807608B2 (en) Method for drying hollow fiber membrane bundle
JP2013009962A (en) Hollow fiber membrane type hemocatharsis apparatus
JP4711169B2 (en) Hollow fiber membrane bundle and separation module
JP4748348B2 (en) Polysulfone-based permselective hollow fiber membrane bundle
JP3659256B1 (en) Polysulfone-based permselective hollow fiber membrane bundle and drying method thereof
JP4843993B2 (en) Blood purifier
JP2006068716A (en) Drying method for bundle of hollow fiber membrane
JP4379803B2 (en) Method for drying hollow fiber membrane bundle
JP4501155B2 (en) Method for producing polysulfone-based permselective hollow fiber membrane bundle
JP4843992B2 (en) Blood purifier
JP4839630B2 (en) Polysulfone-based permselective hollow fiber membrane bundle and blood purifier
JP2006288413A (en) Hollow fiber membrane type hemocatharsis apparatus
JP4288601B2 (en) Polysulfone permselective hollow fiber membrane
JP5580616B2 (en) Method for drying polysulfone-based permselective hollow fiber membrane bundle
JP4446173B2 (en) Permselective separation membrane and blood purifier
JP2011156532A (en) Polysulfone-based permselective hollow fiber membrane bundle and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4807608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350